1/*
2 * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25package jdk.nashorn.internal.runtime;
26
27import static jdk.nashorn.internal.lookup.Lookup.MH;
28import static jdk.nashorn.internal.runtime.UnwarrantedOptimismException.INVALID_PROGRAM_POINT;
29import static jdk.nashorn.internal.runtime.UnwarrantedOptimismException.isValid;
30
31import java.lang.invoke.CallSite;
32import java.lang.invoke.MethodHandle;
33import java.lang.invoke.MethodHandles;
34import java.lang.invoke.MethodType;
35import java.lang.invoke.MutableCallSite;
36import java.lang.invoke.SwitchPoint;
37import java.util.ArrayList;
38import java.util.Collection;
39import java.util.Collections;
40import java.util.Iterator;
41import java.util.List;
42import java.util.Map;
43import java.util.TreeMap;
44import java.util.function.Supplier;
45import java.util.logging.Level;
46import jdk.dynalink.linker.GuardedInvocation;
47import jdk.nashorn.internal.codegen.Compiler;
48import jdk.nashorn.internal.codegen.Compiler.CompilationPhases;
49import jdk.nashorn.internal.codegen.TypeMap;
50import jdk.nashorn.internal.codegen.types.ArrayType;
51import jdk.nashorn.internal.codegen.types.Type;
52import jdk.nashorn.internal.ir.FunctionNode;
53import jdk.nashorn.internal.objects.annotations.SpecializedFunction.LinkLogic;
54import jdk.nashorn.internal.runtime.events.RecompilationEvent;
55import jdk.nashorn.internal.runtime.linker.Bootstrap;
56import jdk.nashorn.internal.runtime.logging.DebugLogger;
57
58/**
59 * An version of a JavaScript function, native or JavaScript.
60 * Supports lazily generating a constructor version of the invocation.
61 */
62final class CompiledFunction {
63
64    private static final MethodHandle NEWFILTER = findOwnMH("newFilter", Object.class, Object.class, Object.class);
65    private static final MethodHandle RELINK_COMPOSABLE_INVOKER = findOwnMH("relinkComposableInvoker", void.class, CallSite.class, CompiledFunction.class, boolean.class);
66    private static final MethodHandle HANDLE_REWRITE_EXCEPTION = findOwnMH("handleRewriteException", MethodHandle.class, CompiledFunction.class, OptimismInfo.class, RewriteException.class);
67    private static final MethodHandle RESTOF_INVOKER = MethodHandles.exactInvoker(MethodType.methodType(Object.class, RewriteException.class));
68
69    private final DebugLogger log;
70
71    static final Collection<CompiledFunction> NO_FUNCTIONS = Collections.emptySet();
72
73    /**
74     * The method type may be more specific than the invoker, if. e.g.
75     * the invoker is guarded, and a guard with a generic object only
76     * fallback, while the target is more specific, we still need the
77     * more specific type for sorting
78     */
79    private MethodHandle invoker;
80    private MethodHandle constructor;
81    private OptimismInfo optimismInfo;
82    private final int flags; // from FunctionNode
83    private final MethodType callSiteType;
84
85    private final Specialization specialization;
86
87    CompiledFunction(final MethodHandle invoker) {
88        this(invoker, null, null);
89    }
90
91    static CompiledFunction createBuiltInConstructor(final MethodHandle invoker, final Specialization specialization) {
92        return new CompiledFunction(MH.insertArguments(invoker, 0, false), createConstructorFromInvoker(MH.insertArguments(invoker, 0, true)), specialization);
93    }
94
95    CompiledFunction(final MethodHandle invoker, final MethodHandle constructor, final Specialization specialization) {
96        this(invoker, constructor, 0, null, specialization, DebugLogger.DISABLED_LOGGER);
97    }
98
99    CompiledFunction(final MethodHandle invoker, final MethodHandle constructor, final int flags, final MethodType callSiteType, final Specialization specialization, final DebugLogger log) {
100        this.specialization = specialization;
101        if (specialization != null && specialization.isOptimistic()) {
102            /*
103             * An optimistic builtin with isOptimistic=true works like any optimistic generated function, i.e. it
104             * can throw unwarranted optimism exceptions. As native functions trivially can't have parts of them
105             * regenerated as "restOf" methods, this only works if the methods are atomic/functional in their behavior
106             * and doesn't modify state before an UOE can be thrown. If they aren't, we can reexecute a wider version
107             * of the same builtin in a recompilation handler for FinalScriptFunctionData. There are several
108             * candidate methods in Native* that would benefit from this, but I haven't had time to implement any
109             * of them currently. In order to fit in with the relinking framework, the current thinking is
110             * that the methods still take a program point to fit in with other optimistic functions, but
111             * it is set to "first", which is the beginning of the method. The relinker can tell the difference
112             * between builtin and JavaScript functions. This might change. TODO
113             */
114            this.invoker = MH.insertArguments(invoker, invoker.type().parameterCount() - 1, UnwarrantedOptimismException.FIRST_PROGRAM_POINT);
115            throw new AssertionError("Optimistic (UnwarrantedOptimismException throwing) builtin functions are currently not in use");
116        }
117        this.invoker = invoker;
118        this.constructor = constructor;
119        this.flags = flags;
120        this.callSiteType = callSiteType;
121        this.log = log;
122    }
123
124    CompiledFunction(final MethodHandle invoker, final RecompilableScriptFunctionData functionData,
125            final Map<Integer, Type> invalidatedProgramPoints, final MethodType callSiteType, final int flags) {
126        this(invoker, null, flags, callSiteType, null, functionData.getLogger());
127        if ((flags & FunctionNode.IS_DEOPTIMIZABLE) != 0) {
128            optimismInfo = new OptimismInfo(functionData, invalidatedProgramPoints);
129        } else {
130            optimismInfo = null;
131        }
132    }
133
134    static CompiledFunction createBuiltInConstructor(final MethodHandle invoker) {
135        return new CompiledFunction(MH.insertArguments(invoker, 0, false), createConstructorFromInvoker(MH.insertArguments(invoker, 0, true)), null);
136    }
137
138    boolean isSpecialization() {
139        return specialization != null;
140    }
141
142    boolean hasLinkLogic() {
143        return getLinkLogicClass() != null;
144    }
145
146    Class<? extends LinkLogic> getLinkLogicClass() {
147        if (isSpecialization()) {
148            final Class<? extends LinkLogic> linkLogicClass = specialization.getLinkLogicClass();
149            assert !LinkLogic.isEmpty(linkLogicClass) : "empty link logic classes should have been removed by nasgen";
150            return linkLogicClass;
151        }
152        return null;
153    }
154
155    boolean convertsNumericArgs() {
156        return isSpecialization() && specialization.convertsNumericArgs();
157    }
158
159    int getFlags() {
160        return flags;
161    }
162
163    /**
164     * An optimistic specialization is one that can throw UnwarrantedOptimismException.
165     * This is allowed for native methods, as long as they are functional, i.e. don't change
166     * any state between entering and throwing the UOE. Then we can re-execute a wider version
167     * of the method in the continuation. Rest-of method generation for optimistic builtins is
168     * of course not possible, but this approach works and fits into the same relinking
169     * framework
170     *
171     * @return true if optimistic builtin
172     */
173    boolean isOptimistic() {
174        return isSpecialization() ? specialization.isOptimistic() : false;
175    }
176
177    boolean isApplyToCall() {
178        return (flags & FunctionNode.HAS_APPLY_TO_CALL_SPECIALIZATION) != 0;
179    }
180
181    boolean isVarArg() {
182        return isVarArgsType(invoker.type());
183    }
184
185    @Override
186    public String toString() {
187        final StringBuilder sb = new StringBuilder();
188        final Class<? extends LinkLogic> linkLogicClass = getLinkLogicClass();
189
190        sb.append("[invokerType=").
191            append(invoker.type()).
192            append(" ctor=").
193            append(constructor).
194            append(" weight=").
195            append(weight()).
196            append(" linkLogic=").
197            append(linkLogicClass != null ? linkLogicClass.getSimpleName() : "none");
198
199        return sb.toString();
200    }
201
202    boolean needsCallee() {
203        return ScriptFunctionData.needsCallee(invoker);
204    }
205
206    /**
207     * Returns an invoker method handle for this function. Note that the handle is safely composable in
208     * the sense that you can compose it with other handles using any combinators even if you can't affect call site
209     * invalidation. If this compiled function is non-optimistic, then it returns the same value as
210     * {@link #getInvokerOrConstructor(boolean)}. However, if the function is optimistic, then this handle will
211     * incur an overhead as it will add an intermediate internal call site that can relink itself when the function
212     * needs to regenerate its code to always point at the latest generated code version.
213     * @return a guaranteed composable invoker method handle for this function.
214     */
215    MethodHandle createComposableInvoker() {
216        return createComposableInvoker(false);
217    }
218
219    /**
220     * Returns an invoker method handle for this function when invoked as a constructor. Note that the handle should be
221     * considered non-composable in the sense that you can only compose it with other handles using any combinators if
222     * you can ensure that the composition is guarded by {@link #getOptimisticAssumptionsSwitchPoint()} if it's
223     * non-null, and that you can relink the call site it is set into as a target if the switch point is invalidated. In
224     * all other cases, use {@link #createComposableConstructor()}.
225     * @return a direct constructor method handle for this function.
226     */
227    private MethodHandle getConstructor() {
228        if (constructor == null) {
229            constructor = createConstructorFromInvoker(createInvokerForPessimisticCaller());
230        }
231
232        return constructor;
233    }
234
235    /**
236     * Creates a version of the invoker intended for a pessimistic caller (return type is Object, no caller optimistic
237     * program point available).
238     * @return a version of the invoker intended for a pessimistic caller.
239     */
240    private MethodHandle createInvokerForPessimisticCaller() {
241        return createInvoker(Object.class, INVALID_PROGRAM_POINT);
242    }
243
244    /**
245     * Compose a constructor from an invoker.
246     *
247     * @param invoker         invoker
248     * @return the composed constructor
249     */
250    private static MethodHandle createConstructorFromInvoker(final MethodHandle invoker) {
251        final boolean needsCallee = ScriptFunctionData.needsCallee(invoker);
252        // If it was (callee, this, args...), permute it to (this, callee, args...). We're doing this because having
253        // "this" in the first argument position is what allows the elegant folded composition of
254        // (newFilter x constructor x allocator) further down below in the code. Also, ensure the composite constructor
255        // always returns Object.
256        final MethodHandle swapped = needsCallee ? swapCalleeAndThis(invoker) : invoker;
257
258        final MethodHandle returnsObject = MH.asType(swapped, swapped.type().changeReturnType(Object.class));
259
260        final MethodType ctorType = returnsObject.type();
261
262        // Construct a dropping type list for NEWFILTER, but don't include constructor "this" into it, so it's actually
263        // captured as "allocation" parameter of NEWFILTER after we fold the constructor into it.
264        // (this, [callee, ]args...) => ([callee, ]args...)
265        final Class<?>[] ctorArgs = ctorType.dropParameterTypes(0, 1).parameterArray();
266
267        // Fold constructor into newFilter that replaces the return value from the constructor with the originally
268        // allocated value when the originally allocated value is a JS primitive (String, Boolean, Number).
269        // (result, this, [callee, ]args...) x (this, [callee, ]args...) => (this, [callee, ]args...)
270        final MethodHandle filtered = MH.foldArguments(MH.dropArguments(NEWFILTER, 2, ctorArgs), returnsObject);
271
272        // allocate() takes a ScriptFunction and returns a newly allocated ScriptObject...
273        if (needsCallee) {
274            // ...we either fold it into the previous composition, if we need both the ScriptFunction callee object and
275            // the newly allocated object in the arguments, so (this, callee, args...) x (callee) => (callee, args...),
276            // or...
277            return MH.foldArguments(filtered, ScriptFunction.ALLOCATE);
278        }
279
280        // ...replace the ScriptFunction argument with the newly allocated object, if it doesn't need the callee
281        // (this, args...) filter (callee) => (callee, args...)
282        return MH.filterArguments(filtered, 0, ScriptFunction.ALLOCATE);
283    }
284
285    /**
286     * Permutes the parameters in the method handle from {@code (callee, this, ...)} to {@code (this, callee, ...)}.
287     * Used when creating a constructor handle.
288     * @param mh a method handle with order of arguments {@code (callee, this, ...)}
289     * @return a method handle with order of arguments {@code (this, callee, ...)}
290     */
291    private static MethodHandle swapCalleeAndThis(final MethodHandle mh) {
292        final MethodType type = mh.type();
293        assert type.parameterType(0) == ScriptFunction.class : type;
294        assert type.parameterType(1) == Object.class : type;
295        final MethodType newType = type.changeParameterType(0, Object.class).changeParameterType(1, ScriptFunction.class);
296        final int[] reorder = new int[type.parameterCount()];
297        reorder[0] = 1;
298        assert reorder[1] == 0;
299        for (int i = 2; i < reorder.length; ++i) {
300            reorder[i] = i;
301        }
302        return MethodHandles.permuteArguments(mh, newType, reorder);
303    }
304
305    /**
306     * Returns an invoker method handle for this function when invoked as a constructor. Note that the handle is safely
307     * composable in the sense that you can compose it with other handles using any combinators even if you can't affect
308     * call site invalidation. If this compiled function is non-optimistic, then it returns the same value as
309     * {@link #getConstructor()}. However, if the function is optimistic, then this handle will incur an overhead as it
310     * will add an intermediate internal call site that can relink itself when the function needs to regenerate its code
311     * to always point at the latest generated code version.
312     * @return a guaranteed composable constructor method handle for this function.
313     */
314    MethodHandle createComposableConstructor() {
315        return createComposableInvoker(true);
316    }
317
318    boolean hasConstructor() {
319        return constructor != null;
320    }
321
322    MethodType type() {
323        return invoker.type();
324    }
325
326    int weight() {
327        return weight(type());
328    }
329
330    private static int weight(final MethodType type) {
331        if (isVarArgsType(type)) {
332            return Integer.MAX_VALUE; //if there is a varargs it should be the heavist and last fallback
333        }
334
335        int weight = Type.typeFor(type.returnType()).getWeight();
336        for (int i = 0 ; i < type.parameterCount() ; i++) {
337            final Class<?> paramType = type.parameterType(i);
338            final int pweight = Type.typeFor(paramType).getWeight() * 2; //params are more important than call types as return values are always specialized
339            weight += pweight;
340        }
341
342        weight += type.parameterCount(); //more params outweigh few parameters
343
344        return weight;
345    }
346
347    static boolean isVarArgsType(final MethodType type) {
348        assert type.parameterCount() >= 1 : type;
349        return type.parameterType(type.parameterCount() - 1) == Object[].class;
350    }
351
352    static boolean moreGenericThan(final MethodType mt0, final MethodType mt1) {
353        return weight(mt0) > weight(mt1);
354    }
355
356    boolean betterThanFinal(final CompiledFunction other, final MethodType callSiteMethodType) {
357        // Prefer anything over nothing, as we can't compile new versions.
358        if (other == null) {
359            return true;
360        }
361        return betterThanFinal(this, other, callSiteMethodType);
362    }
363
364    private static boolean betterThanFinal(final CompiledFunction cf, final CompiledFunction other, final MethodType callSiteMethodType) {
365        final MethodType thisMethodType  = cf.type();
366        final MethodType otherMethodType = other.type();
367        final int thisParamCount = getParamCount(thisMethodType);
368        final int otherParamCount = getParamCount(otherMethodType);
369        final int callSiteRawParamCount = getParamCount(callSiteMethodType);
370        final boolean csVarArg = callSiteRawParamCount == Integer.MAX_VALUE;
371        // Subtract 1 for callee for non-vararg call sites
372        final int callSiteParamCount = csVarArg ? callSiteRawParamCount : callSiteRawParamCount - 1;
373
374        // Prefer the function that discards less parameters
375        final int thisDiscardsParams = Math.max(callSiteParamCount - thisParamCount, 0);
376        final int otherDiscardsParams = Math.max(callSiteParamCount - otherParamCount, 0);
377        if(thisDiscardsParams < otherDiscardsParams) {
378            return true;
379        }
380        if(thisDiscardsParams > otherDiscardsParams) {
381            return false;
382        }
383
384        final boolean thisVarArg = thisParamCount == Integer.MAX_VALUE;
385        final boolean otherVarArg = otherParamCount == Integer.MAX_VALUE;
386        if(!(thisVarArg && otherVarArg && csVarArg)) {
387            // At least one of them isn't vararg
388            final Type[] thisType = toTypeWithoutCallee(thisMethodType, 0); // Never has callee
389            final Type[] otherType = toTypeWithoutCallee(otherMethodType, 0); // Never has callee
390            final Type[] callSiteType = toTypeWithoutCallee(callSiteMethodType, 1); // Always has callee
391
392            int narrowWeightDelta = 0;
393            int widenWeightDelta = 0;
394            final int minParamsCount = Math.min(Math.min(thisParamCount, otherParamCount), callSiteParamCount);
395            final boolean convertsNumericArgs = cf.convertsNumericArgs();
396            for(int i = 0; i < minParamsCount; ++i) {
397                final Type callSiteParamType = getParamType(i, callSiteType, csVarArg);
398                final Type thisParamType = getParamType(i, thisType, thisVarArg);
399                if (!convertsNumericArgs && callSiteParamType.isBoolean() && thisParamType.isNumeric()) {
400                    // When an argument is converted to number by a function it is safe to "widen" booleans to numeric types.
401                    // However, we must avoid this conversion for generic functions such as Array.prototype.push.
402                    return false;
403                }
404                final int callSiteParamWeight = callSiteParamType.getWeight();
405                // Delta is negative for narrowing, positive for widening
406                final int thisParamWeightDelta = thisParamType.getWeight() - callSiteParamWeight;
407                final int otherParamWeightDelta = getParamType(i, otherType, otherVarArg).getWeight() - callSiteParamWeight;
408                // Only count absolute values of narrowings
409                narrowWeightDelta += Math.max(-thisParamWeightDelta, 0) - Math.max(-otherParamWeightDelta, 0);
410                // Only count absolute values of widenings
411                widenWeightDelta += Math.max(thisParamWeightDelta, 0) - Math.max(otherParamWeightDelta, 0);
412            }
413
414            // If both functions accept more arguments than what is passed at the call site, account for ability
415            // to receive Undefined un-narrowed in the remaining arguments.
416            if(!thisVarArg) {
417                for(int i = callSiteParamCount; i < thisParamCount; ++i) {
418                    narrowWeightDelta += Math.max(Type.OBJECT.getWeight() - thisType[i].getWeight(), 0);
419                }
420            }
421            if(!otherVarArg) {
422                for(int i = callSiteParamCount; i < otherParamCount; ++i) {
423                    narrowWeightDelta -= Math.max(Type.OBJECT.getWeight() - otherType[i].getWeight(), 0);
424                }
425            }
426
427            // Prefer function that narrows less
428            if(narrowWeightDelta < 0) {
429                return true;
430            }
431            if(narrowWeightDelta > 0) {
432                return false;
433            }
434
435            // Prefer function that widens less
436            if(widenWeightDelta < 0) {
437                return true;
438            }
439            if(widenWeightDelta > 0) {
440                return false;
441            }
442        }
443
444        // Prefer the function that exactly matches the arity of the call site.
445        if(thisParamCount == callSiteParamCount && otherParamCount != callSiteParamCount) {
446            return true;
447        }
448        if(thisParamCount != callSiteParamCount && otherParamCount == callSiteParamCount) {
449            return false;
450        }
451
452        // Otherwise, neither function matches arity exactly. We also know that at this point, they both can receive
453        // more arguments than call site, otherwise we would've already chosen the one that discards less parameters.
454        // Note that variable arity methods are preferred, as they actually match the call site arity better, since they
455        // really have arbitrary arity.
456        if(thisVarArg) {
457            if(!otherVarArg) {
458                return true; //
459            }
460        } else if(otherVarArg) {
461            return false;
462        }
463
464        // Neither is variable arity; chose the one that has less extra parameters.
465        final int fnParamDelta = thisParamCount - otherParamCount;
466        if(fnParamDelta < 0) {
467            return true;
468        }
469        if(fnParamDelta > 0) {
470            return false;
471        }
472
473        final int callSiteRetWeight = Type.typeFor(callSiteMethodType.returnType()).getWeight();
474        // Delta is negative for narrower return type, positive for wider return type
475        final int thisRetWeightDelta = Type.typeFor(thisMethodType.returnType()).getWeight() - callSiteRetWeight;
476        final int otherRetWeightDelta = Type.typeFor(otherMethodType.returnType()).getWeight() - callSiteRetWeight;
477
478        // Prefer function that returns a less wide return type
479        final int widenRetDelta = Math.max(thisRetWeightDelta, 0) - Math.max(otherRetWeightDelta, 0);
480        if(widenRetDelta < 0) {
481            return true;
482        }
483        if(widenRetDelta > 0) {
484            return false;
485        }
486
487        // Prefer function that returns a less narrow return type
488        final int narrowRetDelta = Math.max(-thisRetWeightDelta, 0) - Math.max(-otherRetWeightDelta, 0);
489        if(narrowRetDelta < 0) {
490            return true;
491        }
492        if(narrowRetDelta > 0) {
493            return false;
494        }
495
496        //if they are equal, pick the specialized one first
497        if (cf.isSpecialization() != other.isSpecialization()) {
498            return cf.isSpecialization(); //always pick the specialized version if we can
499        }
500
501        if (cf.isSpecialization() && other.isSpecialization()) {
502            return cf.getLinkLogicClass() != null; //pick link logic specialization above generic specializations
503        }
504
505        // Signatures are identical
506        throw new AssertionError(thisMethodType + " identically applicable to " + otherMethodType + " for " + callSiteMethodType);
507    }
508
509    private static Type[] toTypeWithoutCallee(final MethodType type, final int thisIndex) {
510        final int paramCount = type.parameterCount();
511        final Type[] t = new Type[paramCount - thisIndex];
512        for(int i = thisIndex; i < paramCount; ++i) {
513            t[i - thisIndex] = Type.typeFor(type.parameterType(i));
514        }
515        return t;
516    }
517
518    private static Type getParamType(final int i, final Type[] paramTypes, final boolean isVarArg) {
519        final int fixParamCount = paramTypes.length - (isVarArg ? 1 : 0);
520        if(i < fixParamCount) {
521            return paramTypes[i];
522        }
523        assert isVarArg;
524        return ((ArrayType)paramTypes[paramTypes.length - 1]).getElementType();
525    }
526
527    boolean matchesCallSite(final MethodType other, final boolean pickVarArg) {
528        if (other.equals(this.callSiteType)) {
529            return true;
530        }
531        final MethodType type  = type();
532        final int fnParamCount = getParamCount(type);
533        final boolean isVarArg = fnParamCount == Integer.MAX_VALUE;
534        if (isVarArg) {
535            return pickVarArg;
536        }
537
538        final int csParamCount = getParamCount(other);
539        final boolean csIsVarArg = csParamCount == Integer.MAX_VALUE;
540        final int thisThisIndex = needsCallee() ? 1 : 0; // Index of "this" parameter in this function's type
541
542        final int fnParamCountNoCallee = fnParamCount - thisThisIndex;
543        final int minParams = Math.min(csParamCount - 1, fnParamCountNoCallee); // callSiteType always has callee, so subtract 1
544        // We must match all incoming parameters, including "this". "this" will usually be Object, but there
545        // are exceptions, e.g. when calling functions with primitive "this" in strict mode or through call/apply.
546        for(int i = 0; i < minParams; ++i) {
547            final Type fnType = Type.typeFor(type.parameterType(i + thisThisIndex));
548            final Type csType = csIsVarArg ? Type.OBJECT : Type.typeFor(other.parameterType(i + 1));
549            if(!fnType.isEquivalentTo(csType)) {
550                return false;
551            }
552        }
553
554        // Must match any undefined parameters to Object type.
555        for(int i = minParams; i < fnParamCountNoCallee; ++i) {
556            if(!Type.typeFor(type.parameterType(i + thisThisIndex)).isEquivalentTo(Type.OBJECT)) {
557                return false;
558            }
559        }
560
561        return true;
562    }
563
564    private static int getParamCount(final MethodType type) {
565        final int paramCount = type.parameterCount();
566        return type.parameterType(paramCount - 1).isArray() ? Integer.MAX_VALUE : paramCount;
567    }
568
569    private boolean canBeDeoptimized() {
570        return optimismInfo != null;
571    }
572
573    private MethodHandle createComposableInvoker(final boolean isConstructor) {
574        final MethodHandle handle = getInvokerOrConstructor(isConstructor);
575
576        // If compiled function is not optimistic, it can't ever change its invoker/constructor, so just return them
577        // directly.
578        if(!canBeDeoptimized()) {
579            return handle;
580        }
581
582        // Otherwise, we need a new level of indirection; need to introduce a mutable call site that can relink itself
583        // to the compiled function's changed target whenever the optimistic assumptions are invalidated.
584        final CallSite cs = new MutableCallSite(handle.type());
585        relinkComposableInvoker(cs, this, isConstructor);
586        return cs.dynamicInvoker();
587    }
588
589    private static class HandleAndAssumptions {
590        final MethodHandle handle;
591        final SwitchPoint assumptions;
592
593        HandleAndAssumptions(final MethodHandle handle, final SwitchPoint assumptions) {
594            this.handle = handle;
595            this.assumptions = assumptions;
596        }
597
598        GuardedInvocation createInvocation() {
599            return new GuardedInvocation(handle, assumptions);
600        }
601    }
602
603    /**
604     * Returns a pair of an invocation created with a passed-in supplier and a non-invalidated switch point for
605     * optimistic assumptions (or null for the switch point if the function can not be deoptimized). While the method
606     * makes a best effort to return a non-invalidated switch point (compensating for possible deoptimizing
607     * recompilation happening on another thread) it is still possible that by the time this method returns the
608     * switchpoint has been invalidated by a {@code RewriteException} triggered on another thread for this function.
609     * This is not a problem, though, as these switch points are always used to produce call sites that fall back to
610     * relinking when they are invalidated, and in this case the execution will end up here again. What this method
611     * basically does is minimize such busy-loop relinking while the function is being recompiled on a different thread.
612     * @param invocationSupplier the supplier that constructs the actual invocation method handle; should use the
613     * {@code CompiledFunction} method itself in some capacity.
614     * @return a tuple object containing the method handle as created by the supplier and an optimistic assumptions
615     * switch point that is guaranteed to not have been invalidated before the call to this method (or null if the
616     * function can't be further deoptimized).
617     */
618    private synchronized HandleAndAssumptions getValidOptimisticInvocation(final Supplier<MethodHandle> invocationSupplier) {
619        for(;;) {
620            final MethodHandle handle = invocationSupplier.get();
621            final SwitchPoint assumptions = canBeDeoptimized() ? optimismInfo.optimisticAssumptions : null;
622            if(assumptions != null && assumptions.hasBeenInvalidated()) {
623                // We can be in a situation where one thread is in the middle of a deoptimizing compilation when we hit
624                // this and thus, it has invalidated the old switch point, but hasn't created the new one yet. Note that
625                // the behavior of invalidating the old switch point before recompilation, and only creating the new one
626                // after recompilation is by design. If we didn't wait here for the recompilation to complete, we would
627                // be busy looping through the fallback path of the invalidated switch point, relinking the call site
628                // again with the same invalidated switch point, invoking the fallback, etc. stealing CPU cycles from
629                // the recompilation task we're dependent on. This can still happen if the switch point gets invalidated
630                // after we grabbed it here, in which case we'll indeed do one busy relink immediately.
631                try {
632                    wait();
633                } catch (final InterruptedException e) {
634                    // Intentionally ignored. There's nothing meaningful we can do if we're interrupted
635                }
636            } else {
637                return new HandleAndAssumptions(handle, assumptions);
638            }
639        }
640    }
641
642    private static void relinkComposableInvoker(final CallSite cs, final CompiledFunction inv, final boolean constructor) {
643        final HandleAndAssumptions handleAndAssumptions = inv.getValidOptimisticInvocation(new Supplier<MethodHandle>() {
644            @Override
645            public MethodHandle get() {
646                return inv.getInvokerOrConstructor(constructor);
647            }
648        });
649        final MethodHandle handle = handleAndAssumptions.handle;
650        final SwitchPoint assumptions = handleAndAssumptions.assumptions;
651        final MethodHandle target;
652        if(assumptions == null) {
653            target = handle;
654        } else {
655            final MethodHandle relink = MethodHandles.insertArguments(RELINK_COMPOSABLE_INVOKER, 0, cs, inv, constructor);
656            target = assumptions.guardWithTest(handle, MethodHandles.foldArguments(cs.dynamicInvoker(), relink));
657        }
658        cs.setTarget(target.asType(cs.type()));
659    }
660
661    private MethodHandle getInvokerOrConstructor(final boolean selectCtor) {
662        return selectCtor ? getConstructor() : createInvokerForPessimisticCaller();
663    }
664
665    /**
666     * Returns a guarded invocation for this function when not invoked as a constructor. The guarded invocation has no
667     * guard but it potentially has an optimistic assumptions switch point. As such, it will probably not be used as a
668     * final guarded invocation, but rather as a holder for an invocation handle and switch point to be decomposed and
669     * reassembled into a different final invocation by the user of this method. Any recompositions should take care to
670     * continue to use the switch point. If that is not possible, use {@link #createComposableInvoker()} instead.
671     * @return a guarded invocation for an ordinary (non-constructor) invocation of this function.
672     */
673    GuardedInvocation createFunctionInvocation(final Class<?> callSiteReturnType, final int callerProgramPoint) {
674        return getValidOptimisticInvocation(new Supplier<MethodHandle>() {
675            @Override
676            public MethodHandle get() {
677                return createInvoker(callSiteReturnType, callerProgramPoint);
678            }
679        }).createInvocation();
680    }
681
682    /**
683     * Returns a guarded invocation for this function when invoked as a constructor. The guarded invocation has no guard
684     * but it potentially has an optimistic assumptions switch point. As such, it will probably not be used as a final
685     * guarded invocation, but rather as a holder for an invocation handle and switch point to be decomposed and
686     * reassembled into a different final invocation by the user of this method. Any recompositions should take care to
687     * continue to use the switch point. If that is not possible, use {@link #createComposableConstructor()} instead.
688     * @return a guarded invocation for invocation of this function as a constructor.
689     */
690    GuardedInvocation createConstructorInvocation() {
691        return getValidOptimisticInvocation(new Supplier<MethodHandle>() {
692            @Override
693            public MethodHandle get() {
694                return getConstructor();
695            }
696        }).createInvocation();
697    }
698
699    private MethodHandle createInvoker(final Class<?> callSiteReturnType, final int callerProgramPoint) {
700        final boolean isOptimistic = canBeDeoptimized();
701        MethodHandle handleRewriteException = isOptimistic ? createRewriteExceptionHandler() : null;
702
703        MethodHandle inv = invoker;
704        if(isValid(callerProgramPoint)) {
705            inv = OptimisticReturnFilters.filterOptimisticReturnValue(inv, callSiteReturnType, callerProgramPoint);
706            inv = changeReturnType(inv, callSiteReturnType);
707            if(callSiteReturnType.isPrimitive() && handleRewriteException != null) {
708                // because handleRewriteException always returns Object
709                handleRewriteException = OptimisticReturnFilters.filterOptimisticReturnValue(handleRewriteException,
710                        callSiteReturnType, callerProgramPoint);
711            }
712        } else if(isOptimistic) {
713            // Required so that rewrite exception has the same return type. It'd be okay to do it even if we weren't
714            // optimistic, but it isn't necessary as the linker upstream will eventually convert the return type.
715            inv = changeReturnType(inv, callSiteReturnType);
716        }
717
718        if(isOptimistic) {
719            assert handleRewriteException != null;
720            final MethodHandle typedHandleRewriteException = changeReturnType(handleRewriteException, inv.type().returnType());
721            return MH.catchException(inv, RewriteException.class, typedHandleRewriteException);
722        }
723        return inv;
724    }
725
726    private MethodHandle createRewriteExceptionHandler() {
727        return MH.foldArguments(RESTOF_INVOKER, MH.insertArguments(HANDLE_REWRITE_EXCEPTION, 0, this, optimismInfo));
728    }
729
730    private static MethodHandle changeReturnType(final MethodHandle mh, final Class<?> newReturnType) {
731        return Bootstrap.getLinkerServices().asType(mh, mh.type().changeReturnType(newReturnType));
732    }
733
734    @SuppressWarnings("unused")
735    private static MethodHandle handleRewriteException(final CompiledFunction function, final OptimismInfo oldOptimismInfo, final RewriteException re) {
736        return function.handleRewriteException(oldOptimismInfo, re);
737    }
738
739    /**
740     * Debug function for printing out all invalidated program points and their
741     * invalidation mapping to next type
742     * @param ipp
743     * @return string describing the ipp map
744     */
745    private static List<String> toStringInvalidations(final Map<Integer, Type> ipp) {
746        if (ipp == null) {
747            return Collections.emptyList();
748        }
749
750        final List<String> list = new ArrayList<>();
751
752        for (final Iterator<Map.Entry<Integer, Type>> iter = ipp.entrySet().iterator(); iter.hasNext(); ) {
753            final Map.Entry<Integer, Type> entry = iter.next();
754            final char bct = entry.getValue().getBytecodeStackType();
755            final String type;
756
757            switch (entry.getValue().getBytecodeStackType()) {
758            case 'A':
759                type = "object";
760                break;
761            case 'I':
762                type = "int";
763                break;
764            case 'J':
765                type = "long";
766                break;
767            case 'D':
768                type = "double";
769                break;
770            default:
771                type = String.valueOf(bct);
772                break;
773            }
774
775            final StringBuilder sb = new StringBuilder();
776            sb.append('[').
777                    append("program point: ").
778                    append(entry.getKey()).
779                    append(" -> ").
780                    append(type).
781                    append(']');
782
783            list.add(sb.toString());
784        }
785
786        return list;
787    }
788
789    private void logRecompile(final String reason, final FunctionNode fn, final MethodType type, final Map<Integer, Type> ipp) {
790        if (log.isEnabled()) {
791            log.info(reason, DebugLogger.quote(fn.getName()), " signature: ", type);
792            log.indent();
793            for (final String str : toStringInvalidations(ipp)) {
794                log.fine(str);
795            }
796            log.unindent();
797        }
798    }
799
800    /**
801     * Handles a {@link RewriteException} raised during the execution of this function by recompiling (if needed) the
802     * function with an optimistic assumption invalidated at the program point indicated by the exception, and then
803     * executing a rest-of method to complete the execution with the deoptimized version.
804     * @param oldOptInfo the optimism info of this function. We must store it explicitly as a bound argument in the
805     * method handle, otherwise it could be null for handling a rewrite exception in an outer invocation of a recursive
806     * function when recursive invocations of the function have completely deoptimized it.
807     * @param re the rewrite exception that was raised
808     * @return the method handle for the rest-of method, for folding composition.
809     */
810    private synchronized MethodHandle handleRewriteException(final OptimismInfo oldOptInfo, final RewriteException re) {
811        if (log.isEnabled()) {
812            log.info(
813                    new RecompilationEvent(
814                        Level.INFO,
815                        re,
816                        re.getReturnValueNonDestructive()),
817                    "caught RewriteException ",
818                    re.getMessageShort());
819            log.indent();
820        }
821
822        final MethodType type = type();
823
824        // Compiler needs a call site type as its input, which always has a callee parameter, so we must add it if
825        // this function doesn't have a callee parameter.
826        final MethodType ct = type.parameterType(0) == ScriptFunction.class ?
827                type :
828                type.insertParameterTypes(0, ScriptFunction.class);
829        final OptimismInfo currentOptInfo = optimismInfo;
830        final boolean shouldRecompile = currentOptInfo != null && currentOptInfo.requestRecompile(re);
831
832        // Effective optimism info, for subsequent use. We'll normally try to use the current (latest) one, but if it
833        // isn't available, we'll use the old one bound into the call site.
834        final OptimismInfo effectiveOptInfo = currentOptInfo != null ? currentOptInfo : oldOptInfo;
835        FunctionNode fn = effectiveOptInfo.reparse();
836        final boolean cached = fn.isCached();
837        final Compiler compiler = effectiveOptInfo.getCompiler(fn, ct, re); //set to non rest-of
838
839        if (!shouldRecompile) {
840            // It didn't necessarily recompile, e.g. for an outer invocation of a recursive function if we already
841            // recompiled a deoptimized version for an inner invocation.
842            // We still need to do the rest of from the beginning
843            logRecompile("Rest-of compilation [STANDALONE] ", fn, ct, effectiveOptInfo.invalidatedProgramPoints);
844            return restOfHandle(effectiveOptInfo, compiler.compile(fn, cached ? CompilationPhases.COMPILE_CACHED_RESTOF : CompilationPhases.COMPILE_ALL_RESTOF), currentOptInfo != null);
845        }
846
847        logRecompile("Deoptimizing recompilation (up to bytecode) ", fn, ct, effectiveOptInfo.invalidatedProgramPoints);
848        fn = compiler.compile(fn, cached ? CompilationPhases.RECOMPILE_CACHED_UPTO_BYTECODE : CompilationPhases.COMPILE_UPTO_BYTECODE);
849        log.fine("Reusable IR generated");
850
851        // compile the rest of the function, and install it
852        log.info("Generating and installing bytecode from reusable IR...");
853        logRecompile("Rest-of compilation [CODE PIPELINE REUSE] ", fn, ct, effectiveOptInfo.invalidatedProgramPoints);
854        final FunctionNode normalFn = compiler.compile(fn, CompilationPhases.GENERATE_BYTECODE_AND_INSTALL);
855
856        if (effectiveOptInfo.data.usePersistentCodeCache()) {
857            final RecompilableScriptFunctionData data = effectiveOptInfo.data;
858            final int functionNodeId = data.getFunctionNodeId();
859            final TypeMap typeMap = data.typeMap(ct);
860            final Type[] paramTypes = typeMap == null ? null : typeMap.getParameterTypes(functionNodeId);
861            final String cacheKey = CodeStore.getCacheKey(functionNodeId, paramTypes);
862            compiler.persistClassInfo(cacheKey, normalFn);
863        }
864
865        final boolean canBeDeoptimized = normalFn.canBeDeoptimized();
866
867        if (log.isEnabled()) {
868            log.unindent();
869            log.info("Done.");
870
871            log.info("Recompiled '", fn.getName(), "' (", Debug.id(this), ") ", canBeDeoptimized ? "can still be deoptimized." : " is completely deoptimized.");
872            log.finest("Looking up invoker...");
873        }
874
875        final MethodHandle newInvoker = effectiveOptInfo.data.lookup(fn);
876        invoker     = newInvoker.asType(type.changeReturnType(newInvoker.type().returnType()));
877        constructor = null; // Will be regenerated when needed
878
879        log.info("Done: ", invoker);
880        final MethodHandle restOf = restOfHandle(effectiveOptInfo, compiler.compile(fn, CompilationPhases.GENERATE_BYTECODE_AND_INSTALL_RESTOF), canBeDeoptimized);
881
882        // Note that we only adjust the switch point after we set the invoker/constructor. This is important.
883        if (canBeDeoptimized) {
884            effectiveOptInfo.newOptimisticAssumptions(); // Otherwise, set a new switch point.
885        } else {
886            optimismInfo = null; // If we got to a point where we no longer have optimistic assumptions, let the optimism info go.
887        }
888        notifyAll();
889
890        return restOf;
891    }
892
893    private MethodHandle restOfHandle(final OptimismInfo info, final FunctionNode restOfFunction, final boolean canBeDeoptimized) {
894        assert info != null;
895        assert restOfFunction.getCompileUnit().getUnitClassName().contains("restOf");
896        final MethodHandle restOf =
897                changeReturnType(
898                        info.data.lookupCodeMethod(
899                                restOfFunction.getCompileUnit().getCode(),
900                                MH.type(restOfFunction.getReturnType().getTypeClass(),
901                                        RewriteException.class)),
902                        Object.class);
903
904        if (!canBeDeoptimized) {
905            return restOf;
906        }
907
908        // If rest-of is itself optimistic, we must make sure that we can repeat a deoptimization if it, too hits an exception.
909        return MH.catchException(restOf, RewriteException.class, createRewriteExceptionHandler());
910
911    }
912
913    private static class OptimismInfo {
914        // TODO: this is pointing to its owning ScriptFunctionData. Re-evaluate if that's okay.
915        private final RecompilableScriptFunctionData data;
916        private final Map<Integer, Type> invalidatedProgramPoints;
917        private SwitchPoint optimisticAssumptions;
918        private final DebugLogger log;
919
920        OptimismInfo(final RecompilableScriptFunctionData data, final Map<Integer, Type> invalidatedProgramPoints) {
921            this.data = data;
922            this.log  = data.getLogger();
923            this.invalidatedProgramPoints = invalidatedProgramPoints == null ? new TreeMap<>() : invalidatedProgramPoints;
924            newOptimisticAssumptions();
925        }
926
927        private void newOptimisticAssumptions() {
928            optimisticAssumptions = new SwitchPoint();
929        }
930
931        boolean requestRecompile(final RewriteException e) {
932            final Type retType            = e.getReturnType();
933            final Type previousFailedType = invalidatedProgramPoints.put(e.getProgramPoint(), retType);
934
935            if (previousFailedType != null && !previousFailedType.narrowerThan(retType)) {
936                final StackTraceElement[] stack      = e.getStackTrace();
937                final String              functionId = stack.length == 0 ?
938                        data.getName() :
939                        stack[0].getClassName() + "." + stack[0].getMethodName();
940
941                log.info("RewriteException for an already invalidated program point ", e.getProgramPoint(), " in ", functionId, ". This is okay for a recursive function invocation, but a bug otherwise.");
942
943                return false;
944            }
945
946            SwitchPoint.invalidateAll(new SwitchPoint[] { optimisticAssumptions });
947
948            return true;
949        }
950
951        Compiler getCompiler(final FunctionNode fn, final MethodType actualCallSiteType, final RewriteException e) {
952            return data.getCompiler(fn, actualCallSiteType, e.getRuntimeScope(), invalidatedProgramPoints, getEntryPoints(e));
953        }
954
955        private static int[] getEntryPoints(final RewriteException e) {
956            final int[] prevEntryPoints = e.getPreviousContinuationEntryPoints();
957            final int[] entryPoints;
958            if (prevEntryPoints == null) {
959                entryPoints = new int[1];
960            } else {
961                final int l = prevEntryPoints.length;
962                entryPoints = new int[l + 1];
963                System.arraycopy(prevEntryPoints, 0, entryPoints, 1, l);
964            }
965            entryPoints[0] = e.getProgramPoint();
966            return entryPoints;
967        }
968
969        FunctionNode reparse() {
970            return data.reparse();
971        }
972    }
973
974    @SuppressWarnings("unused")
975    private static Object newFilter(final Object result, final Object allocation) {
976        return (result instanceof ScriptObject || !JSType.isPrimitive(result))? result : allocation;
977    }
978
979    private static MethodHandle findOwnMH(final String name, final Class<?> rtype, final Class<?>... types) {
980        return MH.findStatic(MethodHandles.lookup(), CompiledFunction.class, name, MH.type(rtype, types));
981    }
982}
983