1/*	$OpenBSD: if_nge.c,v 1.99 2024/05/24 06:02:56 jsg Exp $	*/
2/*
3 * Copyright (c) 2001 Wind River Systems
4 * Copyright (c) 1997, 1998, 1999, 2000, 2001
5 *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * $FreeBSD: if_nge.c,v 1.35 2002/08/08 18:33:28 ambrisko Exp $
35 */
36
37/*
38 * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39 * for FreeBSD. Datasheets are available from:
40 *
41 * http://www.national.com/ds/DP/DP83820.pdf
42 * http://www.national.com/ds/DP/DP83821.pdf
43 *
44 * These chips are used on several low cost gigabit ethernet NICs
45 * sold by D-Link, Addtron, SMC and Asante. Both parts are
46 * virtually the same, except the 83820 is a 64-bit/32-bit part,
47 * while the 83821 is 32-bit only.
48 *
49 * Many cards also use National gigE transceivers, such as the
50 * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51 * contains a full register description that applies to all of these
52 * components:
53 *
54 * http://www.national.com/ds/DP/DP83861.pdf
55 *
56 * Written by Bill Paul <wpaul@bsdi.com>
57 * BSDi Open Source Solutions
58 */
59
60/*
61 * The NatSemi DP83820 and 83821 controllers are enhanced versions
62 * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63 * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64 * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65 * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66 * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67 * matching buffers, one perfect address filter buffer and interrupt
68 * moderation. The 83820 supports both 64-bit and 32-bit addressing
69 * and data transfers: the 64-bit support can be toggled on or off
70 * via software. This affects the size of certain fields in the DMA
71 * descriptors.
72 *
73 * There are two bugs/misfeatures in the 83820/83821 that I have
74 * discovered so far:
75 *
76 * - Receive buffers must be aligned on 64-bit boundaries, which means
77 *   you must resort to copying data in order to fix up the payload
78 *   alignment.
79 *
80 * - In order to transmit jumbo frames larger than 8170 bytes, you have
81 *   to turn off transmit checksum offloading, because the chip can't
82 *   compute the checksum on an outgoing frame unless it fits entirely
83 *   within the TX FIFO, which is only 8192 bytes in size. If you have
84 *   TX checksum offload enabled and you transmit attempt to transmit a
85 *   frame larger than 8170 bytes, the transmitter will wedge.
86 *
87 * To work around the latter problem, TX checksum offload is disabled
88 * if the user selects an MTU larger than 8152 (8170 - 18).
89 */
90
91#include "bpfilter.h"
92#include "vlan.h"
93
94#include <sys/param.h>
95#include <sys/systm.h>
96#include <sys/sockio.h>
97#include <sys/mbuf.h>
98#include <sys/device.h>
99
100#include <net/if.h>
101#include <net/if_media.h>
102
103#include <netinet/in.h>
104#include <netinet/if_ether.h>
105
106#if NBPFILTER > 0
107#include <net/bpf.h>
108#endif
109
110#include <uvm/uvm_extern.h>              /* for vtophys */
111#define	VTOPHYS(v)	vtophys((vaddr_t)(v))
112
113#include <dev/pci/pcireg.h>
114#include <dev/pci/pcivar.h>
115#include <dev/pci/pcidevs.h>
116
117#include <dev/mii/miivar.h>
118
119#define NGE_USEIOSPACE
120
121#include <dev/pci/if_ngereg.h>
122
123int nge_probe(struct device *, void *, void *);
124void nge_attach(struct device *, struct device *, void *);
125
126int nge_newbuf(struct nge_softc *, struct nge_desc *,
127			     struct mbuf *);
128int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *);
129void nge_rxeof(struct nge_softc *);
130void nge_txeof(struct nge_softc *);
131int nge_intr(void *);
132void nge_tick(void *);
133void nge_start(struct ifnet *);
134int nge_ioctl(struct ifnet *, u_long, caddr_t);
135void nge_init(void *);
136void nge_stop(struct nge_softc *);
137void nge_watchdog(struct ifnet *);
138int nge_ifmedia_mii_upd(struct ifnet *);
139void nge_ifmedia_mii_sts(struct ifnet *, struct ifmediareq *);
140int nge_ifmedia_tbi_upd(struct ifnet *);
141void nge_ifmedia_tbi_sts(struct ifnet *, struct ifmediareq *);
142
143void nge_delay(struct nge_softc *);
144void nge_eeprom_idle(struct nge_softc *);
145void nge_eeprom_putbyte(struct nge_softc *, int);
146void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *);
147void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int);
148
149void nge_mii_sync(struct nge_softc *);
150void nge_mii_send(struct nge_softc *, u_int32_t, int);
151int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
152int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
153
154int nge_miibus_readreg(struct device *, int, int);
155void nge_miibus_writereg(struct device *, int, int, int);
156void nge_miibus_statchg(struct device *);
157
158void nge_setmulti(struct nge_softc *);
159void nge_reset(struct nge_softc *);
160int nge_list_rx_init(struct nge_softc *);
161int nge_list_tx_init(struct nge_softc *);
162
163#ifdef NGE_USEIOSPACE
164#define NGE_RES			SYS_RES_IOPORT
165#define NGE_RID			NGE_PCI_LOIO
166#else
167#define NGE_RES			SYS_RES_MEMORY
168#define NGE_RID			NGE_PCI_LOMEM
169#endif
170
171#ifdef NGE_DEBUG
172#define DPRINTF(x)	if (ngedebug) printf x
173#define DPRINTFN(n,x)	if (ngedebug >= (n)) printf x
174int	ngedebug = 0;
175#else
176#define DPRINTF(x)
177#define DPRINTFN(n,x)
178#endif
179
180#define NGE_SETBIT(sc, reg, x)				\
181	CSR_WRITE_4(sc, reg,				\
182		CSR_READ_4(sc, reg) | (x))
183
184#define NGE_CLRBIT(sc, reg, x)				\
185	CSR_WRITE_4(sc, reg,				\
186		CSR_READ_4(sc, reg) & ~(x))
187
188#define SIO_SET(x)					\
189	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
190
191#define SIO_CLR(x)					\
192	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
193
194void
195nge_delay(struct nge_softc *sc)
196{
197	int			idx;
198
199	for (idx = (300 / 33) + 1; idx > 0; idx--)
200		CSR_READ_4(sc, NGE_CSR);
201}
202
203void
204nge_eeprom_idle(struct nge_softc *sc)
205{
206	int		i;
207
208	SIO_SET(NGE_MEAR_EE_CSEL);
209	nge_delay(sc);
210	SIO_SET(NGE_MEAR_EE_CLK);
211	nge_delay(sc);
212
213	for (i = 0; i < 25; i++) {
214		SIO_CLR(NGE_MEAR_EE_CLK);
215		nge_delay(sc);
216		SIO_SET(NGE_MEAR_EE_CLK);
217		nge_delay(sc);
218	}
219
220	SIO_CLR(NGE_MEAR_EE_CLK);
221	nge_delay(sc);
222	SIO_CLR(NGE_MEAR_EE_CSEL);
223	nge_delay(sc);
224	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
225}
226
227/*
228 * Send a read command and address to the EEPROM, check for ACK.
229 */
230void
231nge_eeprom_putbyte(struct nge_softc *sc, int addr)
232{
233	int			d, i;
234
235	d = addr | NGE_EECMD_READ;
236
237	/*
238	 * Feed in each bit and strobe the clock.
239	 */
240	for (i = 0x400; i; i >>= 1) {
241		if (d & i) {
242			SIO_SET(NGE_MEAR_EE_DIN);
243		} else {
244			SIO_CLR(NGE_MEAR_EE_DIN);
245		}
246		nge_delay(sc);
247		SIO_SET(NGE_MEAR_EE_CLK);
248		nge_delay(sc);
249		SIO_CLR(NGE_MEAR_EE_CLK);
250		nge_delay(sc);
251	}
252}
253
254/*
255 * Read a word of data stored in the EEPROM at address 'addr.'
256 */
257void
258nge_eeprom_getword(struct nge_softc *sc, int addr, u_int16_t *dest)
259{
260	int			i;
261	u_int16_t		word = 0;
262
263	/* Force EEPROM to idle state. */
264	nge_eeprom_idle(sc);
265
266	/* Enter EEPROM access mode. */
267	nge_delay(sc);
268	SIO_CLR(NGE_MEAR_EE_CLK);
269	nge_delay(sc);
270	SIO_SET(NGE_MEAR_EE_CSEL);
271	nge_delay(sc);
272
273	/*
274	 * Send address of word we want to read.
275	 */
276	nge_eeprom_putbyte(sc, addr);
277
278	/*
279	 * Start reading bits from EEPROM.
280	 */
281	for (i = 0x8000; i; i >>= 1) {
282		SIO_SET(NGE_MEAR_EE_CLK);
283		nge_delay(sc);
284		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
285			word |= i;
286		nge_delay(sc);
287		SIO_CLR(NGE_MEAR_EE_CLK);
288		nge_delay(sc);
289	}
290
291	/* Turn off EEPROM access mode. */
292	nge_eeprom_idle(sc);
293
294	*dest = word;
295}
296
297/*
298 * Read a sequence of words from the EEPROM.
299 */
300void
301nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt, int swap)
302{
303	int			i;
304	u_int16_t		word = 0, *ptr;
305
306	for (i = 0; i < cnt; i++) {
307		nge_eeprom_getword(sc, off + i, &word);
308		ptr = (u_int16_t *)(dest + (i * 2));
309		if (swap)
310			*ptr = ntohs(word);
311		else
312			*ptr = word;
313	}
314}
315
316/*
317 * Sync the PHYs by setting data bit and strobing the clock 32 times.
318 */
319void
320nge_mii_sync(struct nge_softc *sc)
321{
322	int			i;
323
324	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
325
326	for (i = 0; i < 32; i++) {
327		SIO_SET(NGE_MEAR_MII_CLK);
328		DELAY(1);
329		SIO_CLR(NGE_MEAR_MII_CLK);
330		DELAY(1);
331	}
332}
333
334/*
335 * Clock a series of bits through the MII.
336 */
337void
338nge_mii_send(struct nge_softc *sc, u_int32_t bits, int cnt)
339{
340	int			i;
341
342	SIO_CLR(NGE_MEAR_MII_CLK);
343
344	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
345                if (bits & i) {
346			SIO_SET(NGE_MEAR_MII_DATA);
347                } else {
348			SIO_CLR(NGE_MEAR_MII_DATA);
349                }
350		DELAY(1);
351		SIO_CLR(NGE_MEAR_MII_CLK);
352		DELAY(1);
353		SIO_SET(NGE_MEAR_MII_CLK);
354	}
355}
356
357/*
358 * Read an PHY register through the MII.
359 */
360int
361nge_mii_readreg(struct nge_softc *sc, struct nge_mii_frame *frame)
362{
363	int			i, ack, s;
364
365	s = splnet();
366
367	/*
368	 * Set up frame for RX.
369	 */
370	frame->mii_stdelim = NGE_MII_STARTDELIM;
371	frame->mii_opcode = NGE_MII_READOP;
372	frame->mii_turnaround = 0;
373	frame->mii_data = 0;
374
375	CSR_WRITE_4(sc, NGE_MEAR, 0);
376
377	/*
378	 * Turn on data xmit.
379	 */
380	SIO_SET(NGE_MEAR_MII_DIR);
381
382	nge_mii_sync(sc);
383
384	/*
385	 * Send command/address info.
386	 */
387	nge_mii_send(sc, frame->mii_stdelim, 2);
388	nge_mii_send(sc, frame->mii_opcode, 2);
389	nge_mii_send(sc, frame->mii_phyaddr, 5);
390	nge_mii_send(sc, frame->mii_regaddr, 5);
391
392	/* Idle bit */
393	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
394	DELAY(1);
395	SIO_SET(NGE_MEAR_MII_CLK);
396	DELAY(1);
397
398	/* Turn off xmit. */
399	SIO_CLR(NGE_MEAR_MII_DIR);
400	/* Check for ack */
401	SIO_CLR(NGE_MEAR_MII_CLK);
402	DELAY(1);
403	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
404	SIO_SET(NGE_MEAR_MII_CLK);
405	DELAY(1);
406
407	/*
408	 * Now try reading data bits. If the ack failed, we still
409	 * need to clock through 16 cycles to keep the PHY(s) in sync.
410	 */
411	if (ack) {
412		for(i = 0; i < 16; i++) {
413			SIO_CLR(NGE_MEAR_MII_CLK);
414			DELAY(1);
415			SIO_SET(NGE_MEAR_MII_CLK);
416			DELAY(1);
417		}
418		goto fail;
419	}
420
421	for (i = 0x8000; i; i >>= 1) {
422		SIO_CLR(NGE_MEAR_MII_CLK);
423		DELAY(1);
424		if (!ack) {
425			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
426				frame->mii_data |= i;
427			DELAY(1);
428		}
429		SIO_SET(NGE_MEAR_MII_CLK);
430		DELAY(1);
431	}
432
433fail:
434
435	SIO_CLR(NGE_MEAR_MII_CLK);
436	DELAY(1);
437	SIO_SET(NGE_MEAR_MII_CLK);
438	DELAY(1);
439
440	splx(s);
441
442	if (ack)
443		return(1);
444	return(0);
445}
446
447/*
448 * Write to a PHY register through the MII.
449 */
450int
451nge_mii_writereg(struct nge_softc *sc, struct nge_mii_frame *frame)
452{
453	int			s;
454
455	s = splnet();
456	/*
457	 * Set up frame for TX.
458	 */
459
460	frame->mii_stdelim = NGE_MII_STARTDELIM;
461	frame->mii_opcode = NGE_MII_WRITEOP;
462	frame->mii_turnaround = NGE_MII_TURNAROUND;
463
464	/*
465	 * Turn on data output.
466	 */
467	SIO_SET(NGE_MEAR_MII_DIR);
468
469	nge_mii_sync(sc);
470
471	nge_mii_send(sc, frame->mii_stdelim, 2);
472	nge_mii_send(sc, frame->mii_opcode, 2);
473	nge_mii_send(sc, frame->mii_phyaddr, 5);
474	nge_mii_send(sc, frame->mii_regaddr, 5);
475	nge_mii_send(sc, frame->mii_turnaround, 2);
476	nge_mii_send(sc, frame->mii_data, 16);
477
478	/* Idle bit. */
479	SIO_SET(NGE_MEAR_MII_CLK);
480	DELAY(1);
481	SIO_CLR(NGE_MEAR_MII_CLK);
482	DELAY(1);
483
484	/*
485	 * Turn off xmit.
486	 */
487	SIO_CLR(NGE_MEAR_MII_DIR);
488
489	splx(s);
490
491	return(0);
492}
493
494int
495nge_miibus_readreg(struct device *dev, int phy, int reg)
496{
497	struct nge_softc	*sc = (struct nge_softc *)dev;
498	struct nge_mii_frame	frame;
499
500	DPRINTFN(9, ("%s: nge_miibus_readreg\n", sc->sc_dv.dv_xname));
501
502	bzero(&frame, sizeof(frame));
503
504	frame.mii_phyaddr = phy;
505	frame.mii_regaddr = reg;
506	nge_mii_readreg(sc, &frame);
507
508	return(frame.mii_data);
509}
510
511void
512nge_miibus_writereg(struct device *dev, int phy, int reg, int data)
513{
514	struct nge_softc	*sc = (struct nge_softc *)dev;
515	struct nge_mii_frame	frame;
516
517
518	DPRINTFN(9, ("%s: nge_miibus_writereg\n", sc->sc_dv.dv_xname));
519
520	bzero(&frame, sizeof(frame));
521
522	frame.mii_phyaddr = phy;
523	frame.mii_regaddr = reg;
524	frame.mii_data = data;
525	nge_mii_writereg(sc, &frame);
526}
527
528void
529nge_miibus_statchg(struct device *dev)
530{
531	struct nge_softc	*sc = (struct nge_softc *)dev;
532	struct mii_data		*mii = &sc->nge_mii;
533	u_int32_t		txcfg, rxcfg;
534
535	txcfg = CSR_READ_4(sc, NGE_TX_CFG);
536	rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
537
538	DPRINTFN(4, ("%s: nge_miibus_statchg txcfg=%#x, rxcfg=%#x\n",
539		     sc->sc_dv.dv_xname, txcfg, rxcfg));
540
541	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
542		txcfg |= (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
543		rxcfg |= (NGE_RXCFG_RX_FDX);
544	} else {
545		txcfg &= ~(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
546		rxcfg &= ~(NGE_RXCFG_RX_FDX);
547	}
548
549	txcfg |= NGE_TXCFG_AUTOPAD;
550
551	CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
552	CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
553
554	/* If we have a 1000Mbps link, set the mode_1000 bit. */
555	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
556		NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
557	else
558		NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
559}
560
561void
562nge_setmulti(struct nge_softc *sc)
563{
564	struct arpcom		*ac = &sc->arpcom;
565	struct ifnet		*ifp = &ac->ac_if;
566	struct ether_multi      *enm;
567	struct ether_multistep  step;
568	u_int32_t		h = 0, i, filtsave;
569	int			bit, index;
570
571	if (ac->ac_multirangecnt > 0)
572		ifp->if_flags |= IFF_ALLMULTI;
573
574	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
575		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
576		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
577		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
578		return;
579	}
580
581	/*
582	 * We have to explicitly enable the multicast hash table
583	 * on the NatSemi chip if we want to use it, which we do.
584	 * We also have to tell it that we don't want to use the
585	 * hash table for matching unicast addresses.
586	 */
587	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
588	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
589	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
590
591	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
592
593	/* first, zot all the existing hash bits */
594	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
595		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
596		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
597	}
598
599	/*
600	 * From the 11 bits returned by the crc routine, the top 7
601	 * bits represent the 16-bit word in the mcast hash table
602	 * that needs to be updated, and the lower 4 bits represent
603	 * which bit within that byte needs to be set.
604	 */
605	ETHER_FIRST_MULTI(step, ac, enm);
606	while (enm != NULL) {
607		h = (ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 21) &
608		    0x00000FFF;
609		index = (h >> 4) & 0x7F;
610		bit = h & 0xF;
611		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
612		    NGE_FILTADDR_MCAST_LO + (index * 2));
613		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
614		ETHER_NEXT_MULTI(step, enm);
615	}
616
617	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
618}
619
620void
621nge_reset(struct nge_softc *sc)
622{
623	int			i;
624
625	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
626
627	for (i = 0; i < NGE_TIMEOUT; i++) {
628		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
629			break;
630	}
631
632	if (i == NGE_TIMEOUT)
633		printf("%s: reset never completed\n", sc->sc_dv.dv_xname);
634
635	/* Wait a little while for the chip to get its brains in order. */
636	DELAY(1000);
637
638	/*
639	 * If this is a NetSemi chip, make sure to clear
640	 * PME mode.
641	 */
642	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
643	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
644}
645
646/*
647 * Probe for an NatSemi chip. Check the PCI vendor and device
648 * IDs against our list and return a device name if we find a match.
649 */
650int
651nge_probe(struct device *parent, void *match, void *aux)
652{
653	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
654
655	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
656	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_DP83820)
657		return (1);
658
659	return (0);
660}
661
662/*
663 * Attach the interface. Allocate softc structures, do ifmedia
664 * setup and ethernet/BPF attach.
665 */
666void
667nge_attach(struct device *parent, struct device *self, void *aux)
668{
669	struct nge_softc	*sc = (struct nge_softc *)self;
670	struct pci_attach_args	*pa = aux;
671	pci_chipset_tag_t	pc = pa->pa_pc;
672	pci_intr_handle_t	ih;
673	const char		*intrstr = NULL;
674	bus_size_t		size;
675	bus_dma_segment_t	seg;
676	bus_dmamap_t		dmamap;
677	int			rseg;
678	u_char			eaddr[ETHER_ADDR_LEN];
679#ifndef NGE_USEIOSPACE
680	pcireg_t		memtype;
681#endif
682	struct ifnet		*ifp;
683	caddr_t			kva;
684
685	pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
686
687	/*
688	 * Map control/status registers.
689	 */
690	DPRINTFN(5, ("%s: map control/status regs\n", sc->sc_dv.dv_xname));
691
692#ifdef NGE_USEIOSPACE
693	DPRINTFN(5, ("%s: pci_mapreg_map\n", sc->sc_dv.dv_xname));
694	if (pci_mapreg_map(pa, NGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
695	    &sc->nge_btag, &sc->nge_bhandle, NULL, &size, 0)) {
696		printf(": can't map i/o space\n");
697		return;
698	}
699#else
700	DPRINTFN(5, ("%s: pci_mapreg_map\n", sc->sc_dv.dv_xname));
701	memtype = pci_mapreg_type(pc, pa->pa_tag, NGE_PCI_LOMEM);
702	if (pci_mapreg_map(pa, NGE_PCI_LOMEM, memtype, 0, &sc->nge_btag,
703	    &sc->nge_bhandle, NULL, &size, 0)) {
704		printf(": can't map mem space\n");
705		return;
706	}
707#endif
708
709	/* Disable all interrupts */
710	CSR_WRITE_4(sc, NGE_IER, 0);
711
712	DPRINTFN(5, ("%s: pci_intr_map\n", sc->sc_dv.dv_xname));
713	if (pci_intr_map(pa, &ih)) {
714		printf(": couldn't map interrupt\n");
715		goto fail_1;
716	}
717
718	DPRINTFN(5, ("%s: pci_intr_string\n", sc->sc_dv.dv_xname));
719	intrstr = pci_intr_string(pc, ih);
720	DPRINTFN(5, ("%s: pci_intr_establish\n", sc->sc_dv.dv_xname));
721	sc->nge_intrhand = pci_intr_establish(pc, ih, IPL_NET, nge_intr, sc,
722					      sc->sc_dv.dv_xname);
723	if (sc->nge_intrhand == NULL) {
724		printf(": couldn't establish interrupt");
725		if (intrstr != NULL)
726			printf(" at %s", intrstr);
727		printf("\n");
728		goto fail_1;
729	}
730	printf(": %s", intrstr);
731
732	/* Reset the adapter. */
733	DPRINTFN(5, ("%s: nge_reset\n", sc->sc_dv.dv_xname));
734	nge_reset(sc);
735
736	/*
737	 * Get station address from the EEPROM.
738	 */
739	DPRINTFN(5, ("%s: nge_read_eeprom\n", sc->sc_dv.dv_xname));
740	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
741	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
742	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
743
744	/*
745	 * A NatSemi chip was detected. Inform the world.
746	 */
747	printf(", address %s\n", ether_sprintf(eaddr));
748
749	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
750
751	sc->sc_dmatag = pa->pa_dmat;
752	DPRINTFN(5, ("%s: bus_dmamem_alloc\n", sc->sc_dv.dv_xname));
753	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct nge_list_data),
754			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT |
755			     BUS_DMA_ZERO)) {
756		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
757		goto fail_2;
758	}
759	DPRINTFN(5, ("%s: bus_dmamem_map\n", sc->sc_dv.dv_xname));
760	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
761			   sizeof(struct nge_list_data), &kva,
762			   BUS_DMA_NOWAIT)) {
763		printf("%s: can't map dma buffers (%zd bytes)\n",
764		       sc->sc_dv.dv_xname, sizeof(struct nge_list_data));
765		goto fail_3;
766	}
767	DPRINTFN(5, ("%s: bus_dmamap_create\n", sc->sc_dv.dv_xname));
768	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct nge_list_data), 1,
769			      sizeof(struct nge_list_data), 0,
770			      BUS_DMA_NOWAIT, &dmamap)) {
771		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
772		goto fail_4;
773	}
774	DPRINTFN(5, ("%s: bus_dmamap_load\n", sc->sc_dv.dv_xname));
775	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva,
776			    sizeof(struct nge_list_data), NULL,
777			    BUS_DMA_NOWAIT)) {
778		goto fail_5;
779	}
780
781	DPRINTFN(5, ("%s: bzero\n", sc->sc_dv.dv_xname));
782	sc->nge_ldata = (struct nge_list_data *)kva;
783
784	ifp = &sc->arpcom.ac_if;
785	ifp->if_softc = sc;
786	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
787	ifp->if_ioctl = nge_ioctl;
788	ifp->if_start = nge_start;
789	ifp->if_watchdog = nge_watchdog;
790	ifp->if_hardmtu = NGE_JUMBO_MTU;
791	ifq_init_maxlen(&ifp->if_snd, NGE_TX_LIST_CNT - 1);
792	DPRINTFN(5, ("%s: bcopy\n", sc->sc_dv.dv_xname));
793	bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ);
794
795	ifp->if_capabilities = IFCAP_VLAN_MTU;
796
797#if NVLAN > 0
798	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
799#endif
800
801	/*
802	 * Do MII setup.
803	 */
804	DPRINTFN(5, ("%s: mii setup\n", sc->sc_dv.dv_xname));
805	if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
806		DPRINTFN(5, ("%s: TBI mode\n", sc->sc_dv.dv_xname));
807		sc->nge_tbi = 1;
808
809		ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_tbi_upd,
810			     nge_ifmedia_tbi_sts);
811
812		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_NONE, 0, NULL),
813		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
814		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
815			    0, NULL);
816		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
817
818		ifmedia_set(&sc->nge_ifmedia, IFM_ETHER|IFM_AUTO);
819
820		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
821			    | NGE_GPIO_GP4_OUT
822			    | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
823			    | NGE_GPIO_GP3_OUTENB | NGE_GPIO_GP4_OUTENB
824			    | NGE_GPIO_GP5_OUTENB);
825
826		NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
827	} else {
828		sc->nge_mii.mii_ifp = ifp;
829		sc->nge_mii.mii_readreg = nge_miibus_readreg;
830		sc->nge_mii.mii_writereg = nge_miibus_writereg;
831		sc->nge_mii.mii_statchg = nge_miibus_statchg;
832
833		ifmedia_init(&sc->nge_mii.mii_media, 0, nge_ifmedia_mii_upd,
834			     nge_ifmedia_mii_sts);
835		mii_attach(&sc->sc_dv, &sc->nge_mii, 0xffffffff, MII_PHY_ANY,
836			   MII_OFFSET_ANY, 0);
837
838		if (LIST_FIRST(&sc->nge_mii.mii_phys) == NULL) {
839
840			printf("%s: no PHY found!\n", sc->sc_dv.dv_xname);
841			ifmedia_add(&sc->nge_mii.mii_media,
842				    IFM_ETHER|IFM_MANUAL, 0, NULL);
843			ifmedia_set(&sc->nge_mii.mii_media,
844				    IFM_ETHER|IFM_MANUAL);
845		}
846		else
847			ifmedia_set(&sc->nge_mii.mii_media,
848				    IFM_ETHER|IFM_AUTO);
849	}
850
851	/*
852	 * Call MI attach routine.
853	 */
854	DPRINTFN(5, ("%s: if_attach\n", sc->sc_dv.dv_xname));
855	if_attach(ifp);
856	DPRINTFN(5, ("%s: ether_ifattach\n", sc->sc_dv.dv_xname));
857	ether_ifattach(ifp);
858	DPRINTFN(5, ("%s: timeout_set\n", sc->sc_dv.dv_xname));
859	timeout_set(&sc->nge_timeout, nge_tick, sc);
860	timeout_add_sec(&sc->nge_timeout, 1);
861	return;
862
863fail_5:
864	bus_dmamap_destroy(sc->sc_dmatag, dmamap);
865
866fail_4:
867	bus_dmamem_unmap(sc->sc_dmatag, kva,
868	    sizeof(struct nge_list_data));
869
870fail_3:
871	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
872
873fail_2:
874	pci_intr_disestablish(pc, sc->nge_intrhand);
875
876fail_1:
877	bus_space_unmap(sc->nge_btag, sc->nge_bhandle, size);
878}
879
880/*
881 * Initialize the transmit descriptors.
882 */
883int
884nge_list_tx_init(struct nge_softc *sc)
885{
886	struct nge_list_data	*ld;
887	struct nge_ring_data	*cd;
888	int			i;
889
890	cd = &sc->nge_cdata;
891	ld = sc->nge_ldata;
892
893	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
894		if (i == (NGE_TX_LIST_CNT - 1)) {
895			ld->nge_tx_list[i].nge_nextdesc =
896			    &ld->nge_tx_list[0];
897			ld->nge_tx_list[i].nge_next =
898			    VTOPHYS(&ld->nge_tx_list[0]);
899		} else {
900			ld->nge_tx_list[i].nge_nextdesc =
901			    &ld->nge_tx_list[i + 1];
902			ld->nge_tx_list[i].nge_next =
903			    VTOPHYS(&ld->nge_tx_list[i + 1]);
904		}
905		ld->nge_tx_list[i].nge_mbuf = NULL;
906		ld->nge_tx_list[i].nge_ptr = 0;
907		ld->nge_tx_list[i].nge_ctl = 0;
908	}
909
910	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
911
912	return(0);
913}
914
915
916/*
917 * Initialize the RX descriptors and allocate mbufs for them. Note that
918 * we arrange the descriptors in a closed ring, so that the last descriptor
919 * points back to the first.
920 */
921int
922nge_list_rx_init(struct nge_softc *sc)
923{
924	struct nge_list_data	*ld;
925	struct nge_ring_data	*cd;
926	int			i;
927
928	ld = sc->nge_ldata;
929	cd = &sc->nge_cdata;
930
931	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
932		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
933			return(ENOBUFS);
934		if (i == (NGE_RX_LIST_CNT - 1)) {
935			ld->nge_rx_list[i].nge_nextdesc =
936			    &ld->nge_rx_list[0];
937			ld->nge_rx_list[i].nge_next =
938			    VTOPHYS(&ld->nge_rx_list[0]);
939		} else {
940			ld->nge_rx_list[i].nge_nextdesc =
941			    &ld->nge_rx_list[i + 1];
942			ld->nge_rx_list[i].nge_next =
943			    VTOPHYS(&ld->nge_rx_list[i + 1]);
944		}
945	}
946
947	cd->nge_rx_prod = 0;
948
949	return(0);
950}
951
952/*
953 * Initialize an RX descriptor and attach an MBUF cluster.
954 */
955int
956nge_newbuf(struct nge_softc *sc, struct nge_desc *c, struct mbuf *m)
957{
958	struct mbuf		*m_new = NULL;
959
960	if (m == NULL) {
961		m_new = MCLGETL(NULL, M_DONTWAIT, NGE_MCLBYTES);
962		if (m_new == NULL)
963			return (ENOBUFS);
964	} else {
965		/*
966		 * We're re-using a previously allocated mbuf;
967		 * be sure to re-init pointers and lengths to
968		 * default values.
969		 */
970		m_new = m;
971		m_new->m_data = m_new->m_ext.ext_buf;
972	}
973
974	m_new->m_len = m_new->m_pkthdr.len = NGE_MCLBYTES;
975	m_adj(m_new, sizeof(u_int64_t));
976
977	c->nge_mbuf = m_new;
978	c->nge_ptr = VTOPHYS(mtod(m_new, caddr_t));
979	DPRINTFN(7,("%s: c->nge_ptr=%#x\n", sc->sc_dv.dv_xname,
980		    c->nge_ptr));
981	c->nge_ctl = m_new->m_len;
982	c->nge_extsts = 0;
983
984	return(0);
985}
986
987/*
988 * A frame has been uploaded: pass the resulting mbuf chain up to
989 * the higher level protocols.
990 */
991void
992nge_rxeof(struct nge_softc *sc)
993{
994	struct mbuf_list	ml = MBUF_LIST_INITIALIZER();
995        struct mbuf		*m;
996        struct ifnet		*ifp;
997	struct nge_desc		*cur_rx;
998	int			i, total_len = 0;
999	u_int32_t		rxstat;
1000
1001	ifp = &sc->arpcom.ac_if;
1002	i = sc->nge_cdata.nge_rx_prod;
1003
1004	while (NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1005		struct mbuf		*m0 = NULL;
1006		u_int32_t		extsts;
1007
1008		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1009		rxstat = cur_rx->nge_rxstat;
1010		extsts = cur_rx->nge_extsts;
1011		m = cur_rx->nge_mbuf;
1012		cur_rx->nge_mbuf = NULL;
1013		total_len = NGE_RXBYTES(cur_rx);
1014		NGE_INC(i, NGE_RX_LIST_CNT);
1015
1016		/*
1017		 * If an error occurs, update stats, clear the
1018		 * status word and leave the mbuf cluster in place:
1019		 * it should simply get re-used next time this descriptor
1020		 * comes up in the ring.
1021		 */
1022		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1023#if NVLAN > 0
1024			if ((rxstat & NGE_RXSTAT_RUNT) &&
1025			    total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN -
1026			    ETHER_VLAN_ENCAP_LEN)) {
1027				/*
1028				 * Workaround a hardware bug. Accept runt
1029				 * frames if its length is larger than or
1030				 * equal to 56.
1031				 */
1032			} else {
1033#endif
1034				ifp->if_ierrors++;
1035				nge_newbuf(sc, cur_rx, m);
1036				continue;
1037#if NVLAN > 0
1038			}
1039#endif
1040		}
1041
1042		/*
1043		 * Ok. NatSemi really screwed up here. This is the
1044		 * only gigE chip I know of with alignment constraints
1045		 * on receive buffers. RX buffers must be 64-bit aligned.
1046		 */
1047#ifndef __STRICT_ALIGNMENT
1048		/*
1049		 * By popular demand, ignore the alignment problems
1050		 * on the Intel x86 platform. The performance hit
1051		 * incurred due to unaligned accesses is much smaller
1052		 * than the hit produced by forcing buffer copies all
1053		 * the time, especially with jumbo frames. We still
1054		 * need to fix up the alignment everywhere else though.
1055		 */
1056		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1057#endif
1058			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN);
1059			nge_newbuf(sc, cur_rx, m);
1060			if (m0 == NULL) {
1061				ifp->if_ierrors++;
1062				continue;
1063			}
1064			m_adj(m0, ETHER_ALIGN);
1065			m = m0;
1066#ifndef __STRICT_ALIGNMENT
1067		} else {
1068			m->m_pkthdr.len = m->m_len = total_len;
1069		}
1070#endif
1071
1072#if NVLAN > 0
1073		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1074			m->m_pkthdr.ether_vtag =
1075			    ntohs(extsts & NGE_RXEXTSTS_VTCI);
1076			m->m_flags |= M_VLANTAG;
1077		}
1078#endif
1079
1080		/* Do IP checksum checking. */
1081		if (extsts & NGE_RXEXTSTS_IPPKT) {
1082			if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1083				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1084			if ((extsts & NGE_RXEXTSTS_TCPPKT) &&
1085			    (!(extsts & NGE_RXEXTSTS_TCPCSUMERR)))
1086				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
1087			else if ((extsts & NGE_RXEXTSTS_UDPPKT) &&
1088				 (!(extsts & NGE_RXEXTSTS_UDPCSUMERR)))
1089				m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
1090		}
1091
1092		ml_enqueue(&ml, m);
1093	}
1094
1095	if_input(ifp, &ml);
1096
1097	sc->nge_cdata.nge_rx_prod = i;
1098}
1099
1100/*
1101 * A frame was downloaded to the chip. It's safe for us to clean up
1102 * the list buffers.
1103 */
1104
1105void
1106nge_txeof(struct nge_softc *sc)
1107{
1108	struct nge_desc		*cur_tx;
1109	struct ifnet		*ifp;
1110	u_int32_t		idx;
1111
1112	ifp = &sc->arpcom.ac_if;
1113
1114	/*
1115	 * Go through our tx list and free mbufs for those
1116	 * frames that have been transmitted.
1117	 */
1118	idx = sc->nge_cdata.nge_tx_cons;
1119	while (idx != sc->nge_cdata.nge_tx_prod) {
1120		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1121
1122		if (NGE_OWNDESC(cur_tx))
1123			break;
1124
1125		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1126			sc->nge_cdata.nge_tx_cnt--;
1127			NGE_INC(idx, NGE_TX_LIST_CNT);
1128			continue;
1129		}
1130
1131		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1132			ifp->if_oerrors++;
1133			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1134				ifp->if_collisions++;
1135			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1136				ifp->if_collisions++;
1137		}
1138
1139		ifp->if_collisions +=
1140		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1141
1142		if (cur_tx->nge_mbuf != NULL) {
1143			m_freem(cur_tx->nge_mbuf);
1144			cur_tx->nge_mbuf = NULL;
1145			ifq_clr_oactive(&ifp->if_snd);
1146		}
1147
1148		sc->nge_cdata.nge_tx_cnt--;
1149		NGE_INC(idx, NGE_TX_LIST_CNT);
1150	}
1151
1152	sc->nge_cdata.nge_tx_cons = idx;
1153
1154	if (idx == sc->nge_cdata.nge_tx_prod)
1155		ifp->if_timer = 0;
1156}
1157
1158void
1159nge_tick(void *xsc)
1160{
1161	struct nge_softc	*sc = xsc;
1162	struct mii_data		*mii = &sc->nge_mii;
1163	struct ifnet		*ifp = &sc->arpcom.ac_if;
1164	int			s;
1165
1166	s = splnet();
1167
1168	DPRINTFN(10, ("%s: nge_tick: link=%d\n", sc->sc_dv.dv_xname,
1169		      sc->nge_link));
1170
1171	timeout_add_sec(&sc->nge_timeout, 1);
1172	if (sc->nge_link) {
1173		splx(s);
1174		return;
1175	}
1176
1177	if (sc->nge_tbi) {
1178		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1179		    == IFM_AUTO) {
1180			u_int32_t bmsr, anlpar, txcfg, rxcfg;
1181
1182			bmsr = CSR_READ_4(sc, NGE_TBI_BMSR);
1183			DPRINTFN(2, ("%s: nge_tick: bmsr=%#x\n",
1184				     sc->sc_dv.dv_xname, bmsr));
1185
1186			if (!(bmsr & NGE_TBIBMSR_ANEG_DONE)) {
1187				CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1188
1189				splx(s);
1190				return;
1191			}
1192
1193			anlpar = CSR_READ_4(sc, NGE_TBI_ANLPAR);
1194			txcfg = CSR_READ_4(sc, NGE_TX_CFG);
1195			rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
1196
1197			DPRINTFN(2, ("%s: nge_tick: anlpar=%#x, txcfg=%#x, "
1198				     "rxcfg=%#x\n", sc->sc_dv.dv_xname, anlpar,
1199				     txcfg, rxcfg));
1200
1201			if (anlpar == 0 || anlpar & NGE_TBIANAR_FDX) {
1202				txcfg |= (NGE_TXCFG_IGN_HBEAT|
1203					  NGE_TXCFG_IGN_CARR);
1204				rxcfg |= NGE_RXCFG_RX_FDX;
1205			} else {
1206				txcfg &= ~(NGE_TXCFG_IGN_HBEAT|
1207					   NGE_TXCFG_IGN_CARR);
1208				rxcfg &= ~(NGE_RXCFG_RX_FDX);
1209			}
1210			txcfg |= NGE_TXCFG_AUTOPAD;
1211			CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
1212			CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
1213		}
1214
1215		DPRINTF(("%s: gigabit link up\n", sc->sc_dv.dv_xname));
1216		sc->nge_link++;
1217		if (!ifq_empty(&ifp->if_snd))
1218			nge_start(ifp);
1219	} else {
1220		mii_tick(mii);
1221		if (mii->mii_media_status & IFM_ACTIVE &&
1222		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1223			sc->nge_link++;
1224			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1225				DPRINTF(("%s: gigabit link up\n",
1226					 sc->sc_dv.dv_xname));
1227			if (!ifq_empty(&ifp->if_snd))
1228				nge_start(ifp);
1229		}
1230
1231	}
1232
1233	splx(s);
1234}
1235
1236int
1237nge_intr(void *arg)
1238{
1239	struct nge_softc	*sc;
1240	struct ifnet		*ifp;
1241	u_int32_t		status;
1242	int			claimed = 0;
1243
1244	sc = arg;
1245	ifp = &sc->arpcom.ac_if;
1246
1247	/* Suppress unwanted interrupts */
1248	if (!(ifp->if_flags & IFF_UP)) {
1249		nge_stop(sc);
1250		return (0);
1251	}
1252
1253	/* Disable interrupts. */
1254	CSR_WRITE_4(sc, NGE_IER, 0);
1255
1256	/* Data LED on for TBI mode */
1257	if(sc->nge_tbi)
1258		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1259			     | NGE_GPIO_GP3_OUT);
1260
1261	for (;;) {
1262		/* Reading the ISR register clears all interrupts. */
1263		status = CSR_READ_4(sc, NGE_ISR);
1264
1265		if ((status & NGE_INTRS) == 0)
1266			break;
1267
1268		claimed = 1;
1269
1270		if ((status & NGE_ISR_TX_DESC_OK) ||
1271		    (status & NGE_ISR_TX_ERR) ||
1272		    (status & NGE_ISR_TX_OK) ||
1273		    (status & NGE_ISR_TX_IDLE))
1274			nge_txeof(sc);
1275
1276		if ((status & NGE_ISR_RX_DESC_OK) ||
1277		    (status & NGE_ISR_RX_ERR) ||
1278		    (status & NGE_ISR_RX_OFLOW) ||
1279		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1280		    (status & NGE_ISR_RX_IDLE) ||
1281		    (status & NGE_ISR_RX_OK))
1282			nge_rxeof(sc);
1283
1284		if ((status & NGE_ISR_RX_IDLE))
1285			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1286
1287		if (status & NGE_ISR_SYSERR) {
1288			nge_reset(sc);
1289			ifp->if_flags &= ~IFF_RUNNING;
1290			nge_init(sc);
1291		}
1292
1293#if 0
1294		/*
1295		 * XXX: nge_tick() is not ready to be called this way
1296		 * it screws up the aneg timeout because mii_tick() is
1297		 * only to be called once per second.
1298		 */
1299		if (status & NGE_IMR_PHY_INTR) {
1300			sc->nge_link = 0;
1301			nge_tick(sc);
1302		}
1303#endif
1304	}
1305
1306	/* Re-enable interrupts. */
1307	CSR_WRITE_4(sc, NGE_IER, 1);
1308
1309	if (!ifq_empty(&ifp->if_snd))
1310		nge_start(ifp);
1311
1312	/* Data LED off for TBI mode */
1313	if(sc->nge_tbi)
1314		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1315			    & ~NGE_GPIO_GP3_OUT);
1316
1317	return claimed;
1318}
1319
1320/*
1321 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1322 * pointers to the fragment pointers.
1323 */
1324int
1325nge_encap(struct nge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
1326{
1327	struct nge_desc		*f = NULL;
1328	struct mbuf		*m;
1329	int			frag, cur, cnt = 0;
1330
1331	/*
1332	 * Start packing the mbufs in this chain into
1333	 * the fragment pointers. Stop when we run out
1334	 * of fragments or hit the end of the mbuf chain.
1335	 */
1336	m = m_head;
1337	cur = frag = *txidx;
1338
1339	for (m = m_head; m != NULL; m = m->m_next) {
1340		if (m->m_len != 0) {
1341			if ((NGE_TX_LIST_CNT -
1342			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1343				return(ENOBUFS);
1344			f = &sc->nge_ldata->nge_tx_list[frag];
1345			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1346			f->nge_ptr = VTOPHYS(mtod(m, vaddr_t));
1347			DPRINTFN(7,("%s: f->nge_ptr=%#x\n",
1348				    sc->sc_dv.dv_xname, f->nge_ptr));
1349			if (cnt != 0)
1350				f->nge_ctl |= NGE_CMDSTS_OWN;
1351			cur = frag;
1352			NGE_INC(frag, NGE_TX_LIST_CNT);
1353			cnt++;
1354		}
1355	}
1356
1357	if (m != NULL)
1358		return(ENOBUFS);
1359
1360	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1361
1362#if NVLAN > 0
1363	if (m_head->m_flags & M_VLANTAG) {
1364		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1365		    (NGE_TXEXTSTS_VLANPKT|htons(m_head->m_pkthdr.ether_vtag));
1366	}
1367#endif
1368
1369	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1370	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1371	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1372	sc->nge_cdata.nge_tx_cnt += cnt;
1373	*txidx = frag;
1374
1375	return(0);
1376}
1377
1378/*
1379 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1380 * to the mbuf data regions directly in the transmit lists. We also save a
1381 * copy of the pointers since the transmit list fragment pointers are
1382 * physical addresses.
1383 */
1384
1385void
1386nge_start(struct ifnet *ifp)
1387{
1388	struct nge_softc	*sc;
1389	struct mbuf		*m_head = NULL;
1390	u_int32_t		idx;
1391	int			pkts = 0;
1392
1393	sc = ifp->if_softc;
1394
1395	if (!sc->nge_link)
1396		return;
1397
1398	idx = sc->nge_cdata.nge_tx_prod;
1399
1400	if (ifq_is_oactive(&ifp->if_snd))
1401		return;
1402
1403	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1404		m_head = ifq_deq_begin(&ifp->if_snd);
1405		if (m_head == NULL)
1406			break;
1407
1408		if (nge_encap(sc, m_head, &idx)) {
1409			ifq_deq_rollback(&ifp->if_snd, m_head);
1410			ifq_set_oactive(&ifp->if_snd);
1411			break;
1412		}
1413
1414		/* now we are committed to transmit the packet */
1415		ifq_deq_commit(&ifp->if_snd, m_head);
1416		pkts++;
1417
1418#if NBPFILTER > 0
1419		/*
1420		 * If there's a BPF listener, bounce a copy of this frame
1421		 * to him.
1422		 */
1423		if (ifp->if_bpf)
1424			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1425#endif
1426	}
1427	if (pkts == 0)
1428		return;
1429
1430	/* Transmit */
1431	sc->nge_cdata.nge_tx_prod = idx;
1432	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1433
1434	/*
1435	 * Set a timeout in case the chip goes out to lunch.
1436	 */
1437	ifp->if_timer = 5;
1438}
1439
1440void
1441nge_init(void *xsc)
1442{
1443	struct nge_softc	*sc = xsc;
1444	struct ifnet		*ifp = &sc->arpcom.ac_if;
1445	struct mii_data		*mii;
1446	u_int32_t		txcfg, rxcfg;
1447	uint64_t		media;
1448	int			s;
1449
1450	if (ifp->if_flags & IFF_RUNNING)
1451		return;
1452
1453	s = splnet();
1454
1455	/*
1456	 * Cancel pending I/O and free all RX/TX buffers.
1457	 */
1458	nge_stop(sc);
1459
1460	mii = sc->nge_tbi ? NULL: &sc->nge_mii;
1461
1462	/* Set MAC address */
1463	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1464	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1465	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1466	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1467	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1468	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1469	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1470	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1471	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1472
1473	/* Init circular RX list. */
1474	if (nge_list_rx_init(sc) == ENOBUFS) {
1475		printf("%s: initialization failed: no "
1476			"memory for rx buffers\n", sc->sc_dv.dv_xname);
1477		nge_stop(sc);
1478		splx(s);
1479		return;
1480	}
1481
1482	/*
1483	 * Init tx descriptors.
1484	 */
1485	nge_list_tx_init(sc);
1486
1487	/*
1488	 * For the NatSemi chip, we have to explicitly enable the
1489	 * reception of ARP frames, as well as turn on the 'perfect
1490	 * match' filter where we store the station address, otherwise
1491	 * we won't receive unicasts meant for this host.
1492	 */
1493	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1494	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1495
1496	 /* If we want promiscuous mode, set the allframes bit. */
1497	if (ifp->if_flags & IFF_PROMISC)
1498		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1499	else
1500		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1501
1502	/*
1503	 * Set the capture broadcast bit to capture broadcast frames.
1504	 */
1505	if (ifp->if_flags & IFF_BROADCAST)
1506		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1507	else
1508		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1509
1510	/*
1511	 * Load the multicast filter.
1512	 */
1513	nge_setmulti(sc);
1514
1515	/* Turn the receive filter on */
1516	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1517
1518	/*
1519	 * Load the address of the RX and TX lists.
1520	 */
1521	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1522	    VTOPHYS(&sc->nge_ldata->nge_rx_list[0]));
1523	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1524	    VTOPHYS(&sc->nge_ldata->nge_tx_list[0]));
1525
1526	/* Set RX configuration */
1527	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1528
1529	/*
1530	 * Enable hardware checksum validation for all IPv4
1531	 * packets, do not reject packets with bad checksums.
1532	 */
1533	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1534
1535	/*
1536	 * If VLAN support is enabled, tell the chip to detect
1537	 * and strip VLAN tag info from received frames. The tag
1538	 * will be provided in the extsts field in the RX descriptors.
1539	 */
1540	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1541		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1542		    NGE_VIPRXCTL_TAG_DETECT_ENB | NGE_VIPRXCTL_TAG_STRIP_ENB);
1543
1544	/* Set TX configuration */
1545	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1546
1547	/*
1548	 * If VLAN support is enabled, tell the chip to insert
1549	 * VLAN tags on a per-packet basis as dictated by the
1550	 * code in the frame encapsulation routine.
1551	 */
1552	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1553		NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1554
1555	/* Set full/half duplex mode. */
1556	if (sc->nge_tbi)
1557		media = sc->nge_ifmedia.ifm_cur->ifm_media;
1558	else
1559		media = mii->mii_media_active;
1560
1561	txcfg = CSR_READ_4(sc, NGE_TX_CFG);
1562	rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
1563
1564	DPRINTFN(4, ("%s: nge_init txcfg=%#x, rxcfg=%#x\n",
1565		     sc->sc_dv.dv_xname, txcfg, rxcfg));
1566
1567	if ((media & IFM_GMASK) == IFM_FDX) {
1568		txcfg |= (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
1569		rxcfg |= (NGE_RXCFG_RX_FDX);
1570	} else {
1571		txcfg &= ~(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
1572		rxcfg &= ~(NGE_RXCFG_RX_FDX);
1573	}
1574
1575	txcfg |= NGE_TXCFG_AUTOPAD;
1576
1577	CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
1578	CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
1579
1580	nge_tick(sc);
1581
1582	/*
1583	 * Enable the delivery of PHY interrupts based on
1584	 * link/speed/duplex status changes and enable return
1585	 * of extended status information in the DMA descriptors,
1586	 * required for checksum offloading.
1587	 */
1588	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|NGE_CFG_PHYINTR_LNK|
1589		   NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1590
1591	DPRINTFN(1, ("%s: nge_init: config=%#x\n", sc->sc_dv.dv_xname,
1592		     CSR_READ_4(sc, NGE_CFG)));
1593
1594	/*
1595	 * Configure interrupt holdoff (moderation). We can
1596	 * have the chip delay interrupt delivery for a certain
1597	 * period. Units are in 100us, and the max setting
1598	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1599	 */
1600	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1601
1602	/*
1603	 * Enable interrupts.
1604	 */
1605	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1606	CSR_WRITE_4(sc, NGE_IER, 1);
1607
1608	/* Enable receiver and transmitter. */
1609	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1610	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1611
1612	if (sc->nge_tbi)
1613	    nge_ifmedia_tbi_upd(ifp);
1614	else
1615	    nge_ifmedia_mii_upd(ifp);
1616
1617	ifp->if_flags |= IFF_RUNNING;
1618	ifq_clr_oactive(&ifp->if_snd);
1619
1620	splx(s);
1621}
1622
1623/*
1624 * Set mii media options.
1625 */
1626int
1627nge_ifmedia_mii_upd(struct ifnet *ifp)
1628{
1629	struct nge_softc	*sc = ifp->if_softc;
1630	struct mii_data 	*mii = &sc->nge_mii;
1631
1632	DPRINTFN(2, ("%s: nge_ifmedia_mii_upd\n", sc->sc_dv.dv_xname));
1633
1634	sc->nge_link = 0;
1635
1636	if (mii->mii_instance) {
1637		struct mii_softc *miisc;
1638		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1639			mii_phy_reset(miisc);
1640	}
1641	mii_mediachg(mii);
1642
1643	return(0);
1644}
1645
1646/*
1647 * Report current mii media status.
1648 */
1649void
1650nge_ifmedia_mii_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1651{
1652	struct nge_softc	*sc = ifp->if_softc;
1653	struct mii_data *mii = &sc->nge_mii;
1654
1655	DPRINTFN(2, ("%s: nge_ifmedia_mii_sts\n", sc->sc_dv.dv_xname));
1656
1657	mii_pollstat(mii);
1658	ifmr->ifm_active = mii->mii_media_active;
1659	ifmr->ifm_status = mii->mii_media_status;
1660}
1661
1662/*
1663 * Set mii media options.
1664 */
1665int
1666nge_ifmedia_tbi_upd(struct ifnet *ifp)
1667{
1668	struct nge_softc	*sc = ifp->if_softc;
1669
1670	DPRINTFN(2, ("%s: nge_ifmedia_tbi_upd\n", sc->sc_dv.dv_xname));
1671
1672	sc->nge_link = 0;
1673
1674	if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1675	    == IFM_AUTO) {
1676		u_int32_t anar, bmcr;
1677		anar = CSR_READ_4(sc, NGE_TBI_ANAR);
1678		anar |= (NGE_TBIANAR_HDX | NGE_TBIANAR_FDX);
1679		CSR_WRITE_4(sc, NGE_TBI_ANAR, anar);
1680
1681		bmcr = CSR_READ_4(sc, NGE_TBI_BMCR);
1682		bmcr |= (NGE_TBIBMCR_ENABLE_ANEG|NGE_TBIBMCR_RESTART_ANEG);
1683		CSR_WRITE_4(sc, NGE_TBI_BMCR, bmcr);
1684
1685		bmcr &= ~(NGE_TBIBMCR_RESTART_ANEG);
1686		CSR_WRITE_4(sc, NGE_TBI_BMCR, bmcr);
1687	} else {
1688		u_int32_t txcfg, rxcfg;
1689		txcfg = CSR_READ_4(sc, NGE_TX_CFG);
1690		rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
1691
1692		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1693		    == IFM_FDX) {
1694			txcfg |= NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR;
1695			rxcfg |= NGE_RXCFG_RX_FDX;
1696		} else {
1697			txcfg &= ~(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
1698			rxcfg &= ~(NGE_RXCFG_RX_FDX);
1699		}
1700
1701		txcfg |= NGE_TXCFG_AUTOPAD;
1702		CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
1703		CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
1704	}
1705
1706	NGE_CLRBIT(sc, NGE_GPIO, NGE_GPIO_GP3_OUT);
1707
1708	return(0);
1709}
1710
1711/*
1712 * Report current tbi media status.
1713 */
1714void
1715nge_ifmedia_tbi_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1716{
1717	struct nge_softc	*sc = ifp->if_softc;
1718	u_int32_t		bmcr;
1719
1720	bmcr = CSR_READ_4(sc, NGE_TBI_BMCR);
1721
1722	if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) == IFM_AUTO) {
1723		u_int32_t bmsr = CSR_READ_4(sc, NGE_TBI_BMSR);
1724		DPRINTFN(2, ("%s: nge_ifmedia_tbi_sts bmsr=%#x, bmcr=%#x\n",
1725			     sc->sc_dv.dv_xname, bmsr, bmcr));
1726
1727		if (!(bmsr & NGE_TBIBMSR_ANEG_DONE)) {
1728			ifmr->ifm_active = IFM_ETHER|IFM_NONE;
1729			ifmr->ifm_status = IFM_AVALID;
1730			return;
1731		}
1732	} else {
1733		DPRINTFN(2, ("%s: nge_ifmedia_tbi_sts bmcr=%#x\n",
1734			     sc->sc_dv.dv_xname, bmcr));
1735	}
1736
1737	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
1738	ifmr->ifm_active = IFM_ETHER|IFM_1000_SX;
1739
1740	if (bmcr & NGE_TBIBMCR_LOOPBACK)
1741		ifmr->ifm_active |= IFM_LOOP;
1742
1743	if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) == IFM_AUTO) {
1744		u_int32_t anlpar = CSR_READ_4(sc, NGE_TBI_ANLPAR);
1745		DPRINTFN(2, ("%s: nge_ifmedia_tbi_sts anlpar=%#x\n",
1746			     sc->sc_dv.dv_xname, anlpar));
1747
1748		ifmr->ifm_active |= IFM_AUTO;
1749		if (anlpar & NGE_TBIANLPAR_FDX) {
1750			ifmr->ifm_active |= IFM_FDX;
1751		} else if (anlpar & NGE_TBIANLPAR_HDX) {
1752			ifmr->ifm_active |= IFM_HDX;
1753		} else
1754			ifmr->ifm_active |= IFM_FDX;
1755
1756	} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) == IFM_FDX)
1757		ifmr->ifm_active |= IFM_FDX;
1758	else
1759		ifmr->ifm_active |= IFM_HDX;
1760
1761}
1762
1763int
1764nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1765{
1766	struct nge_softc	*sc = ifp->if_softc;
1767	struct ifreq		*ifr = (struct ifreq *) data;
1768	struct mii_data		*mii;
1769	int			s, error = 0;
1770
1771	s = splnet();
1772
1773	switch(command) {
1774	case SIOCSIFADDR:
1775		ifp->if_flags |= IFF_UP;
1776		nge_init(sc);
1777		break;
1778
1779	case SIOCSIFFLAGS:
1780		if (ifp->if_flags & IFF_UP) {
1781			if (ifp->if_flags & IFF_RUNNING &&
1782			    ifp->if_flags & IFF_PROMISC &&
1783			    !(sc->nge_if_flags & IFF_PROMISC)) {
1784				NGE_SETBIT(sc, NGE_RXFILT_CTL,
1785				    NGE_RXFILTCTL_ALLPHYS|
1786				    NGE_RXFILTCTL_ALLMULTI);
1787			} else if (ifp->if_flags & IFF_RUNNING &&
1788			    !(ifp->if_flags & IFF_PROMISC) &&
1789			    sc->nge_if_flags & IFF_PROMISC) {
1790				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1791				    NGE_RXFILTCTL_ALLPHYS);
1792				if (!(ifp->if_flags & IFF_ALLMULTI))
1793					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1794					    NGE_RXFILTCTL_ALLMULTI);
1795			} else {
1796				ifp->if_flags &= ~IFF_RUNNING;
1797				nge_init(sc);
1798			}
1799		} else {
1800			if (ifp->if_flags & IFF_RUNNING)
1801				nge_stop(sc);
1802		}
1803		sc->nge_if_flags = ifp->if_flags;
1804		error = 0;
1805		break;
1806
1807	case SIOCGIFMEDIA:
1808	case SIOCSIFMEDIA:
1809		if (sc->nge_tbi) {
1810			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
1811					      command);
1812		} else {
1813			mii = &sc->nge_mii;
1814			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
1815					      command);
1816		}
1817		break;
1818
1819	default:
1820		error = ether_ioctl(ifp, &sc->arpcom, command, data);
1821	}
1822
1823	if (error == ENETRESET) {
1824		if (ifp->if_flags & IFF_RUNNING)
1825			nge_setmulti(sc);
1826		error = 0;
1827	}
1828
1829	splx(s);
1830	return(error);
1831}
1832
1833void
1834nge_watchdog(struct ifnet *ifp)
1835{
1836	struct nge_softc	*sc;
1837
1838	sc = ifp->if_softc;
1839
1840	ifp->if_oerrors++;
1841	printf("%s: watchdog timeout\n", sc->sc_dv.dv_xname);
1842
1843	nge_stop(sc);
1844	nge_reset(sc);
1845	ifp->if_flags &= ~IFF_RUNNING;
1846	nge_init(sc);
1847
1848	if (!ifq_empty(&ifp->if_snd))
1849		nge_start(ifp);
1850}
1851
1852/*
1853 * Stop the adapter and free any mbufs allocated to the
1854 * RX and TX lists.
1855 */
1856void
1857nge_stop(struct nge_softc *sc)
1858{
1859	int			i;
1860	struct ifnet		*ifp;
1861	struct mii_data		*mii;
1862
1863	ifp = &sc->arpcom.ac_if;
1864	ifp->if_timer = 0;
1865	if (sc->nge_tbi) {
1866		mii = NULL;
1867	} else {
1868		mii = &sc->nge_mii;
1869	}
1870
1871	timeout_del(&sc->nge_timeout);
1872
1873	ifp->if_flags &= ~IFF_RUNNING;
1874	ifq_clr_oactive(&ifp->if_snd);
1875
1876	CSR_WRITE_4(sc, NGE_IER, 0);
1877	CSR_WRITE_4(sc, NGE_IMR, 0);
1878	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1879	DELAY(1000);
1880	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
1881	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
1882
1883	if (!sc->nge_tbi)
1884		mii_down(mii);
1885
1886	sc->nge_link = 0;
1887
1888	/*
1889	 * Free data in the RX lists.
1890	 */
1891	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1892		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
1893			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
1894			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
1895		}
1896	}
1897	bzero(&sc->nge_ldata->nge_rx_list,
1898		sizeof(sc->nge_ldata->nge_rx_list));
1899
1900	/*
1901	 * Free the TX list buffers.
1902	 */
1903	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
1904		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
1905			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
1906			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
1907		}
1908	}
1909
1910	bzero(&sc->nge_ldata->nge_tx_list,
1911		sizeof(sc->nge_ldata->nge_tx_list));
1912}
1913
1914const struct cfattach nge_ca = {
1915	sizeof(struct nge_softc), nge_probe, nge_attach
1916};
1917
1918struct cfdriver nge_cd = {
1919	NULL, "nge", DV_IFNET
1920};
1921