1/*
2 * Copyright (c) 2003-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29/*
30 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 *    notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 *    notice, this list of conditions and the following disclaimer in the
40 *    documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the project nor the names of its contributors
42 *    may be used to endorse or promote products derived from this software
43 *    without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58/*
59 * Copyright (c) 1982, 1986, 1988, 1993
60 *	The Regents of the University of California.  All rights reserved.
61 *
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
64 * are met:
65 * 1. Redistributions of source code must retain the above copyright
66 *    notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 *    notice, this list of conditions and the following disclaimer in the
69 *    documentation and/or other materials provided with the distribution.
70 * 3. All advertising materials mentioning features or use of this software
71 *    must display the following acknowledgement:
72 *	This product includes software developed by the University of
73 *	California, Berkeley and its contributors.
74 * 4. Neither the name of the University nor the names of its contributors
75 *    may be used to endorse or promote products derived from this software
76 *    without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
91 */
92
93#include <sys/param.h>
94#include <sys/systm.h>
95#include <sys/malloc.h>
96#include <sys/mbuf.h>
97#include <sys/domain.h>
98#include <sys/protosw.h>
99#include <sys/socket.h>
100#include <sys/socketvar.h>
101#include <sys/errno.h>
102#include <sys/time.h>
103#include <sys/kernel.h>
104#include <sys/syslog.h>
105#include <sys/sysctl.h>
106#include <sys/proc.h>
107#include <sys/kauth.h>
108#include <sys/mcache.h>
109
110#include <mach/mach_time.h>
111#include <mach/sdt.h>
112#include <pexpert/pexpert.h>
113#include <dev/random/randomdev.h>
114
115#include <net/if.h>
116#include <net/if_var.h>
117#include <net/if_types.h>
118#include <net/if_dl.h>
119#include <net/route.h>
120#include <net/kpi_protocol.h>
121#include <net/ntstat.h>
122#include <net/init.h>
123#include <net/net_osdep.h>
124
125#include <netinet/in.h>
126#include <netinet/in_systm.h>
127#if INET
128#include <netinet/ip.h>
129#include <netinet/ip_icmp.h>
130#endif /* INET */
131#include <netinet/kpi_ipfilter_var.h>
132#include <netinet/ip6.h>
133#include <netinet6/in6_var.h>
134#include <netinet6/ip6_var.h>
135#include <netinet/in_pcb.h>
136#include <netinet/icmp6.h>
137#include <netinet6/in6_ifattach.h>
138#include <netinet6/nd6.h>
139#include <netinet6/scope6_var.h>
140#include <netinet6/ip6protosw.h>
141
142#if IPSEC
143#include <netinet6/ipsec.h>
144#include <netinet6/ipsec6.h>
145extern int ipsec_bypass;
146#endif /* IPSEC */
147
148#if IPFW2
149#include <netinet6/ip6_fw.h>
150#endif /* IPFW2 */
151
152#if DUMMYNET
153#include <netinet/ip_fw.h>
154#include <netinet/ip_dummynet.h>
155#endif /* DUMMYNET */
156
157/* we need it for NLOOP. */
158#include "loop.h"
159
160#if PF
161#include <net/pfvar.h>
162#endif /* PF */
163
164struct ip6protosw *ip6_protox[IPPROTO_MAX];
165
166static lck_grp_attr_t	*in6_ifaddr_rwlock_grp_attr;
167static lck_grp_t	*in6_ifaddr_rwlock_grp;
168static lck_attr_t	*in6_ifaddr_rwlock_attr;
169decl_lck_rw_data(, in6_ifaddr_rwlock);
170
171/* Protected by in6_ifaddr_rwlock */
172struct in6_ifaddr *in6_ifaddrs = NULL;
173
174#define	IN6_IFSTAT_REQUIRE_ALIGNED_64(f)	\
175	_CASSERT(!(offsetof(struct in6_ifstat, f) % sizeof (uint64_t)))
176
177#define	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(f)	\
178	_CASSERT(!(offsetof(struct icmp6_ifstat, f) % sizeof (uint64_t)))
179
180#if IPFW2
181/* firewall hooks */
182ip6_fw_chk_t *ip6_fw_chk_ptr;
183ip6_fw_ctl_t *ip6_fw_ctl_ptr;
184int ip6_fw_enable = 1;
185#endif /* IPFW2 */
186
187struct ip6stat ip6stat;
188
189decl_lck_mtx_data(, proxy6_lock);
190decl_lck_mtx_data(static, dad6_mutex_data);
191decl_lck_mtx_data(static, nd6_mutex_data);
192decl_lck_mtx_data(static, prefix6_mutex_data);
193lck_mtx_t		*dad6_mutex = &dad6_mutex_data;
194lck_mtx_t		*nd6_mutex = &nd6_mutex_data;
195lck_mtx_t		*prefix6_mutex = &prefix6_mutex_data;
196#ifdef ENABLE_ADDRSEL
197decl_lck_mtx_data(static, addrsel_mutex_data);
198lck_mtx_t		*addrsel_mutex = &addrsel_mutex_data;
199#endif
200static lck_attr_t	*ip6_mutex_attr;
201static lck_grp_t	*ip6_mutex_grp;
202static lck_grp_attr_t	*ip6_mutex_grp_attr;
203
204extern int loopattach_done;
205extern void addrsel_policy_init(void);
206
207static void ip6_init_delayed(void);
208static int ip6_hopopts_input(u_int32_t *, u_int32_t *, struct mbuf **, int *);
209#if PULLDOWN_TEST
210static struct mbuf *ip6_pullexthdr(struct mbuf *, size_t, int);
211#endif
212
213#if NSTF
214extern void stfattach(void);
215#endif /* NSTF */
216
217SYSCTL_DECL(_net_inet6_ip6);
218
219int ip6_doscopedroute = 1;
220SYSCTL_INT(_net_inet6_ip6, OID_AUTO, scopedroute,
221	CTLFLAG_RD | CTLFLAG_LOCKED, &ip6_doscopedroute, 0,
222	"Enable IPv6 scoped routing");
223
224static uint32_t ip6_adj_clear_hwcksum = 0;
225SYSCTL_UINT(_net_inet6_ip6, OID_AUTO, adj_clear_hwcksum,
226	CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_adj_clear_hwcksum, 0,
227	"Invalidate hwcksum info when adjusting length");
228
229/*
230 * On platforms which require strict alignment (currently for anything but
231 * i386 or x86_64), check if the IP header pointer is 32-bit aligned; if not,
232 * copy the contents of the mbuf chain into a new chain, and free the original
233 * one.  Create some head room in the first mbuf of the new chain, in case
234 * it's needed later on.
235 *
236 * RFC 2460 says that IPv6 headers are 64-bit aligned, but network interfaces
237 * mostly align to 32-bit boundaries.  Care should be taken never to use 64-bit
238 * load/store operations on the fields in IPv6 headers.
239 */
240#if defined(__i386__) || defined(__x86_64__)
241#define	IP6_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { } while (0)
242#else /* !__i386__ && !__x86_64__ */
243#define	IP6_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do {			\
244	if (!IP6_HDR_ALIGNED_P(mtod(_m, caddr_t))) {			\
245		struct mbuf *_n;					\
246		struct ifnet *__ifp = (_ifp);				\
247		atomic_add_64(&(__ifp)->if_alignerrs, 1);		\
248		if (((_m)->m_flags & M_PKTHDR) &&			\
249		    (_m)->m_pkthdr.pkt_hdr != NULL)			\
250			(_m)->m_pkthdr.pkt_hdr = NULL;			\
251		_n = m_defrag_offset(_m, max_linkhdr, M_NOWAIT);	\
252		if (_n == NULL) {					\
253			ip6stat.ip6s_toosmall++;			\
254			m_freem(_m);					\
255			(_m) = NULL;					\
256			_action;					\
257		} else {						\
258			VERIFY(_n != (_m));				\
259			(_m) = _n;					\
260		}							\
261	}								\
262} while (0)
263#endif /* !__i386__ && !__x86_64__ */
264
265static void
266ip6_proto_input(protocol_family_t protocol, mbuf_t packet)
267{
268#pragma unused(protocol)
269	ip6_input(packet);
270}
271
272/*
273 * IP6 initialization: fill in IP6 protocol switch table.
274 * All protocols not implemented in kernel go to raw IP6 protocol handler.
275 */
276void
277ip6_init(struct ip6protosw *pp, struct domain *dp)
278{
279	static int ip6_initialized = 0;
280	struct protosw *pr;
281	struct timeval tv;
282	int i;
283	domain_unguard_t unguard;
284
285	domain_proto_mtx_lock_assert_held();
286	VERIFY((pp->pr_flags & (PR_INITIALIZED|PR_ATTACHED)) == PR_ATTACHED);
287
288	_CASSERT((sizeof (struct ip6_hdr) +
289	    sizeof (struct icmp6_hdr)) <= _MHLEN);
290
291	if (ip6_initialized)
292		return;
293	ip6_initialized = 1;
294
295	PE_parse_boot_argn("net.inet6.ip6.scopedroute", &ip6_doscopedroute,
296	    sizeof (ip6_doscopedroute));
297
298	pr = pffindproto_locked(PF_INET6, IPPROTO_RAW, SOCK_RAW);
299	if (pr == NULL) {
300		panic("%s: Unable to find [PF_INET6,IPPROTO_RAW,SOCK_RAW]\n",
301		    __func__);
302		/* NOTREACHED */
303	}
304
305	/* Initialize the entire ip6_protox[] array to IPPROTO_RAW. */
306	for (i = 0; i < IPPROTO_MAX; i++)
307		ip6_protox[i] = (struct ip6protosw *)pr;
308	/*
309	 * Cycle through IP protocols and put them into the appropriate place
310	 * in ip6_protox[], skipping protocols IPPROTO_{IP,RAW}.
311	 */
312	VERIFY(dp == inet6domain && dp->dom_family == PF_INET6);
313	TAILQ_FOREACH(pr, &dp->dom_protosw, pr_entry) {
314		VERIFY(pr->pr_domain == dp);
315		if (pr->pr_protocol != 0 && pr->pr_protocol != IPPROTO_RAW) {
316			/* Be careful to only index valid IP protocols. */
317			if (pr->pr_protocol < IPPROTO_MAX)
318				ip6_protox[pr->pr_protocol] =
319				    (struct ip6protosw *)pr;
320		}
321	}
322
323	ip6_mutex_grp_attr  = lck_grp_attr_alloc_init();
324
325	ip6_mutex_grp = lck_grp_alloc_init("ip6", ip6_mutex_grp_attr);
326	ip6_mutex_attr = lck_attr_alloc_init();
327
328	lck_mtx_init(dad6_mutex, ip6_mutex_grp, ip6_mutex_attr);
329	lck_mtx_init(nd6_mutex, ip6_mutex_grp, ip6_mutex_attr);
330	lck_mtx_init(prefix6_mutex, ip6_mutex_grp, ip6_mutex_attr);
331	scope6_init(ip6_mutex_grp, ip6_mutex_attr);
332
333#ifdef ENABLE_ADDRSEL
334	lck_mtx_init(addrsel_mutex, ip6_mutex_grp, ip6_mutex_attr);
335#endif
336
337	lck_mtx_init(&proxy6_lock, ip6_mutex_grp, ip6_mutex_attr);
338
339	in6_ifaddr_rwlock_grp_attr = lck_grp_attr_alloc_init();
340	in6_ifaddr_rwlock_grp = lck_grp_alloc_init("in6_ifaddr_rwlock",
341	    in6_ifaddr_rwlock_grp_attr);
342	in6_ifaddr_rwlock_attr = lck_attr_alloc_init();
343	lck_rw_init(&in6_ifaddr_rwlock, in6_ifaddr_rwlock_grp,
344	    in6_ifaddr_rwlock_attr);
345
346	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_receive);
347	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_hdrerr);
348	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_toobig);
349	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_noroute);
350	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_addrerr);
351	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_protounknown);
352	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_truncated);
353	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_discard);
354	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_deliver);
355	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_forward);
356	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_request);
357	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_discard);
358	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragok);
359	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragfail);
360	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragcreat);
361	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_reqd);
362	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_ok);
363	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_fail);
364	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mcast);
365	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mcast);
366
367	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_msg);
368	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_error);
369	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_dstunreach);
370	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_adminprohib);
371	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_timeexceed);
372	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_paramprob);
373	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_pkttoobig);
374	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_echo);
375	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_echoreply);
376	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_routersolicit);
377	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_routeradvert);
378	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_neighborsolicit);
379	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_neighboradvert);
380	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_redirect);
381	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mldquery);
382	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mldreport);
383	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mlddone);
384
385	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_msg);
386	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_error);
387	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_dstunreach);
388	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_adminprohib);
389	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_timeexceed);
390	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_paramprob);
391	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_pkttoobig);
392	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_echo);
393	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_echoreply);
394	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_routersolicit);
395	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_routeradvert);
396	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_neighborsolicit);
397	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_neighboradvert);
398	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_redirect);
399	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mldquery);
400	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mldreport);
401	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mlddone);
402
403	getmicrotime(&tv);
404	ip6_desync_factor =
405	    (RandomULong() ^ tv.tv_usec) % MAX_TEMP_DESYNC_FACTOR;
406
407	in6_ifaddr_init();
408	ip6_moptions_init();
409	nd6_init();
410	frag6_init();
411	icmp6_init(NULL, dp);
412	addrsel_policy_init();
413
414	/*
415	 * P2P interfaces often route the local address to the loopback
416	 * interface. At this point, lo0 hasn't been initialized yet, which
417	 * means that we need to delay the IPv6 configuration of lo0.
418	 */
419	net_init_add(ip6_init_delayed);
420
421	unguard = domain_unguard_deploy();
422	i = proto_register_input(PF_INET6, ip6_proto_input, NULL, 0);
423	if (i != 0) {
424		panic("%s: failed to register PF_INET6 protocol: %d\n",
425		    __func__, i);
426		/* NOTREACHED */
427	}
428	domain_unguard_release(unguard);
429}
430
431static void
432ip6_init_delayed(void)
433{
434	(void) in6_ifattach_prelim(lo_ifp);
435
436	/* timer for regeneranation of temporary addresses randomize ID */
437	timeout(in6_tmpaddrtimer, NULL,
438	    (ip6_temp_preferred_lifetime - ip6_desync_factor -
439	    ip6_temp_regen_advance) * hz);
440
441#if NSTF
442	stfattach();
443#endif /* NSTF */
444}
445
446void
447ip6_input(struct mbuf *m)
448{
449	struct ip6_hdr *ip6;
450	int off = sizeof (struct ip6_hdr), nest;
451	u_int32_t plen;
452	u_int32_t rtalert = ~0;
453	int nxt = 0, ours = 0;
454	struct ifnet *inifp, *deliverifp = NULL;
455	ipfilter_t inject_ipfref = NULL;
456	int seen;
457	struct in6_ifaddr *ia6 = NULL;
458	struct sockaddr_in6 *dst6;
459#if DUMMYNET
460	struct m_tag *tag;
461#endif /* DUMMYNET */
462	struct {
463		struct route_in6 rin6;
464#if DUMMYNET
465		struct ip_fw_args args;
466#endif /* DUMMYNET */
467	} ip6ibz;
468#define	rin6	ip6ibz.rin6
469#define	args	ip6ibz.args
470
471	/* zero out {rin6, args} */
472	bzero(&ip6ibz, sizeof (ip6ibz));
473
474	/*
475	 * Check if the packet we received is valid after interface filter
476	 * processing
477	 */
478	MBUF_INPUT_CHECK(m, m->m_pkthdr.rcvif);
479	inifp = m->m_pkthdr.rcvif;
480	VERIFY(inifp != NULL);
481
482	/* Perform IP header alignment fixup, if needed */
483	IP6_HDR_ALIGNMENT_FIXUP(m, inifp, return);
484
485	m->m_pkthdr.pkt_flags &= ~PKTF_FORWARDED;
486#if IPSEC
487	/*
488	 * should the inner packet be considered authentic?
489	 * see comment in ah4_input().
490	 */
491	m->m_flags &= ~M_AUTHIPHDR;
492	m->m_flags &= ~M_AUTHIPDGM;
493#endif /* IPSEC */
494
495	/*
496	 * make sure we don't have onion peering information into m_aux.
497	 */
498	ip6_delaux(m);
499
500#if DUMMYNET
501	if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
502	    KERNEL_TAG_TYPE_DUMMYNET, NULL)) != NULL) {
503		struct dn_pkt_tag	*dn_tag;
504
505		dn_tag = (struct dn_pkt_tag *)(tag+1);
506
507		args.fwa_pf_rule = dn_tag->dn_pf_rule;
508
509		m_tag_delete(m, tag);
510	}
511
512	if (args.fwa_pf_rule) {
513		ip6 = mtod(m, struct ip6_hdr *); /* In case PF got disabled */
514
515		goto check_with_pf;
516	}
517#endif /* DUMMYNET */
518
519	/*
520	 * No need to proccess packet twice if we've already seen it.
521	 */
522	inject_ipfref = ipf_get_inject_filter(m);
523	if (inject_ipfref != NULL) {
524		ip6 = mtod(m, struct ip6_hdr *);
525		nxt = ip6->ip6_nxt;
526		seen = 0;
527		goto injectit;
528	} else {
529		seen = 1;
530	}
531
532	/*
533	 * mbuf statistics
534	 */
535	if (m->m_flags & M_EXT) {
536		if (m->m_next != NULL)
537			ip6stat.ip6s_mext2m++;
538		else
539			ip6stat.ip6s_mext1++;
540	} else {
541#define	M2MMAX	(sizeof (ip6stat.ip6s_m2m) / sizeof (ip6stat.ip6s_m2m[0]))
542		if (m->m_next != NULL) {
543			if (m->m_pkthdr.pkt_flags & PKTF_LOOP) {
544				/* XXX */
545				ip6stat.ip6s_m2m[ifnet_index(lo_ifp)]++;
546			} else if (inifp->if_index < M2MMAX) {
547				ip6stat.ip6s_m2m[inifp->if_index]++;
548			} else {
549				ip6stat.ip6s_m2m[0]++;
550			}
551		} else {
552			ip6stat.ip6s_m1++;
553		}
554#undef M2MMAX
555	}
556
557	/*
558	 * Drop the packet if IPv6 operation is disabled on the interface.
559	 */
560	if (inifp->if_eflags & IFEF_IPV6_DISABLED)
561		goto bad;
562
563	in6_ifstat_inc_na(inifp, ifs6_in_receive);
564	ip6stat.ip6s_total++;
565
566#ifndef PULLDOWN_TEST
567	/*
568	 * L2 bridge code and some other code can return mbuf chain
569	 * that does not conform to KAME requirement.  too bad.
570	 * XXX: fails to join if interface MTU > MCLBYTES.  jumbogram?
571	 */
572	if (m->m_next != NULL && m->m_pkthdr.len < MCLBYTES) {
573		struct mbuf *n;
574
575		MGETHDR(n, M_DONTWAIT, MT_HEADER);	/* MAC-OK */
576		if (n)
577			M_COPY_PKTHDR(n, m);
578		if (n && m->m_pkthdr.len > MHLEN) {
579			MCLGET(n, M_DONTWAIT);
580			if ((n->m_flags & M_EXT) == 0) {
581				m_freem(n);
582				n = NULL;
583			}
584		}
585		if (n == NULL)
586			goto bad;
587
588		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
589		n->m_len = m->m_pkthdr.len;
590		m_freem(m);
591		m = n;
592	}
593	IP6_EXTHDR_CHECK(m, 0, sizeof (struct ip6_hdr), { goto done; });
594#endif
595
596	if (m->m_len < sizeof (struct ip6_hdr)) {
597		if ((m = m_pullup(m, sizeof (struct ip6_hdr))) == 0) {
598			ip6stat.ip6s_toosmall++;
599			in6_ifstat_inc(inifp, ifs6_in_hdrerr);
600			goto done;
601		}
602	}
603
604	ip6 = mtod(m, struct ip6_hdr *);
605
606	if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
607		ip6stat.ip6s_badvers++;
608		in6_ifstat_inc(inifp, ifs6_in_hdrerr);
609		goto bad;
610	}
611
612	ip6stat.ip6s_nxthist[ip6->ip6_nxt]++;
613
614#if IPFW2
615	/*
616	 * Check with the firewall...
617	 */
618	if (ip6_fw_enable && ip6_fw_chk_ptr) {
619		u_short port = 0;
620		/* If ipfw says divert, we have to just drop packet */
621		/* use port as a dummy argument */
622		if ((*ip6_fw_chk_ptr)(&ip6, NULL, &port, &m)) {
623			m_freem(m);
624			m = NULL;
625		}
626		if (!m)
627			goto done;
628	}
629#endif /* IPFW2 */
630
631	/*
632	 * Check against address spoofing/corruption.
633	 */
634	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src) ||
635	    IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_dst)) {
636		/*
637		 * XXX: "badscope" is not very suitable for a multicast source.
638		 */
639		ip6stat.ip6s_badscope++;
640		in6_ifstat_inc(inifp, ifs6_in_addrerr);
641		goto bad;
642	}
643	if (IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst) &&
644	    !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
645		/*
646		 * In this case, the packet should come from the loopback
647		 * interface.  However, we cannot just check the if_flags,
648		 * because ip6_mloopback() passes the "actual" interface
649		 * as the outgoing/incoming interface.
650		 */
651		ip6stat.ip6s_badscope++;
652		in6_ifstat_inc(inifp, ifs6_in_addrerr);
653		goto bad;
654	}
655
656	/*
657	 * The following check is not documented in specs.  A malicious
658	 * party may be able to use IPv4 mapped addr to confuse tcp/udp stack
659	 * and bypass security checks (act as if it was from 127.0.0.1 by using
660	 * IPv6 src ::ffff:127.0.0.1).  Be cautious.
661	 *
662	 * This check chokes if we are in an SIIT cloud.  As none of BSDs
663	 * support IPv4-less kernel compilation, we cannot support SIIT
664	 * environment at all.  So, it makes more sense for us to reject any
665	 * malicious packets for non-SIIT environment, than try to do a
666	 * partial support for SIIT environment.
667	 */
668	if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
669	    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
670		ip6stat.ip6s_badscope++;
671		in6_ifstat_inc(inifp, ifs6_in_addrerr);
672		goto bad;
673	}
674#if 0
675	/*
676	 * Reject packets with IPv4 compatible addresses (auto tunnel).
677	 *
678	 * The code forbids auto tunnel relay case in RFC1933 (the check is
679	 * stronger than RFC1933).  We may want to re-enable it if mech-xx
680	 * is revised to forbid relaying case.
681	 */
682	if (IN6_IS_ADDR_V4COMPAT(&ip6->ip6_src) ||
683	    IN6_IS_ADDR_V4COMPAT(&ip6->ip6_dst)) {
684		ip6stat.ip6s_badscope++;
685		in6_ifstat_inc(inifp, ifs6_in_addrerr);
686		goto bad;
687	}
688#endif
689
690	/*
691	 * Naively assume we can attribute inbound data to the route we would
692	 * use to send to this destination. Asymetric routing breaks this
693	 * assumption, but it still allows us to account for traffic from
694	 * a remote node in the routing table.
695	 * this has a very significant performance impact so we bypass
696	 * if nstat_collect is disabled. We may also bypass if the
697	 * protocol is tcp in the future because tcp will have a route that
698	 * we can use to attribute the data to. That does mean we would not
699	 * account for forwarded tcp traffic.
700	 */
701	if (nstat_collect) {
702		struct rtentry *rte =
703		    ifnet_cached_rtlookup_inet6(inifp, &ip6->ip6_src);
704		if (rte != NULL) {
705			nstat_route_rx(rte, 1, m->m_pkthdr.len, 0);
706			rtfree(rte);
707		}
708	}
709
710	/* for consistency */
711	m->m_pkthdr.pkt_proto = ip6->ip6_nxt;
712
713#if DUMMYNET
714check_with_pf:
715#endif /* DUMMYNET */
716#if PF
717	/* Invoke inbound packet filter */
718	if (PF_IS_ENABLED) {
719		int error;
720#if DUMMYNET
721		error = pf_af_hook(inifp, NULL, &m, AF_INET6, TRUE, &args);
722#else /* !DUMMYNET */
723		error = pf_af_hook(inifp, NULL, &m, AF_INET6, TRUE, NULL);
724#endif /* !DUMMYNET */
725		if (error != 0 || m == NULL) {
726			if (m != NULL) {
727				panic("%s: unexpected packet %p\n",
728				    __func__, m);
729				/* NOTREACHED */
730			}
731			/* Already freed by callee */
732			goto done;
733		}
734		ip6 = mtod(m, struct ip6_hdr *);
735	}
736#endif /* PF */
737
738	/* drop packets if interface ID portion is already filled */
739	if (!(inifp->if_flags & IFF_LOOPBACK) &&
740	    !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
741		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src) &&
742		    ip6->ip6_src.s6_addr16[1]) {
743			ip6stat.ip6s_badscope++;
744			goto bad;
745		}
746		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst) &&
747		    ip6->ip6_dst.s6_addr16[1]) {
748			ip6stat.ip6s_badscope++;
749			goto bad;
750		}
751	}
752
753	if (m->m_pkthdr.pkt_flags & PKTF_IFAINFO) {
754		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
755			ip6->ip6_src.s6_addr16[1] =
756			    htons(m->m_pkthdr.src_ifindex);
757		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
758			ip6->ip6_dst.s6_addr16[1] =
759			    htons(m->m_pkthdr.dst_ifindex);
760	} else {
761		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
762			ip6->ip6_src.s6_addr16[1] = htons(inifp->if_index);
763		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
764			ip6->ip6_dst.s6_addr16[1] = htons(inifp->if_index);
765	}
766
767	/*
768	 * Multicast check
769	 */
770	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
771		struct	in6_multi *in6m = NULL;
772
773		in6_ifstat_inc_na(inifp, ifs6_in_mcast);
774		/*
775		 * See if we belong to the destination multicast group on the
776		 * arrival interface.
777		 */
778		in6_multihead_lock_shared();
779		IN6_LOOKUP_MULTI(&ip6->ip6_dst, inifp, in6m);
780		in6_multihead_lock_done();
781		if (in6m != NULL) {
782			IN6M_REMREF(in6m);
783			ours = 1;
784		} else if (!nd6_prproxy
785#if MROUTING
786		    && !ip6_mrouter
787#endif /* MROUTING */
788		    ) {
789			ip6stat.ip6s_notmember++;
790			ip6stat.ip6s_cantforward++;
791			in6_ifstat_inc(inifp, ifs6_in_discard);
792			goto bad;
793		}
794		deliverifp = inifp;
795		VERIFY(ia6 == NULL);
796		goto hbhcheck;
797	}
798
799	/*
800	 * Unicast check
801	 *
802	 * Fast path: see if the target is ourselves.
803	 */
804	lck_rw_lock_shared(&in6_ifaddr_rwlock);
805	for (ia6 = in6_ifaddrs; ia6 != NULL; ia6 = ia6->ia_next) {
806		/*
807		 * No reference is held on the address, as we just need
808		 * to test for a few things while holding the RW lock.
809		 */
810		if (IN6_ARE_ADDR_EQUAL(&ia6->ia_addr.sin6_addr, &ip6->ip6_dst))
811			break;
812	}
813
814	if (ia6 != NULL) {
815		/*
816		 * For performance, test without acquiring the address lock;
817		 * a lot of things in the address are set once and never
818		 * changed (e.g. ia_ifp.)
819		 */
820		if (!(ia6->ia6_flags & IN6_IFF_NOTREADY)) {
821			/* this address is ready */
822			ours = 1;
823			deliverifp = ia6->ia_ifp;
824			/*
825			 * record dst address information into mbuf.
826			 */
827			(void) ip6_setdstifaddr_info(m, 0, ia6);
828			lck_rw_done(&in6_ifaddr_rwlock);
829			goto hbhcheck;
830		}
831		lck_rw_done(&in6_ifaddr_rwlock);
832		ia6 = NULL;
833		/* address is not ready, so discard the packet. */
834		nd6log((LOG_INFO, "%s: packet to an unready address %s->%s\n",
835		    __func__, ip6_sprintf(&ip6->ip6_src),
836		    ip6_sprintf(&ip6->ip6_dst)));
837		goto bad;
838	}
839	lck_rw_done(&in6_ifaddr_rwlock);
840
841	/*
842	 * Slow path: route lookup.
843	 */
844	dst6 = SIN6(&rin6.ro_dst);
845	dst6->sin6_len = sizeof (struct sockaddr_in6);
846	dst6->sin6_family = AF_INET6;
847	dst6->sin6_addr = ip6->ip6_dst;
848
849	rtalloc_scoped_ign((struct route *)&rin6,
850	    RTF_PRCLONING, IFSCOPE_NONE);
851	if (rin6.ro_rt != NULL)
852		RT_LOCK_SPIN(rin6.ro_rt);
853
854#define	rt6_key(r) (SIN6((r)->rt_nodes->rn_key))
855
856	/*
857	 * Accept the packet if the forwarding interface to the destination
858	 * according to the routing table is the loopback interface,
859	 * unless the associated route has a gateway.
860	 * Note that this approach causes to accept a packet if there is a
861	 * route to the loopback interface for the destination of the packet.
862	 * But we think it's even useful in some situations, e.g. when using
863	 * a special daemon which wants to intercept the packet.
864	 *
865	 * XXX: some OSes automatically make a cloned route for the destination
866	 * of an outgoing packet.  If the outgoing interface of the packet
867	 * is a loopback one, the kernel would consider the packet to be
868	 * accepted, even if we have no such address assinged on the interface.
869	 * We check the cloned flag of the route entry to reject such cases,
870	 * assuming that route entries for our own addresses are not made by
871	 * cloning (it should be true because in6_addloop explicitly installs
872	 * the host route).  However, we might have to do an explicit check
873	 * while it would be less efficient.  Or, should we rather install a
874	 * reject route for such a case?
875	 */
876	if (rin6.ro_rt != NULL &&
877	    (rin6.ro_rt->rt_flags & (RTF_HOST|RTF_GATEWAY)) == RTF_HOST &&
878#if RTF_WASCLONED
879	    !(rin6.ro_rt->rt_flags & RTF_WASCLONED) &&
880#endif
881	    rin6.ro_rt->rt_ifp->if_type == IFT_LOOP) {
882		ia6 = (struct in6_ifaddr *)rin6.ro_rt->rt_ifa;
883		/*
884		 * Packets to a tentative, duplicated, or somehow invalid
885		 * address must not be accepted.
886		 *
887		 * For performance, test without acquiring the address lock;
888		 * a lot of things in the address are set once and never
889		 * changed (e.g. ia_ifp.)
890		 */
891		if (!(ia6->ia6_flags & IN6_IFF_NOTREADY)) {
892			/* this address is ready */
893			ours = 1;
894			deliverifp = ia6->ia_ifp;	/* correct? */
895			/*
896			 * record dst address information into mbuf.
897			 */
898			(void) ip6_setdstifaddr_info(m, 0, ia6);
899			RT_UNLOCK(rin6.ro_rt);
900			goto hbhcheck;
901		}
902		RT_UNLOCK(rin6.ro_rt);
903		ia6 = NULL;
904		/* address is not ready, so discard the packet. */
905		nd6log((LOG_INFO, "%s: packet to an unready address %s->%s\n",
906		    __func__, ip6_sprintf(&ip6->ip6_src),
907		    ip6_sprintf(&ip6->ip6_dst)));
908		goto bad;
909	}
910
911	if (rin6.ro_rt != NULL)
912		RT_UNLOCK(rin6.ro_rt);
913
914	/*
915	 * Now there is no reason to process the packet if it's not our own
916	 * and we're not a router.
917	 */
918	if (!ip6_forwarding) {
919		ip6stat.ip6s_cantforward++;
920		in6_ifstat_inc(inifp, ifs6_in_discard);
921		goto bad;
922	}
923
924hbhcheck:
925	/*
926	 * record dst address information into mbuf, if we don't have one yet.
927	 * note that we are unable to record it, if the address is not listed
928	 * as our interface address (e.g. multicast addresses, etc.)
929	 */
930	if (deliverifp != NULL && ia6 == NULL) {
931		ia6 = in6_ifawithifp(deliverifp, &ip6->ip6_dst);
932		if (ia6 != NULL) {
933			(void) ip6_setdstifaddr_info(m, 0, ia6);
934			IFA_REMREF(&ia6->ia_ifa);
935		}
936	}
937
938	/*
939	 * Process Hop-by-Hop options header if it's contained.
940	 * m may be modified in ip6_hopopts_input().
941	 * If a JumboPayload option is included, plen will also be modified.
942	 */
943	plen = (u_int32_t)ntohs(ip6->ip6_plen);
944	if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
945		struct ip6_hbh *hbh;
946
947		if (ip6_hopopts_input(&plen, &rtalert, &m, &off)) {
948#if 0	/* touches NULL pointer */
949			in6_ifstat_inc(inifp, ifs6_in_discard);
950#endif
951			goto done;	/* m have already been freed */
952		}
953
954		/* adjust pointer */
955		ip6 = mtod(m, struct ip6_hdr *);
956
957		/*
958		 * if the payload length field is 0 and the next header field
959		 * indicates Hop-by-Hop Options header, then a Jumbo Payload
960		 * option MUST be included.
961		 */
962		if (ip6->ip6_plen == 0 && plen == 0) {
963			/*
964			 * Note that if a valid jumbo payload option is
965			 * contained, ip6_hopopts_input() must set a valid
966			 * (non-zero) payload length to the variable plen.
967			 */
968			ip6stat.ip6s_badoptions++;
969			in6_ifstat_inc(inifp, ifs6_in_discard);
970			in6_ifstat_inc(inifp, ifs6_in_hdrerr);
971			icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
972			    (caddr_t)&ip6->ip6_plen - (caddr_t)ip6);
973			goto done;
974		}
975#ifndef PULLDOWN_TEST
976		/* ip6_hopopts_input() ensures that mbuf is contiguous */
977		hbh = (struct ip6_hbh *)(ip6 + 1);
978#else
979		IP6_EXTHDR_GET(hbh, struct ip6_hbh *, m,
980		    sizeof (struct ip6_hdr), sizeof (struct ip6_hbh));
981		if (hbh == NULL) {
982			ip6stat.ip6s_tooshort++;
983			goto done;
984		}
985#endif
986		nxt = hbh->ip6h_nxt;
987
988		/*
989		 * If we are acting as a router and the packet contains a
990		 * router alert option, see if we know the option value.
991		 * Currently, we only support the option value for MLD, in which
992		 * case we should pass the packet to the multicast routing
993		 * daemon.
994		 */
995		if (rtalert != ~0 && ip6_forwarding) {
996			switch (rtalert) {
997			case IP6OPT_RTALERT_MLD:
998				ours = 1;
999				break;
1000			default:
1001				/*
1002				 * RFC2711 requires unrecognized values must be
1003				 * silently ignored.
1004				 */
1005				break;
1006			}
1007		}
1008	} else
1009		nxt = ip6->ip6_nxt;
1010
1011	/*
1012	 * Check that the amount of data in the buffers
1013	 * is as at least much as the IPv6 header would have us expect.
1014	 * Trim mbufs if longer than we expect.
1015	 * Drop packet if shorter than we expect.
1016	 */
1017	if (m->m_pkthdr.len - sizeof (struct ip6_hdr) < plen) {
1018		ip6stat.ip6s_tooshort++;
1019		in6_ifstat_inc(inifp, ifs6_in_truncated);
1020		goto bad;
1021	}
1022	if (m->m_pkthdr.len > sizeof (struct ip6_hdr) + plen) {
1023		/*
1024		 * Invalidate hardware checksum info if ip6_adj_clear_hwcksum
1025		 * is set; useful to handle buggy drivers.  Note that this
1026		 * should not be enabled by default, as we may get here due
1027		 * to link-layer padding.
1028		 */
1029		if (ip6_adj_clear_hwcksum &&
1030		    (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
1031		    !(inifp->if_flags & IFF_LOOPBACK) &&
1032		    !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
1033			m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
1034			m->m_pkthdr.csum_data = 0;
1035			ip6stat.ip6s_adj_hwcsum_clr++;
1036		}
1037
1038		ip6stat.ip6s_adj++;
1039		if (m->m_len == m->m_pkthdr.len) {
1040			m->m_len = sizeof (struct ip6_hdr) + plen;
1041			m->m_pkthdr.len = sizeof (struct ip6_hdr) + plen;
1042		} else {
1043			m_adj(m, sizeof (struct ip6_hdr) + plen -
1044			    m->m_pkthdr.len);
1045		}
1046	}
1047
1048	/*
1049	 * Forward if desirable.
1050	 */
1051	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1052		/*
1053		 * If we are acting as a multicast router, all
1054		 * incoming multicast packets are passed to the
1055		 * kernel-level multicast forwarding function.
1056		 * The packet is returned (relatively) intact; if
1057		 * ip6_mforward() returns a non-zero value, the packet
1058		 * must be discarded, else it may be accepted below.
1059		 */
1060#if MROUTING
1061		if (ip6_mrouter && ip6_mforward(ip6, inifp, m)) {
1062			ip6stat.ip6s_cantforward++;
1063			goto bad;
1064		}
1065#endif /* MROUTING */
1066		if (!ours && nd6_prproxy) {
1067			/*
1068			 * If this isn't for us, this might be a Neighbor
1069			 * Solicitation (dst is solicited-node multicast)
1070			 * against an address in one of the proxied prefixes;
1071			 * if so, claim the packet and let icmp6_input()
1072			 * handle the rest.
1073			 */
1074			ours = nd6_prproxy_isours(m, ip6, NULL, IFSCOPE_NONE);
1075			VERIFY(!ours ||
1076			    (m->m_pkthdr.pkt_flags & PKTF_PROXY_DST));
1077		}
1078		if (!ours)
1079			goto bad;
1080	} else if (!ours) {
1081		/*
1082		 * The unicast forwarding function might return the packet
1083		 * if we are proxying prefix(es), and if the packet is an
1084		 * ICMPv6 packet that has failed the zone checks, but is
1085		 * targetted towards a proxied address (this is optimized by
1086		 * way of RTF_PROXY test.)  If so, claim the packet as ours
1087		 * and let icmp6_input() handle the rest.  The packet's hop
1088		 * limit value is kept intact (it's not decremented).  This
1089		 * is for supporting Neighbor Unreachability Detection between
1090		 * proxied nodes on different links (src is link-local, dst
1091		 * is target address.)
1092		 */
1093		if ((m = ip6_forward(m, &rin6, 0)) == NULL)
1094			goto done;
1095		VERIFY(rin6.ro_rt != NULL);
1096		VERIFY(m->m_pkthdr.pkt_flags & PKTF_PROXY_DST);
1097		deliverifp = rin6.ro_rt->rt_ifp;
1098		ours = 1;
1099	}
1100
1101	ip6 = mtod(m, struct ip6_hdr *);
1102
1103	/*
1104	 * Malicious party may be able to use IPv4 mapped addr to confuse
1105	 * tcp/udp stack and bypass security checks (act as if it was from
1106	 * 127.0.0.1 by using IPv6 src ::ffff:127.0.0.1).  Be cautious.
1107	 *
1108	 * For SIIT end node behavior, you may want to disable the check.
1109	 * However, you will  become vulnerable to attacks using IPv4 mapped
1110	 * source.
1111	 */
1112	if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1113	    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1114		ip6stat.ip6s_badscope++;
1115		in6_ifstat_inc(inifp, ifs6_in_addrerr);
1116		goto bad;
1117	}
1118
1119	/*
1120	 * Tell launch routine the next header
1121	 */
1122	ip6stat.ip6s_delivered++;
1123	in6_ifstat_inc_na(deliverifp, ifs6_in_deliver);
1124
1125injectit:
1126	nest = 0;
1127
1128	/*
1129	 * Perform IP header alignment fixup again, if needed.  Note that
1130	 * we do it once for the outermost protocol, and we assume each
1131	 * protocol handler wouldn't mess with the alignment afterwards.
1132	 */
1133	IP6_HDR_ALIGNMENT_FIXUP(m, inifp, return);
1134
1135	while (nxt != IPPROTO_DONE) {
1136		struct ipfilter *filter;
1137		int (*pr_input)(struct mbuf **, int *, int);
1138
1139		if (ip6_hdrnestlimit && (++nest > ip6_hdrnestlimit)) {
1140			ip6stat.ip6s_toomanyhdr++;
1141			goto bad;
1142		}
1143
1144		/*
1145		 * protection against faulty packet - there should be
1146		 * more sanity checks in header chain processing.
1147		 */
1148		if (m->m_pkthdr.len < off) {
1149			ip6stat.ip6s_tooshort++;
1150			in6_ifstat_inc(inifp, ifs6_in_truncated);
1151			goto bad;
1152		}
1153
1154
1155#if IPSEC
1156		/*
1157		 * enforce IPsec policy checking if we are seeing last header.
1158		 * note that we do not visit this with protocols with pcb layer
1159		 * code - like udp/tcp/raw ip.
1160		 */
1161		if ((ipsec_bypass == 0) &&
1162		    (ip6_protox[nxt]->pr_flags & PR_LASTHDR) != 0) {
1163			if (ipsec6_in_reject(m, NULL)) {
1164				IPSEC_STAT_INCREMENT(ipsec6stat.in_polvio);
1165				goto bad;
1166			}
1167		}
1168#endif /* IPSEC */
1169
1170		/*
1171		 * Call IP filter
1172		 */
1173		if (!TAILQ_EMPTY(&ipv6_filters)) {
1174			ipf_ref();
1175			TAILQ_FOREACH(filter, &ipv6_filters, ipf_link) {
1176				if (seen == 0) {
1177					if ((struct ipfilter *)inject_ipfref ==
1178					    filter)
1179						seen = 1;
1180				} else if (filter->ipf_filter.ipf_input) {
1181					errno_t result;
1182
1183					result = filter->ipf_filter.ipf_input(
1184					    filter->ipf_filter.cookie,
1185					    (mbuf_t *)&m, off, nxt);
1186					if (result == EJUSTRETURN) {
1187						ipf_unref();
1188						goto done;
1189					}
1190					if (result != 0) {
1191						ipf_unref();
1192						goto bad;
1193					}
1194				}
1195			}
1196			ipf_unref();
1197		}
1198
1199		DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
1200		    struct ip6_hdr *, ip6, struct ifnet *, inifp,
1201		    struct ip *, NULL, struct ip6_hdr *, ip6);
1202
1203		if ((pr_input = ip6_protox[nxt]->pr_input) == NULL) {
1204			m_freem(m);
1205			m = NULL;
1206			nxt = IPPROTO_DONE;
1207		} else if (!(ip6_protox[nxt]->pr_flags & PR_PROTOLOCK)) {
1208			lck_mtx_lock(inet6_domain_mutex);
1209			nxt = pr_input(&m, &off, nxt);
1210			lck_mtx_unlock(inet6_domain_mutex);
1211		} else {
1212			nxt = pr_input(&m, &off, nxt);
1213		}
1214	}
1215done:
1216	ROUTE_RELEASE(&rin6);
1217	return;
1218bad:
1219	m_freem(m);
1220	goto done;
1221}
1222
1223void
1224ip6_setsrcifaddr_info(struct mbuf *m, uint32_t src_idx, struct in6_ifaddr *ia6)
1225{
1226	VERIFY(m->m_flags & M_PKTHDR);
1227
1228	/*
1229	 * If the source ifaddr is specified, pick up the information
1230	 * from there; otherwise just grab the passed-in ifindex as the
1231	 * caller may not have the ifaddr available.
1232	 */
1233	if (ia6 != NULL) {
1234		m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1235		m->m_pkthdr.src_ifindex = ia6->ia_ifp->if_index;
1236
1237		/* See IN6_IFF comments in in6_var.h */
1238		m->m_pkthdr.src_iff = (ia6->ia6_flags & 0xffff);
1239	} else {
1240		m->m_pkthdr.src_iff = 0;
1241		m->m_pkthdr.src_ifindex = src_idx;
1242		if (src_idx != 0)
1243			m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1244	}
1245}
1246
1247void
1248ip6_setdstifaddr_info(struct mbuf *m, uint32_t dst_idx, struct in6_ifaddr *ia6)
1249{
1250	VERIFY(m->m_flags & M_PKTHDR);
1251
1252	/*
1253	 * If the destination ifaddr is specified, pick up the information
1254	 * from there; otherwise just grab the passed-in ifindex as the
1255	 * caller may not have the ifaddr available.
1256	 */
1257	if (ia6 != NULL) {
1258		m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1259		m->m_pkthdr.dst_ifindex = ia6->ia_ifp->if_index;
1260
1261		/* See IN6_IFF comments in in6_var.h */
1262		m->m_pkthdr.dst_iff = (ia6->ia6_flags & 0xffff);
1263	} else {
1264		m->m_pkthdr.dst_iff = 0;
1265		m->m_pkthdr.dst_ifindex = dst_idx;
1266		if (dst_idx != 0)
1267			m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1268	}
1269}
1270
1271int
1272ip6_getsrcifaddr_info(struct mbuf *m, uint32_t *src_idx, uint32_t *ia6f)
1273{
1274	VERIFY(m->m_flags & M_PKTHDR);
1275
1276	if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO))
1277		return (-1);
1278
1279	if (src_idx != NULL)
1280		*src_idx = m->m_pkthdr.src_ifindex;
1281
1282	if (ia6f != NULL)
1283		*ia6f = m->m_pkthdr.src_iff;
1284
1285	return (0);
1286}
1287
1288int
1289ip6_getdstifaddr_info(struct mbuf *m, uint32_t *dst_idx, uint32_t *ia6f)
1290{
1291	VERIFY(m->m_flags & M_PKTHDR);
1292
1293	if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO))
1294		return (-1);
1295
1296	if (dst_idx != NULL)
1297		*dst_idx = m->m_pkthdr.dst_ifindex;
1298
1299	if (ia6f != NULL)
1300		*ia6f = m->m_pkthdr.dst_iff;
1301
1302	return (0);
1303}
1304
1305/*
1306 * Hop-by-Hop options header processing. If a valid jumbo payload option is
1307 * included, the real payload length will be stored in plenp.
1308 */
1309static int
1310ip6_hopopts_input(uint32_t *plenp, uint32_t *rtalertp, struct mbuf **mp,
1311    int *offp)
1312{
1313	struct mbuf *m = *mp;
1314	int off = *offp, hbhlen;
1315	struct ip6_hbh *hbh;
1316	u_int8_t *opt;
1317
1318	/* validation of the length of the header */
1319#ifndef PULLDOWN_TEST
1320	IP6_EXTHDR_CHECK(m, off, sizeof (*hbh), return (-1));
1321	hbh = (struct ip6_hbh *)(mtod(m, caddr_t) + off);
1322	hbhlen = (hbh->ip6h_len + 1) << 3;
1323
1324	IP6_EXTHDR_CHECK(m, off, hbhlen, return (-1));
1325	hbh = (struct ip6_hbh *)(mtod(m, caddr_t) + off);
1326#else
1327	IP6_EXTHDR_GET(hbh, struct ip6_hbh *, m, sizeof (struct ip6_hdr),
1328	    sizeof (struct ip6_hbh));
1329	if (hbh == NULL) {
1330		ip6stat.ip6s_tooshort++;
1331		return (-1);
1332	}
1333	hbhlen = (hbh->ip6h_len + 1) << 3;
1334	IP6_EXTHDR_GET(hbh, struct ip6_hbh *, m, sizeof (struct ip6_hdr),
1335	    hbhlen);
1336	if (hbh == NULL) {
1337		ip6stat.ip6s_tooshort++;
1338		return (-1);
1339	}
1340#endif
1341	off += hbhlen;
1342	hbhlen -= sizeof (struct ip6_hbh);
1343	opt = (u_int8_t *)hbh + sizeof (struct ip6_hbh);
1344
1345	if (ip6_process_hopopts(m, (u_int8_t *)hbh + sizeof (struct ip6_hbh),
1346	    hbhlen, rtalertp, plenp) < 0)
1347		return (-1);
1348
1349	*offp = off;
1350	*mp = m;
1351	return (0);
1352}
1353
1354/*
1355 * Search header for all Hop-by-hop options and process each option.
1356 * This function is separate from ip6_hopopts_input() in order to
1357 * handle a case where the sending node itself process its hop-by-hop
1358 * options header. In such a case, the function is called from ip6_output().
1359 *
1360 * The function assumes that hbh header is located right after the IPv6 header
1361 * (RFC2460 p7), opthead is pointer into data content in m, and opthead to
1362 * opthead + hbhlen is located in continuous memory region.
1363 */
1364int
1365ip6_process_hopopts(m, opthead, hbhlen, rtalertp, plenp)
1366	struct mbuf *m;
1367	u_int8_t *opthead;
1368	int hbhlen;
1369	u_int32_t *rtalertp;
1370	u_int32_t *plenp;
1371{
1372	struct ip6_hdr *ip6;
1373	int optlen = 0;
1374	u_int8_t *opt = opthead;
1375	u_int16_t rtalert_val;
1376	u_int32_t jumboplen;
1377	const int erroff = sizeof (struct ip6_hdr) + sizeof (struct ip6_hbh);
1378
1379	for (; hbhlen > 0; hbhlen -= optlen, opt += optlen) {
1380		switch (*opt) {
1381		case IP6OPT_PAD1:
1382			optlen = 1;
1383			break;
1384		case IP6OPT_PADN:
1385			if (hbhlen < IP6OPT_MINLEN) {
1386				ip6stat.ip6s_toosmall++;
1387				goto bad;
1388			}
1389			optlen = *(opt + 1) + 2;
1390			break;
1391		case IP6OPT_ROUTER_ALERT:
1392			/* XXX may need check for alignment */
1393			if (hbhlen < IP6OPT_RTALERT_LEN) {
1394				ip6stat.ip6s_toosmall++;
1395				goto bad;
1396			}
1397			if (*(opt + 1) != IP6OPT_RTALERT_LEN - 2) {
1398				/* XXX stat */
1399				icmp6_error(m, ICMP6_PARAM_PROB,
1400					    ICMP6_PARAMPROB_HEADER,
1401					    erroff + opt + 1 - opthead);
1402				return (-1);
1403			}
1404			optlen = IP6OPT_RTALERT_LEN;
1405			bcopy((caddr_t)(opt + 2), (caddr_t)&rtalert_val, 2);
1406			*rtalertp = ntohs(rtalert_val);
1407			break;
1408		case IP6OPT_JUMBO:
1409			/* XXX may need check for alignment */
1410			if (hbhlen < IP6OPT_JUMBO_LEN) {
1411				ip6stat.ip6s_toosmall++;
1412				goto bad;
1413			}
1414			if (*(opt + 1) != IP6OPT_JUMBO_LEN - 2) {
1415				/* XXX stat */
1416				icmp6_error(m, ICMP6_PARAM_PROB,
1417					    ICMP6_PARAMPROB_HEADER,
1418					    erroff + opt + 1 - opthead);
1419				return (-1);
1420			}
1421			optlen = IP6OPT_JUMBO_LEN;
1422
1423			/*
1424			 * IPv6 packets that have non 0 payload length
1425			 * must not contain a jumbo payload option.
1426			 */
1427			ip6 = mtod(m, struct ip6_hdr *);
1428			if (ip6->ip6_plen) {
1429				ip6stat.ip6s_badoptions++;
1430				icmp6_error(m, ICMP6_PARAM_PROB,
1431					    ICMP6_PARAMPROB_HEADER,
1432					    erroff + opt - opthead);
1433				return (-1);
1434			}
1435
1436			/*
1437			 * We may see jumbolen in unaligned location, so
1438			 * we'd need to perform bcopy().
1439			 */
1440			bcopy(opt + 2, &jumboplen, sizeof (jumboplen));
1441			jumboplen = (u_int32_t)htonl(jumboplen);
1442
1443#if 1
1444			/*
1445			 * if there are multiple jumbo payload options,
1446			 * *plenp will be non-zero and the packet will be
1447			 * rejected.
1448			 * the behavior may need some debate in ipngwg -
1449			 * multiple options does not make sense, however,
1450			 * there's no explicit mention in specification.
1451			 */
1452			if (*plenp != 0) {
1453				ip6stat.ip6s_badoptions++;
1454				icmp6_error(m, ICMP6_PARAM_PROB,
1455					    ICMP6_PARAMPROB_HEADER,
1456					    erroff + opt + 2 - opthead);
1457				return (-1);
1458			}
1459#endif
1460
1461			/*
1462			 * jumbo payload length must be larger than 65535.
1463			 */
1464			if (jumboplen <= IPV6_MAXPACKET) {
1465				ip6stat.ip6s_badoptions++;
1466				icmp6_error(m, ICMP6_PARAM_PROB,
1467					    ICMP6_PARAMPROB_HEADER,
1468					    erroff + opt + 2 - opthead);
1469				return (-1);
1470			}
1471			*plenp = jumboplen;
1472
1473			break;
1474		default:		/* unknown option */
1475			if (hbhlen < IP6OPT_MINLEN) {
1476				ip6stat.ip6s_toosmall++;
1477				goto bad;
1478			}
1479			optlen = ip6_unknown_opt(opt, m,
1480			    erroff + opt - opthead);
1481			if (optlen == -1) {
1482				return (-1);
1483			}
1484			optlen += 2;
1485			break;
1486		}
1487	}
1488
1489	return (0);
1490
1491bad:
1492	m_freem(m);
1493	return (-1);
1494}
1495
1496/*
1497 * Unknown option processing.
1498 * The third argument `off' is the offset from the IPv6 header to the option,
1499 * which is necessary if the IPv6 header the and option header and IPv6 header
1500 * is not continuous in order to return an ICMPv6 error.
1501 */
1502int
1503ip6_unknown_opt(uint8_t *optp, struct mbuf *m, int off)
1504{
1505	struct ip6_hdr *ip6;
1506
1507	switch (IP6OPT_TYPE(*optp)) {
1508	case IP6OPT_TYPE_SKIP: /* ignore the option */
1509		return ((int)*(optp + 1));
1510
1511	case IP6OPT_TYPE_DISCARD:	/* silently discard */
1512		m_freem(m);
1513		return (-1);
1514
1515	case IP6OPT_TYPE_FORCEICMP: /* send ICMP even if multicasted */
1516		ip6stat.ip6s_badoptions++;
1517		icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_OPTION, off);
1518		return (-1);
1519
1520	case IP6OPT_TYPE_ICMP: /* send ICMP if not multicasted */
1521		ip6stat.ip6s_badoptions++;
1522		ip6 = mtod(m, struct ip6_hdr *);
1523		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1524		    (m->m_flags & (M_BCAST|M_MCAST))) {
1525			m_freem(m);
1526		} else {
1527			icmp6_error(m, ICMP6_PARAM_PROB,
1528			    ICMP6_PARAMPROB_OPTION, off);
1529		}
1530		return (-1);
1531	}
1532
1533	m_freem(m);		/* XXX: NOTREACHED */
1534	return (-1);
1535}
1536
1537/*
1538 * Create the "control" list for this pcb.
1539 * These functions will not modify mbuf chain at all.
1540 *
1541 * With KAME mbuf chain restriction:
1542 * The routine will be called from upper layer handlers like tcp6_input().
1543 * Thus the routine assumes that the caller (tcp6_input) have already
1544 * called IP6_EXTHDR_CHECK() and all the extension headers are located in the
1545 * very first mbuf on the mbuf chain.
1546 *
1547 * ip6_savecontrol_v4 will handle those options that are possible to be
1548 * set on a v4-mapped socket.
1549 * ip6_savecontrol will directly call ip6_savecontrol_v4 to handle those
1550 * options and handle the v6-only ones itself.
1551 */
1552struct mbuf **
1553ip6_savecontrol_v4(struct inpcb *inp, struct mbuf *m, struct mbuf **mp,
1554    int *v4only)
1555{
1556	struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1557
1558	if ((inp->inp_socket->so_options & SO_TIMESTAMP) != 0) {
1559		struct timeval tv;
1560
1561		getmicrotime(&tv);
1562		mp = sbcreatecontrol_mbuf((caddr_t)&tv, sizeof (tv),
1563		    SCM_TIMESTAMP, SOL_SOCKET, mp);
1564		if (*mp == NULL)
1565			return (NULL);
1566	}
1567	if ((inp->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) {
1568		uint64_t time;
1569
1570		time = mach_absolute_time();
1571		mp = sbcreatecontrol_mbuf((caddr_t)&time, sizeof (time),
1572		    SCM_TIMESTAMP_MONOTONIC, SOL_SOCKET, mp);
1573		if (*mp == NULL)
1574			return (NULL);
1575	}
1576	if ((inp->inp_socket->so_flags & SOF_RECV_TRAFFIC_CLASS) != 0) {
1577		int tc = m_get_traffic_class(m);
1578
1579		mp = sbcreatecontrol_mbuf((caddr_t)&tc, sizeof (tc),
1580		    SO_TRAFFIC_CLASS, SOL_SOCKET, mp);
1581		if (*mp == NULL)
1582			return (NULL);
1583	}
1584
1585	if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
1586		if (v4only != NULL)
1587			*v4only = 1;
1588		return (mp);
1589	}
1590
1591#define	IS2292(inp, x, y)	(((inp)->inp_flags & IN6P_RFC2292) ? (x) : (y))
1592	/* RFC 2292 sec. 5 */
1593	if ((inp->inp_flags & IN6P_PKTINFO) != 0) {
1594		struct in6_pktinfo pi6;
1595
1596		bcopy(&ip6->ip6_dst, &pi6.ipi6_addr, sizeof (struct in6_addr));
1597		in6_clearscope(&pi6.ipi6_addr);	/* XXX */
1598		pi6.ipi6_ifindex =
1599		    (m && m->m_pkthdr.rcvif) ? m->m_pkthdr.rcvif->if_index : 0;
1600
1601		mp = sbcreatecontrol_mbuf((caddr_t)&pi6,
1602		    sizeof (struct in6_pktinfo),
1603		    IS2292(inp, IPV6_2292PKTINFO, IPV6_PKTINFO),
1604		    IPPROTO_IPV6, mp);
1605		if (*mp == NULL)
1606			return (NULL);
1607	}
1608
1609	if ((inp->inp_flags & IN6P_HOPLIMIT) != 0) {
1610		int hlim = ip6->ip6_hlim & 0xff;
1611
1612		mp = sbcreatecontrol_mbuf((caddr_t)&hlim, sizeof (int),
1613		    IS2292(inp, IPV6_2292HOPLIMIT, IPV6_HOPLIMIT),
1614		    IPPROTO_IPV6, mp);
1615		if (*mp == NULL)
1616			return (NULL);
1617	}
1618
1619	if (v4only != NULL)
1620		*v4only = 0;
1621	return (mp);
1622}
1623
1624int
1625ip6_savecontrol(struct inpcb *in6p, struct mbuf *m, struct mbuf **mp)
1626{
1627	struct mbuf **np;
1628	struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1629	int v4only = 0;
1630
1631	*mp = NULL;
1632	np = ip6_savecontrol_v4(in6p, m, mp, &v4only);
1633	if (np == NULL)
1634		goto no_mbufs;
1635
1636	mp = np;
1637	if (v4only)
1638		return (0);
1639
1640	if ((in6p->inp_flags & IN6P_TCLASS) != 0) {
1641		u_int32_t flowinfo;
1642		int tclass;
1643
1644		flowinfo = (u_int32_t)ntohl(ip6->ip6_flow & IPV6_FLOWINFO_MASK);
1645		flowinfo >>= 20;
1646
1647		tclass = flowinfo & 0xff;
1648		mp = sbcreatecontrol_mbuf((caddr_t)&tclass, sizeof (tclass),
1649		    IPV6_TCLASS, IPPROTO_IPV6, mp);
1650		if (*mp == NULL)
1651			goto no_mbufs;
1652	}
1653
1654	/*
1655	 * IPV6_HOPOPTS socket option.  Recall that we required super-user
1656	 * privilege for the option (see ip6_ctloutput), but it might be too
1657	 * strict, since there might be some hop-by-hop options which can be
1658	 * returned to normal user.
1659	 * See also RFC 2292 section 6 (or RFC 3542 section 8).
1660	 */
1661	if ((in6p->inp_flags & IN6P_HOPOPTS) != 0) {
1662		/*
1663		 * Check if a hop-by-hop options header is contatined in the
1664		 * received packet, and if so, store the options as ancillary
1665		 * data. Note that a hop-by-hop options header must be
1666		 * just after the IPv6 header, which is assured through the
1667		 * IPv6 input processing.
1668		 */
1669		ip6 = mtod(m, struct ip6_hdr *);
1670		if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
1671			struct ip6_hbh *hbh;
1672			int hbhlen = 0;
1673#if PULLDOWN_TEST
1674			struct mbuf *ext;
1675#endif
1676
1677#ifndef PULLDOWN_TEST
1678			hbh = (struct ip6_hbh *)(ip6 + 1);
1679			hbhlen = (hbh->ip6h_len + 1) << 3;
1680#else
1681			ext = ip6_pullexthdr(m, sizeof (struct ip6_hdr),
1682			    ip6->ip6_nxt);
1683			if (ext == NULL) {
1684				ip6stat.ip6s_tooshort++;
1685				return (0);
1686			}
1687			hbh = mtod(ext, struct ip6_hbh *);
1688			hbhlen = (hbh->ip6h_len + 1) << 3;
1689			if (hbhlen != ext->m_len) {
1690				m_freem(ext);
1691				ip6stat.ip6s_tooshort++;
1692				return (0);
1693			}
1694#endif
1695
1696			/*
1697			 * XXX: We copy the whole header even if a
1698			 * jumbo payload option is included, the option which
1699			 * is to be removed before returning according to
1700			 * RFC2292.
1701			 * Note: this constraint is removed in RFC3542
1702			 */
1703			mp = sbcreatecontrol_mbuf((caddr_t)hbh, hbhlen,
1704			    IS2292(in6p, IPV6_2292HOPOPTS, IPV6_HOPOPTS),
1705			    IPPROTO_IPV6, mp);
1706
1707#if PULLDOWN_TEST
1708			m_freem(ext);
1709#endif
1710			if (*mp == NULL) {
1711				goto no_mbufs;
1712			}
1713		}
1714	}
1715
1716	if ((in6p->inp_flags & (IN6P_RTHDR | IN6P_DSTOPTS)) != 0) {
1717		int nxt = ip6->ip6_nxt, off = sizeof (struct ip6_hdr);
1718
1719		/*
1720		 * Search for destination options headers or routing
1721		 * header(s) through the header chain, and stores each
1722		 * header as ancillary data.
1723		 * Note that the order of the headers remains in
1724		 * the chain of ancillary data.
1725		 */
1726		while (1) {	/* is explicit loop prevention necessary? */
1727			struct ip6_ext *ip6e = NULL;
1728			int elen;
1729#if PULLDOWN_TEST
1730			struct mbuf *ext = NULL;
1731#endif
1732
1733			/*
1734			 * if it is not an extension header, don't try to
1735			 * pull it from the chain.
1736			 */
1737			switch (nxt) {
1738			case IPPROTO_DSTOPTS:
1739			case IPPROTO_ROUTING:
1740			case IPPROTO_HOPOPTS:
1741			case IPPROTO_AH: /* is it possible? */
1742				break;
1743			default:
1744				goto loopend;
1745			}
1746
1747#ifndef PULLDOWN_TEST
1748			if (off + sizeof (*ip6e) > m->m_len)
1749				goto loopend;
1750			ip6e = (struct ip6_ext *)(mtod(m, caddr_t) + off);
1751			if (nxt == IPPROTO_AH)
1752				elen = (ip6e->ip6e_len + 2) << 2;
1753			else
1754				elen = (ip6e->ip6e_len + 1) << 3;
1755			if (off + elen > m->m_len)
1756				goto loopend;
1757#else
1758			ext = ip6_pullexthdr(m, off, nxt);
1759			if (ext == NULL) {
1760				ip6stat.ip6s_tooshort++;
1761				return (0);
1762			}
1763			ip6e = mtod(ext, struct ip6_ext *);
1764			if (nxt == IPPROTO_AH)
1765				elen = (ip6e->ip6e_len + 2) << 2;
1766			else
1767				elen = (ip6e->ip6e_len + 1) << 3;
1768			if (elen != ext->m_len) {
1769				m_freem(ext);
1770				ip6stat.ip6s_tooshort++;
1771				return (0);
1772			}
1773#endif
1774
1775			switch (nxt) {
1776			case IPPROTO_DSTOPTS:
1777				if (!(in6p->inp_flags & IN6P_DSTOPTS))
1778					break;
1779
1780				mp = sbcreatecontrol_mbuf((caddr_t)ip6e, elen,
1781				    IS2292(in6p, IPV6_2292DSTOPTS,
1782				    IPV6_DSTOPTS), IPPROTO_IPV6, mp);
1783				if (*mp == NULL) {
1784#if PULLDOWN_TEST
1785					m_freem(ext);
1786#endif
1787					goto no_mbufs;
1788				}
1789				break;
1790			case IPPROTO_ROUTING:
1791				if (!in6p->inp_flags & IN6P_RTHDR)
1792					break;
1793
1794				mp = sbcreatecontrol_mbuf((caddr_t)ip6e, elen,
1795				    IS2292(in6p, IPV6_2292RTHDR, IPV6_RTHDR),
1796				    IPPROTO_IPV6, mp);
1797				if (*mp == NULL) {
1798#if PULLDOWN_TEST
1799					m_freem(ext);
1800#endif
1801					goto no_mbufs;
1802				}
1803				break;
1804			case IPPROTO_HOPOPTS:
1805			case IPPROTO_AH: /* is it possible? */
1806				break;
1807
1808			default:
1809				/*
1810				 * other cases have been filtered in the above.
1811				 * none will visit this case.  here we supply
1812				 * the code just in case (nxt overwritten or
1813				 * other cases).
1814				 */
1815#if PULLDOWN_TEST
1816				m_freem(ext);
1817#endif
1818				goto loopend;
1819
1820			}
1821
1822			/* proceed with the next header. */
1823			off += elen;
1824			nxt = ip6e->ip6e_nxt;
1825			ip6e = NULL;
1826#if PULLDOWN_TEST
1827			m_freem(ext);
1828			ext = NULL;
1829#endif
1830		}
1831loopend:
1832		;
1833	}
1834	return (0);
1835no_mbufs:
1836	ip6stat.ip6s_pktdropcntrl++;
1837	/* XXX increment a stat to show the failure */
1838	return (ENOBUFS);
1839}
1840#undef IS2292
1841
1842void
1843ip6_notify_pmtu(struct inpcb *in6p, struct sockaddr_in6 *dst, u_int32_t *mtu)
1844{
1845	struct socket *so;
1846	struct mbuf *m_mtu;
1847	struct ip6_mtuinfo mtuctl;
1848
1849	so =  in6p->inp_socket;
1850
1851	if (mtu == NULL)
1852		return;
1853
1854#ifdef DIAGNOSTIC
1855	if (so == NULL) {		/* I believe this is impossible */
1856		panic("ip6_notify_pmtu: socket is NULL");
1857		/* NOTREACHED */
1858	}
1859#endif
1860
1861	bzero(&mtuctl, sizeof (mtuctl));	/* zero-clear for safety */
1862	mtuctl.ip6m_mtu = *mtu;
1863	mtuctl.ip6m_addr = *dst;
1864	if (sa6_recoverscope(&mtuctl.ip6m_addr, TRUE))
1865		return;
1866
1867	if ((m_mtu = sbcreatecontrol((caddr_t)&mtuctl, sizeof (mtuctl),
1868	    IPV6_PATHMTU, IPPROTO_IPV6)) == NULL)
1869		return;
1870
1871	if (sbappendaddr(&so->so_rcv, SA(dst), NULL, m_mtu, NULL) == 0) {
1872		m_freem(m_mtu);
1873		/* XXX: should count statistics */
1874	} else {
1875		sorwakeup(so);
1876	}
1877}
1878
1879#if PULLDOWN_TEST
1880/*
1881 * pull single extension header from mbuf chain.  returns single mbuf that
1882 * contains the result, or NULL on error.
1883 */
1884static struct mbuf *
1885ip6_pullexthdr(m, off, nxt)
1886	struct mbuf *m;
1887	size_t off;
1888	int nxt;
1889{
1890	struct ip6_ext ip6e;
1891	size_t elen;
1892	struct mbuf *n;
1893
1894#if DIAGNOSTIC
1895	switch (nxt) {
1896	case IPPROTO_DSTOPTS:
1897	case IPPROTO_ROUTING:
1898	case IPPROTO_HOPOPTS:
1899	case IPPROTO_AH: /* is it possible? */
1900		break;
1901	default:
1902		printf("ip6_pullexthdr: invalid nxt=%d\n", nxt);
1903	}
1904#endif
1905
1906	m_copydata(m, off, sizeof (ip6e), (caddr_t)&ip6e);
1907	if (nxt == IPPROTO_AH)
1908		elen = (ip6e.ip6e_len + 2) << 2;
1909	else
1910		elen = (ip6e.ip6e_len + 1) << 3;
1911
1912	MGET(n, M_DONTWAIT, MT_DATA);
1913	if (n && elen >= MLEN) {
1914		MCLGET(n, M_DONTWAIT);
1915		if ((n->m_flags & M_EXT) == 0) {
1916			m_free(n);
1917			n = NULL;
1918		}
1919	}
1920	if (!n)
1921		return (NULL);
1922
1923	n->m_len = 0;
1924	if (elen >= M_TRAILINGSPACE(n)) {
1925		m_free(n);
1926		return (NULL);
1927	}
1928
1929	m_copydata(m, off, elen, mtod(n, caddr_t));
1930	n->m_len = elen;
1931	return (n);
1932}
1933#endif
1934
1935/*
1936 * Get pointer to the previous header followed by the header
1937 * currently processed.
1938 * XXX: This function supposes that
1939 *	M includes all headers,
1940 *	the next header field and the header length field of each header
1941 *	are valid, and
1942 *	the sum of each header length equals to OFF.
1943 * Because of these assumptions, this function must be called very
1944 * carefully. Moreover, it will not be used in the near future when
1945 * we develop `neater' mechanism to process extension headers.
1946 */
1947char *
1948ip6_get_prevhdr(m, off)
1949	struct mbuf *m;
1950	int off;
1951{
1952	struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1953
1954	if (off == sizeof (struct ip6_hdr)) {
1955		return ((char *)&ip6->ip6_nxt);
1956	} else {
1957		int len, nxt;
1958		struct ip6_ext *ip6e = NULL;
1959
1960		nxt = ip6->ip6_nxt;
1961		len = sizeof (struct ip6_hdr);
1962		while (len < off) {
1963			ip6e = (struct ip6_ext *)(mtod(m, caddr_t) + len);
1964
1965			switch (nxt) {
1966			case IPPROTO_FRAGMENT:
1967				len += sizeof (struct ip6_frag);
1968				break;
1969			case IPPROTO_AH:
1970				len += (ip6e->ip6e_len + 2) << 2;
1971				break;
1972			default:
1973				len += (ip6e->ip6e_len + 1) << 3;
1974				break;
1975			}
1976			nxt = ip6e->ip6e_nxt;
1977		}
1978		if (ip6e)
1979			return ((char *)&ip6e->ip6e_nxt);
1980		else
1981			return (NULL);
1982	}
1983}
1984
1985/*
1986 * get next header offset.  m will be retained.
1987 */
1988int
1989ip6_nexthdr(struct mbuf *m, int off, int proto, int *nxtp)
1990{
1991	struct ip6_hdr ip6;
1992	struct ip6_ext ip6e;
1993	struct ip6_frag fh;
1994
1995	/* just in case */
1996	VERIFY(m != NULL);
1997	if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len < off)
1998		return (-1);
1999
2000	switch (proto) {
2001	case IPPROTO_IPV6:
2002		if (m->m_pkthdr.len < off + sizeof (ip6))
2003			return (-1);
2004		m_copydata(m, off, sizeof (ip6), (caddr_t)&ip6);
2005		if (nxtp)
2006			*nxtp = ip6.ip6_nxt;
2007		off += sizeof (ip6);
2008		return (off);
2009
2010	case IPPROTO_FRAGMENT:
2011		/*
2012		 * terminate parsing if it is not the first fragment,
2013		 * it does not make sense to parse through it.
2014		 */
2015		if (m->m_pkthdr.len < off + sizeof (fh))
2016			return (-1);
2017		m_copydata(m, off, sizeof (fh), (caddr_t)&fh);
2018		/* IP6F_OFF_MASK = 0xfff8(BigEndian), 0xf8ff(LittleEndian) */
2019		if (fh.ip6f_offlg & IP6F_OFF_MASK)
2020			return (-1);
2021		if (nxtp)
2022			*nxtp = fh.ip6f_nxt;
2023		off += sizeof (struct ip6_frag);
2024		return (off);
2025
2026	case IPPROTO_AH:
2027		if (m->m_pkthdr.len < off + sizeof (ip6e))
2028			return (-1);
2029		m_copydata(m, off, sizeof (ip6e), (caddr_t)&ip6e);
2030		if (nxtp)
2031			*nxtp = ip6e.ip6e_nxt;
2032		off += (ip6e.ip6e_len + 2) << 2;
2033		return (off);
2034
2035	case IPPROTO_HOPOPTS:
2036	case IPPROTO_ROUTING:
2037	case IPPROTO_DSTOPTS:
2038		if (m->m_pkthdr.len < off + sizeof (ip6e))
2039			return (-1);
2040		m_copydata(m, off, sizeof (ip6e), (caddr_t)&ip6e);
2041		if (nxtp)
2042			*nxtp = ip6e.ip6e_nxt;
2043		off += (ip6e.ip6e_len + 1) << 3;
2044		return (off);
2045
2046	case IPPROTO_NONE:
2047	case IPPROTO_ESP:
2048	case IPPROTO_IPCOMP:
2049		/* give up */
2050		return (-1);
2051
2052	default:
2053		return (-1);
2054	}
2055
2056	return (-1);
2057}
2058
2059/*
2060 * get offset for the last header in the chain.  m will be kept untainted.
2061 */
2062int
2063ip6_lasthdr(struct mbuf *m, int off, int proto, int *nxtp)
2064{
2065	int newoff;
2066	int nxt;
2067
2068	if (!nxtp) {
2069		nxt = -1;
2070		nxtp = &nxt;
2071	}
2072	while (1) {
2073		newoff = ip6_nexthdr(m, off, proto, nxtp);
2074		if (newoff < 0)
2075			return (off);
2076		else if (newoff < off)
2077			return (-1);	/* invalid */
2078		else if (newoff == off)
2079			return (newoff);
2080
2081		off = newoff;
2082		proto = *nxtp;
2083	}
2084}
2085
2086struct ip6aux *
2087ip6_addaux(struct mbuf *m)
2088{
2089	struct m_tag		*tag;
2090
2091	/* Check if one is already allocated */
2092	tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
2093	    KERNEL_TAG_TYPE_INET6, NULL);
2094	if (tag == NULL) {
2095		/* Allocate a tag */
2096		tag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_INET6,
2097		    sizeof (struct ip6aux), M_DONTWAIT, m);
2098
2099		/* Attach it to the mbuf */
2100		if (tag) {
2101			m_tag_prepend(m, tag);
2102		}
2103	}
2104
2105	return (tag ? (struct ip6aux *)(tag + 1) : NULL);
2106}
2107
2108struct ip6aux *
2109ip6_findaux(struct mbuf *m)
2110{
2111	struct m_tag	*tag;
2112
2113	tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
2114	    KERNEL_TAG_TYPE_INET6, NULL);
2115
2116	return (tag ? (struct ip6aux *)(tag + 1) : NULL);
2117}
2118
2119void
2120ip6_delaux(struct mbuf *m)
2121{
2122	struct m_tag	*tag;
2123
2124	tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
2125	    KERNEL_TAG_TYPE_INET6, NULL);
2126	if (tag) {
2127		m_tag_delete(m, tag);
2128	}
2129}
2130
2131/*
2132 * Drain callback
2133 */
2134void
2135ip6_drain(void)
2136{
2137	frag6_drain();		/* fragments */
2138	in6_rtqdrain();		/* protocol cloned routes */
2139	nd6_drain(NULL);	/* cloned routes: ND6 */
2140}
2141
2142/*
2143 * System control for IP6
2144 */
2145
2146u_char	inet6ctlerrmap[PRC_NCMDS] = {
2147	0,		0,		0,		0,
2148	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
2149	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
2150	EMSGSIZE,	EHOSTUNREACH,	0,		0,
2151	0,		0,		0,		0,
2152	ENOPROTOOPT
2153};
2154