1/*
2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * Copyright (c) 1982, 1986, 1988, 1993
30 *	The Regents of the University of California.  All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 *    notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 *    notice, this list of conditions and the following disclaimer in the
39 *    documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 *    must display the following acknowledgement:
42 *	This product includes software developed by the University of
43 *	California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
61 */
62/*
63 * NOTICE: This file was modified by SPARTA, Inc. in 2007 to introduce
64 * support for mandatory and extensible security protections.  This notice
65 * is included in support of clause 2.2 (b) of the Apple Public License,
66 * Version 2.0.
67 */
68
69#define	_IP_VHL
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/mbuf.h>
74#include <sys/malloc.h>
75#include <sys/domain.h>
76#include <sys/protosw.h>
77#include <sys/socket.h>
78#include <sys/time.h>
79#include <sys/kernel.h>
80#include <sys/syslog.h>
81#include <sys/sysctl.h>
82#include <sys/mcache.h>
83#include <sys/socketvar.h>
84#include <sys/kdebug.h>
85#include <mach/mach_time.h>
86#include <mach/sdt.h>
87
88#include <machine/endian.h>
89#include <dev/random/randomdev.h>
90
91#include <kern/queue.h>
92#include <kern/locks.h>
93#include <libkern/OSAtomic.h>
94
95#include <pexpert/pexpert.h>
96
97#include <net/if.h>
98#include <net/if_var.h>
99#include <net/if_dl.h>
100#include <net/route.h>
101#include <net/kpi_protocol.h>
102#include <net/ntstat.h>
103#include <net/dlil.h>
104#include <net/classq/classq.h>
105#if PF
106#include <net/pfvar.h>
107#endif /* PF */
108
109#include <netinet/in.h>
110#include <netinet/in_systm.h>
111#include <netinet/in_var.h>
112#include <netinet/in_arp.h>
113#include <netinet/ip.h>
114#include <netinet/in_pcb.h>
115#include <netinet/ip_var.h>
116#include <netinet/ip_icmp.h>
117#include <netinet/ip_fw.h>
118#include <netinet/ip_divert.h>
119#include <netinet/kpi_ipfilter_var.h>
120#include <netinet/udp.h>
121#include <netinet/udp_var.h>
122#include <netinet/bootp.h>
123#include <netinet/lro_ext.h>
124
125#if DUMMYNET
126#include <netinet/ip_dummynet.h>
127#endif /* DUMMYNET */
128
129#if CONFIG_MACF_NET
130#include <security/mac_framework.h>
131#endif /* CONFIG_MACF_NET */
132
133#if IPSEC
134#include <netinet6/ipsec.h>
135#include <netkey/key.h>
136#endif /* IPSEC */
137
138#define	DBG_LAYER_BEG		NETDBG_CODE(DBG_NETIP, 0)
139#define	DBG_LAYER_END		NETDBG_CODE(DBG_NETIP, 2)
140#define	DBG_FNC_IP_INPUT	NETDBG_CODE(DBG_NETIP, (2 << 8))
141
142#if IPSEC
143extern int ipsec_bypass;
144extern lck_mtx_t *sadb_mutex;
145
146lck_grp_t	*sadb_stat_mutex_grp;
147lck_grp_attr_t	*sadb_stat_mutex_grp_attr;
148lck_attr_t	*sadb_stat_mutex_attr;
149decl_lck_mtx_data(, sadb_stat_mutex_data);
150lck_mtx_t	*sadb_stat_mutex = &sadb_stat_mutex_data;
151#endif /* IPSEC */
152
153#if MROUTING
154int rsvp_on = 0;
155static int ip_rsvp_on;
156struct socket *ip_rsvpd;
157#endif /* MROUTING */
158
159MBUFQ_HEAD(fq_head);
160
161static int frag_timeout_run;		/* frag timer is scheduled to run */
162static void frag_timeout(void *);
163static void frag_sched_timeout(void);
164
165static struct ipq *ipq_alloc(int);
166static void ipq_free(struct ipq *);
167static void ipq_updateparams(void);
168
169decl_lck_mtx_data(static, ipqlock);
170static lck_attr_t	*ipqlock_attr;
171static lck_grp_t	*ipqlock_grp;
172static lck_grp_attr_t	*ipqlock_grp_attr;
173
174/* Packet reassembly stuff */
175#define	IPREASS_NHASH_LOG2	6
176#define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
177#define	IPREASS_HMASK		(IPREASS_NHASH - 1)
178#define	IPREASS_HASH(x, y) \
179	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
180
181/* IP fragment reassembly queues (protected by ipqlock) */
182static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH]; /* ip reassembly queues */
183static int maxnipq;			/* max packets in reass queues */
184static u_int32_t maxfragsperpacket;	/* max frags/packet in reass queues */
185static u_int32_t nipq;			/* # of packets in reass queues */
186static u_int32_t ipq_limit;		/* ipq allocation limit */
187static u_int32_t ipq_count;		/* current # of allocated ipq's */
188
189static int sysctl_ipforwarding SYSCTL_HANDLER_ARGS;
190static int sysctl_maxnipq SYSCTL_HANDLER_ARGS;
191static int sysctl_maxfragsperpacket SYSCTL_HANDLER_ARGS;
192
193int ipforwarding = 0;
194SYSCTL_PROC(_net_inet_ip, IPCTL_FORWARDING, forwarding,
195	CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ipforwarding, 0,
196	sysctl_ipforwarding, "I", "Enable IP forwarding between interfaces");
197
198static int ipsendredirects = 1; /* XXX */
199SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect,
200	CTLFLAG_RW | CTLFLAG_LOCKED, &ipsendredirects, 0,
201	"Enable sending IP redirects");
202
203int ip_defttl = IPDEFTTL;
204SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW | CTLFLAG_LOCKED,
205	&ip_defttl, 0, "Maximum TTL on IP packets");
206
207static int ip_dosourceroute = 0;
208SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute,
209	CTLFLAG_RW | CTLFLAG_LOCKED, &ip_dosourceroute, 0,
210	"Enable forwarding source routed IP packets");
211
212static int ip_acceptsourceroute = 0;
213SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
214	CTLFLAG_RW | CTLFLAG_LOCKED, &ip_acceptsourceroute, 0,
215	"Enable accepting source routed IP packets");
216
217static int ip_sendsourcequench = 0;
218SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench,
219	CTLFLAG_RW | CTLFLAG_LOCKED, &ip_sendsourcequench, 0,
220	"Enable the transmission of source quench packets");
221
222SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets,
223	CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &maxnipq, 0, sysctl_maxnipq,
224	"I", "Maximum number of IPv4 fragment reassembly queue entries");
225
226SYSCTL_UINT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD | CTLFLAG_LOCKED,
227	&nipq, 0, "Current number of IPv4 fragment reassembly queue entries");
228
229SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragsperpacket,
230	CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &maxfragsperpacket, 0,
231	sysctl_maxfragsperpacket, "I",
232	"Maximum number of IPv4 fragments allowed per packet");
233
234int ip_doscopedroute = 1;
235SYSCTL_INT(_net_inet_ip, OID_AUTO, scopedroute, CTLFLAG_RD | CTLFLAG_LOCKED,
236	&ip_doscopedroute, 0, "Enable IPv4 scoped routing");
237
238static uint32_t ip_adj_clear_hwcksum = 0;
239SYSCTL_UINT(_net_inet_ip, OID_AUTO, adj_clear_hwcksum,
240	CTLFLAG_RW | CTLFLAG_LOCKED, &ip_adj_clear_hwcksum, 0,
241	"Invalidate hwcksum info when adjusting length");
242
243/*
244 * XXX - Setting ip_checkinterface mostly implements the receive side of
245 * the Strong ES model described in RFC 1122, but since the routing table
246 * and transmit implementation do not implement the Strong ES model,
247 * setting this to 1 results in an odd hybrid.
248 *
249 * XXX - ip_checkinterface currently must be disabled if you use ipnat
250 * to translate the destination address to another local interface.
251 *
252 * XXX - ip_checkinterface must be disabled if you add IP aliases
253 * to the loopback interface instead of the interface where the
254 * packets for those addresses are received.
255 */
256static int ip_checkinterface = 0;
257SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW | CTLFLAG_LOCKED,
258	&ip_checkinterface, 0, "Verify packet arrives on correct interface");
259
260#if DIAGNOSTIC
261static int ipprintfs = 0;
262#endif
263
264struct protosw *ip_protox[IPPROTO_MAX];
265
266static lck_grp_attr_t	*in_ifaddr_rwlock_grp_attr;
267static lck_grp_t	*in_ifaddr_rwlock_grp;
268static lck_attr_t	*in_ifaddr_rwlock_attr;
269decl_lck_rw_data(, in_ifaddr_rwlock_data);
270lck_rw_t		*in_ifaddr_rwlock = &in_ifaddr_rwlock_data;
271
272/* Protected by in_ifaddr_rwlock */
273struct in_ifaddrhead in_ifaddrhead;		/* first inet address */
274struct in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
275
276#define	INADDR_NHASH	61
277static u_int32_t inaddr_nhash;			/* hash table size */
278static u_int32_t inaddr_hashp;			/* next largest prime */
279
280static int ip_getstat SYSCTL_HANDLER_ARGS;
281struct ipstat ipstat;
282SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RD | CTLFLAG_LOCKED,
283	0, 0, ip_getstat, "S,ipstat",
284	"IP statistics (struct ipstat, netinet/ip_var.h)");
285
286#if IPCTL_DEFMTU
287SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW | CTLFLAG_LOCKED,
288	&ip_mtu, 0, "Default MTU");
289#endif /* IPCTL_DEFMTU */
290
291#if IPSTEALTH
292static int	ipstealth = 0;
293SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW | CTLFLAG_LOCKED,
294	&ipstealth, 0, "");
295#endif /* IPSTEALTH */
296
297/* Firewall hooks */
298#if IPFIREWALL
299ip_fw_chk_t *ip_fw_chk_ptr;
300int fw_enable = 1;
301int fw_bypass = 1;
302int fw_one_pass = 0;
303#endif /* IPFIREWALL */
304
305#if DUMMYNET
306ip_dn_io_t *ip_dn_io_ptr;
307#endif /* DUMMYNET */
308
309SYSCTL_NODE(_net_inet_ip, OID_AUTO, linklocal,
310	CTLFLAG_RW | CTLFLAG_LOCKED, 0, "link local");
311
312struct ip_linklocal_stat ip_linklocal_stat;
313SYSCTL_STRUCT(_net_inet_ip_linklocal, OID_AUTO, stat,
314	CTLFLAG_RD | CTLFLAG_LOCKED, &ip_linklocal_stat, ip_linklocal_stat,
315	"Number of link local packets with TTL less than 255");
316
317SYSCTL_NODE(_net_inet_ip_linklocal, OID_AUTO, in,
318	CTLFLAG_RW | CTLFLAG_LOCKED, 0, "link local input");
319
320int ip_linklocal_in_allowbadttl = 1;
321SYSCTL_INT(_net_inet_ip_linklocal_in, OID_AUTO, allowbadttl,
322	CTLFLAG_RW | CTLFLAG_LOCKED, &ip_linklocal_in_allowbadttl, 0,
323	"Allow incoming link local packets with TTL less than 255");
324
325
326/*
327 * We need to save the IP options in case a protocol wants to respond
328 * to an incoming packet over the same route if the packet got here
329 * using IP source routing.  This allows connection establishment and
330 * maintenance when the remote end is on a network that is not known
331 * to us.
332 */
333static int	ip_nhops = 0;
334static	struct ip_srcrt {
335	struct	in_addr dst;			/* final destination */
336	char	nop;				/* one NOP to align */
337	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
338	struct	in_addr route[MAX_IPOPTLEN / sizeof (struct in_addr)];
339} ip_srcrt;
340
341static void in_ifaddrhashtbl_init(void);
342static void save_rte(u_char *, struct in_addr);
343static int ip_dooptions(struct mbuf *, int, struct sockaddr_in *);
344static void ip_forward(struct mbuf *, int, struct sockaddr_in *);
345static void frag_freef(struct ipqhead *, struct ipq *);
346#if IPDIVERT
347#ifdef IPDIVERT_44
348static struct mbuf *ip_reass(struct mbuf *, u_int32_t *, u_int16_t *);
349#else /* !IPDIVERT_44 */
350static struct mbuf *ip_reass(struct mbuf *, u_int16_t *, u_int16_t *);
351#endif /* !IPDIVERT_44 */
352#else /* !IPDIVERT */
353static struct mbuf *ip_reass(struct mbuf *);
354#endif /* !IPDIVERT */
355static void ip_fwd_route_copyout(struct ifnet *, struct route *);
356static void ip_fwd_route_copyin(struct ifnet *, struct route *);
357static inline u_short ip_cksum(struct mbuf *, int);
358
359int ip_use_randomid = 1;
360SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW | CTLFLAG_LOCKED,
361	&ip_use_randomid, 0, "Randomize IP packets IDs");
362
363/*
364 * On platforms which require strict alignment (currently for anything but
365 * i386 or x86_64), check if the IP header pointer is 32-bit aligned; if not,
366 * copy the contents of the mbuf chain into a new chain, and free the original
367 * one.  Create some head room in the first mbuf of the new chain, in case
368 * it's needed later on.
369 */
370#if defined(__i386__) || defined(__x86_64__)
371#define	IP_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { } while (0)
372#else /* !__i386__ && !__x86_64__ */
373#define	IP_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do {			\
374	if (!IP_HDR_ALIGNED_P(mtod(_m, caddr_t))) {			\
375		struct mbuf *_n;					\
376		struct ifnet *__ifp = (_ifp);				\
377		atomic_add_64(&(__ifp)->if_alignerrs, 1);		\
378		if (((_m)->m_flags & M_PKTHDR) &&			\
379		    (_m)->m_pkthdr.pkt_hdr != NULL)			\
380			(_m)->m_pkthdr.pkt_hdr = NULL;			\
381		_n = m_defrag_offset(_m, max_linkhdr, M_NOWAIT);	\
382		if (_n == NULL) {					\
383			atomic_add_32(&ipstat.ips_toosmall, 1);		\
384			m_freem(_m);					\
385			(_m) = NULL;					\
386			_action;					\
387		} else {						\
388			VERIFY(_n != (_m));				\
389			(_m) = _n;					\
390		}							\
391	}								\
392} while (0)
393#endif /* !__i386__ && !__x86_64__ */
394
395/*
396 * GRE input handler function, settable via ip_gre_register_input() for PPTP.
397 */
398static gre_input_func_t gre_input_func;
399
400/*
401 * IP initialization: fill in IP protocol switch table.
402 * All protocols not implemented in kernel go to raw IP protocol handler.
403 */
404void
405ip_init(struct protosw *pp, struct domain *dp)
406{
407	static int ip_initialized = 0;
408	struct protosw *pr;
409	struct timeval tv;
410	int i;
411
412	domain_proto_mtx_lock_assert_held();
413	VERIFY((pp->pr_flags & (PR_INITIALIZED|PR_ATTACHED)) == PR_ATTACHED);
414
415	/* ipq_alloc() uses mbufs for IP fragment queue structures */
416	_CASSERT(sizeof (struct ipq) <= _MLEN);
417
418	/*
419	 * Some ioctls (e.g. SIOCAIFADDR) use ifaliasreq struct, which is
420	 * interchangeable with in_aliasreq; they must have the same size.
421	 */
422	_CASSERT(sizeof (struct ifaliasreq) == sizeof (struct in_aliasreq));
423
424	if (ip_initialized)
425		return;
426	ip_initialized = 1;
427
428	PE_parse_boot_argn("net.inet.ip.scopedroute",
429	    &ip_doscopedroute, sizeof (ip_doscopedroute));
430
431	in_ifaddr_init();
432
433	in_ifaddr_rwlock_grp_attr = lck_grp_attr_alloc_init();
434	in_ifaddr_rwlock_grp = lck_grp_alloc_init("in_ifaddr_rwlock",
435	    in_ifaddr_rwlock_grp_attr);
436	in_ifaddr_rwlock_attr = lck_attr_alloc_init();
437	lck_rw_init(in_ifaddr_rwlock, in_ifaddr_rwlock_grp,
438	    in_ifaddr_rwlock_attr);
439
440	TAILQ_INIT(&in_ifaddrhead);
441	in_ifaddrhashtbl_init();
442
443	ip_moptions_init();
444
445	pr = pffindproto_locked(PF_INET, IPPROTO_RAW, SOCK_RAW);
446	if (pr == NULL) {
447		panic("%s: Unable to find [PF_INET,IPPROTO_RAW,SOCK_RAW]\n",
448		    __func__);
449		/* NOTREACHED */
450	}
451
452	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
453	for (i = 0; i < IPPROTO_MAX; i++)
454		ip_protox[i] = pr;
455	/*
456	 * Cycle through IP protocols and put them into the appropriate place
457	 * in ip_protox[], skipping protocols IPPROTO_{IP,RAW}.
458	 */
459	VERIFY(dp == inetdomain && dp->dom_family == PF_INET);
460	TAILQ_FOREACH(pr, &dp->dom_protosw, pr_entry) {
461		VERIFY(pr->pr_domain == dp);
462		if (pr->pr_protocol != 0 && pr->pr_protocol != IPPROTO_RAW) {
463			/* Be careful to only index valid IP protocols. */
464			if (pr->pr_protocol < IPPROTO_MAX)
465				ip_protox[pr->pr_protocol] = pr;
466		}
467	}
468
469	/* IP fragment reassembly queue lock */
470	ipqlock_grp_attr  = lck_grp_attr_alloc_init();
471	ipqlock_grp = lck_grp_alloc_init("ipqlock", ipqlock_grp_attr);
472	ipqlock_attr = lck_attr_alloc_init();
473	lck_mtx_init(&ipqlock, ipqlock_grp, ipqlock_attr);
474
475	lck_mtx_lock(&ipqlock);
476	/* Initialize IP reassembly queue. */
477	for (i = 0; i < IPREASS_NHASH; i++)
478		TAILQ_INIT(&ipq[i]);
479
480	maxnipq = nmbclusters / 32;
481	maxfragsperpacket = 128; /* enough for 64k in 512 byte fragments */
482	ipq_updateparams();
483	lck_mtx_unlock(&ipqlock);
484
485	getmicrotime(&tv);
486	ip_id = RandomULong() ^ tv.tv_usec;
487	ip_initid();
488
489	ipf_init();
490
491#if IPSEC
492	sadb_stat_mutex_grp_attr = lck_grp_attr_alloc_init();
493	sadb_stat_mutex_grp = lck_grp_alloc_init("sadb_stat",
494	    sadb_stat_mutex_grp_attr);
495	sadb_stat_mutex_attr = lck_attr_alloc_init();
496	lck_mtx_init(sadb_stat_mutex, sadb_stat_mutex_grp,
497	    sadb_stat_mutex_attr);
498
499#endif
500	arp_init();
501}
502
503/*
504 * Initialize IPv4 source address hash table.
505 */
506static void
507in_ifaddrhashtbl_init(void)
508{
509	int i, k, p;
510
511	if (in_ifaddrhashtbl != NULL)
512		return;
513
514	PE_parse_boot_argn("inaddr_nhash", &inaddr_nhash,
515	    sizeof (inaddr_nhash));
516	if (inaddr_nhash == 0)
517		inaddr_nhash = INADDR_NHASH;
518
519	MALLOC(in_ifaddrhashtbl, struct in_ifaddrhashhead *,
520	    inaddr_nhash * sizeof (*in_ifaddrhashtbl),
521	    M_IFADDR, M_WAITOK | M_ZERO);
522	if (in_ifaddrhashtbl == NULL)
523		panic("in_ifaddrhashtbl_init allocation failed");
524
525	/*
526	 * Generate the next largest prime greater than inaddr_nhash.
527	 */
528	k = (inaddr_nhash % 2 == 0) ? inaddr_nhash + 1 : inaddr_nhash + 2;
529	for (;;) {
530		p = 1;
531		for (i = 3; i * i <= k; i += 2) {
532			if (k % i == 0)
533				p = 0;
534		}
535		if (p == 1)
536			break;
537		k += 2;
538	}
539	inaddr_hashp = k;
540}
541
542u_int32_t
543inaddr_hashval(u_int32_t key)
544{
545	/*
546	 * The hash index is the computed prime times the key modulo
547	 * the hash size, as documented in "Introduction to Algorithms"
548	 * (Cormen, Leiserson, Rivest).
549	 */
550	if (inaddr_nhash > 1)
551		return ((key * inaddr_hashp) % inaddr_nhash);
552	else
553		return (0);
554}
555
556void
557ip_proto_dispatch_in_wrapper(struct mbuf *m, int hlen, u_int8_t proto)
558{
559	ip_proto_dispatch_in(m, hlen, proto, 0);
560}
561
562__private_extern__ void
563ip_proto_dispatch_in(struct mbuf *m, int hlen, u_int8_t proto,
564    ipfilter_t inject_ipfref)
565{
566	struct ipfilter *filter;
567	int seen = (inject_ipfref == NULL);
568	int	changed_header = 0;
569	struct ip *ip;
570	void (*pr_input)(struct mbuf *, int len);
571
572	if (!TAILQ_EMPTY(&ipv4_filters)) {
573		ipf_ref();
574		TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) {
575			if (seen == 0) {
576				if ((struct ipfilter *)inject_ipfref == filter)
577					seen = 1;
578			} else if (filter->ipf_filter.ipf_input) {
579				errno_t result;
580
581				if (changed_header == 0) {
582					/*
583					 * Perform IP header alignment fixup,
584					 * if needed, before passing packet
585					 * into filter(s).
586					 */
587					IP_HDR_ALIGNMENT_FIXUP(m,
588					    m->m_pkthdr.rcvif, ipf_unref());
589
590					/* ipf_unref() already called */
591					if (m == NULL)
592						return;
593
594					changed_header = 1;
595					ip = mtod(m, struct ip *);
596					ip->ip_len = htons(ip->ip_len + hlen);
597					ip->ip_off = htons(ip->ip_off);
598					ip->ip_sum = 0;
599					ip->ip_sum = ip_cksum_hdr_in(m, hlen);
600				}
601				result = filter->ipf_filter.ipf_input(
602				    filter->ipf_filter.cookie, (mbuf_t *)&m,
603				    hlen, proto);
604				if (result == EJUSTRETURN) {
605					ipf_unref();
606					return;
607				}
608				if (result != 0) {
609					ipf_unref();
610					m_freem(m);
611					return;
612				}
613			}
614		}
615		ipf_unref();
616	}
617
618	/* Perform IP header alignment fixup (post-filters), if needed */
619	IP_HDR_ALIGNMENT_FIXUP(m, m->m_pkthdr.rcvif, return);
620
621	/*
622	 * If there isn't a specific lock for the protocol
623	 * we're about to call, use the generic lock for AF_INET.
624	 * otherwise let the protocol deal with its own locking
625	 */
626	ip = mtod(m, struct ip *);
627
628	if (changed_header) {
629		ip->ip_len = ntohs(ip->ip_len) - hlen;
630		ip->ip_off = ntohs(ip->ip_off);
631	}
632
633	if ((pr_input = ip_protox[ip->ip_p]->pr_input) == NULL) {
634		m_freem(m);
635	} else if (!(ip_protox[ip->ip_p]->pr_flags & PR_PROTOLOCK)) {
636		lck_mtx_lock(inet_domain_mutex);
637		pr_input(m, hlen);
638		lck_mtx_unlock(inet_domain_mutex);
639	} else {
640		pr_input(m, hlen);
641	}
642}
643
644/*
645 * Ip input routine.  Checksum and byte swap header.  If fragmented
646 * try to reassemble.  Process options.  Pass to next level.
647 */
648void
649ip_input(struct mbuf *m)
650{
651	struct ip *ip;
652	struct in_ifaddr *ia = NULL;
653	unsigned int hlen, checkif;
654	u_short sum = 0;
655	struct in_addr pkt_dst;
656#if IPFIREWALL
657	int i;
658	u_int32_t div_info = 0;		/* packet divert/tee info */
659#endif
660#if IPFIREWALL || DUMMYNET
661	struct ip_fw_args args;
662	struct m_tag	*tag;
663#endif
664	ipfilter_t inject_filter_ref = NULL;
665	struct ifnet *inifp;
666
667	/* Check if the mbuf is still valid after interface filter processing */
668	MBUF_INPUT_CHECK(m, m->m_pkthdr.rcvif);
669	inifp = m->m_pkthdr.rcvif;
670	VERIFY(inifp != NULL);
671
672	/* Perform IP header alignment fixup, if needed */
673	IP_HDR_ALIGNMENT_FIXUP(m, inifp, goto bad);
674
675	m->m_pkthdr.pkt_flags &= ~PKTF_FORWARDED;
676
677#if IPFIREWALL || DUMMYNET
678	bzero(&args, sizeof (struct ip_fw_args));
679
680	/*
681	 * Don't bother searching for tag(s) if there's none.
682	 */
683	if (SLIST_EMPTY(&m->m_pkthdr.tags))
684		goto ipfw_tags_done;
685
686	/* Grab info from mtags prepended to the chain */
687#if DUMMYNET
688	if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
689	    KERNEL_TAG_TYPE_DUMMYNET, NULL)) != NULL) {
690		struct dn_pkt_tag *dn_tag;
691
692		dn_tag = (struct dn_pkt_tag *)(tag+1);
693		args.fwa_ipfw_rule = dn_tag->dn_ipfw_rule;
694		args.fwa_pf_rule = dn_tag->dn_pf_rule;
695
696		m_tag_delete(m, tag);
697	}
698#endif /* DUMMYNET */
699
700#if IPDIVERT
701	if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
702	    KERNEL_TAG_TYPE_DIVERT, NULL)) != NULL) {
703		struct divert_tag *div_tag;
704
705		div_tag = (struct divert_tag *)(tag+1);
706		args.fwa_divert_rule = div_tag->cookie;
707
708		m_tag_delete(m, tag);
709	}
710#endif
711
712	if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
713	    KERNEL_TAG_TYPE_IPFORWARD, NULL)) != NULL) {
714		struct ip_fwd_tag *ipfwd_tag;
715
716		ipfwd_tag = (struct ip_fwd_tag *)(tag+1);
717		args.fwa_next_hop = ipfwd_tag->next_hop;
718
719		m_tag_delete(m, tag);
720	}
721
722#if	DIAGNOSTIC
723	if (m == NULL || !(m->m_flags & M_PKTHDR))
724		panic("ip_input no HDR");
725#endif
726
727#if DUMMYNET
728	if (args.fwa_ipfw_rule || args.fwa_pf_rule) {
729		/* dummynet already filtered us */
730		ip = mtod(m, struct ip *);
731		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
732		inject_filter_ref = ipf_get_inject_filter(m);
733#if IPFIREWALL
734		if (args.fwa_ipfw_rule)
735			goto iphack;
736#endif /* IPFIREWALL */
737		if (args.fwa_pf_rule)
738			goto check_with_pf;
739	}
740#endif /* DUMMYNET */
741ipfw_tags_done:
742#endif /* IPFIREWALL || DUMMYNET */
743
744	/*
745	 * No need to process packet twice if we've already seen it.
746	 */
747	if (!SLIST_EMPTY(&m->m_pkthdr.tags))
748		inject_filter_ref = ipf_get_inject_filter(m);
749	if (inject_filter_ref != NULL) {
750		ip = mtod(m, struct ip *);
751		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
752
753		DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
754		    struct ip *, ip, struct ifnet *, inifp,
755		    struct ip *, ip, struct ip6_hdr *, NULL);
756
757		ip->ip_len = ntohs(ip->ip_len) - hlen;
758		ip->ip_off = ntohs(ip->ip_off);
759		ip_proto_dispatch_in(m, hlen, ip->ip_p, inject_filter_ref);
760		return;
761	}
762
763	OSAddAtomic(1, &ipstat.ips_total);
764	if (m->m_pkthdr.len < sizeof (struct ip))
765		goto tooshort;
766
767	if (m->m_len < sizeof (struct ip) &&
768	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
769		OSAddAtomic(1, &ipstat.ips_toosmall);
770		return;
771	}
772	ip = mtod(m, struct ip *);
773
774	KERNEL_DEBUG(DBG_LAYER_BEG, ip->ip_dst.s_addr, ip->ip_src.s_addr,
775	    ip->ip_p, ip->ip_off, ip->ip_len);
776
777	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
778		OSAddAtomic(1, &ipstat.ips_badvers);
779		goto bad;
780	}
781
782	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
783	if (hlen < sizeof (struct ip)) {	/* minimum header length */
784		OSAddAtomic(1, &ipstat.ips_badhlen);
785		goto bad;
786	}
787	if (hlen > m->m_len) {
788		if ((m = m_pullup(m, hlen)) == NULL) {
789			OSAddAtomic(1, &ipstat.ips_badhlen);
790			return;
791		}
792		ip = mtod(m, struct ip *);
793	}
794
795	/* 127/8 must not appear on wire - RFC1122 */
796	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
797	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
798		/*
799		 * Allow for the following exceptions:
800		 *
801		 *   1. If the packet was sent to loopback (i.e. rcvif
802		 *	would have been set earlier at output time.)
803		 *
804		 *   2. If the packet was sent out on loopback from a local
805		 *	source address which belongs to a non-loopback
806		 *	interface (i.e. rcvif may not necessarily be a
807		 *	loopback interface, hence the test for PKTF_LOOP.)
808		 *	Unlike IPv6, there is no interface scope ID, and
809		 *	therefore we don't care so much about PKTF_IFINFO.
810		 */
811		if (!(inifp->if_flags & IFF_LOOPBACK) &&
812		    !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
813			OSAddAtomic(1, &ipstat.ips_badaddr);
814			goto bad;
815		}
816	}
817
818	/* IPv4 Link-Local Addresses as defined in RFC3927 */
819	if ((IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)) ||
820	    IN_LINKLOCAL(ntohl(ip->ip_src.s_addr)))) {
821		ip_linklocal_stat.iplls_in_total++;
822		if (ip->ip_ttl != MAXTTL) {
823			OSAddAtomic(1, &ip_linklocal_stat.iplls_in_badttl);
824			/* Silently drop link local traffic with bad TTL */
825			if (!ip_linklocal_in_allowbadttl)
826				goto bad;
827		}
828	}
829
830	sum = ip_cksum(m, hlen);
831	if (sum) {
832		goto bad;
833	}
834
835	DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
836	    struct ip *, ip, struct ifnet *, inifp,
837	    struct ip *, ip, struct ip6_hdr *, NULL);
838
839	/*
840	 * Naively assume we can attribute inbound data to the route we would
841	 * use to send to this destination. Asymetric routing breaks this
842	 * assumption, but it still allows us to account for traffic from
843	 * a remote node in the routing table.
844	 * this has a very significant performance impact so we bypass
845	 * if nstat_collect is disabled. We may also bypass if the
846	 * protocol is tcp in the future because tcp will have a route that
847	 * we can use to attribute the data to. That does mean we would not
848	 * account for forwarded tcp traffic.
849	 */
850	if (nstat_collect) {
851		struct rtentry *rt =
852		    ifnet_cached_rtlookup_inet(inifp, ip->ip_src);
853		if (rt != NULL) {
854			nstat_route_rx(rt, 1, m->m_pkthdr.len, 0);
855			rtfree(rt);
856		}
857	}
858
859	/*
860	 * Convert fields to host representation.
861	 */
862#if BYTE_ORDER != BIG_ENDIAN
863	NTOHS(ip->ip_len);
864#endif
865
866	if (ip->ip_len < hlen) {
867		OSAddAtomic(1, &ipstat.ips_badlen);
868		goto bad;
869	}
870
871#if BYTE_ORDER != BIG_ENDIAN
872	NTOHS(ip->ip_off);
873#endif
874	/*
875	 * Check that the amount of data in the buffers
876	 * is as at least much as the IP header would have us expect.
877	 * Trim mbufs if longer than we expect.
878	 * Drop packet if shorter than we expect.
879	 */
880	if (m->m_pkthdr.len < ip->ip_len) {
881tooshort:
882		OSAddAtomic(1, &ipstat.ips_tooshort);
883		goto bad;
884	}
885	if (m->m_pkthdr.len > ip->ip_len) {
886		/*
887		 * Invalidate hardware checksum info if ip_adj_clear_hwcksum
888		 * is set; useful to handle buggy drivers.  Note that this
889		 * should not be enabled by default, as we may get here due
890		 * to link-layer padding.
891		 */
892		if (ip_adj_clear_hwcksum &&
893		    (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
894		    !(inifp->if_flags & IFF_LOOPBACK) &&
895		    !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
896			m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
897			m->m_pkthdr.csum_data = 0;
898			ipstat.ips_adj_hwcsum_clr++;
899		}
900
901		ipstat.ips_adj++;
902		if (m->m_len == m->m_pkthdr.len) {
903			m->m_len = ip->ip_len;
904			m->m_pkthdr.len = ip->ip_len;
905		} else
906			m_adj(m, ip->ip_len - m->m_pkthdr.len);
907	}
908
909	/* for consistency */
910	m->m_pkthdr.pkt_proto = ip->ip_p;
911
912#if DUMMYNET
913check_with_pf:
914#endif
915#if PF
916	/* Invoke inbound packet filter */
917	if (PF_IS_ENABLED) {
918		int error;
919#if DUMMYNET
920		error = pf_af_hook(inifp, NULL, &m, AF_INET, TRUE, &args);
921#else
922		error = pf_af_hook(inifp, NULL, &m, AF_INET, TRUE, NULL);
923#endif /* DUMMYNET */
924		if (error != 0 || m == NULL) {
925			if (m != NULL) {
926				panic("%s: unexpected packet %p\n",
927				    __func__, m);
928				/* NOTREACHED */
929			}
930			/* Already freed by callee */
931			return;
932		}
933		ip = mtod(m, struct ip *);
934		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
935	}
936#endif /* PF */
937
938#if IPSEC
939	if (ipsec_bypass == 0 && ipsec_gethist(m, NULL))
940		goto pass;
941#endif
942
943#if IPFIREWALL
944#if DUMMYNET
945iphack:
946#endif /* DUMMYNET */
947	/*
948	 * Check if we want to allow this packet to be processed.
949	 * Consider it to be bad if not.
950	 */
951	if (fw_enable && IPFW_LOADED) {
952#if IPFIREWALL_FORWARD
953		/*
954		 * If we've been forwarded from the output side, then
955		 * skip the firewall a second time
956		 */
957		if (args.fwa_next_hop)
958			goto ours;
959#endif	/* IPFIREWALL_FORWARD */
960
961		args.fwa_m = m;
962
963		i = ip_fw_chk_ptr(&args);
964		m = args.fwa_m;
965
966		if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
967			if (m)
968				m_freem(m);
969			return;
970		}
971		ip = mtod(m, struct ip *); /* just in case m changed */
972
973		if (i == 0 && args.fwa_next_hop == NULL) { /* common case */
974			goto pass;
975		}
976#if DUMMYNET
977		if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
978			/* Send packet to the appropriate pipe */
979			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args,
980			    DN_CLIENT_IPFW);
981			return;
982		}
983#endif /* DUMMYNET */
984#if IPDIVERT
985		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
986			/* Divert or tee packet */
987			div_info = i;
988			goto ours;
989		}
990#endif
991#if IPFIREWALL_FORWARD
992		if (i == 0 && args.fwa_next_hop != NULL) {
993			goto pass;
994		}
995#endif
996		/*
997		 * if we get here, the packet must be dropped
998		 */
999		m_freem(m);
1000		return;
1001	}
1002#endif /* IPFIREWALL */
1003#if IPSEC | IPFIREWALL
1004pass:
1005#endif
1006	/*
1007	 * Process options and, if not destined for us,
1008	 * ship it on.  ip_dooptions returns 1 when an
1009	 * error was detected (causing an icmp message
1010	 * to be sent and the original packet to be freed).
1011	 */
1012	ip_nhops = 0;		/* for source routed packets */
1013#if IPFIREWALL
1014	if (hlen > sizeof (struct ip) &&
1015	    ip_dooptions(m, 0, args.fwa_next_hop)) {
1016#else /* !IPFIREWALL */
1017	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, NULL)) {
1018#endif /* !IPFIREWALL */
1019		return;
1020	}
1021
1022#if MROUTING
1023	/*
1024	 * greedy RSVP, snatches any PATH packet of the RSVP protocol and no
1025	 * matter if it is destined to another node, or whether it is
1026	 * a multicast one, RSVP wants it! and prevents it from being forwarded
1027	 * anywhere else. Also checks if the rsvp daemon is running before
1028	 * grabbing the packet.
1029	 */
1030	if (rsvp_on && ip->ip_p == IPPROTO_RSVP) {
1031		ip_setdstifaddr_info(m, inifp->if_index, NULL);
1032		goto ours;
1033	}
1034#endif /* MROUTING */
1035
1036	/*
1037	 * Check our list of addresses, to see if the packet is for us.
1038	 * If we don't have any addresses, assume any unicast packet
1039	 * we receive might be for us (and let the upper layers deal
1040	 * with it).
1041	 */
1042	if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST|M_BCAST))) {
1043		ip_setdstifaddr_info(m, inifp->if_index, NULL);
1044		goto ours;
1045	}
1046
1047	/*
1048	 * Cache the destination address of the packet; this may be
1049	 * changed by use of 'ipfw fwd'.
1050	 */
1051#if IPFIREWALL
1052	pkt_dst = args.fwa_next_hop == NULL ?
1053	    ip->ip_dst : args.fwa_next_hop->sin_addr;
1054#else /* !IPFIREWALL */
1055	pkt_dst = ip->ip_dst;
1056#endif /* !IPFIREWALL */
1057
1058	/*
1059	 * Enable a consistency check between the destination address
1060	 * and the arrival interface for a unicast packet (the RFC 1122
1061	 * strong ES model) if IP forwarding is disabled and the packet
1062	 * is not locally generated and the packet is not subject to
1063	 * 'ipfw fwd'.
1064	 *
1065	 * XXX - Checking also should be disabled if the destination
1066	 * address is ipnat'ed to a different interface.
1067	 *
1068	 * XXX - Checking is incompatible with IP aliases added
1069	 * to the loopback interface instead of the interface where
1070	 * the packets are received.
1071	 */
1072	checkif = ip_checkinterface && (ipforwarding == 0) &&
1073	    !(inifp->if_flags & IFF_LOOPBACK) &&
1074	    !(m->m_pkthdr.pkt_flags & PKTF_LOOP)
1075#if IPFIREWALL
1076	    && (args.fwa_next_hop == NULL);
1077#else /* !IPFIREWALL */
1078		;
1079#endif /* !IPFIREWALL */
1080
1081	/*
1082	 * Check for exact addresses in the hash bucket.
1083	 */
1084	lck_rw_lock_shared(in_ifaddr_rwlock);
1085	TAILQ_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
1086		/*
1087		 * If the address matches, verify that the packet
1088		 * arrived via the correct interface if checking is
1089		 * enabled.
1090		 */
1091		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
1092		    (!checkif || ia->ia_ifp == inifp)) {
1093			ip_setdstifaddr_info(m, 0, ia);
1094			lck_rw_done(in_ifaddr_rwlock);
1095			goto ours;
1096		}
1097	}
1098	lck_rw_done(in_ifaddr_rwlock);
1099
1100	/*
1101	 * Check for broadcast addresses.
1102	 *
1103	 * Only accept broadcast packets that arrive via the matching
1104	 * interface.  Reception of forwarded directed broadcasts would be
1105	 * handled via ip_forward() and ether_frameout() with the loopback
1106	 * into the stack for SIMPLEX interfaces handled by ether_frameout().
1107	 */
1108	if (inifp->if_flags & IFF_BROADCAST) {
1109		struct ifaddr *ifa;
1110
1111		ifnet_lock_shared(inifp);
1112		TAILQ_FOREACH(ifa, &inifp->if_addrhead, ifa_link) {
1113			if (ifa->ifa_addr->sa_family != AF_INET) {
1114				continue;
1115			}
1116			ia = ifatoia(ifa);
1117			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
1118			    pkt_dst.s_addr || ia->ia_netbroadcast.s_addr ==
1119			    pkt_dst.s_addr) {
1120				ip_setdstifaddr_info(m, 0, ia);
1121				ifnet_lock_done(inifp);
1122				goto ours;
1123			}
1124		}
1125		ifnet_lock_done(inifp);
1126	}
1127
1128	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
1129		struct in_multi *inm;
1130#if MROUTING
1131		if (ip_mrouter) {
1132			/*
1133			 * If we are acting as a multicast router, all
1134			 * incoming multicast packets are passed to the
1135			 * kernel-level multicast forwarding function.
1136			 * The packet is returned (relatively) intact; if
1137			 * ip_mforward() returns a non-zero value, the packet
1138			 * must be discarded, else it may be accepted below.
1139			 */
1140			if (ip_mforward && ip_mforward(ip, inifp, m, 0) != 0) {
1141				OSAddAtomic(1, &ipstat.ips_cantforward);
1142				m_freem(m);
1143				return;
1144			}
1145
1146			/*
1147			 * The process-level routing daemon needs to receive
1148			 * all multicast IGMP packets, whether or not this
1149			 * host belongs to their destination groups.
1150			 */
1151			if (ip->ip_p == IPPROTO_IGMP) {
1152				ip_setdstifaddr_info(m, inifp->if_index, NULL);
1153				goto ours;
1154			}
1155			OSAddAtomic(1, &ipstat.ips_forward);
1156		}
1157#endif /* MROUTING */
1158		/*
1159		 * See if we belong to the destination multicast group on the
1160		 * arrival interface.
1161		 */
1162		in_multihead_lock_shared();
1163		IN_LOOKUP_MULTI(&ip->ip_dst, inifp, inm);
1164		in_multihead_lock_done();
1165		if (inm == NULL) {
1166			OSAddAtomic(1, &ipstat.ips_notmember);
1167			m_freem(m);
1168			return;
1169		}
1170		ip_setdstifaddr_info(m, inifp->if_index, NULL);
1171		INM_REMREF(inm);
1172		goto ours;
1173	}
1174	if (ip->ip_dst.s_addr == (u_int32_t)INADDR_BROADCAST ||
1175	    ip->ip_dst.s_addr == INADDR_ANY) {
1176		ip_setdstifaddr_info(m, inifp->if_index, NULL);
1177		goto ours;
1178	}
1179
1180	/* Allow DHCP/BootP responses through */
1181	if ((inifp->if_eflags & IFEF_AUTOCONFIGURING) &&
1182	    hlen == sizeof (struct ip) && ip->ip_p == IPPROTO_UDP) {
1183		struct udpiphdr *ui;
1184
1185		if (m->m_len < sizeof (struct udpiphdr) &&
1186		    (m = m_pullup(m, sizeof (struct udpiphdr))) == NULL) {
1187			OSAddAtomic(1, &udpstat.udps_hdrops);
1188			return;
1189		}
1190		ui = mtod(m, struct udpiphdr *);
1191		if (ntohs(ui->ui_dport) == IPPORT_BOOTPC) {
1192			ip_setdstifaddr_info(m, inifp->if_index, NULL);
1193			goto ours;
1194		}
1195		ip = mtod(m, struct ip *); /* in case it changed */
1196	}
1197
1198	/*
1199	 * Not for us; forward if possible and desirable.
1200	 */
1201	if (ipforwarding == 0) {
1202		OSAddAtomic(1, &ipstat.ips_cantforward);
1203		m_freem(m);
1204	} else {
1205#if IPFIREWALL
1206		ip_forward(m, 0, args.fwa_next_hop);
1207#else
1208		ip_forward(m, 0, NULL);
1209#endif
1210	}
1211	return;
1212
1213ours:
1214	/*
1215	 * If offset or IP_MF are set, must reassemble.
1216	 */
1217	if (ip->ip_off & ~(IP_DF | IP_RF)) {
1218		/*
1219		 * ip_reass() will return a different mbuf, and update
1220		 * the divert info in div_info and args.fwa_divert_rule.
1221		 */
1222#if IPDIVERT
1223		m = ip_reass(m, (u_int16_t *)&div_info, &args.fwa_divert_rule);
1224#else
1225		m = ip_reass(m);
1226#endif
1227		if (m == NULL)
1228			return;
1229		ip = mtod(m, struct ip *);
1230		/* Get the header length of the reassembled packet */
1231		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1232#if IPDIVERT
1233		/* Restore original checksum before diverting packet */
1234		if (div_info != 0) {
1235#if BYTE_ORDER != BIG_ENDIAN
1236			HTONS(ip->ip_len);
1237			HTONS(ip->ip_off);
1238#endif
1239			ip->ip_sum = 0;
1240			ip->ip_sum = ip_cksum_hdr_in(m, hlen);
1241#if BYTE_ORDER != BIG_ENDIAN
1242			NTOHS(ip->ip_off);
1243			NTOHS(ip->ip_len);
1244#endif
1245		}
1246#endif
1247	}
1248
1249	/*
1250	 * Further protocols expect the packet length to be w/o the
1251	 * IP header.
1252	 */
1253	ip->ip_len -= hlen;
1254
1255#if IPDIVERT
1256	/*
1257	 * Divert or tee packet to the divert protocol if required.
1258	 *
1259	 * If div_info is zero then cookie should be too, so we shouldn't
1260	 * need to clear them here.  Assume divert_packet() does so also.
1261	 */
1262	if (div_info != 0) {
1263		struct mbuf *clone = NULL;
1264
1265		/* Clone packet if we're doing a 'tee' */
1266		if (div_info & IP_FW_PORT_TEE_FLAG)
1267			clone = m_dup(m, M_DONTWAIT);
1268
1269		/* Restore packet header fields to original values */
1270		ip->ip_len += hlen;
1271
1272#if BYTE_ORDER != BIG_ENDIAN
1273		HTONS(ip->ip_len);
1274		HTONS(ip->ip_off);
1275#endif
1276		/* Deliver packet to divert input routine */
1277		OSAddAtomic(1, &ipstat.ips_delivered);
1278		divert_packet(m, 1, div_info & 0xffff, args.fwa_divert_rule);
1279
1280		/* If 'tee', continue with original packet */
1281		if (clone == NULL) {
1282			return;
1283		}
1284		m = clone;
1285		ip = mtod(m, struct ip *);
1286	}
1287#endif
1288
1289#if IPSEC
1290	/*
1291	 * enforce IPsec policy checking if we are seeing last header.
1292	 * note that we do not visit this with protocols with pcb layer
1293	 * code - like udp/tcp/raw ip.
1294	 */
1295	if (ipsec_bypass == 0 && (ip_protox[ip->ip_p]->pr_flags & PR_LASTHDR)) {
1296		if (ipsec4_in_reject(m, NULL)) {
1297			IPSEC_STAT_INCREMENT(ipsecstat.in_polvio);
1298			goto bad;
1299		}
1300	}
1301#endif /* IPSEC */
1302
1303	/*
1304	 * Switch out to protocol's input routine.
1305	 */
1306	OSAddAtomic(1, &ipstat.ips_delivered);
1307
1308#if IPFIREWALL
1309	if (args.fwa_next_hop && ip->ip_p == IPPROTO_TCP) {
1310		/* TCP needs IPFORWARD info if available */
1311		struct m_tag *fwd_tag;
1312		struct ip_fwd_tag *ipfwd_tag;
1313
1314		fwd_tag = m_tag_create(KERNEL_MODULE_TAG_ID,
1315		    KERNEL_TAG_TYPE_IPFORWARD, sizeof (*ipfwd_tag),
1316		    M_NOWAIT, m);
1317		if (fwd_tag == NULL)
1318			goto bad;
1319
1320		ipfwd_tag = (struct ip_fwd_tag *)(fwd_tag+1);
1321		ipfwd_tag->next_hop = args.fwa_next_hop;
1322
1323		m_tag_prepend(m, fwd_tag);
1324
1325		KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr,
1326		    ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len);
1327
1328		/* TCP deals with its own locking */
1329		ip_proto_dispatch_in(m, hlen, ip->ip_p, 0);
1330	} else {
1331		KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr,
1332		    ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len);
1333
1334		if ((sw_lro) && (ip->ip_p == IPPROTO_TCP)) {
1335			m = tcp_lro(m, hlen);
1336			if (m == NULL)
1337				return;
1338		}
1339
1340		ip_proto_dispatch_in(m, hlen, ip->ip_p, 0);
1341	}
1342#else /* !IPFIREWALL */
1343	if ((sw_lro) && (ip->ip_p == IPPROTO_TCP)) {
1344		m = tcp_lro(m, hlen);
1345		if (m == NULL)
1346			return;
1347	}
1348	ip_proto_dispatch_in(m, hlen, ip->ip_p, 0);
1349#endif /* !IPFIREWALL */
1350	return;
1351
1352bad:
1353	KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
1354	m_freem(m);
1355}
1356
1357static void
1358ipq_updateparams(void)
1359{
1360	lck_mtx_assert(&ipqlock, LCK_MTX_ASSERT_OWNED);
1361	/*
1362	 * -1 for unlimited allocation.
1363	 */
1364	if (maxnipq < 0)
1365		ipq_limit = 0;
1366	/*
1367	 * Positive number for specific bound.
1368	 */
1369	if (maxnipq > 0)
1370		ipq_limit = maxnipq;
1371	/*
1372	 * Zero specifies no further fragment queue allocation -- set the
1373	 * bound very low, but rely on implementation elsewhere to actually
1374	 * prevent allocation and reclaim current queues.
1375	 */
1376	if (maxnipq == 0)
1377		ipq_limit = 1;
1378	/*
1379	 * Arm the purge timer if not already and if there's work to do
1380	 */
1381	frag_sched_timeout();
1382}
1383
1384static int
1385sysctl_maxnipq SYSCTL_HANDLER_ARGS
1386{
1387#pragma unused(arg1, arg2)
1388	int error, i;
1389
1390	lck_mtx_lock(&ipqlock);
1391	i = maxnipq;
1392	error = sysctl_handle_int(oidp, &i, 0, req);
1393	if (error || req->newptr == USER_ADDR_NULL)
1394		goto done;
1395	/* impose bounds */
1396	if (i < -1 || i > (nmbclusters / 4)) {
1397		error = EINVAL;
1398		goto done;
1399	}
1400	maxnipq = i;
1401	ipq_updateparams();
1402done:
1403	lck_mtx_unlock(&ipqlock);
1404	return (error);
1405}
1406
1407static int
1408sysctl_maxfragsperpacket SYSCTL_HANDLER_ARGS
1409{
1410#pragma unused(arg1, arg2)
1411	int error, i;
1412
1413	lck_mtx_lock(&ipqlock);
1414	i = maxfragsperpacket;
1415	error = sysctl_handle_int(oidp, &i, 0, req);
1416	if (error || req->newptr == USER_ADDR_NULL)
1417		goto done;
1418	maxfragsperpacket = i;
1419	ipq_updateparams();	/* see if we need to arm timer */
1420done:
1421	lck_mtx_unlock(&ipqlock);
1422	return (error);
1423}
1424
1425/*
1426 * Take incoming datagram fragment and try to reassemble it into
1427 * whole datagram.  If a chain for reassembly of this datagram already
1428 * exists, then it is given as fp; otherwise have to make a chain.
1429 *
1430 * When IPDIVERT enabled, keep additional state with each packet that
1431 * tells us if we need to divert or tee the packet we're building.
1432 *
1433 * The IP header is *NOT* adjusted out of iplen.
1434 */
1435static struct mbuf *
1436#if IPDIVERT
1437ip_reass(struct mbuf *m,
1438#ifdef IPDIVERT_44
1439    u_int32_t *divinfo,
1440#else /* IPDIVERT_44 */
1441    u_int16_t *divinfo,
1442#endif /* IPDIVERT_44 */
1443    u_int16_t *divcookie)
1444#else /* IPDIVERT */
1445ip_reass(struct mbuf *m)
1446#endif /* IPDIVERT */
1447{
1448	struct ip *ip;
1449	struct mbuf *p, *q, *nq, *t;
1450	struct ipq *fp = NULL;
1451	struct ipqhead *head;
1452	int i, hlen, next;
1453	u_int8_t ecn, ecn0;
1454	uint32_t csum, csum_flags;
1455	uint16_t hash;
1456	struct fq_head dfq;
1457
1458	MBUFQ_INIT(&dfq);	/* for deferred frees */
1459
1460	/* If maxnipq or maxfragsperpacket is 0, never accept fragments. */
1461	if (maxnipq == 0 || maxfragsperpacket == 0) {
1462		ipstat.ips_fragments++;
1463		ipstat.ips_fragdropped++;
1464		m_freem(m);
1465		if (nipq > 0) {
1466			lck_mtx_lock(&ipqlock);
1467			frag_sched_timeout();	/* purge stale fragments */
1468			lck_mtx_unlock(&ipqlock);
1469		}
1470		return (NULL);
1471	}
1472
1473	ip = mtod(m, struct ip *);
1474	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1475
1476	lck_mtx_lock(&ipqlock);
1477
1478	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
1479	head = &ipq[hash];
1480
1481	/*
1482	 * Look for queue of fragments
1483	 * of this datagram.
1484	 */
1485	TAILQ_FOREACH(fp, head, ipq_list) {
1486		if (ip->ip_id == fp->ipq_id &&
1487		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1488		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1489#if CONFIG_MACF_NET
1490		    mac_ipq_label_compare(m, fp) &&
1491#endif
1492		    ip->ip_p == fp->ipq_p)
1493			goto found;
1494	}
1495
1496	fp = NULL;
1497
1498	/*
1499	 * Attempt to trim the number of allocated fragment queues if it
1500	 * exceeds the administrative limit.
1501	 */
1502	if ((nipq > (unsigned)maxnipq) && (maxnipq > 0)) {
1503		/*
1504		 * drop something from the tail of the current queue
1505		 * before proceeding further
1506		 */
1507		struct ipq *fq = TAILQ_LAST(head, ipqhead);
1508		if (fq == NULL) {   /* gak */
1509			for (i = 0; i < IPREASS_NHASH; i++) {
1510				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
1511				if (r) {
1512					ipstat.ips_fragtimeout += r->ipq_nfrags;
1513					frag_freef(&ipq[i], r);
1514					break;
1515				}
1516			}
1517		} else {
1518			ipstat.ips_fragtimeout += fq->ipq_nfrags;
1519			frag_freef(head, fq);
1520		}
1521	}
1522
1523found:
1524	/*
1525	 * Leverage partial checksum offload for IP fragments.  Narrow down
1526	 * the scope to cover only UDP without IP options, as that is the
1527	 * most common case.
1528	 *
1529	 * Perform 1's complement adjustment of octets that got included/
1530	 * excluded in the hardware-calculated checksum value.  Ignore cases
1531	 * where the value includes or excludes the IP header span, as the
1532	 * sum for those octets would already be 0xffff and thus no-op.
1533	 */
1534	if (ip->ip_p == IPPROTO_UDP && hlen == sizeof (struct ip) &&
1535	    (m->m_pkthdr.csum_flags &
1536	    (CSUM_DATA_VALID | CSUM_PARTIAL | CSUM_PSEUDO_HDR)) ==
1537	    (CSUM_DATA_VALID | CSUM_PARTIAL)) {
1538		uint32_t start;
1539
1540		start = m->m_pkthdr.csum_rx_start;
1541		csum = m->m_pkthdr.csum_rx_val;
1542
1543		if (start != 0 && start != hlen) {
1544#if BYTE_ORDER != BIG_ENDIAN
1545			if (start < hlen) {
1546				HTONS(ip->ip_len);
1547				HTONS(ip->ip_off);
1548			}
1549#endif
1550			/* callee folds in sum */
1551			csum = m_adj_sum16(m, start, hlen, csum);
1552#if BYTE_ORDER != BIG_ENDIAN
1553			if (start < hlen) {
1554				NTOHS(ip->ip_off);
1555				NTOHS(ip->ip_len);
1556			}
1557#endif
1558		}
1559		csum_flags = m->m_pkthdr.csum_flags;
1560	} else {
1561		csum = 0;
1562		csum_flags = 0;
1563	}
1564
1565	/* Invalidate checksum */
1566	m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
1567
1568	ipstat.ips_fragments++;
1569
1570	/*
1571	 * Adjust ip_len to not reflect header,
1572	 * convert offset of this to bytes.
1573	 */
1574	ip->ip_len -= hlen;
1575	if (ip->ip_off & IP_MF) {
1576		/*
1577		 * Make sure that fragments have a data length
1578		 * that's a non-zero multiple of 8 bytes.
1579		 */
1580		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1581			OSAddAtomic(1, &ipstat.ips_toosmall);
1582			/*
1583			 * Reassembly queue may have been found if previous
1584			 * fragments were valid; given that this one is bad,
1585			 * we need to drop it.  Make sure to set fp to NULL
1586			 * if not already, since we don't want to decrement
1587			 * ipq_nfrags as it doesn't include this packet.
1588			 */
1589			fp = NULL;
1590			goto dropfrag;
1591		}
1592		m->m_flags |= M_FRAG;
1593	} else {
1594		/* Clear the flag in case packet comes from loopback */
1595		m->m_flags &= ~M_FRAG;
1596	}
1597	ip->ip_off <<= 3;
1598
1599	m->m_pkthdr.pkt_hdr = ip;
1600
1601	/* Previous ip_reass() started here. */
1602	/*
1603	 * Presence of header sizes in mbufs
1604	 * would confuse code below.
1605	 */
1606	m->m_data += hlen;
1607	m->m_len -= hlen;
1608
1609	/*
1610	 * If first fragment to arrive, create a reassembly queue.
1611	 */
1612	if (fp == NULL) {
1613		fp = ipq_alloc(M_DONTWAIT);
1614		if (fp == NULL)
1615			goto dropfrag;
1616#if CONFIG_MACF_NET
1617		if (mac_ipq_label_init(fp, M_NOWAIT) != 0) {
1618			ipq_free(fp);
1619			fp = NULL;
1620			goto dropfrag;
1621		}
1622		mac_ipq_label_associate(m, fp);
1623#endif
1624		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1625		nipq++;
1626		fp->ipq_nfrags = 1;
1627		fp->ipq_ttl = IPFRAGTTL;
1628		fp->ipq_p = ip->ip_p;
1629		fp->ipq_id = ip->ip_id;
1630		fp->ipq_src = ip->ip_src;
1631		fp->ipq_dst = ip->ip_dst;
1632		fp->ipq_frags = m;
1633		m->m_nextpkt = NULL;
1634		/*
1635		 * If the first fragment has valid checksum offload
1636		 * info, the rest of fragments are eligible as well.
1637		 */
1638		if (csum_flags != 0) {
1639			fp->ipq_csum = csum;
1640			fp->ipq_csum_flags = csum_flags;
1641		}
1642#if IPDIVERT
1643		/*
1644		 * Transfer firewall instructions to the fragment structure.
1645		 * Only trust info in the fragment at offset 0.
1646		 */
1647		if (ip->ip_off == 0) {
1648#ifdef IPDIVERT_44
1649			fp->ipq_div_info = *divinfo;
1650#else
1651			fp->ipq_divert = *divinfo;
1652#endif
1653			fp->ipq_div_cookie = *divcookie;
1654		}
1655		*divinfo = 0;
1656		*divcookie = 0;
1657#endif /* IPDIVERT */
1658		m = NULL;	/* nothing to return */
1659		goto done;
1660	} else {
1661		fp->ipq_nfrags++;
1662#if CONFIG_MACF_NET
1663		mac_ipq_label_update(m, fp);
1664#endif
1665	}
1666
1667#define	GETIP(m)	((struct ip *)((m)->m_pkthdr.pkt_hdr))
1668
1669	/*
1670	 * Handle ECN by comparing this segment with the first one;
1671	 * if CE is set, do not lose CE.
1672	 * drop if CE and not-ECT are mixed for the same packet.
1673	 */
1674	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1675	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1676	if (ecn == IPTOS_ECN_CE) {
1677		if (ecn0 == IPTOS_ECN_NOTECT)
1678			goto dropfrag;
1679		if (ecn0 != IPTOS_ECN_CE)
1680			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1681	}
1682	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1683		goto dropfrag;
1684
1685	/*
1686	 * Find a segment which begins after this one does.
1687	 */
1688	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1689		if (GETIP(q)->ip_off > ip->ip_off)
1690			break;
1691
1692	/*
1693	 * If there is a preceding segment, it may provide some of
1694	 * our data already.  If so, drop the data from the incoming
1695	 * segment.  If it provides all of our data, drop us, otherwise
1696	 * stick new segment in the proper place.
1697	 *
1698	 * If some of the data is dropped from the preceding
1699	 * segment, then it's checksum is invalidated.
1700	 */
1701	if (p) {
1702		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1703		if (i > 0) {
1704			if (i >= ip->ip_len)
1705				goto dropfrag;
1706			m_adj(m, i);
1707			fp->ipq_csum_flags = 0;
1708			ip->ip_off += i;
1709			ip->ip_len -= i;
1710		}
1711		m->m_nextpkt = p->m_nextpkt;
1712		p->m_nextpkt = m;
1713	} else {
1714		m->m_nextpkt = fp->ipq_frags;
1715		fp->ipq_frags = m;
1716	}
1717
1718	/*
1719	 * While we overlap succeeding segments trim them or,
1720	 * if they are completely covered, dequeue them.
1721	 */
1722	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1723	    q = nq) {
1724		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1725		if (i < GETIP(q)->ip_len) {
1726			GETIP(q)->ip_len -= i;
1727			GETIP(q)->ip_off += i;
1728			m_adj(q, i);
1729			fp->ipq_csum_flags = 0;
1730			break;
1731		}
1732		nq = q->m_nextpkt;
1733		m->m_nextpkt = nq;
1734		ipstat.ips_fragdropped++;
1735		fp->ipq_nfrags--;
1736		/* defer freeing until after lock is dropped */
1737		MBUFQ_ENQUEUE(&dfq, q);
1738	}
1739
1740	/*
1741	 * If this fragment contains similar checksum offload info
1742	 * as that of the existing ones, accumulate checksum.  Otherwise,
1743	 * invalidate checksum offload info for the entire datagram.
1744	 */
1745	if (csum_flags != 0 && csum_flags == fp->ipq_csum_flags)
1746		fp->ipq_csum += csum;
1747	else if (fp->ipq_csum_flags != 0)
1748		fp->ipq_csum_flags = 0;
1749
1750#if IPDIVERT
1751	/*
1752	 * Transfer firewall instructions to the fragment structure.
1753	 * Only trust info in the fragment at offset 0.
1754	 */
1755	if (ip->ip_off == 0) {
1756#ifdef IPDIVERT_44
1757		fp->ipq_div_info = *divinfo;
1758#else
1759		fp->ipq_divert = *divinfo;
1760#endif
1761		fp->ipq_div_cookie = *divcookie;
1762	}
1763	*divinfo = 0;
1764	*divcookie = 0;
1765#endif /* IPDIVERT */
1766
1767	/*
1768	 * Check for complete reassembly and perform frag per packet
1769	 * limiting.
1770	 *
1771	 * Frag limiting is performed here so that the nth frag has
1772	 * a chance to complete the packet before we drop the packet.
1773	 * As a result, n+1 frags are actually allowed per packet, but
1774	 * only n will ever be stored. (n = maxfragsperpacket.)
1775	 *
1776	 */
1777	next = 0;
1778	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1779		if (GETIP(q)->ip_off != next) {
1780			if (fp->ipq_nfrags > maxfragsperpacket) {
1781				ipstat.ips_fragdropped += fp->ipq_nfrags;
1782				frag_freef(head, fp);
1783			}
1784			m = NULL;	/* nothing to return */
1785			goto done;
1786		}
1787		next += GETIP(q)->ip_len;
1788	}
1789	/* Make sure the last packet didn't have the IP_MF flag */
1790	if (p->m_flags & M_FRAG) {
1791		if (fp->ipq_nfrags > maxfragsperpacket) {
1792			ipstat.ips_fragdropped += fp->ipq_nfrags;
1793			frag_freef(head, fp);
1794		}
1795		m = NULL;		/* nothing to return */
1796		goto done;
1797	}
1798
1799	/*
1800	 * Reassembly is complete.  Make sure the packet is a sane size.
1801	 */
1802	q = fp->ipq_frags;
1803	ip = GETIP(q);
1804	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1805		ipstat.ips_toolong++;
1806		ipstat.ips_fragdropped += fp->ipq_nfrags;
1807		frag_freef(head, fp);
1808		m = NULL;		/* nothing to return */
1809		goto done;
1810	}
1811
1812	/*
1813	 * Concatenate fragments.
1814	 */
1815	m = q;
1816	t = m->m_next;
1817	m->m_next = NULL;
1818	m_cat(m, t);
1819	nq = q->m_nextpkt;
1820	q->m_nextpkt = NULL;
1821	for (q = nq; q != NULL; q = nq) {
1822		nq = q->m_nextpkt;
1823		q->m_nextpkt = NULL;
1824		m_cat(m, q);
1825	}
1826
1827	/*
1828	 * Store partial hardware checksum info from the fragment queue;
1829	 * the receive start offset is set to 20 bytes (see code at the
1830	 * top of this routine.)
1831	 */
1832	if (fp->ipq_csum_flags != 0) {
1833		csum = fp->ipq_csum;
1834
1835		ADDCARRY(csum);
1836
1837		m->m_pkthdr.csum_rx_val = csum;
1838		m->m_pkthdr.csum_rx_start = sizeof (struct ip);
1839		m->m_pkthdr.csum_flags = fp->ipq_csum_flags;
1840	} else if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) ||
1841	    (m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
1842		/* loopback checksums are always OK */
1843		m->m_pkthdr.csum_data = 0xffff;
1844		m->m_pkthdr.csum_flags &= ~CSUM_PARTIAL;
1845		m->m_pkthdr.csum_flags =
1846		    CSUM_DATA_VALID | CSUM_PSEUDO_HDR |
1847		    CSUM_IP_CHECKED | CSUM_IP_VALID;
1848	}
1849
1850#if IPDIVERT
1851	/*
1852	 * Extract firewall instructions from the fragment structure.
1853	 */
1854#ifdef IPDIVERT_44
1855	*divinfo = fp->ipq_div_info;
1856#else
1857	*divinfo = fp->ipq_divert;
1858#endif
1859	*divcookie = fp->ipq_div_cookie;
1860#endif /* IPDIVERT */
1861
1862#if CONFIG_MACF_NET
1863	mac_mbuf_label_associate_ipq(fp, m);
1864	mac_ipq_label_destroy(fp);
1865#endif
1866	/*
1867	 * Create header for new ip packet by modifying header of first
1868	 * packet; dequeue and discard fragment reassembly header.
1869	 * Make header visible.
1870	 */
1871	ip->ip_len = (IP_VHL_HL(ip->ip_vhl) << 2) + next;
1872	ip->ip_src = fp->ipq_src;
1873	ip->ip_dst = fp->ipq_dst;
1874
1875	fp->ipq_frags = NULL;	/* return to caller as 'm' */
1876	frag_freef(head, fp);
1877	fp = NULL;
1878
1879	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1880	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1881	/* some debugging cruft by sklower, below, will go away soon */
1882	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1883		m_fixhdr(m);
1884	ipstat.ips_reassembled++;
1885
1886	/* arm the purge timer if not already and if there's work to do */
1887	frag_sched_timeout();
1888	lck_mtx_unlock(&ipqlock);
1889	/* perform deferred free (if needed) now that lock is dropped */
1890	if (!MBUFQ_EMPTY(&dfq))
1891		MBUFQ_DRAIN(&dfq);
1892	VERIFY(MBUFQ_EMPTY(&dfq));
1893	return (m);
1894
1895done:
1896	VERIFY(m == NULL);
1897	/* arm the purge timer if not already and if there's work to do */
1898	frag_sched_timeout();
1899	lck_mtx_unlock(&ipqlock);
1900	/* perform deferred free (if needed) */
1901	if (!MBUFQ_EMPTY(&dfq))
1902		MBUFQ_DRAIN(&dfq);
1903	VERIFY(MBUFQ_EMPTY(&dfq));
1904	return (NULL);
1905
1906dropfrag:
1907#if IPDIVERT
1908	*divinfo = 0;
1909	*divcookie = 0;
1910#endif /* IPDIVERT */
1911	ipstat.ips_fragdropped++;
1912	if (fp != NULL)
1913		fp->ipq_nfrags--;
1914	/* arm the purge timer if not already and if there's work to do */
1915	frag_sched_timeout();
1916	lck_mtx_unlock(&ipqlock);
1917	m_freem(m);
1918	/* perform deferred free (if needed) */
1919	if (!MBUFQ_EMPTY(&dfq))
1920		MBUFQ_DRAIN(&dfq);
1921	VERIFY(MBUFQ_EMPTY(&dfq));
1922	return (NULL);
1923#undef GETIP
1924}
1925
1926/*
1927 * Free a fragment reassembly header and all
1928 * associated datagrams.
1929 */
1930static void
1931frag_freef(struct ipqhead *fhp, struct ipq *fp)
1932{
1933	lck_mtx_assert(&ipqlock, LCK_MTX_ASSERT_OWNED);
1934
1935	fp->ipq_nfrags = 0;
1936	if (fp->ipq_frags != NULL) {
1937		m_freem_list(fp->ipq_frags);
1938		fp->ipq_frags = NULL;
1939	}
1940	TAILQ_REMOVE(fhp, fp, ipq_list);
1941	nipq--;
1942	ipq_free(fp);
1943}
1944
1945/*
1946 * IP reassembly timer processing
1947 */
1948static void
1949frag_timeout(void *arg)
1950{
1951#pragma unused(arg)
1952	struct ipq *fp;
1953	int i;
1954
1955	/*
1956	 * Update coarse-grained networking timestamp (in sec.); the idea
1957	 * is to piggy-back on the timeout callout to update the counter
1958	 * returnable via net_uptime().
1959	 */
1960	net_update_uptime();
1961
1962	lck_mtx_lock(&ipqlock);
1963	for (i = 0; i < IPREASS_NHASH; i++) {
1964		for (fp = TAILQ_FIRST(&ipq[i]); fp; ) {
1965			struct ipq *fpp;
1966
1967			fpp = fp;
1968			fp = TAILQ_NEXT(fp, ipq_list);
1969			if (--fpp->ipq_ttl == 0) {
1970				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1971				frag_freef(&ipq[i], fpp);
1972			}
1973		}
1974	}
1975	/*
1976	 * If we are over the maximum number of fragments
1977	 * (due to the limit being lowered), drain off
1978	 * enough to get down to the new limit.
1979	 */
1980	if (maxnipq >= 0 && nipq > (unsigned)maxnipq) {
1981		for (i = 0; i < IPREASS_NHASH; i++) {
1982			while (nipq > (unsigned)maxnipq &&
1983			    !TAILQ_EMPTY(&ipq[i])) {
1984				ipstat.ips_fragdropped +=
1985				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1986				frag_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1987			}
1988		}
1989	}
1990	/* re-arm the purge timer if there's work to do */
1991	frag_timeout_run = 0;
1992	frag_sched_timeout();
1993	lck_mtx_unlock(&ipqlock);
1994}
1995
1996static void
1997frag_sched_timeout(void)
1998{
1999	lck_mtx_assert(&ipqlock, LCK_MTX_ASSERT_OWNED);
2000
2001	if (!frag_timeout_run && nipq > 0) {
2002		frag_timeout_run = 1;
2003		timeout(frag_timeout, NULL, hz);
2004	}
2005}
2006
2007/*
2008 * Drain off all datagram fragments.
2009 */
2010static void
2011frag_drain(void)
2012{
2013	int i;
2014
2015	lck_mtx_lock(&ipqlock);
2016	for (i = 0; i < IPREASS_NHASH; i++) {
2017		while (!TAILQ_EMPTY(&ipq[i])) {
2018			ipstat.ips_fragdropped +=
2019			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
2020			frag_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
2021		}
2022	}
2023	lck_mtx_unlock(&ipqlock);
2024}
2025
2026static struct ipq *
2027ipq_alloc(int how)
2028{
2029	struct mbuf *t;
2030	struct ipq *fp;
2031
2032	/*
2033	 * See comments in ipq_updateparams().  Keep the count separate
2034	 * from nipq since the latter represents the elements already
2035	 * in the reassembly queues.
2036	 */
2037	if (ipq_limit > 0 && ipq_count > ipq_limit)
2038		return (NULL);
2039
2040	t = m_get(how, MT_FTABLE);
2041	if (t != NULL) {
2042		atomic_add_32(&ipq_count, 1);
2043		fp = mtod(t, struct ipq *);
2044		bzero(fp, sizeof (*fp));
2045	} else {
2046		fp = NULL;
2047	}
2048	return (fp);
2049}
2050
2051static void
2052ipq_free(struct ipq *fp)
2053{
2054	(void) m_free(dtom(fp));
2055	atomic_add_32(&ipq_count, -1);
2056}
2057
2058/*
2059 * Drain callback
2060 */
2061void
2062ip_drain(void)
2063{
2064	frag_drain();		/* fragments */
2065	in_rtqdrain();		/* protocol cloned routes */
2066	in_arpdrain(NULL);	/* cloned routes: ARP */
2067}
2068
2069/*
2070 * Do option processing on a datagram,
2071 * possibly discarding it if bad options are encountered,
2072 * or forwarding it if source-routed.
2073 * The pass argument is used when operating in the IPSTEALTH
2074 * mode to tell what options to process:
2075 * [LS]SRR (pass 0) or the others (pass 1).
2076 * The reason for as many as two passes is that when doing IPSTEALTH,
2077 * non-routing options should be processed only if the packet is for us.
2078 * Returns 1 if packet has been forwarded/freed,
2079 * 0 if the packet should be processed further.
2080 */
2081static int
2082ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
2083{
2084#pragma unused(pass)
2085	struct ip *ip = mtod(m, struct ip *);
2086	u_char *cp;
2087	struct ip_timestamp *ipt;
2088	struct in_ifaddr *ia;
2089	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
2090	struct in_addr *sin, dst;
2091	n_time ntime;
2092	struct sockaddr_in ipaddr = {
2093	    sizeof (ipaddr), AF_INET, 0, { 0 }, { 0, } };
2094
2095	/* Expect 32-bit aligned data pointer on strict-align platforms */
2096	MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
2097
2098	dst = ip->ip_dst;
2099	cp = (u_char *)(ip + 1);
2100	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
2101	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2102		opt = cp[IPOPT_OPTVAL];
2103		if (opt == IPOPT_EOL)
2104			break;
2105		if (opt == IPOPT_NOP)
2106			optlen = 1;
2107		else {
2108			if (cnt < IPOPT_OLEN + sizeof (*cp)) {
2109				code = &cp[IPOPT_OLEN] - (u_char *)ip;
2110				goto bad;
2111			}
2112			optlen = cp[IPOPT_OLEN];
2113			if (optlen < IPOPT_OLEN + sizeof (*cp) ||
2114			    optlen > cnt) {
2115				code = &cp[IPOPT_OLEN] - (u_char *)ip;
2116				goto bad;
2117			}
2118		}
2119		switch (opt) {
2120
2121		default:
2122			break;
2123
2124		/*
2125		 * Source routing with record.
2126		 * Find interface with current destination address.
2127		 * If none on this machine then drop if strictly routed,
2128		 * or do nothing if loosely routed.
2129		 * Record interface address and bring up next address
2130		 * component.  If strictly routed make sure next
2131		 * address is on directly accessible net.
2132		 */
2133		case IPOPT_LSRR:
2134		case IPOPT_SSRR:
2135			if (optlen < IPOPT_OFFSET + sizeof (*cp)) {
2136				code = &cp[IPOPT_OLEN] - (u_char *)ip;
2137				goto bad;
2138			}
2139			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
2140				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
2141				goto bad;
2142			}
2143			ipaddr.sin_addr = ip->ip_dst;
2144			ia = (struct in_ifaddr *)ifa_ifwithaddr(SA(&ipaddr));
2145			if (ia == NULL) {
2146				if (opt == IPOPT_SSRR) {
2147					type = ICMP_UNREACH;
2148					code = ICMP_UNREACH_SRCFAIL;
2149					goto bad;
2150				}
2151				if (!ip_dosourceroute)
2152					goto nosourcerouting;
2153				/*
2154				 * Loose routing, and not at next destination
2155				 * yet; nothing to do except forward.
2156				 */
2157				break;
2158			} else {
2159				IFA_REMREF(&ia->ia_ifa);
2160				ia = NULL;
2161			}
2162			off--;			/* 0 origin */
2163			if (off > optlen - (int)sizeof (struct in_addr)) {
2164				/*
2165				 * End of source route.  Should be for us.
2166				 */
2167				if (!ip_acceptsourceroute)
2168					goto nosourcerouting;
2169				save_rte(cp, ip->ip_src);
2170				break;
2171			}
2172
2173			if (!ip_dosourceroute) {
2174				if (ipforwarding) {
2175					char buf[MAX_IPv4_STR_LEN];
2176					char buf2[MAX_IPv4_STR_LEN];
2177					/*
2178					 * Acting as a router, so generate ICMP
2179					 */
2180nosourcerouting:
2181					log(LOG_WARNING,
2182					    "attempted source route from %s "
2183					    "to %s\n",
2184					    inet_ntop(AF_INET, &ip->ip_src,
2185					    buf, sizeof (buf)),
2186					    inet_ntop(AF_INET, &ip->ip_dst,
2187					    buf2, sizeof (buf2)));
2188					type = ICMP_UNREACH;
2189					code = ICMP_UNREACH_SRCFAIL;
2190					goto bad;
2191				} else {
2192					/*
2193					 * Not acting as a router,
2194					 * so silently drop.
2195					 */
2196					OSAddAtomic(1, &ipstat.ips_cantforward);
2197					m_freem(m);
2198					return (1);
2199				}
2200			}
2201
2202			/*
2203			 * locate outgoing interface
2204			 */
2205			(void) memcpy(&ipaddr.sin_addr, cp + off,
2206			    sizeof (ipaddr.sin_addr));
2207
2208			if (opt == IPOPT_SSRR) {
2209#define	INA	struct in_ifaddr *
2210				if ((ia = (INA)ifa_ifwithdstaddr(
2211				    SA(&ipaddr))) == NULL) {
2212					ia = (INA)ifa_ifwithnet(SA(&ipaddr));
2213				}
2214			} else {
2215				ia = ip_rtaddr(ipaddr.sin_addr);
2216			}
2217			if (ia == NULL) {
2218				type = ICMP_UNREACH;
2219				code = ICMP_UNREACH_SRCFAIL;
2220				goto bad;
2221			}
2222			ip->ip_dst = ipaddr.sin_addr;
2223			IFA_LOCK(&ia->ia_ifa);
2224			(void) memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
2225			    sizeof (struct in_addr));
2226			IFA_UNLOCK(&ia->ia_ifa);
2227			IFA_REMREF(&ia->ia_ifa);
2228			ia = NULL;
2229			cp[IPOPT_OFFSET] += sizeof (struct in_addr);
2230			/*
2231			 * Let ip_intr's mcast routing check handle mcast pkts
2232			 */
2233			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
2234			break;
2235
2236		case IPOPT_RR:
2237			if (optlen < IPOPT_OFFSET + sizeof (*cp)) {
2238				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
2239				goto bad;
2240			}
2241			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
2242				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
2243				goto bad;
2244			}
2245			/*
2246			 * If no space remains, ignore.
2247			 */
2248			off--;			/* 0 origin */
2249			if (off > optlen - (int)sizeof (struct in_addr))
2250				break;
2251			(void) memcpy(&ipaddr.sin_addr, &ip->ip_dst,
2252			    sizeof (ipaddr.sin_addr));
2253			/*
2254			 * locate outgoing interface; if we're the destination,
2255			 * use the incoming interface (should be same).
2256			 */
2257			if ((ia = (INA)ifa_ifwithaddr(SA(&ipaddr))) == NULL) {
2258				if ((ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
2259					type = ICMP_UNREACH;
2260					code = ICMP_UNREACH_HOST;
2261					goto bad;
2262				}
2263			}
2264			IFA_LOCK(&ia->ia_ifa);
2265			(void) memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
2266			    sizeof (struct in_addr));
2267			IFA_UNLOCK(&ia->ia_ifa);
2268			IFA_REMREF(&ia->ia_ifa);
2269			ia = NULL;
2270			cp[IPOPT_OFFSET] += sizeof (struct in_addr);
2271			break;
2272
2273		case IPOPT_TS:
2274			code = cp - (u_char *)ip;
2275			ipt = (struct ip_timestamp *)(void *)cp;
2276			if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
2277				code = (u_char *)&ipt->ipt_len - (u_char *)ip;
2278				goto bad;
2279			}
2280			if (ipt->ipt_ptr < 5) {
2281				code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
2282				goto bad;
2283			}
2284			if (ipt->ipt_ptr >
2285			    ipt->ipt_len - (int)sizeof (int32_t)) {
2286				if (++ipt->ipt_oflw == 0) {
2287					code = (u_char *)&ipt->ipt_ptr -
2288					    (u_char *)ip;
2289					goto bad;
2290				}
2291				break;
2292			}
2293			sin = (struct in_addr *)(void *)(cp + ipt->ipt_ptr - 1);
2294			switch (ipt->ipt_flg) {
2295
2296			case IPOPT_TS_TSONLY:
2297				break;
2298
2299			case IPOPT_TS_TSANDADDR:
2300				if (ipt->ipt_ptr - 1 + sizeof (n_time) +
2301				    sizeof (struct in_addr) > ipt->ipt_len) {
2302					code = (u_char *)&ipt->ipt_ptr -
2303					    (u_char *)ip;
2304					goto bad;
2305				}
2306				ipaddr.sin_addr = dst;
2307				ia = (INA)ifaof_ifpforaddr(SA(&ipaddr),
2308				    m->m_pkthdr.rcvif);
2309				if (ia == NULL)
2310					continue;
2311				IFA_LOCK(&ia->ia_ifa);
2312				(void) memcpy(sin, &IA_SIN(ia)->sin_addr,
2313				    sizeof (struct in_addr));
2314				IFA_UNLOCK(&ia->ia_ifa);
2315				ipt->ipt_ptr += sizeof (struct in_addr);
2316				IFA_REMREF(&ia->ia_ifa);
2317				ia = NULL;
2318				break;
2319
2320			case IPOPT_TS_PRESPEC:
2321				if (ipt->ipt_ptr - 1 + sizeof (n_time) +
2322				    sizeof (struct in_addr) > ipt->ipt_len) {
2323					code = (u_char *)&ipt->ipt_ptr -
2324					    (u_char *)ip;
2325					goto bad;
2326				}
2327				(void) memcpy(&ipaddr.sin_addr, sin,
2328				    sizeof (struct in_addr));
2329				if ((ia = (struct in_ifaddr *)ifa_ifwithaddr(
2330				    SA(&ipaddr))) == NULL)
2331					continue;
2332				IFA_REMREF(&ia->ia_ifa);
2333				ia = NULL;
2334				ipt->ipt_ptr += sizeof (struct in_addr);
2335				break;
2336
2337			default:
2338				/* XXX can't take &ipt->ipt_flg */
2339				code = (u_char *)&ipt->ipt_ptr -
2340				    (u_char *)ip + 1;
2341				goto bad;
2342			}
2343			ntime = iptime();
2344			(void) memcpy(cp + ipt->ipt_ptr - 1, &ntime,
2345			    sizeof (n_time));
2346			ipt->ipt_ptr += sizeof (n_time);
2347		}
2348	}
2349	if (forward && ipforwarding) {
2350		ip_forward(m, 1, next_hop);
2351		return (1);
2352	}
2353	return (0);
2354bad:
2355	/* XXX icmp_error adds in hdr length */
2356	ip->ip_len -= IP_VHL_HL(ip->ip_vhl) << 2;
2357	icmp_error(m, type, code, 0, 0);
2358	OSAddAtomic(1, &ipstat.ips_badoptions);
2359	return (1);
2360}
2361
2362/*
2363 * Check for the presence of the IP Router Alert option [RFC2113]
2364 * in the header of an IPv4 datagram.
2365 *
2366 * This call is not intended for use from the forwarding path; it is here
2367 * so that protocol domains may check for the presence of the option.
2368 * Given how FreeBSD's IPv4 stack is currently structured, the Router Alert
2369 * option does not have much relevance to the implementation, though this
2370 * may change in future.
2371 * Router alert options SHOULD be passed if running in IPSTEALTH mode and
2372 * we are not the endpoint.
2373 * Length checks on individual options should already have been peformed
2374 * by ip_dooptions() therefore they are folded under DIAGNOSTIC here.
2375 *
2376 * Return zero if not present or options are invalid, non-zero if present.
2377 */
2378int
2379ip_checkrouteralert(struct mbuf *m)
2380{
2381	struct ip *ip = mtod(m, struct ip *);
2382	u_char *cp;
2383	int opt, optlen, cnt, found_ra;
2384
2385	found_ra = 0;
2386	cp = (u_char *)(ip + 1);
2387	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
2388	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2389		opt = cp[IPOPT_OPTVAL];
2390		if (opt == IPOPT_EOL)
2391			break;
2392		if (opt == IPOPT_NOP)
2393			optlen = 1;
2394		else {
2395#ifdef DIAGNOSTIC
2396			if (cnt < IPOPT_OLEN + sizeof (*cp))
2397				break;
2398#endif
2399			optlen = cp[IPOPT_OLEN];
2400#ifdef DIAGNOSTIC
2401			if (optlen < IPOPT_OLEN + sizeof (*cp) || optlen > cnt)
2402				break;
2403#endif
2404		}
2405		switch (opt) {
2406		case IPOPT_RA:
2407#ifdef DIAGNOSTIC
2408			if (optlen != IPOPT_OFFSET + sizeof (uint16_t) ||
2409			    (*((uint16_t *)(void *)&cp[IPOPT_OFFSET]) != 0))
2410				break;
2411			else
2412#endif
2413				found_ra = 1;
2414			break;
2415		default:
2416			break;
2417		}
2418	}
2419
2420	return (found_ra);
2421}
2422
2423/*
2424 * Given address of next destination (final or next hop),
2425 * return internet address info of interface to be used to get there.
2426 */
2427struct in_ifaddr *
2428ip_rtaddr(struct in_addr dst)
2429{
2430	struct sockaddr_in *sin;
2431	struct ifaddr *rt_ifa;
2432	struct route ro;
2433
2434	bzero(&ro, sizeof (ro));
2435	sin = SIN(&ro.ro_dst);
2436	sin->sin_family = AF_INET;
2437	sin->sin_len = sizeof (*sin);
2438	sin->sin_addr = dst;
2439
2440	rtalloc_ign(&ro, RTF_PRCLONING);
2441	if (ro.ro_rt == NULL) {
2442		ROUTE_RELEASE(&ro);
2443		return (NULL);
2444	}
2445
2446	RT_LOCK(ro.ro_rt);
2447	if ((rt_ifa = ro.ro_rt->rt_ifa) != NULL)
2448		IFA_ADDREF(rt_ifa);
2449	RT_UNLOCK(ro.ro_rt);
2450	ROUTE_RELEASE(&ro);
2451
2452	return ((struct in_ifaddr *)rt_ifa);
2453}
2454
2455/*
2456 * Save incoming source route for use in replies,
2457 * to be picked up later by ip_srcroute if the receiver is interested.
2458 */
2459void
2460save_rte(u_char *option, struct in_addr dst)
2461{
2462	unsigned olen;
2463
2464	olen = option[IPOPT_OLEN];
2465#if DIAGNOSTIC
2466	if (ipprintfs)
2467		printf("save_rte: olen %d\n", olen);
2468#endif
2469	if (olen > sizeof (ip_srcrt) - (1 + sizeof (dst)))
2470		return;
2471	bcopy(option, ip_srcrt.srcopt, olen);
2472	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof (struct in_addr);
2473	ip_srcrt.dst = dst;
2474}
2475
2476/*
2477 * Retrieve incoming source route for use in replies,
2478 * in the same form used by setsockopt.
2479 * The first hop is placed before the options, will be removed later.
2480 */
2481struct mbuf *
2482ip_srcroute(void)
2483{
2484	struct in_addr *p, *q;
2485	struct mbuf *m;
2486
2487	if (ip_nhops == 0)
2488		return (NULL);
2489
2490	m = m_get(M_DONTWAIT, MT_HEADER);
2491	if (m == NULL)
2492		return (NULL);
2493
2494#define	OPTSIZ	(sizeof (ip_srcrt.nop) + sizeof (ip_srcrt.srcopt))
2495
2496	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
2497	m->m_len = ip_nhops * sizeof (struct in_addr) +
2498	    sizeof (struct in_addr) + OPTSIZ;
2499#if DIAGNOSTIC
2500	if (ipprintfs)
2501		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
2502#endif
2503
2504	/*
2505	 * First save first hop for return route
2506	 */
2507	p = &ip_srcrt.route[ip_nhops - 1];
2508	*(mtod(m, struct in_addr *)) = *p--;
2509#if DIAGNOSTIC
2510	if (ipprintfs)
2511		printf(" hops %lx",
2512		    (u_int32_t)ntohl(mtod(m, struct in_addr *)->s_addr));
2513#endif
2514
2515	/*
2516	 * Copy option fields and padding (nop) to mbuf.
2517	 */
2518	ip_srcrt.nop = IPOPT_NOP;
2519	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
2520	(void) memcpy(mtod(m, caddr_t) + sizeof (struct in_addr),
2521	    &ip_srcrt.nop, OPTSIZ);
2522	q = (struct in_addr *)(void *)(mtod(m, caddr_t) +
2523	    sizeof (struct in_addr) + OPTSIZ);
2524#undef OPTSIZ
2525	/*
2526	 * Record return path as an IP source route,
2527	 * reversing the path (pointers are now aligned).
2528	 */
2529	while (p >= ip_srcrt.route) {
2530#if DIAGNOSTIC
2531		if (ipprintfs)
2532			printf(" %lx", (u_int32_t)ntohl(q->s_addr));
2533#endif
2534		*q++ = *p--;
2535	}
2536	/*
2537	 * Last hop goes to final destination.
2538	 */
2539	*q = ip_srcrt.dst;
2540#if DIAGNOSTIC
2541	if (ipprintfs)
2542		printf(" %lx\n", (u_int32_t)ntohl(q->s_addr));
2543#endif
2544	return (m);
2545}
2546
2547/*
2548 * Strip out IP options, at higher
2549 * level protocol in the kernel.
2550 * Second argument is buffer to which options
2551 * will be moved, and return value is their length.
2552 * XXX should be deleted; last arg currently ignored.
2553 */
2554void
2555ip_stripoptions(struct mbuf *m, struct mbuf *mopt)
2556{
2557#pragma unused(mopt)
2558	int i;
2559	struct ip *ip = mtod(m, struct ip *);
2560	caddr_t opts;
2561	int olen;
2562
2563	/* Expect 32-bit aligned data pointer on strict-align platforms */
2564	MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
2565
2566	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
2567	opts = (caddr_t)(ip + 1);
2568	i = m->m_len - (sizeof (struct ip) + olen);
2569	bcopy(opts + olen, opts, (unsigned)i);
2570	m->m_len -= olen;
2571	if (m->m_flags & M_PKTHDR)
2572		m->m_pkthdr.len -= olen;
2573	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof (struct ip) >> 2);
2574}
2575
2576u_char inetctlerrmap[PRC_NCMDS] = {
2577	0,		0,		0,		0,
2578	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
2579	ENETUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
2580	EMSGSIZE,	EHOSTUNREACH,	0,		0,
2581	0,		0,		0,		0,
2582	ENOPROTOOPT,	ECONNREFUSED
2583};
2584
2585static int
2586sysctl_ipforwarding SYSCTL_HANDLER_ARGS
2587{
2588#pragma unused(arg1, arg2)
2589	int i, was_ipforwarding = ipforwarding;
2590
2591	i = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
2592	if (i != 0 || req->newptr == USER_ADDR_NULL)
2593		return (i);
2594
2595	if (was_ipforwarding && !ipforwarding) {
2596		/* clean up IPv4 forwarding cached routes */
2597		ifnet_head_lock_shared();
2598		for (i = 0; i <= if_index; i++) {
2599			struct ifnet *ifp = ifindex2ifnet[i];
2600			if (ifp != NULL) {
2601				lck_mtx_lock(&ifp->if_cached_route_lock);
2602				ROUTE_RELEASE(&ifp->if_fwd_route);
2603				bzero(&ifp->if_fwd_route,
2604				    sizeof (ifp->if_fwd_route));
2605				lck_mtx_unlock(&ifp->if_cached_route_lock);
2606			}
2607		}
2608		ifnet_head_done();
2609	}
2610
2611	return (0);
2612}
2613
2614/*
2615 * Similar to inp_route_{copyout,copyin} routines except that these copy
2616 * out the cached IPv4 forwarding route from struct ifnet instead of the
2617 * inpcb.  See comments for those routines for explanations.
2618 */
2619static void
2620ip_fwd_route_copyout(struct ifnet *ifp, struct route *dst)
2621{
2622	struct route *src = &ifp->if_fwd_route;
2623
2624	lck_mtx_lock_spin(&ifp->if_cached_route_lock);
2625	lck_mtx_convert_spin(&ifp->if_cached_route_lock);
2626
2627	/* Minor sanity check */
2628	if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET)
2629		panic("%s: wrong or corrupted route: %p", __func__, src);
2630
2631	route_copyout(dst, src, sizeof (*dst));
2632
2633	lck_mtx_unlock(&ifp->if_cached_route_lock);
2634}
2635
2636static void
2637ip_fwd_route_copyin(struct ifnet *ifp, struct route *src)
2638{
2639	struct route *dst = &ifp->if_fwd_route;
2640
2641	lck_mtx_lock_spin(&ifp->if_cached_route_lock);
2642	lck_mtx_convert_spin(&ifp->if_cached_route_lock);
2643
2644	/* Minor sanity check */
2645	if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET)
2646		panic("%s: wrong or corrupted route: %p", __func__, src);
2647
2648	if (ifp->if_fwd_cacheok)
2649		route_copyin(src, dst, sizeof (*src));
2650
2651	lck_mtx_unlock(&ifp->if_cached_route_lock);
2652}
2653
2654/*
2655 * Forward a packet.  If some error occurs return the sender
2656 * an icmp packet.  Note we can't always generate a meaningful
2657 * icmp message because icmp doesn't have a large enough repertoire
2658 * of codes and types.
2659 *
2660 * If not forwarding, just drop the packet.  This could be confusing
2661 * if ipforwarding was zero but some routing protocol was advancing
2662 * us as a gateway to somewhere.  However, we must let the routing
2663 * protocol deal with that.
2664 *
2665 * The srcrt parameter indicates whether the packet is being forwarded
2666 * via a source route.
2667 */
2668static void
2669ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
2670{
2671#if !IPFIREWALL
2672#pragma unused(next_hop)
2673#endif
2674	struct ip *ip = mtod(m, struct ip *);
2675	struct sockaddr_in *sin;
2676	struct rtentry *rt;
2677	struct route fwd_rt;
2678	int error, type = 0, code = 0;
2679	struct mbuf *mcopy;
2680	n_long dest;
2681	struct in_addr pkt_dst;
2682	u_int32_t nextmtu = 0, len;
2683	struct ip_out_args ipoa = { IFSCOPE_NONE, { 0 }, 0, 0 };
2684	struct ifnet *rcvifp = m->m_pkthdr.rcvif;
2685#if IPSEC
2686	struct secpolicy *sp = NULL;
2687	int ipsecerror;
2688#endif /* IPSEC */
2689#if PF
2690	struct pf_mtag *pf_mtag;
2691#endif /* PF */
2692
2693	dest = 0;
2694#if IPFIREWALL
2695	/*
2696	 * Cache the destination address of the packet; this may be
2697	 * changed by use of 'ipfw fwd'.
2698	 */
2699	pkt_dst = ((next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst);
2700#else /* !IPFIREWALL */
2701	pkt_dst = ip->ip_dst;
2702#endif /* !IPFIREWALL */
2703
2704#if DIAGNOSTIC
2705	if (ipprintfs)
2706		printf("forward: src %lx dst %lx ttl %x\n",
2707		    (u_int32_t)ip->ip_src.s_addr, (u_int32_t)pkt_dst.s_addr,
2708		    ip->ip_ttl);
2709#endif
2710
2711	if (m->m_flags & (M_BCAST|M_MCAST) || !in_canforward(pkt_dst)) {
2712		OSAddAtomic(1, &ipstat.ips_cantforward);
2713		m_freem(m);
2714		return;
2715	}
2716#if IPSTEALTH
2717	if (!ipstealth) {
2718#endif /* IPSTEALTH */
2719		if (ip->ip_ttl <= IPTTLDEC) {
2720			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
2721			    dest, 0);
2722			return;
2723		}
2724#if IPSTEALTH
2725	}
2726#endif /* IPSTEALTH */
2727
2728#if PF
2729	pf_mtag = pf_find_mtag(m);
2730	if (pf_mtag != NULL && pf_mtag->pftag_rtableid != IFSCOPE_NONE) {
2731		ipoa.ipoa_boundif = pf_mtag->pftag_rtableid;
2732		ipoa.ipoa_flags |= IPOAF_BOUND_IF;
2733	}
2734#endif /* PF */
2735
2736	ip_fwd_route_copyout(rcvifp, &fwd_rt);
2737
2738	sin = SIN(&fwd_rt.ro_dst);
2739	if (ROUTE_UNUSABLE(&fwd_rt) || pkt_dst.s_addr != sin->sin_addr.s_addr) {
2740		ROUTE_RELEASE(&fwd_rt);
2741
2742		sin->sin_family = AF_INET;
2743		sin->sin_len = sizeof (*sin);
2744		sin->sin_addr = pkt_dst;
2745
2746		rtalloc_scoped_ign(&fwd_rt, RTF_PRCLONING, ipoa.ipoa_boundif);
2747		if (fwd_rt.ro_rt == NULL) {
2748			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
2749			goto done;
2750		}
2751	}
2752	rt = fwd_rt.ro_rt;
2753
2754	/*
2755	 * Save the IP header and at most 8 bytes of the payload,
2756	 * in case we need to generate an ICMP message to the src.
2757	 *
2758	 * We don't use m_copy() because it might return a reference
2759	 * to a shared cluster. Both this function and ip_output()
2760	 * assume exclusive access to the IP header in `m', so any
2761	 * data in a cluster may change before we reach icmp_error().
2762	 */
2763	MGET(mcopy, M_DONTWAIT, m->m_type);
2764	if (mcopy != NULL) {
2765		M_COPY_PKTHDR(mcopy, m);
2766		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
2767		    (int)ip->ip_len);
2768		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
2769	}
2770
2771#if IPSTEALTH
2772	if (!ipstealth) {
2773#endif /* IPSTEALTH */
2774		ip->ip_ttl -= IPTTLDEC;
2775#if IPSTEALTH
2776	}
2777#endif /* IPSTEALTH */
2778
2779	/*
2780	 * If forwarding packet using same interface that it came in on,
2781	 * perhaps should send a redirect to sender to shortcut a hop.
2782	 * Only send redirect if source is sending directly to us,
2783	 * and if packet was not source routed (or has any options).
2784	 * Also, don't send redirect if forwarding using a default route
2785	 * or a route modified by a redirect.
2786	 */
2787	RT_LOCK_SPIN(rt);
2788	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
2789	    !(rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) &&
2790	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
2791	    ipsendredirects && !srcrt && rt->rt_ifa != NULL) {
2792		struct in_ifaddr *ia = (struct in_ifaddr *)rt->rt_ifa;
2793		u_int32_t src = ntohl(ip->ip_src.s_addr);
2794
2795		/* Become a regular mutex */
2796		RT_CONVERT_LOCK(rt);
2797		IFA_LOCK_SPIN(&ia->ia_ifa);
2798		if ((src & ia->ia_subnetmask) == ia->ia_subnet) {
2799			if (rt->rt_flags & RTF_GATEWAY)
2800				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
2801			else
2802				dest = pkt_dst.s_addr;
2803			/*
2804			 * Router requirements says to only send
2805			 * host redirects.
2806			 */
2807			type = ICMP_REDIRECT;
2808			code = ICMP_REDIRECT_HOST;
2809#if DIAGNOSTIC
2810			if (ipprintfs)
2811				printf("redirect (%d) to %lx\n", code,
2812				    (u_int32_t)dest);
2813#endif
2814		}
2815		IFA_UNLOCK(&ia->ia_ifa);
2816	}
2817	RT_UNLOCK(rt);
2818
2819#if IPFIREWALL
2820	if (next_hop != NULL) {
2821		/* Pass IPFORWARD info if available */
2822		struct m_tag *tag;
2823		struct ip_fwd_tag *ipfwd_tag;
2824
2825		tag = m_tag_create(KERNEL_MODULE_TAG_ID,
2826		    KERNEL_TAG_TYPE_IPFORWARD,
2827		    sizeof (*ipfwd_tag), M_NOWAIT, m);
2828		if (tag == NULL) {
2829			error = ENOBUFS;
2830			m_freem(m);
2831			goto done;
2832		}
2833
2834		ipfwd_tag = (struct ip_fwd_tag *)(tag+1);
2835		ipfwd_tag->next_hop = next_hop;
2836
2837		m_tag_prepend(m, tag);
2838	}
2839#endif /* IPFIREWALL */
2840
2841	/* Mark this packet as being forwarded from another interface */
2842	m->m_pkthdr.pkt_flags |= PKTF_FORWARDED;
2843	len = m_pktlen(m);
2844
2845	error = ip_output(m, NULL, &fwd_rt, IP_FORWARDING | IP_OUTARGS,
2846	    NULL, &ipoa);
2847
2848	/* Refresh rt since the route could have changed while in IP */
2849	rt = fwd_rt.ro_rt;
2850
2851	if (error != 0) {
2852		OSAddAtomic(1, &ipstat.ips_cantforward);
2853	} else {
2854		/*
2855		 * Increment stats on the source interface; the ones
2856		 * for destination interface has been taken care of
2857		 * during output above by virtue of PKTF_FORWARDED.
2858		 */
2859		rcvifp->if_fpackets++;
2860		rcvifp->if_fbytes += len;
2861
2862		OSAddAtomic(1, &ipstat.ips_forward);
2863		if (type != 0) {
2864			OSAddAtomic(1, &ipstat.ips_redirectsent);
2865		} else {
2866			if (mcopy != NULL) {
2867				/*
2868				 * If we didn't have to go thru ipflow and
2869				 * the packet was successfully consumed by
2870				 * ip_output, the mcopy is rather a waste;
2871				 * this could be further optimized.
2872				 */
2873				m_freem(mcopy);
2874			}
2875			goto done;
2876		}
2877	}
2878	if (mcopy == NULL)
2879		goto done;
2880
2881	switch (error) {
2882	case 0:				/* forwarded, but need redirect */
2883		/* type, code set above */
2884		break;
2885
2886	case ENETUNREACH:		/* shouldn't happen, checked above */
2887	case EHOSTUNREACH:
2888	case ENETDOWN:
2889	case EHOSTDOWN:
2890	default:
2891		type = ICMP_UNREACH;
2892		code = ICMP_UNREACH_HOST;
2893		break;
2894
2895	case EMSGSIZE:
2896		type = ICMP_UNREACH;
2897		code = ICMP_UNREACH_NEEDFRAG;
2898
2899		if (rt == NULL) {
2900			break;
2901		} else {
2902			RT_LOCK_SPIN(rt);
2903			if (rt->rt_ifp != NULL)
2904				nextmtu = rt->rt_ifp->if_mtu;
2905			RT_UNLOCK(rt);
2906		}
2907#ifdef IPSEC
2908		if (ipsec_bypass)
2909			break;
2910
2911		/*
2912		 * If the packet is routed over IPsec tunnel, tell the
2913		 * originator the tunnel MTU.
2914		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2915		 * XXX quickhack!!!
2916		 */
2917		sp = ipsec4_getpolicybyaddr(mcopy, IPSEC_DIR_OUTBOUND,
2918		    IP_FORWARDING, &ipsecerror);
2919
2920		if (sp == NULL)
2921			break;
2922
2923		/*
2924		 * find the correct route for outer IPv4
2925		 * header, compute tunnel MTU.
2926		 */
2927		nextmtu = 0;
2928
2929		if (sp->req != NULL &&
2930		    sp->req->saidx.mode == IPSEC_MODE_TUNNEL) {
2931			struct secasindex saidx;
2932			struct secasvar *sav;
2933			struct route *ro;
2934			struct ip *ipm;
2935			int ipsechdr;
2936
2937			/* count IPsec header size */
2938			ipsechdr = ipsec_hdrsiz(sp);
2939
2940			ipm = mtod(mcopy, struct ip *);
2941			bcopy(&sp->req->saidx, &saidx, sizeof (saidx));
2942			saidx.mode = sp->req->saidx.mode;
2943			saidx.reqid = sp->req->saidx.reqid;
2944			sin = SIN(&saidx.src);
2945			if (sin->sin_len == 0) {
2946				sin->sin_len = sizeof (*sin);
2947				sin->sin_family = AF_INET;
2948				sin->sin_port = IPSEC_PORT_ANY;
2949				bcopy(&ipm->ip_src, &sin->sin_addr,
2950				    sizeof (sin->sin_addr));
2951			}
2952			sin = SIN(&saidx.dst);
2953			if (sin->sin_len == 0) {
2954				sin->sin_len = sizeof (*sin);
2955				sin->sin_family = AF_INET;
2956				sin->sin_port = IPSEC_PORT_ANY;
2957				bcopy(&ipm->ip_dst, &sin->sin_addr,
2958				    sizeof (sin->sin_addr));
2959			}
2960			sav = key_allocsa_policy(&saidx);
2961			if (sav != NULL) {
2962				lck_mtx_lock(sadb_mutex);
2963				if (sav->sah != NULL) {
2964					ro = &sav->sah->sa_route;
2965					if (ro->ro_rt != NULL) {
2966						RT_LOCK(ro->ro_rt);
2967						if (ro->ro_rt->rt_ifp != NULL) {
2968							nextmtu = ro->ro_rt->
2969							    rt_ifp->if_mtu;
2970							nextmtu -= ipsechdr;
2971						}
2972						RT_UNLOCK(ro->ro_rt);
2973					}
2974				}
2975				key_freesav(sav, KEY_SADB_LOCKED);
2976				lck_mtx_unlock(sadb_mutex);
2977			}
2978		}
2979		key_freesp(sp, KEY_SADB_UNLOCKED);
2980#endif /* IPSEC */
2981		break;
2982
2983	case ENOBUFS:
2984		/*
2985		 * A router should not generate ICMP_SOURCEQUENCH as
2986		 * required in RFC1812 Requirements for IP Version 4 Routers.
2987		 * Source quench could be a big problem under DoS attacks,
2988		 * or if the underlying interface is rate-limited.
2989		 * Those who need source quench packets may re-enable them
2990		 * via the net.inet.ip.sendsourcequench sysctl.
2991		 */
2992		if (ip_sendsourcequench == 0) {
2993			m_freem(mcopy);
2994			goto done;
2995		} else {
2996			type = ICMP_SOURCEQUENCH;
2997			code = 0;
2998		}
2999		break;
3000
3001	case EACCES:			/* ipfw denied packet */
3002		m_freem(mcopy);
3003		goto done;
3004	}
3005
3006	if (type == ICMP_UNREACH && code == ICMP_UNREACH_NEEDFRAG)
3007		OSAddAtomic(1, &ipstat.ips_cantfrag);
3008
3009	icmp_error(mcopy, type, code, dest, nextmtu);
3010done:
3011	ip_fwd_route_copyin(rcvifp, &fwd_rt);
3012}
3013
3014int
3015ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
3016    struct mbuf *m)
3017{
3018	*mp = NULL;
3019	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
3020		struct timeval tv;
3021
3022		getmicrotime(&tv);
3023		mp = sbcreatecontrol_mbuf((caddr_t)&tv, sizeof (tv),
3024		    SCM_TIMESTAMP, SOL_SOCKET, mp);
3025		if (*mp == NULL) {
3026			goto no_mbufs;
3027		}
3028	}
3029	if (inp->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) {
3030		uint64_t time;
3031
3032		time = mach_absolute_time();
3033		mp = sbcreatecontrol_mbuf((caddr_t)&time, sizeof (time),
3034		    SCM_TIMESTAMP_MONOTONIC, SOL_SOCKET, mp);
3035		if (*mp == NULL) {
3036			goto no_mbufs;
3037		}
3038	}
3039	if (inp->inp_flags & INP_RECVDSTADDR) {
3040		mp = sbcreatecontrol_mbuf((caddr_t)&ip->ip_dst,
3041		    sizeof (struct in_addr), IP_RECVDSTADDR, IPPROTO_IP, mp);
3042		if (*mp == NULL) {
3043			goto no_mbufs;
3044		}
3045	}
3046#ifdef notyet
3047	/*
3048	 * XXX
3049	 * Moving these out of udp_input() made them even more broken
3050	 * than they already were.
3051	 */
3052	/* options were tossed already */
3053	if (inp->inp_flags & INP_RECVOPTS) {
3054		mp = sbcreatecontrol_mbuf((caddr_t)opts_deleted_above,
3055		    sizeof (struct in_addr), IP_RECVOPTS, IPPROTO_IP, mp);
3056		if (*mp == NULL) {
3057			goto no_mbufs;
3058		}
3059	}
3060	/* ip_srcroute doesn't do what we want here, need to fix */
3061	if (inp->inp_flags & INP_RECVRETOPTS) {
3062		mp = sbcreatecontrol_mbuf((caddr_t)ip_srcroute(),
3063		    sizeof (struct in_addr), IP_RECVRETOPTS, IPPROTO_IP, mp);
3064		if (*mp == NULL) {
3065			goto no_mbufs;
3066		}
3067	}
3068#endif /* notyet */
3069	if (inp->inp_flags & INP_RECVIF) {
3070		struct ifnet *ifp;
3071		uint8_t sdlbuf[SOCK_MAXADDRLEN + 1];
3072		struct sockaddr_dl *sdl2 = SDL(&sdlbuf);
3073
3074		/*
3075		 * Make sure to accomodate the largest possible
3076		 * size of SA(if_lladdr)->sa_len.
3077		 */
3078		_CASSERT(sizeof (sdlbuf) == (SOCK_MAXADDRLEN + 1));
3079
3080		ifnet_head_lock_shared();
3081		if ((ifp = m->m_pkthdr.rcvif) != NULL &&
3082		    ifp->if_index && (ifp->if_index <= if_index)) {
3083			struct ifaddr *ifa = ifnet_addrs[ifp->if_index - 1];
3084			struct sockaddr_dl *sdp;
3085
3086			if (!ifa || !ifa->ifa_addr)
3087				goto makedummy;
3088
3089			IFA_LOCK_SPIN(ifa);
3090			sdp = SDL(ifa->ifa_addr);
3091			/*
3092			 * Change our mind and don't try copy.
3093			 */
3094			if (sdp->sdl_family != AF_LINK) {
3095				IFA_UNLOCK(ifa);
3096				goto makedummy;
3097			}
3098			/* the above _CASSERT ensures sdl_len fits in sdlbuf */
3099			bcopy(sdp, sdl2, sdp->sdl_len);
3100			IFA_UNLOCK(ifa);
3101		} else {
3102makedummy:
3103			sdl2->sdl_len =
3104			    offsetof(struct sockaddr_dl, sdl_data[0]);
3105			sdl2->sdl_family = AF_LINK;
3106			sdl2->sdl_index = 0;
3107			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
3108		}
3109		ifnet_head_done();
3110		mp = sbcreatecontrol_mbuf((caddr_t)sdl2, sdl2->sdl_len,
3111		    IP_RECVIF, IPPROTO_IP, mp);
3112		if (*mp == NULL) {
3113			goto no_mbufs;
3114		}
3115	}
3116	if (inp->inp_flags & INP_RECVTTL) {
3117		mp = sbcreatecontrol_mbuf((caddr_t)&ip->ip_ttl,
3118		    sizeof (ip->ip_ttl), IP_RECVTTL, IPPROTO_IP, mp);
3119		if (*mp == NULL) {
3120			goto no_mbufs;
3121		}
3122	}
3123	if (inp->inp_socket->so_flags & SOF_RECV_TRAFFIC_CLASS) {
3124		int tc = m_get_traffic_class(m);
3125
3126		mp = sbcreatecontrol_mbuf((caddr_t)&tc, sizeof (tc),
3127		    SO_TRAFFIC_CLASS, SOL_SOCKET, mp);
3128		if (*mp == NULL) {
3129			goto no_mbufs;
3130		}
3131	}
3132	if (inp->inp_flags & INP_PKTINFO) {
3133		struct in_pktinfo pi;
3134
3135		bzero(&pi, sizeof (struct in_pktinfo));
3136		bcopy(&ip->ip_dst, &pi.ipi_addr, sizeof (struct in_addr));
3137		pi.ipi_ifindex = (m != NULL && m->m_pkthdr.rcvif != NULL) ?
3138		    m->m_pkthdr.rcvif->if_index : 0;
3139
3140		mp = sbcreatecontrol_mbuf((caddr_t)&pi,
3141		    sizeof (struct in_pktinfo), IP_RECVPKTINFO, IPPROTO_IP, mp);
3142		if (*mp == NULL) {
3143			goto no_mbufs;
3144		}
3145	}
3146	return (0);
3147
3148no_mbufs:
3149	ipstat.ips_pktdropcntrl++;
3150	return (ENOBUFS);
3151}
3152
3153#if MROUTING
3154int
3155ip_rsvp_init(struct socket *so)
3156{
3157	if (so->so_type != SOCK_RAW || SOCK_PROTO(so) != IPPROTO_RSVP)
3158		return (EOPNOTSUPP);
3159
3160	if (ip_rsvpd != NULL)
3161		return (EADDRINUSE);
3162
3163	ip_rsvpd = so;
3164	/*
3165	 * This may seem silly, but we need to be sure we don't over-increment
3166	 * the RSVP counter, in case something slips up.
3167	 */
3168	if (!ip_rsvp_on) {
3169		ip_rsvp_on = 1;
3170		rsvp_on++;
3171	}
3172
3173	return (0);
3174}
3175
3176int
3177ip_rsvp_done(void)
3178{
3179	ip_rsvpd = NULL;
3180	/*
3181	 * This may seem silly, but we need to be sure we don't over-decrement
3182	 * the RSVP counter, in case something slips up.
3183	 */
3184	if (ip_rsvp_on) {
3185		ip_rsvp_on = 0;
3186		rsvp_on--;
3187	}
3188	return (0);
3189}
3190#endif /* MROUTING */
3191
3192static inline u_short
3193ip_cksum(struct mbuf *m, int hlen)
3194{
3195	u_short sum;
3196
3197	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
3198		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
3199	} else if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
3200	    !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
3201		/*
3202		 * The packet arrived on an interface which isn't capable
3203		 * of performing IP header checksum; compute it now.
3204		 */
3205		sum = ip_cksum_hdr_in(m, hlen);
3206	} else {
3207		sum = 0;
3208		m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR |
3209		    CSUM_IP_CHECKED | CSUM_IP_VALID);
3210		m->m_pkthdr.csum_data = 0xffff;
3211	}
3212
3213	if (sum != 0)
3214		OSAddAtomic(1, &ipstat.ips_badsum);
3215
3216	return (sum);
3217}
3218
3219static int
3220ip_getstat SYSCTL_HANDLER_ARGS
3221{
3222#pragma unused(oidp, arg1, arg2)
3223	if (req->oldptr == USER_ADDR_NULL)
3224		req->oldlen = (size_t)sizeof (struct ipstat);
3225
3226	return (SYSCTL_OUT(req, &ipstat, MIN(sizeof (ipstat), req->oldlen)));
3227}
3228
3229void
3230ip_setsrcifaddr_info(struct mbuf *m, uint32_t src_idx, struct in_ifaddr *ia)
3231{
3232	VERIFY(m->m_flags & M_PKTHDR);
3233
3234	/*
3235	 * If the source ifaddr is specified, pick up the information
3236	 * from there; otherwise just grab the passed-in ifindex as the
3237	 * caller may not have the ifaddr available.
3238	 */
3239	if (ia != NULL) {
3240		m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
3241		m->m_pkthdr.src_ifindex = ia->ia_ifp->if_index;
3242	} else {
3243		m->m_pkthdr.src_ifindex = src_idx;
3244		if (src_idx != 0)
3245			m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
3246	}
3247}
3248
3249void
3250ip_setdstifaddr_info(struct mbuf *m, uint32_t dst_idx, struct in_ifaddr *ia)
3251{
3252	VERIFY(m->m_flags & M_PKTHDR);
3253
3254	/*
3255	 * If the destination ifaddr is specified, pick up the information
3256	 * from there; otherwise just grab the passed-in ifindex as the
3257	 * caller may not have the ifaddr available.
3258	 */
3259	if (ia != NULL) {
3260		m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
3261		m->m_pkthdr.dst_ifindex = ia->ia_ifp->if_index;
3262	} else {
3263		m->m_pkthdr.dst_ifindex = dst_idx;
3264		if (dst_idx != 0)
3265			m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
3266	}
3267}
3268
3269int
3270ip_getsrcifaddr_info(struct mbuf *m, uint32_t *src_idx, uint32_t *iaf)
3271{
3272	VERIFY(m->m_flags & M_PKTHDR);
3273
3274	if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO))
3275		return (-1);
3276
3277	if (src_idx != NULL)
3278		*src_idx = m->m_pkthdr.src_ifindex;
3279
3280	if (iaf != NULL)
3281		*iaf = 0;
3282
3283	return (0);
3284}
3285
3286int
3287ip_getdstifaddr_info(struct mbuf *m, uint32_t *dst_idx, uint32_t *iaf)
3288{
3289	VERIFY(m->m_flags & M_PKTHDR);
3290
3291	if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO))
3292		return (-1);
3293
3294	if (dst_idx != NULL)
3295		*dst_idx = m->m_pkthdr.dst_ifindex;
3296
3297	if (iaf != NULL)
3298		*iaf = 0;
3299
3300	return (0);
3301}
3302
3303/*
3304 * Protocol input handler for IPPROTO_GRE.
3305 */
3306void
3307gre_input(struct mbuf *m, int off)
3308{
3309	gre_input_func_t fn = gre_input_func;
3310
3311	/*
3312	 * If there is a registered GRE input handler, pass mbuf to it.
3313	 */
3314	if (fn != NULL) {
3315		lck_mtx_unlock(inet_domain_mutex);
3316		m = fn(m, off, (mtod(m, struct ip *))->ip_p);
3317		lck_mtx_lock(inet_domain_mutex);
3318	}
3319
3320	/*
3321	 * If no matching tunnel that is up is found, we inject
3322	 * the mbuf to raw ip socket to see if anyone picks it up.
3323	 */
3324	if (m != NULL)
3325		rip_input(m, off);
3326}
3327
3328/*
3329 * Private KPI for PPP/PPTP.
3330 */
3331int
3332ip_gre_register_input(gre_input_func_t fn)
3333{
3334	lck_mtx_lock(inet_domain_mutex);
3335	gre_input_func = fn;
3336	lck_mtx_unlock(inet_domain_mutex);
3337
3338	return (0);
3339}
3340