1(*  Title:      ZF/Bin.thy
2    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
3    Copyright   1994  University of Cambridge
4
5   The sign Pls stands for an infinite string of leading 0's.
6   The sign Min stands for an infinite string of leading 1's.
7
8A number can have multiple representations, namely leading 0's with sign
9Pls and leading 1's with sign Min.  See twos-compl.ML/int_of_binary for
10the numerical interpretation.
11
12The representation expects that (m mod 2) is 0 or 1, even if m is negative;
13For instance, ~5 div 2 = ~3 and ~5 mod 2 = 1; thus ~5 = (~3)*2 + 1
14*)
15
16section\<open>Arithmetic on Binary Integers\<close>
17
18theory Bin
19imports Int Datatype
20begin
21
22consts  bin :: i
23datatype
24  "bin" = Pls
25        | Min
26        | Bit ("w \<in> bin", "b \<in> bool")     (infixl \<open>BIT\<close> 90)
27
28consts
29  integ_of  :: "i=>i"
30  NCons     :: "[i,i]=>i"
31  bin_succ  :: "i=>i"
32  bin_pred  :: "i=>i"
33  bin_minus :: "i=>i"
34  bin_adder :: "i=>i"
35  bin_mult  :: "[i,i]=>i"
36
37primrec
38  integ_of_Pls:  "integ_of (Pls)     = $# 0"
39  integ_of_Min:  "integ_of (Min)     = $-($#1)"
40  integ_of_BIT:  "integ_of (w BIT b) = $#b $+ integ_of(w) $+ integ_of(w)"
41
42    (** recall that cond(1,b,c)=b and cond(0,b,c)=0 **)
43
44primrec (*NCons adds a bit, suppressing leading 0s and 1s*)
45  NCons_Pls: "NCons (Pls,b)     = cond(b,Pls BIT b,Pls)"
46  NCons_Min: "NCons (Min,b)     = cond(b,Min,Min BIT b)"
47  NCons_BIT: "NCons (w BIT c,b) = w BIT c BIT b"
48
49primrec (*successor.  If a BIT, can change a 0 to a 1 without recursion.*)
50  bin_succ_Pls:  "bin_succ (Pls)     = Pls BIT 1"
51  bin_succ_Min:  "bin_succ (Min)     = Pls"
52  bin_succ_BIT:  "bin_succ (w BIT b) = cond(b, bin_succ(w) BIT 0, NCons(w,1))"
53
54primrec (*predecessor*)
55  bin_pred_Pls:  "bin_pred (Pls)     = Min"
56  bin_pred_Min:  "bin_pred (Min)     = Min BIT 0"
57  bin_pred_BIT:  "bin_pred (w BIT b) = cond(b, NCons(w,0), bin_pred(w) BIT 1)"
58
59primrec (*unary negation*)
60  bin_minus_Pls:
61    "bin_minus (Pls)       = Pls"
62  bin_minus_Min:
63    "bin_minus (Min)       = Pls BIT 1"
64  bin_minus_BIT:
65    "bin_minus (w BIT b) = cond(b, bin_pred(NCons(bin_minus(w),0)),
66                                bin_minus(w) BIT 0)"
67
68primrec (*sum*)
69  bin_adder_Pls:
70    "bin_adder (Pls)     = (\<lambda>w\<in>bin. w)"
71  bin_adder_Min:
72    "bin_adder (Min)     = (\<lambda>w\<in>bin. bin_pred(w))"
73  bin_adder_BIT:
74    "bin_adder (v BIT x) =
75       (\<lambda>w\<in>bin.
76         bin_case (v BIT x, bin_pred(v BIT x),
77                   %w y. NCons(bin_adder (v) ` cond(x and y, bin_succ(w), w),
78                               x xor y),
79                   w))"
80
81(*The bin_case above replaces the following mutually recursive function:
82primrec
83  "adding (v,x,Pls)     = v BIT x"
84  "adding (v,x,Min)     = bin_pred(v BIT x)"
85  "adding (v,x,w BIT y) = NCons(bin_adder (v, cond(x and y, bin_succ(w), w)),
86                                x xor y)"
87*)
88
89definition
90  bin_add   :: "[i,i]=>i"  where
91    "bin_add(v,w) == bin_adder(v)`w"
92
93
94primrec
95  bin_mult_Pls:
96    "bin_mult (Pls,w)     = Pls"
97  bin_mult_Min:
98    "bin_mult (Min,w)     = bin_minus(w)"
99  bin_mult_BIT:
100    "bin_mult (v BIT b,w) = cond(b, bin_add(NCons(bin_mult(v,w),0),w),
101                                 NCons(bin_mult(v,w),0))"
102
103syntax
104  "_Int0" :: i  (\<open>#' 0\<close>)
105  "_Int1" :: i  (\<open>#' 1\<close>)
106  "_Int2" :: i  (\<open>#' 2\<close>)
107  "_Neg_Int1" :: i  (\<open>#-' 1\<close>)
108  "_Neg_Int2" :: i  (\<open>#-' 2\<close>)
109translations
110  "#0" \<rightleftharpoons> "CONST integ_of(CONST Pls)"
111  "#1" \<rightleftharpoons> "CONST integ_of(CONST Pls BIT 1)"
112  "#2" \<rightleftharpoons> "CONST integ_of(CONST Pls BIT 1 BIT 0)"
113  "#-1" \<rightleftharpoons> "CONST integ_of(CONST Min)"
114  "#-2" \<rightleftharpoons> "CONST integ_of(CONST Min BIT 0)"
115
116syntax
117  "_Int" :: "num_token => i"  (\<open>#_\<close> 1000)
118  "_Neg_Int" :: "num_token => i"  (\<open>#-_\<close> 1000)
119
120ML_file \<open>Tools/numeral_syntax.ML\<close>
121
122
123declare bin.intros [simp,TC]
124
125lemma NCons_Pls_0: "NCons(Pls,0) = Pls"
126by simp
127
128lemma NCons_Pls_1: "NCons(Pls,1) = Pls BIT 1"
129by simp
130
131lemma NCons_Min_0: "NCons(Min,0) = Min BIT 0"
132by simp
133
134lemma NCons_Min_1: "NCons(Min,1) = Min"
135by simp
136
137lemma NCons_BIT: "NCons(w BIT x,b) = w BIT x BIT b"
138by (simp add: bin.case_eqns)
139
140lemmas NCons_simps [simp] =
141    NCons_Pls_0 NCons_Pls_1 NCons_Min_0 NCons_Min_1 NCons_BIT
142
143
144
145(** Type checking **)
146
147lemma integ_of_type [TC]: "w \<in> bin ==> integ_of(w) \<in> int"
148apply (induct_tac "w")
149apply (simp_all add: bool_into_nat)
150done
151
152lemma NCons_type [TC]: "[| w \<in> bin; b \<in> bool |] ==> NCons(w,b) \<in> bin"
153by (induct_tac "w", auto)
154
155lemma bin_succ_type [TC]: "w \<in> bin ==> bin_succ(w) \<in> bin"
156by (induct_tac "w", auto)
157
158lemma bin_pred_type [TC]: "w \<in> bin ==> bin_pred(w) \<in> bin"
159by (induct_tac "w", auto)
160
161lemma bin_minus_type [TC]: "w \<in> bin ==> bin_minus(w) \<in> bin"
162by (induct_tac "w", auto)
163
164(*This proof is complicated by the mutual recursion*)
165lemma bin_add_type [rule_format]:
166     "v \<in> bin ==> \<forall>w\<in>bin. bin_add(v,w) \<in> bin"
167apply (unfold bin_add_def)
168apply (induct_tac "v")
169apply (rule_tac [3] ballI)
170apply (rename_tac [3] "w'")
171apply (induct_tac [3] "w'")
172apply (simp_all add: NCons_type)
173done
174
175declare bin_add_type [TC]
176
177lemma bin_mult_type [TC]: "[| v \<in> bin; w \<in> bin |] ==> bin_mult(v,w) \<in> bin"
178by (induct_tac "v", auto)
179
180
181subsubsection\<open>The Carry and Borrow Functions,
182            \<^term>\<open>bin_succ\<close> and \<^term>\<open>bin_pred\<close>\<close>
183
184(*NCons preserves the integer value of its argument*)
185lemma integ_of_NCons [simp]:
186     "[| w \<in> bin; b \<in> bool |] ==> integ_of(NCons(w,b)) = integ_of(w BIT b)"
187apply (erule bin.cases)
188apply (auto elim!: boolE)
189done
190
191lemma integ_of_succ [simp]:
192     "w \<in> bin ==> integ_of(bin_succ(w)) = $#1 $+ integ_of(w)"
193apply (erule bin.induct)
194apply (auto simp add: zadd_ac elim!: boolE)
195done
196
197lemma integ_of_pred [simp]:
198     "w \<in> bin ==> integ_of(bin_pred(w)) = $- ($#1) $+ integ_of(w)"
199apply (erule bin.induct)
200apply (auto simp add: zadd_ac elim!: boolE)
201done
202
203
204subsubsection\<open>\<^term>\<open>bin_minus\<close>: Unary Negation of Binary Integers\<close>
205
206lemma integ_of_minus: "w \<in> bin ==> integ_of(bin_minus(w)) = $- integ_of(w)"
207apply (erule bin.induct)
208apply (auto simp add: zadd_ac zminus_zadd_distrib  elim!: boolE)
209done
210
211
212subsubsection\<open>\<^term>\<open>bin_add\<close>: Binary Addition\<close>
213
214lemma bin_add_Pls [simp]: "w \<in> bin ==> bin_add(Pls,w) = w"
215by (unfold bin_add_def, simp)
216
217lemma bin_add_Pls_right: "w \<in> bin ==> bin_add(w,Pls) = w"
218apply (unfold bin_add_def)
219apply (erule bin.induct, auto)
220done
221
222lemma bin_add_Min [simp]: "w \<in> bin ==> bin_add(Min,w) = bin_pred(w)"
223by (unfold bin_add_def, simp)
224
225lemma bin_add_Min_right: "w \<in> bin ==> bin_add(w,Min) = bin_pred(w)"
226apply (unfold bin_add_def)
227apply (erule bin.induct, auto)
228done
229
230lemma bin_add_BIT_Pls [simp]: "bin_add(v BIT x,Pls) = v BIT x"
231by (unfold bin_add_def, simp)
232
233lemma bin_add_BIT_Min [simp]: "bin_add(v BIT x,Min) = bin_pred(v BIT x)"
234by (unfold bin_add_def, simp)
235
236lemma bin_add_BIT_BIT [simp]:
237     "[| w \<in> bin;  y \<in> bool |]
238      ==> bin_add(v BIT x, w BIT y) =
239          NCons(bin_add(v, cond(x and y, bin_succ(w), w)), x xor y)"
240by (unfold bin_add_def, simp)
241
242lemma integ_of_add [rule_format]:
243     "v \<in> bin ==>
244          \<forall>w\<in>bin. integ_of(bin_add(v,w)) = integ_of(v) $+ integ_of(w)"
245apply (erule bin.induct, simp, simp)
246apply (rule ballI)
247apply (induct_tac "wa")
248apply (auto simp add: zadd_ac elim!: boolE)
249done
250
251(*Subtraction*)
252lemma diff_integ_of_eq:
253     "[| v \<in> bin;  w \<in> bin |]
254      ==> integ_of(v) $- integ_of(w) = integ_of(bin_add (v, bin_minus(w)))"
255apply (unfold zdiff_def)
256apply (simp add: integ_of_add integ_of_minus)
257done
258
259
260subsubsection\<open>\<^term>\<open>bin_mult\<close>: Binary Multiplication\<close>
261
262lemma integ_of_mult:
263     "[| v \<in> bin;  w \<in> bin |]
264      ==> integ_of(bin_mult(v,w)) = integ_of(v) $* integ_of(w)"
265apply (induct_tac "v", simp)
266apply (simp add: integ_of_minus)
267apply (auto simp add: zadd_ac integ_of_add zadd_zmult_distrib  elim!: boolE)
268done
269
270
271subsection\<open>Computations\<close>
272
273(** extra rules for bin_succ, bin_pred **)
274
275lemma bin_succ_1: "bin_succ(w BIT 1) = bin_succ(w) BIT 0"
276by simp
277
278lemma bin_succ_0: "bin_succ(w BIT 0) = NCons(w,1)"
279by simp
280
281lemma bin_pred_1: "bin_pred(w BIT 1) = NCons(w,0)"
282by simp
283
284lemma bin_pred_0: "bin_pred(w BIT 0) = bin_pred(w) BIT 1"
285by simp
286
287(** extra rules for bin_minus **)
288
289lemma bin_minus_1: "bin_minus(w BIT 1) = bin_pred(NCons(bin_minus(w), 0))"
290by simp
291
292lemma bin_minus_0: "bin_minus(w BIT 0) = bin_minus(w) BIT 0"
293by simp
294
295(** extra rules for bin_add **)
296
297lemma bin_add_BIT_11: "w \<in> bin ==> bin_add(v BIT 1, w BIT 1) =
298                     NCons(bin_add(v, bin_succ(w)), 0)"
299by simp
300
301lemma bin_add_BIT_10: "w \<in> bin ==> bin_add(v BIT 1, w BIT 0) =
302                     NCons(bin_add(v,w), 1)"
303by simp
304
305lemma bin_add_BIT_0: "[| w \<in> bin;  y \<in> bool |]
306      ==> bin_add(v BIT 0, w BIT y) = NCons(bin_add(v,w), y)"
307by simp
308
309(** extra rules for bin_mult **)
310
311lemma bin_mult_1: "bin_mult(v BIT 1, w) = bin_add(NCons(bin_mult(v,w),0), w)"
312by simp
313
314lemma bin_mult_0: "bin_mult(v BIT 0, w) = NCons(bin_mult(v,w),0)"
315by simp
316
317
318(** Simplification rules with integer constants **)
319
320lemma int_of_0: "$#0 = #0"
321by simp
322
323lemma int_of_succ: "$# succ(n) = #1 $+ $#n"
324by (simp add: int_of_add [symmetric] natify_succ)
325
326lemma zminus_0 [simp]: "$- #0 = #0"
327by simp
328
329lemma zadd_0_intify [simp]: "#0 $+ z = intify(z)"
330by simp
331
332lemma zadd_0_right_intify [simp]: "z $+ #0 = intify(z)"
333by simp
334
335lemma zmult_1_intify [simp]: "#1 $* z = intify(z)"
336by simp
337
338lemma zmult_1_right_intify [simp]: "z $* #1 = intify(z)"
339by (subst zmult_commute, simp)
340
341lemma zmult_0 [simp]: "#0 $* z = #0"
342by simp
343
344lemma zmult_0_right [simp]: "z $* #0 = #0"
345by (subst zmult_commute, simp)
346
347lemma zmult_minus1 [simp]: "#-1 $* z = $-z"
348by (simp add: zcompare_rls)
349
350lemma zmult_minus1_right [simp]: "z $* #-1 = $-z"
351apply (subst zmult_commute)
352apply (rule zmult_minus1)
353done
354
355
356subsection\<open>Simplification Rules for Comparison of Binary Numbers\<close>
357text\<open>Thanks to Norbert Voelker\<close>
358
359(** Equals (=) **)
360
361lemma eq_integ_of_eq:
362     "[| v \<in> bin;  w \<in> bin |]
363      ==> ((integ_of(v)) = integ_of(w)) \<longleftrightarrow>
364          iszero (integ_of (bin_add (v, bin_minus(w))))"
365apply (unfold iszero_def)
366apply (simp add: zcompare_rls integ_of_add integ_of_minus)
367done
368
369lemma iszero_integ_of_Pls: "iszero (integ_of(Pls))"
370by (unfold iszero_def, simp)
371
372
373lemma nonzero_integ_of_Min: "~ iszero (integ_of(Min))"
374apply (unfold iszero_def)
375apply (simp add: zminus_equation)
376done
377
378lemma iszero_integ_of_BIT:
379     "[| w \<in> bin; x \<in> bool |]
380      ==> iszero (integ_of (w BIT x)) \<longleftrightarrow> (x=0 & iszero (integ_of(w)))"
381apply (unfold iszero_def, simp)
382apply (subgoal_tac "integ_of (w) \<in> int")
383apply typecheck
384apply (drule int_cases)
385apply (safe elim!: boolE)
386apply (simp_all (asm_lr) add: zcompare_rls zminus_zadd_distrib [symmetric]
387                     int_of_add [symmetric])
388done
389
390lemma iszero_integ_of_0:
391     "w \<in> bin ==> iszero (integ_of (w BIT 0)) \<longleftrightarrow> iszero (integ_of(w))"
392by (simp only: iszero_integ_of_BIT, blast)
393
394lemma iszero_integ_of_1: "w \<in> bin ==> ~ iszero (integ_of (w BIT 1))"
395by (simp only: iszero_integ_of_BIT, blast)
396
397
398
399(** Less-than (<) **)
400
401lemma less_integ_of_eq_neg:
402     "[| v \<in> bin;  w \<in> bin |]
403      ==> integ_of(v) $< integ_of(w)
404          \<longleftrightarrow> znegative (integ_of (bin_add (v, bin_minus(w))))"
405apply (unfold zless_def zdiff_def)
406apply (simp add: integ_of_minus integ_of_add)
407done
408
409lemma not_neg_integ_of_Pls: "~ znegative (integ_of(Pls))"
410by simp
411
412lemma neg_integ_of_Min: "znegative (integ_of(Min))"
413by simp
414
415lemma neg_integ_of_BIT:
416     "[| w \<in> bin; x \<in> bool |]
417      ==> znegative (integ_of (w BIT x)) \<longleftrightarrow> znegative (integ_of(w))"
418apply simp
419apply (subgoal_tac "integ_of (w) \<in> int")
420apply typecheck
421apply (drule int_cases)
422apply (auto elim!: boolE simp add: int_of_add [symmetric]  zcompare_rls)
423apply (simp_all add: zminus_zadd_distrib [symmetric] zdiff_def
424                     int_of_add [symmetric])
425apply (subgoal_tac "$#1 $- $# succ (succ (n #+ n)) = $- $# succ (n #+ n) ")
426 apply (simp add: zdiff_def)
427apply (simp add: equation_zminus int_of_diff [symmetric])
428done
429
430(** Less-than-or-equals (<=) **)
431
432lemma le_integ_of_eq_not_less:
433     "(integ_of(x) $\<le> (integ_of(w))) \<longleftrightarrow> ~ (integ_of(w) $< (integ_of(x)))"
434by (simp add: not_zless_iff_zle [THEN iff_sym])
435
436
437(*Delete the original rewrites, with their clumsy conditional expressions*)
438declare bin_succ_BIT [simp del]
439        bin_pred_BIT [simp del]
440        bin_minus_BIT [simp del]
441        NCons_Pls [simp del]
442        NCons_Min [simp del]
443        bin_adder_BIT [simp del]
444        bin_mult_BIT [simp del]
445
446(*Hide the binary representation of integer constants*)
447declare integ_of_Pls [simp del] integ_of_Min [simp del] integ_of_BIT [simp del]
448
449
450lemmas bin_arith_extra_simps =
451     integ_of_add [symmetric]
452     integ_of_minus [symmetric]
453     integ_of_mult [symmetric]
454     bin_succ_1 bin_succ_0
455     bin_pred_1 bin_pred_0
456     bin_minus_1 bin_minus_0
457     bin_add_Pls_right bin_add_Min_right
458     bin_add_BIT_0 bin_add_BIT_10 bin_add_BIT_11
459     diff_integ_of_eq
460     bin_mult_1 bin_mult_0 NCons_simps
461
462
463(*For making a minimal simpset, one must include these default simprules
464  of thy.  Also include simp_thms, or at least (~False)=True*)
465lemmas bin_arith_simps =
466     bin_pred_Pls bin_pred_Min
467     bin_succ_Pls bin_succ_Min
468     bin_add_Pls bin_add_Min
469     bin_minus_Pls bin_minus_Min
470     bin_mult_Pls bin_mult_Min
471     bin_arith_extra_simps
472
473(*Simplification of relational operations*)
474lemmas bin_rel_simps =
475     eq_integ_of_eq iszero_integ_of_Pls nonzero_integ_of_Min
476     iszero_integ_of_0 iszero_integ_of_1
477     less_integ_of_eq_neg
478     not_neg_integ_of_Pls neg_integ_of_Min neg_integ_of_BIT
479     le_integ_of_eq_not_less
480
481declare bin_arith_simps [simp]
482declare bin_rel_simps [simp]
483
484
485(** Simplification of arithmetic when nested to the right **)
486
487lemma add_integ_of_left [simp]:
488     "[| v \<in> bin;  w \<in> bin |]
489      ==> integ_of(v) $+ (integ_of(w) $+ z) = (integ_of(bin_add(v,w)) $+ z)"
490by (simp add: zadd_assoc [symmetric])
491
492lemma mult_integ_of_left [simp]:
493     "[| v \<in> bin;  w \<in> bin |]
494      ==> integ_of(v) $* (integ_of(w) $* z) = (integ_of(bin_mult(v,w)) $* z)"
495by (simp add: zmult_assoc [symmetric])
496
497lemma add_integ_of_diff1 [simp]:
498    "[| v \<in> bin;  w \<in> bin |]
499      ==> integ_of(v) $+ (integ_of(w) $- c) = integ_of(bin_add(v,w)) $- (c)"
500apply (unfold zdiff_def)
501apply (rule add_integ_of_left, auto)
502done
503
504lemma add_integ_of_diff2 [simp]:
505     "[| v \<in> bin;  w \<in> bin |]
506      ==> integ_of(v) $+ (c $- integ_of(w)) =
507          integ_of (bin_add (v, bin_minus(w))) $+ (c)"
508apply (subst diff_integ_of_eq [symmetric])
509apply (simp_all add: zdiff_def zadd_ac)
510done
511
512
513(** More for integer constants **)
514
515declare int_of_0 [simp] int_of_succ [simp]
516
517lemma zdiff0 [simp]: "#0 $- x = $-x"
518by (simp add: zdiff_def)
519
520lemma zdiff0_right [simp]: "x $- #0 = intify(x)"
521by (simp add: zdiff_def)
522
523lemma zdiff_self [simp]: "x $- x = #0"
524by (simp add: zdiff_def)
525
526lemma znegative_iff_zless_0: "k \<in> int ==> znegative(k) \<longleftrightarrow> k $< #0"
527by (simp add: zless_def)
528
529lemma zero_zless_imp_znegative_zminus: "[|#0 $< k; k \<in> int|] ==> znegative($-k)"
530by (simp add: zless_def)
531
532lemma zero_zle_int_of [simp]: "#0 $\<le> $# n"
533by (simp add: not_zless_iff_zle [THEN iff_sym] znegative_iff_zless_0 [THEN iff_sym])
534
535lemma nat_of_0 [simp]: "nat_of(#0) = 0"
536by (simp only: natify_0 int_of_0 [symmetric] nat_of_int_of)
537
538lemma nat_le_int0_lemma: "[| z $\<le> $#0; z \<in> int |] ==> nat_of(z) = 0"
539by (auto simp add: znegative_iff_zless_0 [THEN iff_sym] zle_def zneg_nat_of)
540
541lemma nat_le_int0: "z $\<le> $#0 ==> nat_of(z) = 0"
542apply (subgoal_tac "nat_of (intify (z)) = 0")
543apply (rule_tac [2] nat_le_int0_lemma, auto)
544done
545
546lemma int_of_eq_0_imp_natify_eq_0: "$# n = #0 ==> natify(n) = 0"
547by (rule not_znegative_imp_zero, auto)
548
549lemma nat_of_zminus_int_of: "nat_of($- $# n) = 0"
550by (simp add: nat_of_def int_of_def raw_nat_of zminus image_intrel_int)
551
552lemma int_of_nat_of: "#0 $\<le> z ==> $# nat_of(z) = intify(z)"
553apply (rule not_zneg_nat_of_intify)
554apply (simp add: znegative_iff_zless_0 not_zless_iff_zle)
555done
556
557declare int_of_nat_of [simp] nat_of_zminus_int_of [simp]
558
559lemma int_of_nat_of_if: "$# nat_of(z) = (if #0 $\<le> z then intify(z) else #0)"
560by (simp add: int_of_nat_of znegative_iff_zless_0 not_zle_iff_zless)
561
562lemma zless_nat_iff_int_zless: "[| m \<in> nat; z \<in> int |] ==> (m < nat_of(z)) \<longleftrightarrow> ($#m $< z)"
563apply (case_tac "znegative (z) ")
564apply (erule_tac [2] not_zneg_nat_of [THEN subst])
565apply (auto dest: zless_trans dest!: zero_zle_int_of [THEN zle_zless_trans]
566            simp add: znegative_iff_zless_0)
567done
568
569
570(** nat_of and zless **)
571
572(*An alternative condition is  @{term"$#0 \<subseteq> w"}  *)
573lemma zless_nat_conj_lemma: "$#0 $< z ==> (nat_of(w) < nat_of(z)) \<longleftrightarrow> (w $< z)"
574apply (rule iff_trans)
575apply (rule zless_int_of [THEN iff_sym])
576apply (auto simp add: int_of_nat_of_if simp del: zless_int_of)
577apply (auto elim: zless_asym simp add: not_zle_iff_zless)
578apply (blast intro: zless_zle_trans)
579done
580
581lemma zless_nat_conj: "(nat_of(w) < nat_of(z)) \<longleftrightarrow> ($#0 $< z & w $< z)"
582apply (case_tac "$#0 $< z")
583apply (auto simp add: zless_nat_conj_lemma nat_le_int0 not_zless_iff_zle)
584done
585
586(*This simprule cannot be added unless we can find a way to make eq_integ_of_eq
587  unconditional!
588  [The condition "True" is a hack to prevent looping.
589    Conditional rewrite rules are tried after unconditional ones, so a rule
590    like eq_nat_number_of will be tried first to eliminate #mm=#nn.]
591  lemma integ_of_reorient [simp]:
592       "True ==> (integ_of(w) = x) \<longleftrightarrow> (x = integ_of(w))"
593  by auto
594*)
595
596lemma integ_of_minus_reorient [simp]:
597     "(integ_of(w) = $- x) \<longleftrightarrow> ($- x = integ_of(w))"
598by auto
599
600lemma integ_of_add_reorient [simp]:
601     "(integ_of(w) = x $+ y) \<longleftrightarrow> (x $+ y = integ_of(w))"
602by auto
603
604lemma integ_of_diff_reorient [simp]:
605     "(integ_of(w) = x $- y) \<longleftrightarrow> (x $- y = integ_of(w))"
606by auto
607
608lemma integ_of_mult_reorient [simp]:
609     "(integ_of(w) = x $* y) \<longleftrightarrow> (x $* y = integ_of(w))"
610by auto
611
612(** To simplify inequalities involving integer negation and literals,
613    such as -x = #3
614**)
615
616lemmas [simp] =
617  zminus_equation [where y = "integ_of(w)"]
618  equation_zminus [where x = "integ_of(w)"]
619  for w
620
621lemmas [iff] =
622  zminus_zless [where y = "integ_of(w)"]
623  zless_zminus [where x = "integ_of(w)"]
624  for w
625
626lemmas [iff] =
627  zminus_zle [where y = "integ_of(w)"]
628  zle_zminus [where x = "integ_of(w)"]
629  for w
630
631lemmas [simp] =
632  Let_def [where s = "integ_of(w)"] for w
633
634
635(*** Simprocs for numeric literals ***)
636
637(** Combining of literal coefficients in sums of products **)
638
639lemma zless_iff_zdiff_zless_0: "(x $< y) \<longleftrightarrow> (x$-y $< #0)"
640  by (simp add: zcompare_rls)
641
642lemma eq_iff_zdiff_eq_0: "[| x \<in> int; y \<in> int |] ==> (x = y) \<longleftrightarrow> (x$-y = #0)"
643  by (simp add: zcompare_rls)
644
645lemma zle_iff_zdiff_zle_0: "(x $\<le> y) \<longleftrightarrow> (x$-y $\<le> #0)"
646  by (simp add: zcompare_rls)
647
648
649(** For combine_numerals **)
650
651lemma left_zadd_zmult_distrib: "i$*u $+ (j$*u $+ k) = (i$+j)$*u $+ k"
652  by (simp add: zadd_zmult_distrib zadd_ac)
653
654
655(** For cancel_numerals **)
656
657lemma eq_add_iff1: "(i$*u $+ m = j$*u $+ n) \<longleftrightarrow> ((i$-j)$*u $+ m = intify(n))"
658  apply (simp add: zdiff_def zadd_zmult_distrib)
659  apply (simp add: zcompare_rls)
660  apply (simp add: zadd_ac)
661  done
662
663lemma eq_add_iff2: "(i$*u $+ m = j$*u $+ n) \<longleftrightarrow> (intify(m) = (j$-i)$*u $+ n)"
664  apply (simp add: zdiff_def zadd_zmult_distrib)
665  apply (simp add: zcompare_rls)
666  apply (simp add: zadd_ac)
667  done
668
669context fixes n :: i
670begin
671
672lemmas rel_iff_rel_0_rls =
673  zless_iff_zdiff_zless_0 [where y = "u $+ v"]
674  eq_iff_zdiff_eq_0 [where y = "u $+ v"]
675  zle_iff_zdiff_zle_0 [where y = "u $+ v"]
676  zless_iff_zdiff_zless_0 [where y = n]
677  eq_iff_zdiff_eq_0 [where y = n]
678  zle_iff_zdiff_zle_0 [where y = n]
679  for u v
680
681lemma less_add_iff1: "(i$*u $+ m $< j$*u $+ n) \<longleftrightarrow> ((i$-j)$*u $+ m $< n)"
682  apply (simp add: zdiff_def zadd_zmult_distrib zadd_ac rel_iff_rel_0_rls)
683  done
684
685lemma less_add_iff2: "(i$*u $+ m $< j$*u $+ n) \<longleftrightarrow> (m $< (j$-i)$*u $+ n)"
686  apply (simp add: zdiff_def zadd_zmult_distrib zadd_ac rel_iff_rel_0_rls)
687  done
688
689end
690
691lemma le_add_iff1: "(i$*u $+ m $\<le> j$*u $+ n) \<longleftrightarrow> ((i$-j)$*u $+ m $\<le> n)"
692  apply (simp add: zdiff_def zadd_zmult_distrib)
693  apply (simp add: zcompare_rls)
694  apply (simp add: zadd_ac)
695  done
696
697lemma le_add_iff2: "(i$*u $+ m $\<le> j$*u $+ n) \<longleftrightarrow> (m $\<le> (j$-i)$*u $+ n)"
698  apply (simp add: zdiff_def zadd_zmult_distrib)
699  apply (simp add: zcompare_rls)
700  apply (simp add: zadd_ac)
701  done
702
703ML_file \<open>int_arith.ML\<close>
704
705subsection \<open>examples:\<close>
706
707text \<open>\<open>combine_numerals_prod\<close> (products of separate literals)\<close>
708lemma "#5 $* x $* #3 = y" apply simp oops
709
710schematic_goal "y2 $+ ?x42 = y $+ y2" apply simp oops
711
712lemma "oo : int ==> l $+ (l $+ #2) $+ oo = oo" apply simp oops
713
714lemma "#9$*x $+ y = x$*#23 $+ z" apply simp oops
715lemma "y $+ x = x $+ z" apply simp oops
716
717lemma "x : int ==> x $+ y $+ z = x $+ z" apply simp oops
718lemma "x : int ==> y $+ (z $+ x) = z $+ x" apply simp oops
719lemma "z : int ==> x $+ y $+ z = (z $+ y) $+ (x $+ w)" apply simp oops
720lemma "z : int ==> x$*y $+ z = (z $+ y) $+ (y$*x $+ w)" apply simp oops
721
722lemma "#-3 $* x $+ y $\<le> x $* #2 $+ z" apply simp oops
723lemma "y $+ x $\<le> x $+ z" apply simp oops
724lemma "x $+ y $+ z $\<le> x $+ z" apply simp oops
725
726lemma "y $+ (z $+ x) $< z $+ x" apply simp oops
727lemma "x $+ y $+ z $< (z $+ y) $+ (x $+ w)" apply simp oops
728lemma "x$*y $+ z $< (z $+ y) $+ (y$*x $+ w)" apply simp oops
729
730lemma "l $+ #2 $+ #2 $+ #2 $+ (l $+ #2) $+ (oo $+ #2) = uu" apply simp oops
731lemma "u : int ==> #2 $* u = u" apply simp oops
732lemma "(i $+ j $+ #12 $+ k) $- #15 = y" apply simp oops
733lemma "(i $+ j $+ #12 $+ k) $- #5 = y" apply simp oops
734
735lemma "y $- b $< b" apply simp oops
736lemma "y $- (#3 $* b $+ c) $< b $- #2 $* c" apply simp oops
737
738lemma "(#2 $* x $- (u $* v) $+ y) $- v $* #3 $* u = w" apply simp oops
739lemma "(#2 $* x $* u $* v $+ (u $* v) $* #4 $+ y) $- v $* u $* #4 = w" apply simp oops
740lemma "(#2 $* x $* u $* v $+ (u $* v) $* #4 $+ y) $- v $* u = w" apply simp oops
741lemma "u $* v $- (x $* u $* v $+ (u $* v) $* #4 $+ y) = w" apply simp oops
742
743lemma "(i $+ j $+ #12 $+ k) = u $+ #15 $+ y" apply simp oops
744lemma "(i $+ j $* #2 $+ #12 $+ k) = j $+ #5 $+ y" apply simp oops
745
746lemma "#2 $* y $+ #3 $* z $+ #6 $* w $+ #2 $* y $+ #3 $* z $+ #2 $* u = #2 $* y' $+ #3 $* z' $+ #6 $* w' $+ #2 $* y' $+ #3 $* z' $+ u $+ vv" apply simp oops
747
748lemma "a $+ $-(b$+c) $+ b = d" apply simp oops
749lemma "a $+ $-(b$+c) $- b = d" apply simp oops
750
751text \<open>negative numerals\<close>
752lemma "(i $+ j $+ #-2 $+ k) $- (u $+ #5 $+ y) = zz" apply simp oops
753lemma "(i $+ j $+ #-3 $+ k) $< u $+ #5 $+ y" apply simp oops
754lemma "(i $+ j $+ #3 $+ k) $< u $+ #-6 $+ y" apply simp oops
755lemma "(i $+ j $+ #-12 $+ k) $- #15 = y" apply simp oops
756lemma "(i $+ j $+ #12 $+ k) $- #-15 = y" apply simp oops
757lemma "(i $+ j $+ #-12 $+ k) $- #-15 = y" apply simp oops
758
759text \<open>Multiplying separated numerals\<close>
760lemma "#6 $* ($# x $* #2) =  uu" apply simp oops
761lemma "#4 $* ($# x $* $# x) $* (#2 $* $# x) =  uu" apply simp oops
762
763end
764