1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * ASPEED FMC/SPI Controller driver
4 *
5 * Copyright (c) 2022 ASPEED Corporation.
6 * Copyright (c) 2022 IBM Corporation.
7 *
8 * Author:
9 *     Chin-Ting Kuo <chin-ting_kuo@aspeedtech.com>
10 *     Cedric Le Goater <clg@kaod.org>
11 */
12
13#include <asm/io.h>
14#include <clk.h>
15#include <common.h>
16#include <dm.h>
17#include <dm/device_compat.h>
18#include <linux/bitops.h>
19#include <linux/bug.h>
20#include <linux/err.h>
21#include <linux/iopoll.h>
22#include <linux/kernel.h>
23#include <linux/mtd/spi-nor.h>
24#include <linux/sizes.h>
25#include <malloc.h>
26#include <spi.h>
27#include <spi-mem.h>
28
29#define ASPEED_SPI_MAX_CS       5
30
31#define CTRL_IO_SINGLE_DATA     0
32#define CTRL_IO_QUAD_DATA       BIT(30)
33#define CTRL_IO_DUAL_DATA       BIT(29)
34
35#define CTRL_IO_MODE_USER       GENMASK(1, 0)
36#define CTRL_IO_MODE_CMD_READ   BIT(0)
37#define CTRL_IO_MODE_CMD_WRITE  BIT(1)
38#define CTRL_STOP_ACTIVE        BIT(2)
39
40struct aspeed_spi_regs {
41	u32 conf;                       /* 0x00 CE Type Setting */
42	u32 ctrl;                       /* 0x04 CE Control */
43	u32 intr_ctrl;                  /* 0x08 Interrupt Control and Status */
44	u32 cmd_ctrl;                   /* 0x0c Command Control */
45	u32 ce_ctrl[ASPEED_SPI_MAX_CS]; /* 0x10 .. 0x20 CEx Control */
46	u32 _reserved0[3];              /* .. */
47	u32 segment_addr[ASPEED_SPI_MAX_CS]; /* 0x30 .. 0x40 Segment Address */
48	u32 _reserved1[3];		/* .. */
49	u32 soft_rst_cmd_ctrl;          /* 0x50 Auto Soft-Reset Command Control */
50	u32 _reserved2[11];             /* .. */
51	u32 dma_ctrl;                   /* 0x80 DMA Control/Status */
52	u32 dma_flash_addr;             /* 0x84 DMA Flash Side Address */
53	u32 dma_dram_addr;              /* 0x88 DMA DRAM Side Address */
54	u32 dma_len;                    /* 0x8c DMA Length Register */
55	u32 dma_checksum;               /* 0x90 Checksum Calculation Result */
56	u32 timings[ASPEED_SPI_MAX_CS]; /* 0x94 Read Timing Compensation */
57};
58
59struct aspeed_spi_plat {
60	u8 max_cs;
61	void __iomem *ahb_base; /* AHB address base for all flash devices. */
62	fdt_size_t ahb_sz; /* Overall AHB window size for all flash device. */
63	u32 hclk_rate; /* AHB clock rate */
64};
65
66struct aspeed_spi_flash {
67	void __iomem *ahb_base;
68	u32 ahb_decoded_sz;
69	u32 ce_ctrl_user;
70	u32 ce_ctrl_read;
71	u32 max_freq;
72};
73
74struct aspeed_spi_priv {
75	u32 num_cs;
76	struct aspeed_spi_regs *regs;
77	struct aspeed_spi_info *info;
78	struct aspeed_spi_flash flashes[ASPEED_SPI_MAX_CS];
79	bool fixed_decoded_range;
80};
81
82struct aspeed_spi_info {
83	u32 io_mode_mask;
84	u32 max_bus_width;
85	u32 min_decoded_sz;
86	u32 clk_ctrl_mask;
87	void (*set_4byte)(struct udevice *bus, u32 cs);
88	u32 (*segment_start)(struct udevice *bus, u32 reg);
89	u32 (*segment_end)(struct udevice *bus, u32 reg);
90	u32 (*segment_reg)(u32 start, u32 end);
91	int (*adjust_decoded_sz)(struct udevice *bus);
92	u32 (*get_clk_setting)(struct udevice *dev, uint hz);
93};
94
95struct aspeed_spi_decoded_range {
96	u32 cs;
97	u32 ahb_base;
98	u32 sz;
99};
100
101static const struct aspeed_spi_info ast2400_spi_info;
102static const struct aspeed_spi_info ast2500_fmc_info;
103static const struct aspeed_spi_info ast2500_spi_info;
104static int aspeed_spi_decoded_range_config(struct udevice *bus);
105static int aspeed_spi_trim_decoded_size(struct udevice *bus);
106
107static u32 aspeed_spi_get_io_mode(u32 bus_width)
108{
109	switch (bus_width) {
110	case 1:
111		return CTRL_IO_SINGLE_DATA;
112	case 2:
113		return CTRL_IO_DUAL_DATA;
114	case 4:
115		return CTRL_IO_QUAD_DATA;
116	default:
117		/* keep in default value */
118		return CTRL_IO_SINGLE_DATA;
119	}
120}
121
122static u32 ast2400_spi_segment_start(struct udevice *bus, u32 reg)
123{
124	struct aspeed_spi_plat *plat = dev_get_plat(bus);
125	u32 start_offset = ((reg >> 16) & 0xff) << 23;
126
127	if (start_offset == 0)
128		return (u32)plat->ahb_base;
129
130	return (u32)plat->ahb_base + start_offset;
131}
132
133static u32 ast2400_spi_segment_end(struct udevice *bus, u32 reg)
134{
135	struct aspeed_spi_plat *plat = dev_get_plat(bus);
136	u32 end_offset = ((reg >> 24) & 0xff) << 23;
137
138	/* Meaningless end_offset, set to physical ahb base. */
139	if (end_offset == 0)
140		return (u32)plat->ahb_base;
141
142	return (u32)plat->ahb_base + end_offset;
143}
144
145static u32 ast2400_spi_segment_reg(u32 start, u32 end)
146{
147	if (start == end)
148		return 0;
149
150	return ((((start) >> 23) & 0xff) << 16) | ((((end) >> 23) & 0xff) << 24);
151}
152
153static void ast2400_fmc_chip_set_4byte(struct udevice *bus, u32 cs)
154{
155	struct aspeed_spi_priv *priv = dev_get_priv(bus);
156	u32 reg_val;
157
158	reg_val = readl(&priv->regs->ctrl);
159	reg_val |= 0x1 << cs;
160	writel(reg_val, &priv->regs->ctrl);
161}
162
163static void ast2400_spi_chip_set_4byte(struct udevice *bus, u32 cs)
164{
165	struct aspeed_spi_priv *priv = dev_get_priv(bus);
166	struct aspeed_spi_flash *flash = &priv->flashes[cs];
167
168	flash->ce_ctrl_read |= BIT(13);
169	writel(flash->ce_ctrl_read, &priv->regs->ctrl);
170}
171
172/* Transfer maximum clock frequency to register setting */
173static u32 ast2400_get_clk_setting(struct udevice *dev, uint max_hz)
174{
175	struct aspeed_spi_plat *plat = dev_get_plat(dev->parent);
176	struct aspeed_spi_priv *priv = dev_get_priv(dev->parent);
177	struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
178	u32 hclk_clk = plat->hclk_rate;
179	u32 hclk_div = 0x0000; /* default value */
180	u32 i;
181	bool found = false;
182	/* HCLK/1 ..	HCLK/16 */
183	u32 hclk_masks[] = {15, 7, 14, 6, 13, 5, 12, 4,
184			    11, 3, 10, 2, 9,  1, 8,  0};
185
186	/* FMC/SPIR10[11:8] */
187	for (i = 0; i < ARRAY_SIZE(hclk_masks); i++) {
188		if (hclk_clk / (i + 1) <= max_hz) {
189			found = true;
190			break;
191		}
192	}
193
194	if (found) {
195		hclk_div = hclk_masks[i] << 8;
196		priv->flashes[slave_plat->cs].max_freq = hclk_clk / (i + 1);
197	}
198
199	dev_dbg(dev, "found: %s, hclk: %d, max_clk: %d\n", found ? "yes" : "no",
200		hclk_clk, max_hz);
201
202	if (found) {
203		dev_dbg(dev, "h_div: %d (mask %x), speed: %d\n",
204			i + 1, hclk_masks[i], priv->flashes[slave_plat->cs].max_freq);
205	}
206
207	return hclk_div;
208}
209
210static u32 ast2500_spi_segment_start(struct udevice *bus, u32 reg)
211{
212	struct aspeed_spi_plat *plat = dev_get_plat(bus);
213	u32 start_offset = ((reg >> 16) & 0xff) << 23;
214
215	if (start_offset == 0)
216		return (u32)plat->ahb_base;
217
218	return (u32)plat->ahb_base + start_offset;
219}
220
221static u32 ast2500_spi_segment_end(struct udevice *bus, u32 reg)
222{
223	struct aspeed_spi_plat *plat = dev_get_plat(bus);
224	u32 end_offset = ((reg >> 24) & 0xff) << 23;
225
226	/* Meaningless end_offset, set to physical ahb base. */
227	if (end_offset == 0)
228		return (u32)plat->ahb_base;
229
230	return (u32)plat->ahb_base + end_offset;
231}
232
233static u32 ast2500_spi_segment_reg(u32 start, u32 end)
234{
235	if (start == end)
236		return 0;
237
238	return ((((start) >> 23) & 0xff) << 16) | ((((end) >> 23) & 0xff) << 24);
239}
240
241static void ast2500_spi_chip_set_4byte(struct udevice *bus, u32 cs)
242{
243	struct aspeed_spi_priv *priv = dev_get_priv(bus);
244	u32 reg_val;
245
246	reg_val = readl(&priv->regs->ctrl);
247	reg_val |= 0x1 << cs;
248	writel(reg_val, &priv->regs->ctrl);
249}
250
251/*
252 * For AST2500, the minimum address decoded size for each CS
253 * is 8MB instead of zero. This address decoded size is
254 * mandatory for each CS no matter whether it will be used.
255 * This is a HW limitation.
256 */
257static int ast2500_adjust_decoded_size(struct udevice *bus)
258{
259	struct aspeed_spi_plat *plat = dev_get_plat(bus);
260	struct aspeed_spi_priv *priv = dev_get_priv(bus);
261	struct aspeed_spi_flash *flashes = &priv->flashes[0];
262	int ret;
263	int i;
264	int cs;
265	u32 pre_sz;
266	u32 lack_sz;
267
268	/* Assign min_decoded_sz to unused CS. */
269	for (cs = priv->num_cs; cs < plat->max_cs; cs++)
270		flashes[cs].ahb_decoded_sz = priv->info->min_decoded_sz;
271
272	/*
273	 * If command mode or normal mode is used, the start address of a
274	 * decoded range should be multiple of its related flash size.
275	 * Namely, the total decoded size from flash 0 to flash N should
276	 * be multiple of the size of flash (N + 1).
277	 */
278	for (cs = priv->num_cs - 1; cs >= 0; cs--) {
279		pre_sz = 0;
280		for (i = 0; i < cs; i++)
281			pre_sz += flashes[i].ahb_decoded_sz;
282
283		if (flashes[cs].ahb_decoded_sz != 0 &&
284		    (pre_sz % flashes[cs].ahb_decoded_sz) != 0) {
285			lack_sz = flashes[cs].ahb_decoded_sz -
286				  (pre_sz % flashes[cs].ahb_decoded_sz);
287			flashes[0].ahb_decoded_sz += lack_sz;
288		}
289	}
290
291	ret = aspeed_spi_trim_decoded_size(bus);
292	if (ret != 0)
293		return ret;
294
295	return 0;
296}
297
298static u32 ast2500_get_clk_setting(struct udevice *dev, uint max_hz)
299{
300	struct aspeed_spi_plat *plat = dev_get_plat(dev->parent);
301	struct aspeed_spi_priv *priv = dev_get_priv(dev->parent);
302	struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
303	u32 hclk_clk = plat->hclk_rate;
304	u32 hclk_div = 0x0000; /* default value */
305	u32 i;
306	bool found = false;
307	/* HCLK/1 ..	HCLK/16 */
308	u32 hclk_masks[] = {15, 7, 14, 6, 13, 5, 12, 4,
309			    11, 3, 10, 2, 9,  1, 8,  0};
310
311	/* FMC/SPIR10[11:8] */
312	for (i = 0; i < ARRAY_SIZE(hclk_masks); i++) {
313		if (hclk_clk / (i + 1) <= max_hz) {
314			found = true;
315			priv->flashes[slave_plat->cs].max_freq =
316							hclk_clk / (i + 1);
317			break;
318		}
319	}
320
321	if (found) {
322		hclk_div = hclk_masks[i] << 8;
323		goto end;
324	}
325
326	for (i = 0; i < ARRAY_SIZE(hclk_masks); i++) {
327		if (hclk_clk / ((i + 1) * 4) <= max_hz) {
328			found = true;
329			priv->flashes[slave_plat->cs].max_freq =
330						hclk_clk / ((i + 1) * 4);
331			break;
332		}
333	}
334
335	if (found)
336		hclk_div = BIT(13) | (hclk_masks[i] << 8);
337
338end:
339	dev_dbg(dev, "found: %s, hclk: %d, max_clk: %d\n", found ? "yes" : "no",
340		hclk_clk, max_hz);
341
342	if (found) {
343		dev_dbg(dev, "h_div: %d (mask %x), speed: %d\n",
344			i + 1, hclk_masks[i], priv->flashes[slave_plat->cs].max_freq);
345	}
346
347	return hclk_div;
348}
349
350static u32 ast2600_spi_segment_start(struct udevice *bus, u32 reg)
351{
352	struct aspeed_spi_plat *plat = dev_get_plat(bus);
353	u32 start_offset = (reg << 16) & 0x0ff00000;
354
355	if (start_offset == 0)
356		return (u32)plat->ahb_base;
357
358	return (u32)plat->ahb_base + start_offset;
359}
360
361static u32 ast2600_spi_segment_end(struct udevice *bus, u32 reg)
362{
363	struct aspeed_spi_plat *plat = dev_get_plat(bus);
364	u32 end_offset = reg & 0x0ff00000;
365
366	/* Meaningless end_offset, set to physical ahb base. */
367	if (end_offset == 0)
368		return (u32)plat->ahb_base;
369
370	return (u32)plat->ahb_base + end_offset + 0x100000;
371}
372
373static u32 ast2600_spi_segment_reg(u32 start, u32 end)
374{
375	if (start == end)
376		return 0;
377
378	return ((start & 0x0ff00000) >> 16) | ((end - 0x100000) & 0x0ff00000);
379}
380
381static void ast2600_spi_chip_set_4byte(struct udevice *bus, u32 cs)
382{
383	struct aspeed_spi_priv *priv = dev_get_priv(bus);
384	u32 reg_val;
385
386	reg_val = readl(&priv->regs->ctrl);
387	reg_val |= 0x11 << cs;
388	writel(reg_val, &priv->regs->ctrl);
389}
390
391static int ast2600_adjust_decoded_size(struct udevice *bus)
392{
393	struct aspeed_spi_plat *plat = dev_get_plat(bus);
394	struct aspeed_spi_priv *priv = dev_get_priv(bus);
395	struct aspeed_spi_flash *flashes = &priv->flashes[0];
396	int ret;
397	int i;
398	int cs;
399	u32 pre_sz;
400	u32 lack_sz;
401
402	/* Close unused CS. */
403	for (cs = priv->num_cs; cs < plat->max_cs; cs++)
404		flashes[cs].ahb_decoded_sz = 0;
405
406	/*
407	 * If command mode or normal mode is used, the start address of a
408	 * decoded range should be multiple of its related flash size.
409	 * Namely, the total decoded size from flash 0 to flash N should
410	 * be multiple of the size of flash (N + 1).
411	 */
412	for (cs = priv->num_cs - 1; cs >= 0; cs--) {
413		pre_sz = 0;
414		for (i = 0; i < cs; i++)
415			pre_sz += flashes[i].ahb_decoded_sz;
416
417		if (flashes[cs].ahb_decoded_sz != 0 &&
418		    (pre_sz % flashes[cs].ahb_decoded_sz) != 0) {
419			lack_sz = flashes[cs].ahb_decoded_sz -
420				  (pre_sz % flashes[cs].ahb_decoded_sz);
421			flashes[0].ahb_decoded_sz += lack_sz;
422		}
423	}
424
425	ret = aspeed_spi_trim_decoded_size(bus);
426	if (ret != 0)
427		return ret;
428
429	return 0;
430}
431
432static u32 ast2600_get_clk_setting(struct udevice *dev, uint max_hz)
433{
434	struct aspeed_spi_plat *plat = dev_get_plat(dev->parent);
435	struct aspeed_spi_priv *priv = dev_get_priv(dev->parent);
436	struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
437	u32 hclk_clk = plat->hclk_rate;
438	u32 hclk_div = 0x0400; /* default value */
439	u32 i, j;
440	bool found = false;
441	/* HCLK/1 ..	HCLK/16 */
442	u32 hclk_masks[] = {15, 7, 14, 6, 13, 5, 12, 4,
443			    11, 3, 10, 2, 9,  1, 8,  0};
444
445	/* FMC/SPIR10[27:24] */
446	for (j = 0; j < 0xf; j++) {
447		/* FMC/SPIR10[11:8] */
448		for (i = 0; i < ARRAY_SIZE(hclk_masks); i++) {
449			if (i == 0 && j == 0)
450				continue;
451
452			if (hclk_clk / (i + 1 + (j * 16)) <= max_hz) {
453				found = true;
454				break;
455			}
456		}
457
458		if (found) {
459			hclk_div = ((j << 24) | hclk_masks[i] << 8);
460			priv->flashes[slave_plat->cs].max_freq =
461						hclk_clk / (i + 1 + j * 16);
462			break;
463		}
464	}
465
466	dev_dbg(dev, "found: %s, hclk: %d, max_clk: %d\n", found ? "yes" : "no",
467		hclk_clk, max_hz);
468
469	if (found) {
470		dev_dbg(dev, "base_clk: %d, h_div: %d (mask %x), speed: %d\n",
471			j, i + 1, hclk_masks[i], priv->flashes[slave_plat->cs].max_freq);
472	}
473
474	return hclk_div;
475}
476
477/*
478 * As the flash size grows up, we need to trim some decoded
479 * size if needed for the sake of conforming the maximum
480 * decoded size. We trim the decoded size from the largest
481 * CS in order to avoid affecting the default boot up sequence
482 * from CS0 where command mode or normal mode is used.
483 * Notice, if a CS decoded size is trimmed, command mode may
484 * not work perfectly on that CS.
485 */
486static int aspeed_spi_trim_decoded_size(struct udevice *bus)
487{
488	struct aspeed_spi_plat *plat = dev_get_plat(bus);
489	struct aspeed_spi_priv *priv = dev_get_priv(bus);
490	struct aspeed_spi_flash *flashes = &priv->flashes[0];
491	u32 total_sz;
492	int cs = plat->max_cs - 1;
493	u32 i;
494
495	do {
496		total_sz = 0;
497		for (i = 0; i < plat->max_cs; i++)
498			total_sz += flashes[i].ahb_decoded_sz;
499
500		if (flashes[cs].ahb_decoded_sz <= priv->info->min_decoded_sz)
501			cs--;
502
503		if (cs < 0)
504			return -ENOMEM;
505
506		if (total_sz > plat->ahb_sz) {
507			flashes[cs].ahb_decoded_sz -=
508					priv->info->min_decoded_sz;
509			total_sz -= priv->info->min_decoded_sz;
510		}
511	} while (total_sz > plat->ahb_sz);
512
513	return 0;
514}
515
516static int aspeed_spi_read_from_ahb(void __iomem *ahb_base, void *buf,
517				    size_t len)
518{
519	size_t offset = 0;
520
521	if (IS_ALIGNED((uintptr_t)ahb_base, sizeof(uintptr_t)) &&
522	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
523		readsl(ahb_base, buf, len >> 2);
524		offset = len & ~0x3;
525		len -= offset;
526	}
527
528	readsb(ahb_base, (u8 *)buf + offset, len);
529
530	return 0;
531}
532
533static int aspeed_spi_write_to_ahb(void __iomem *ahb_base, const void *buf,
534				   size_t len)
535{
536	size_t offset = 0;
537
538	if (IS_ALIGNED((uintptr_t)ahb_base, sizeof(uintptr_t)) &&
539	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
540		writesl(ahb_base, buf, len >> 2);
541		offset = len & ~0x3;
542		len -= offset;
543	}
544
545	writesb(ahb_base, (u8 *)buf + offset, len);
546
547	return 0;
548}
549
550/*
551 * Currently, only support 1-1-1, 1-1-2 or 1-1-4
552 * SPI NOR flash operation format.
553 */
554static bool aspeed_spi_supports_op(struct spi_slave *slave,
555				   const struct spi_mem_op *op)
556{
557	struct udevice *bus = slave->dev->parent;
558	struct aspeed_spi_priv *priv = dev_get_priv(bus);
559
560	if (op->cmd.buswidth > 1)
561		return false;
562
563	if (op->addr.nbytes != 0) {
564		if (op->addr.buswidth > 1)
565			return false;
566		if (op->addr.nbytes < 3 || op->addr.nbytes > 4)
567			return false;
568	}
569
570	if (op->dummy.nbytes != 0) {
571		if (op->dummy.buswidth > 1 || op->dummy.nbytes > 7)
572			return false;
573	}
574
575	if (op->data.nbytes != 0 &&
576	    op->data.buswidth > priv->info->max_bus_width)
577		return false;
578
579	if (!spi_mem_default_supports_op(slave, op))
580		return false;
581
582	return true;
583}
584
585static int aspeed_spi_exec_op_user_mode(struct spi_slave *slave,
586					const struct spi_mem_op *op)
587{
588	struct udevice *dev = slave->dev;
589	struct udevice *bus = dev->parent;
590	struct aspeed_spi_priv *priv = dev_get_priv(bus);
591	struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(slave->dev);
592	u32 cs = slave_plat->cs;
593	u32 ce_ctrl_reg = (u32)&priv->regs->ce_ctrl[cs];
594	u32 ce_ctrl_val;
595	struct aspeed_spi_flash *flash = &priv->flashes[cs];
596	u8 dummy_data[16] = {0};
597	u8 addr[4] = {0};
598	int i;
599
600	dev_dbg(dev, "cmd:%x(%d),addr:%llx(%d),dummy:%d(%d),data_len:0x%x(%d)\n",
601		op->cmd.opcode, op->cmd.buswidth, op->addr.val,
602		op->addr.buswidth, op->dummy.nbytes, op->dummy.buswidth,
603		op->data.nbytes, op->data.buswidth);
604
605	if (priv->info == &ast2400_spi_info)
606		ce_ctrl_reg = (u32)&priv->regs->ctrl;
607
608	/*
609	 * Set controller to 4-byte address mode
610	 * if flash is in 4-byte address mode.
611	 */
612	if (op->cmd.opcode == SPINOR_OP_EN4B)
613		priv->info->set_4byte(bus, cs);
614
615	/* Start user mode */
616	ce_ctrl_val = flash->ce_ctrl_user;
617	writel(ce_ctrl_val, ce_ctrl_reg);
618	ce_ctrl_val &= (~CTRL_STOP_ACTIVE);
619	writel(ce_ctrl_val, ce_ctrl_reg);
620
621	/* Send command */
622	aspeed_spi_write_to_ahb(flash->ahb_base, &op->cmd.opcode, 1);
623
624	/* Send address */
625	for (i = op->addr.nbytes; i > 0; i--) {
626		addr[op->addr.nbytes - i] =
627			((u32)op->addr.val >> ((i - 1) * 8)) & 0xff;
628	}
629
630	/* Change io_mode */
631	ce_ctrl_val &= ~priv->info->io_mode_mask;
632	ce_ctrl_val |= aspeed_spi_get_io_mode(op->addr.buswidth);
633	writel(ce_ctrl_val, ce_ctrl_reg);
634	aspeed_spi_write_to_ahb(flash->ahb_base, addr, op->addr.nbytes);
635
636	/* Send dummy cycles */
637	aspeed_spi_write_to_ahb(flash->ahb_base, dummy_data, op->dummy.nbytes);
638
639	/* Change io_mode */
640	ce_ctrl_val &= ~priv->info->io_mode_mask;
641	ce_ctrl_val |= aspeed_spi_get_io_mode(op->data.buswidth);
642	writel(ce_ctrl_val, ce_ctrl_reg);
643
644	/* Send data */
645	if (op->data.dir == SPI_MEM_DATA_OUT) {
646		aspeed_spi_write_to_ahb(flash->ahb_base, op->data.buf.out,
647					op->data.nbytes);
648	} else {
649		aspeed_spi_read_from_ahb(flash->ahb_base, op->data.buf.in,
650					 op->data.nbytes);
651	}
652
653	ce_ctrl_val |= CTRL_STOP_ACTIVE;
654	writel(ce_ctrl_val, ce_ctrl_reg);
655
656	/* Restore controller setting. */
657	writel(flash->ce_ctrl_read, ce_ctrl_reg);
658
659	return 0;
660}
661
662static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
663{
664	int ret = 0;
665	struct udevice *dev = desc->slave->dev;
666	struct udevice *bus = dev->parent;
667	struct aspeed_spi_priv *priv = dev_get_priv(bus);
668	struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
669	const struct aspeed_spi_info *info = priv->info;
670	struct spi_mem_op op_tmpl = desc->info.op_tmpl;
671	u32 i;
672	u32 cs = slave_plat->cs;
673	u32 cmd_io_conf;
674	u32 ce_ctrl_reg;
675
676	if (desc->info.op_tmpl.data.dir == SPI_MEM_DATA_OUT) {
677		/*
678		 * dirmap_write is not supported currently due to a HW
679		 * limitation for command write mode: The written data
680		 * length should be multiple of 4-byte.
681		 */
682		return -EOPNOTSUPP;
683	}
684
685	ce_ctrl_reg = (u32)&priv->regs->ce_ctrl[cs];
686	if (info == &ast2400_spi_info)
687		ce_ctrl_reg = (u32)&priv->regs->ctrl;
688
689	if (desc->info.length > 0x1000000)
690		priv->info->set_4byte(bus, cs);
691
692	/* AST2400 SPI1 doesn't have decoded address segment register. */
693	if (info != &ast2400_spi_info) {
694		priv->flashes[cs].ahb_decoded_sz = desc->info.length;
695
696		for (i = 0; i < priv->num_cs; i++) {
697			dev_dbg(dev, "cs: %d, sz: 0x%x\n", i,
698				priv->flashes[cs].ahb_decoded_sz);
699		}
700
701		ret = aspeed_spi_decoded_range_config(bus);
702		if (ret)
703			return ret;
704	}
705
706	cmd_io_conf = aspeed_spi_get_io_mode(op_tmpl.data.buswidth) |
707		      op_tmpl.cmd.opcode << 16 |
708		      ((op_tmpl.dummy.nbytes) & 0x3) << 6 |
709		      ((op_tmpl.dummy.nbytes) & 0x4) << 14 |
710		      CTRL_IO_MODE_CMD_READ;
711
712	priv->flashes[cs].ce_ctrl_read &= priv->info->clk_ctrl_mask;
713	priv->flashes[cs].ce_ctrl_read |= cmd_io_conf;
714
715	writel(priv->flashes[cs].ce_ctrl_read, ce_ctrl_reg);
716
717	dev_dbg(dev, "read bus width: %d ce_ctrl_val: 0x%08x\n",
718		op_tmpl.data.buswidth, priv->flashes[cs].ce_ctrl_read);
719
720	return ret;
721}
722
723static ssize_t aspeed_spi_dirmap_read(struct spi_mem_dirmap_desc *desc,
724				      u64 offs, size_t len, void *buf)
725{
726	struct udevice *dev = desc->slave->dev;
727	struct aspeed_spi_priv *priv = dev_get_priv(dev->parent);
728	struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
729	u32 cs = slave_plat->cs;
730	int ret;
731
732	dev_dbg(dev, "read op:0x%x, addr:0x%llx, len:0x%x\n",
733		desc->info.op_tmpl.cmd.opcode, offs, len);
734
735	if (priv->flashes[cs].ahb_decoded_sz < offs + len ||
736	    (offs % 4) != 0) {
737		ret = aspeed_spi_exec_op_user_mode(desc->slave,
738						   &desc->info.op_tmpl);
739		if (ret != 0)
740			return 0;
741	} else {
742		memcpy_fromio(buf, priv->flashes[cs].ahb_base + offs, len);
743	}
744
745	return len;
746}
747
748static struct aspeed_spi_flash *aspeed_spi_get_flash(struct udevice *dev)
749{
750	struct udevice *bus = dev->parent;
751	struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
752	struct aspeed_spi_plat *plat = dev_get_plat(bus);
753	struct aspeed_spi_priv *priv = dev_get_priv(bus);
754	u32 cs = slave_plat->cs;
755
756	if (cs >= plat->max_cs) {
757		dev_err(dev, "invalid CS %u\n", cs);
758		return NULL;
759	}
760
761	return &priv->flashes[cs];
762}
763
764static void aspeed_spi_decoded_base_calculate(struct udevice *bus)
765{
766	struct aspeed_spi_plat *plat = dev_get_plat(bus);
767	struct aspeed_spi_priv *priv = dev_get_priv(bus);
768	u32 cs;
769
770	if (priv->fixed_decoded_range)
771		return;
772
773	priv->flashes[0].ahb_base = plat->ahb_base;
774
775	for (cs = 1; cs < plat->max_cs; cs++) {
776		priv->flashes[cs].ahb_base =
777				priv->flashes[cs - 1].ahb_base +
778				priv->flashes[cs - 1].ahb_decoded_sz;
779	}
780}
781
782static void aspeed_spi_decoded_range_set(struct udevice *bus)
783{
784	struct aspeed_spi_plat *plat = dev_get_plat(bus);
785	struct aspeed_spi_priv *priv = dev_get_priv(bus);
786	u32 decoded_reg_val;
787	u32 start_addr, end_addr;
788	u32 cs;
789
790	for (cs = 0; cs < plat->max_cs; cs++) {
791		start_addr = (u32)priv->flashes[cs].ahb_base;
792		end_addr = (u32)priv->flashes[cs].ahb_base +
793			   priv->flashes[cs].ahb_decoded_sz;
794
795		decoded_reg_val = priv->info->segment_reg(start_addr, end_addr);
796
797		writel(decoded_reg_val, &priv->regs->segment_addr[cs]);
798
799		dev_dbg(bus, "cs: %d, decoded_reg: 0x%x, start: 0x%x, end: 0x%x\n",
800			cs, decoded_reg_val, start_addr, end_addr);
801	}
802}
803
804static int aspeed_spi_decoded_range_config(struct udevice *bus)
805{
806	int ret = 0;
807	struct aspeed_spi_priv *priv = dev_get_priv(bus);
808
809	if (priv->info->adjust_decoded_sz &&
810	    !priv->fixed_decoded_range) {
811		ret = priv->info->adjust_decoded_sz(bus);
812		if (ret != 0)
813			return ret;
814	}
815
816	aspeed_spi_decoded_base_calculate(bus);
817	aspeed_spi_decoded_range_set(bus);
818
819	return ret;
820}
821
822static int aspeed_spi_decoded_ranges_sanity(struct udevice *bus)
823{
824	struct aspeed_spi_plat *plat = dev_get_plat(bus);
825	struct aspeed_spi_priv *priv = dev_get_priv(bus);
826	u32 cs;
827	u32 total_sz = 0;
828
829	/* Check overall size. */
830	for (cs = 0; cs < plat->max_cs; cs++)
831		total_sz += priv->flashes[cs].ahb_decoded_sz;
832
833	if (total_sz > plat->ahb_sz) {
834		dev_err(bus, "invalid total size 0x%08x\n", total_sz);
835		return -EINVAL;
836	}
837
838	/* Check each decoded range size for AST2500. */
839	if (priv->info == &ast2500_fmc_info ||
840	    priv->info == &ast2500_spi_info) {
841		for (cs = 0; cs < plat->max_cs; cs++) {
842			if (priv->flashes[cs].ahb_decoded_sz <
843			    priv->info->min_decoded_sz) {
844				dev_err(bus, "insufficient decoded range.\n");
845				return -EINVAL;
846			}
847		}
848	}
849
850	/*
851	 * Check overlay. Here, we assume the deccded ranges and
852	 * address base	are monotonic increasing with CE#.
853	 */
854	for (cs = plat->max_cs - 1; cs > 0; cs--) {
855		if ((u32)priv->flashes[cs].ahb_base != 0 &&
856		    (u32)priv->flashes[cs].ahb_base <
857		    (u32)priv->flashes[cs - 1].ahb_base +
858		    priv->flashes[cs - 1].ahb_decoded_sz) {
859			dev_err(bus, "decoded range overlay 0x%08x 0x%08x\n",
860				(u32)priv->flashes[cs].ahb_base,
861				(u32)priv->flashes[cs - 1].ahb_base);
862			return -EINVAL;
863		}
864	}
865
866	return 0;
867}
868
869static int aspeed_spi_read_fixed_decoded_ranges(struct udevice *bus)
870{
871	int ret = 0;
872	struct aspeed_spi_plat *plat = dev_get_plat(bus);
873	struct aspeed_spi_priv *priv = dev_get_priv(bus);
874	const char *range_prop = "decoded-ranges";
875	struct aspeed_spi_decoded_range ranges[ASPEED_SPI_MAX_CS];
876	const struct property *prop;
877	u32 prop_sz;
878	u32 count;
879	u32 i;
880
881	priv->fixed_decoded_range = false;
882
883	prop = dev_read_prop(bus, range_prop, &prop_sz);
884	if (!prop)
885		return 0;
886
887	count = prop_sz / sizeof(struct aspeed_spi_decoded_range);
888	if (count > plat->max_cs || count < priv->num_cs) {
889		dev_err(bus, "invalid '%s' property %d %d\n",
890			range_prop, count, priv->num_cs);
891		return -EINVAL;
892	}
893
894	ret = dev_read_u32_array(bus, range_prop, (u32 *)ranges, count * 3);
895	if (ret)
896		return ret;
897
898	for (i = 0; i < count; i++) {
899		priv->flashes[ranges[i].cs].ahb_base =
900				(void __iomem *)ranges[i].ahb_base;
901		priv->flashes[ranges[i].cs].ahb_decoded_sz =
902				ranges[i].sz;
903	}
904
905	for (i = 0; i < plat->max_cs; i++) {
906		dev_dbg(bus, "ahb_base: 0x%p, size: 0x%08x\n",
907			priv->flashes[i].ahb_base,
908			priv->flashes[i].ahb_decoded_sz);
909	}
910
911	ret = aspeed_spi_decoded_ranges_sanity(bus);
912	if (ret != 0)
913		return ret;
914
915	priv->fixed_decoded_range = true;
916
917	return 0;
918}
919
920/*
921 * Initialize SPI controller for each chip select.
922 * Here, only the minimum decode range is configured
923 * in order to get device (SPI NOR flash) information
924 * at the early stage.
925 */
926static int aspeed_spi_ctrl_init(struct udevice *bus)
927{
928	int ret;
929	struct aspeed_spi_plat *plat = dev_get_plat(bus);
930	struct aspeed_spi_priv *priv = dev_get_priv(bus);
931	u32 cs;
932	u32 reg_val;
933	u32 decoded_sz;
934
935	/* Enable write capability for all CS. */
936	reg_val = readl(&priv->regs->conf);
937	if (priv->info == &ast2400_spi_info) {
938		writel(reg_val | BIT(0), &priv->regs->conf);
939	} else {
940		writel(reg_val | (GENMASK(plat->max_cs - 1, 0) << 16),
941		       &priv->regs->conf);
942	}
943
944	memset(priv->flashes, 0x0,
945	       sizeof(struct aspeed_spi_flash) * ASPEED_SPI_MAX_CS);
946
947	/* Initial user mode. */
948	for (cs = 0; cs < priv->num_cs; cs++) {
949		priv->flashes[cs].ce_ctrl_user &= priv->info->clk_ctrl_mask;
950		priv->flashes[cs].ce_ctrl_user |=
951				(CTRL_STOP_ACTIVE | CTRL_IO_MODE_USER);
952	}
953
954	/*
955	 * SPI1 on AST2400 only supports CS0.
956	 * It is unnecessary to configure segment address register.
957	 */
958	if (priv->info == &ast2400_spi_info) {
959		priv->flashes[cs].ahb_base = plat->ahb_base;
960		priv->flashes[cs].ahb_decoded_sz = 0x10000000;
961		return 0;
962	}
963
964
965	ret = aspeed_spi_read_fixed_decoded_ranges(bus);
966	if (ret != 0)
967		return ret;
968
969	if (!priv->fixed_decoded_range) {
970		/* Assign basic AHB decoded size for each CS. */
971		for (cs = 0; cs < plat->max_cs; cs++) {
972			reg_val = readl(&priv->regs->segment_addr[cs]);
973			decoded_sz = priv->info->segment_end(bus, reg_val) -
974				     priv->info->segment_start(bus, reg_val);
975
976			if (decoded_sz < priv->info->min_decoded_sz)
977				decoded_sz = priv->info->min_decoded_sz;
978
979			priv->flashes[cs].ahb_decoded_sz = decoded_sz;
980		}
981	}
982
983	ret = aspeed_spi_decoded_range_config(bus);
984
985	return ret;
986}
987
988static const struct aspeed_spi_info ast2400_fmc_info = {
989	.io_mode_mask = 0x70000000,
990	.max_bus_width = 2,
991	.min_decoded_sz = 0x800000,
992	.clk_ctrl_mask = 0x00002f00,
993	.set_4byte = ast2400_fmc_chip_set_4byte,
994	.segment_start = ast2400_spi_segment_start,
995	.segment_end = ast2400_spi_segment_end,
996	.segment_reg = ast2400_spi_segment_reg,
997	.get_clk_setting = ast2400_get_clk_setting,
998};
999
1000static const struct aspeed_spi_info ast2400_spi_info = {
1001	.io_mode_mask = 0x70000000,
1002	.max_bus_width = 2,
1003	.min_decoded_sz = 0x800000,
1004	.clk_ctrl_mask = 0x00000f00,
1005	.set_4byte = ast2400_spi_chip_set_4byte,
1006	.segment_start = ast2400_spi_segment_start,
1007	.segment_end = ast2400_spi_segment_end,
1008	.segment_reg = ast2400_spi_segment_reg,
1009	.get_clk_setting = ast2400_get_clk_setting,
1010};
1011
1012static const struct aspeed_spi_info ast2500_fmc_info = {
1013	.io_mode_mask = 0x70000000,
1014	.max_bus_width = 2,
1015	.min_decoded_sz = 0x800000,
1016	.clk_ctrl_mask = 0x00002f00,
1017	.set_4byte = ast2500_spi_chip_set_4byte,
1018	.segment_start = ast2500_spi_segment_start,
1019	.segment_end = ast2500_spi_segment_end,
1020	.segment_reg = ast2500_spi_segment_reg,
1021	.adjust_decoded_sz = ast2500_adjust_decoded_size,
1022	.get_clk_setting = ast2500_get_clk_setting,
1023};
1024
1025/*
1026 * There are some different between FMC and SPI controllers.
1027 * For example, DMA operation, but this isn't implemented currently.
1028 */
1029static const struct aspeed_spi_info ast2500_spi_info = {
1030	.io_mode_mask = 0x70000000,
1031	.max_bus_width = 2,
1032	.min_decoded_sz = 0x800000,
1033	.clk_ctrl_mask = 0x00002f00,
1034	.set_4byte = ast2500_spi_chip_set_4byte,
1035	.segment_start = ast2500_spi_segment_start,
1036	.segment_end = ast2500_spi_segment_end,
1037	.segment_reg = ast2500_spi_segment_reg,
1038	.adjust_decoded_sz = ast2500_adjust_decoded_size,
1039	.get_clk_setting = ast2500_get_clk_setting,
1040};
1041
1042static const struct aspeed_spi_info ast2600_fmc_info = {
1043	.io_mode_mask = 0xf0000000,
1044	.max_bus_width = 4,
1045	.min_decoded_sz = 0x200000,
1046	.clk_ctrl_mask = 0x0f000f00,
1047	.set_4byte = ast2600_spi_chip_set_4byte,
1048	.segment_start = ast2600_spi_segment_start,
1049	.segment_end = ast2600_spi_segment_end,
1050	.segment_reg = ast2600_spi_segment_reg,
1051	.adjust_decoded_sz = ast2600_adjust_decoded_size,
1052	.get_clk_setting = ast2600_get_clk_setting,
1053};
1054
1055static const struct aspeed_spi_info ast2600_spi_info = {
1056	.io_mode_mask = 0xf0000000,
1057	.max_bus_width = 4,
1058	.min_decoded_sz = 0x200000,
1059	.clk_ctrl_mask = 0x0f000f00,
1060	.set_4byte = ast2600_spi_chip_set_4byte,
1061	.segment_start = ast2600_spi_segment_start,
1062	.segment_end = ast2600_spi_segment_end,
1063	.segment_reg = ast2600_spi_segment_reg,
1064	.adjust_decoded_sz = ast2600_adjust_decoded_size,
1065	.get_clk_setting = ast2600_get_clk_setting,
1066};
1067
1068static int aspeed_spi_claim_bus(struct udevice *dev)
1069{
1070	struct udevice *bus = dev->parent;
1071	struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
1072	struct aspeed_spi_priv *priv = dev_get_priv(dev->parent);
1073	struct aspeed_spi_flash *flash = &priv->flashes[slave_plat->cs];
1074	u32 clk_setting;
1075
1076	dev_dbg(bus, "%s: claim bus CS%u\n", bus->name, slave_plat->cs);
1077
1078	if (flash->max_freq == 0) {
1079		clk_setting = priv->info->get_clk_setting(dev, slave_plat->max_hz);
1080		flash->ce_ctrl_user &= ~(priv->info->clk_ctrl_mask);
1081		flash->ce_ctrl_user |= clk_setting;
1082		flash->ce_ctrl_read &= ~(priv->info->clk_ctrl_mask);
1083		flash->ce_ctrl_read |= clk_setting;
1084	}
1085
1086	return 0;
1087}
1088
1089static int aspeed_spi_release_bus(struct udevice *dev)
1090{
1091	struct udevice *bus = dev->parent;
1092	struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
1093
1094	dev_dbg(bus, "%s: release bus CS%u\n", bus->name, slave_plat->cs);
1095
1096	if (!aspeed_spi_get_flash(dev))
1097		return -ENODEV;
1098
1099	return 0;
1100}
1101
1102static int aspeed_spi_set_mode(struct udevice *bus, uint mode)
1103{
1104	dev_dbg(bus, "%s: setting mode to %x\n", bus->name, mode);
1105
1106	return 0;
1107}
1108
1109static int aspeed_spi_set_speed(struct udevice *bus, uint hz)
1110{
1111	dev_dbg(bus, "%s: setting speed to %u\n", bus->name, hz);
1112	/*
1113	 * ASPEED SPI controller supports multiple CS with different
1114	 * clock frequency. We cannot distinguish which CS here.
1115	 * Thus, the related implementation is postponed to claim_bus.
1116	 */
1117
1118	return 0;
1119}
1120
1121static int apseed_spi_of_to_plat(struct udevice *bus)
1122{
1123	struct aspeed_spi_plat *plat = dev_get_plat(bus);
1124	struct aspeed_spi_priv *priv = dev_get_priv(bus);
1125	int ret;
1126	struct clk hclk;
1127
1128	priv->regs = devfdt_get_addr_index_ptr(bus, 0);
1129	if (!priv->regs) {
1130		dev_err(bus, "wrong ctrl base\n");
1131		return -EINVAL;
1132	}
1133
1134	plat->ahb_base = devfdt_get_addr_size_index_ptr(bus, 1, &plat->ahb_sz);
1135	if (!plat->ahb_base) {
1136		dev_err(bus, "wrong AHB base\n");
1137		return -EINVAL;
1138	}
1139
1140	plat->max_cs = dev_read_u32_default(bus, "num-cs", ASPEED_SPI_MAX_CS);
1141	if (plat->max_cs > ASPEED_SPI_MAX_CS)
1142		return -EINVAL;
1143
1144	ret = clk_get_by_index(bus, 0, &hclk);
1145	if (ret < 0) {
1146		dev_err(bus, "%s could not get clock: %d\n", bus->name, ret);
1147		return ret;
1148	}
1149
1150	plat->hclk_rate = clk_get_rate(&hclk);
1151
1152	dev_dbg(bus, "ctrl_base = 0x%x, ahb_base = 0x%p, size = 0x%llx\n",
1153		(u32)priv->regs, plat->ahb_base, (fdt64_t)plat->ahb_sz);
1154	dev_dbg(bus, "hclk = %dMHz, max_cs = %d\n",
1155		plat->hclk_rate / 1000000, plat->max_cs);
1156
1157	return 0;
1158}
1159
1160static int aspeed_spi_probe(struct udevice *bus)
1161{
1162	int ret;
1163	struct aspeed_spi_priv *priv = dev_get_priv(bus);
1164	struct udevice *dev;
1165
1166	priv->info = (struct aspeed_spi_info *)dev_get_driver_data(bus);
1167
1168	priv->num_cs = 0;
1169	for (device_find_first_child(bus, &dev); dev;
1170	     device_find_next_child(&dev)) {
1171		priv->num_cs++;
1172	}
1173
1174	if (priv->num_cs > ASPEED_SPI_MAX_CS)
1175		return -EINVAL;
1176
1177	ret = aspeed_spi_ctrl_init(bus);
1178
1179	return ret;
1180}
1181
1182static const struct spi_controller_mem_ops aspeed_spi_mem_ops = {
1183	.supports_op = aspeed_spi_supports_op,
1184	.exec_op = aspeed_spi_exec_op_user_mode,
1185	.dirmap_create = aspeed_spi_dirmap_create,
1186	.dirmap_read = aspeed_spi_dirmap_read,
1187};
1188
1189static const struct dm_spi_ops aspeed_spi_ops = {
1190	.claim_bus = aspeed_spi_claim_bus,
1191	.release_bus = aspeed_spi_release_bus,
1192	.set_speed = aspeed_spi_set_speed,
1193	.set_mode = aspeed_spi_set_mode,
1194	.mem_ops = &aspeed_spi_mem_ops,
1195};
1196
1197static const struct udevice_id aspeed_spi_ids[] = {
1198	{ .compatible = "aspeed,ast2400-fmc", .data = (ulong)&ast2400_fmc_info, },
1199	{ .compatible = "aspeed,ast2400-spi", .data = (ulong)&ast2400_spi_info, },
1200	{ .compatible = "aspeed,ast2500-fmc", .data = (ulong)&ast2500_fmc_info, },
1201	{ .compatible = "aspeed,ast2500-spi", .data = (ulong)&ast2500_spi_info, },
1202	{ .compatible = "aspeed,ast2600-fmc", .data = (ulong)&ast2600_fmc_info, },
1203	{ .compatible = "aspeed,ast2600-spi", .data = (ulong)&ast2600_spi_info, },
1204	{ }
1205};
1206
1207U_BOOT_DRIVER(aspeed_spi) = {
1208	.name = "aspeed_spi_smc",
1209	.id = UCLASS_SPI,
1210	.of_match = aspeed_spi_ids,
1211	.ops = &aspeed_spi_ops,
1212	.of_to_plat = apseed_spi_of_to_plat,
1213	.plat_auto = sizeof(struct aspeed_spi_plat),
1214	.priv_auto = sizeof(struct aspeed_spi_priv),
1215	.probe = aspeed_spi_probe,
1216};
1217