1//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines a basic region store model. In this model, we do have field
10// sensitivity. But we assume nothing about the heap shape. So recursive data
11// structures are largely ignored. Basically we do 1-limiting analysis.
12// Parameter pointers are assumed with no aliasing. Pointee objects of
13// parameters are created lazily.
14//
15//===----------------------------------------------------------------------===//
16
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/ASTMatchers/ASTMatchFinder.h"
20#include "clang/Analysis/Analyses/LiveVariables.h"
21#include "clang/Analysis/AnalysisDeclContext.h"
22#include "clang/Basic/JsonSupport.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
25#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
26#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
27#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
28#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
29#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
30#include "llvm/ADT/ImmutableMap.h"
31#include "llvm/Support/raw_ostream.h"
32#include <optional>
33#include <utility>
34
35using namespace clang;
36using namespace ento;
37
38//===----------------------------------------------------------------------===//
39// Representation of binding keys.
40//===----------------------------------------------------------------------===//
41
42namespace {
43class BindingKey {
44public:
45  enum Kind { Default = 0x0, Direct = 0x1 };
46private:
47  enum { Symbolic = 0x2 };
48
49  llvm::PointerIntPair<const MemRegion *, 2> P;
50  uint64_t Data;
51
52  /// Create a key for a binding to region \p r, which has a symbolic offset
53  /// from region \p Base.
54  explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
55    : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
56    assert(r && Base && "Must have known regions.");
57    assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
58  }
59
60  /// Create a key for a binding at \p offset from base region \p r.
61  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
62    : P(r, k), Data(offset) {
63    assert(r && "Must have known regions.");
64    assert(getOffset() == offset && "Failed to store offset");
65    assert((r == r->getBaseRegion() ||
66            isa<ObjCIvarRegion, CXXDerivedObjectRegion>(r)) &&
67           "Not a base");
68  }
69public:
70
71  bool isDirect() const { return P.getInt() & Direct; }
72  bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
73
74  const MemRegion *getRegion() const { return P.getPointer(); }
75  uint64_t getOffset() const {
76    assert(!hasSymbolicOffset());
77    return Data;
78  }
79
80  const SubRegion *getConcreteOffsetRegion() const {
81    assert(hasSymbolicOffset());
82    return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
83  }
84
85  const MemRegion *getBaseRegion() const {
86    if (hasSymbolicOffset())
87      return getConcreteOffsetRegion()->getBaseRegion();
88    return getRegion()->getBaseRegion();
89  }
90
91  void Profile(llvm::FoldingSetNodeID& ID) const {
92    ID.AddPointer(P.getOpaqueValue());
93    ID.AddInteger(Data);
94  }
95
96  static BindingKey Make(const MemRegion *R, Kind k);
97
98  bool operator<(const BindingKey &X) const {
99    if (P.getOpaqueValue() < X.P.getOpaqueValue())
100      return true;
101    if (P.getOpaqueValue() > X.P.getOpaqueValue())
102      return false;
103    return Data < X.Data;
104  }
105
106  bool operator==(const BindingKey &X) const {
107    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
108           Data == X.Data;
109  }
110
111  LLVM_DUMP_METHOD void dump() const;
112};
113} // end anonymous namespace
114
115BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
116  const RegionOffset &RO = R->getAsOffset();
117  if (RO.hasSymbolicOffset())
118    return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
119
120  return BindingKey(RO.getRegion(), RO.getOffset(), k);
121}
122
123namespace llvm {
124static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) {
125  Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default")
126      << "\", \"offset\": ";
127
128  if (!K.hasSymbolicOffset())
129    Out << K.getOffset();
130  else
131    Out << "null";
132
133  return Out;
134}
135
136} // namespace llvm
137
138#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
139void BindingKey::dump() const { llvm::errs() << *this; }
140#endif
141
142//===----------------------------------------------------------------------===//
143// Actual Store type.
144//===----------------------------------------------------------------------===//
145
146typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
147typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
148typedef std::pair<BindingKey, SVal> BindingPair;
149
150typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
151        RegionBindings;
152
153namespace {
154class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
155                                 ClusterBindings> {
156  ClusterBindings::Factory *CBFactory;
157
158  // This flag indicates whether the current bindings are within the analysis
159  // that has started from main(). It affects how we perform loads from
160  // global variables that have initializers: if we have observed the
161  // program execution from the start and we know that these variables
162  // have not been overwritten yet, we can be sure that their initializers
163  // are still relevant. This flag never gets changed when the bindings are
164  // updated, so it could potentially be moved into RegionStoreManager
165  // (as if it's the same bindings but a different loading procedure)
166  // however that would have made the manager needlessly stateful.
167  bool IsMainAnalysis;
168
169public:
170  typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
171          ParentTy;
172
173  RegionBindingsRef(ClusterBindings::Factory &CBFactory,
174                    const RegionBindings::TreeTy *T,
175                    RegionBindings::TreeTy::Factory *F,
176                    bool IsMainAnalysis)
177      : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
178        CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
179
180  RegionBindingsRef(const ParentTy &P,
181                    ClusterBindings::Factory &CBFactory,
182                    bool IsMainAnalysis)
183      : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
184        CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
185
186  RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
187    return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
188                             *CBFactory, IsMainAnalysis);
189  }
190
191  RegionBindingsRef remove(key_type_ref K) const {
192    return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
193                             *CBFactory, IsMainAnalysis);
194  }
195
196  RegionBindingsRef addBinding(BindingKey K, SVal V) const;
197
198  RegionBindingsRef addBinding(const MemRegion *R,
199                               BindingKey::Kind k, SVal V) const;
200
201  const SVal *lookup(BindingKey K) const;
202  const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
203  using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
204
205  RegionBindingsRef removeBinding(BindingKey K);
206
207  RegionBindingsRef removeBinding(const MemRegion *R,
208                                  BindingKey::Kind k);
209
210  RegionBindingsRef removeBinding(const MemRegion *R) {
211    return removeBinding(R, BindingKey::Direct).
212           removeBinding(R, BindingKey::Default);
213  }
214
215  std::optional<SVal> getDirectBinding(const MemRegion *R) const;
216
217  /// getDefaultBinding - Returns an SVal* representing an optional default
218  ///  binding associated with a region and its subregions.
219  std::optional<SVal> getDefaultBinding(const MemRegion *R) const;
220
221  /// Return the internal tree as a Store.
222  Store asStore() const {
223    llvm::PointerIntPair<Store, 1, bool> Ptr = {
224        asImmutableMap().getRootWithoutRetain(), IsMainAnalysis};
225    return reinterpret_cast<Store>(Ptr.getOpaqueValue());
226  }
227
228  bool isMainAnalysis() const {
229    return IsMainAnalysis;
230  }
231
232  void printJson(raw_ostream &Out, const char *NL = "\n",
233                 unsigned int Space = 0, bool IsDot = false) const {
234    for (iterator I = begin(); I != end(); ++I) {
235      // TODO: We might need a .printJson for I.getKey() as well.
236      Indent(Out, Space, IsDot)
237          << "{ \"cluster\": \"" << I.getKey() << "\", \"pointer\": \""
238          << (const void *)I.getKey() << "\", \"items\": [" << NL;
239
240      ++Space;
241      const ClusterBindings &CB = I.getData();
242      for (ClusterBindings::iterator CI = CB.begin(); CI != CB.end(); ++CI) {
243        Indent(Out, Space, IsDot) << "{ " << CI.getKey() << ", \"value\": ";
244        CI.getData().printJson(Out, /*AddQuotes=*/true);
245        Out << " }";
246        if (std::next(CI) != CB.end())
247          Out << ',';
248        Out << NL;
249      }
250
251      --Space;
252      Indent(Out, Space, IsDot) << "]}";
253      if (std::next(I) != end())
254        Out << ',';
255      Out << NL;
256    }
257  }
258
259  LLVM_DUMP_METHOD void dump() const { printJson(llvm::errs()); }
260};
261} // end anonymous namespace
262
263typedef const RegionBindingsRef& RegionBindingsConstRef;
264
265std::optional<SVal>
266RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
267  const SVal *V = lookup(R, BindingKey::Direct);
268  return V ? std::optional<SVal>(*V) : std::nullopt;
269}
270
271std::optional<SVal>
272RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
273  const SVal *V = lookup(R, BindingKey::Default);
274  return V ? std::optional<SVal>(*V) : std::nullopt;
275}
276
277RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
278  const MemRegion *Base = K.getBaseRegion();
279
280  const ClusterBindings *ExistingCluster = lookup(Base);
281  ClusterBindings Cluster =
282      (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
283
284  ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
285  return add(Base, NewCluster);
286}
287
288
289RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
290                                                BindingKey::Kind k,
291                                                SVal V) const {
292  return addBinding(BindingKey::Make(R, k), V);
293}
294
295const SVal *RegionBindingsRef::lookup(BindingKey K) const {
296  const ClusterBindings *Cluster = lookup(K.getBaseRegion());
297  if (!Cluster)
298    return nullptr;
299  return Cluster->lookup(K);
300}
301
302const SVal *RegionBindingsRef::lookup(const MemRegion *R,
303                                      BindingKey::Kind k) const {
304  return lookup(BindingKey::Make(R, k));
305}
306
307RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
308  const MemRegion *Base = K.getBaseRegion();
309  const ClusterBindings *Cluster = lookup(Base);
310  if (!Cluster)
311    return *this;
312
313  ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
314  if (NewCluster.isEmpty())
315    return remove(Base);
316  return add(Base, NewCluster);
317}
318
319RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
320                                                BindingKey::Kind k){
321  return removeBinding(BindingKey::Make(R, k));
322}
323
324//===----------------------------------------------------------------------===//
325// Main RegionStore logic.
326//===----------------------------------------------------------------------===//
327
328namespace {
329class InvalidateRegionsWorker;
330
331class RegionStoreManager : public StoreManager {
332public:
333  RegionBindings::Factory RBFactory;
334  mutable ClusterBindings::Factory CBFactory;
335
336  typedef std::vector<SVal> SValListTy;
337private:
338  typedef llvm::DenseMap<const LazyCompoundValData *,
339                         SValListTy> LazyBindingsMapTy;
340  LazyBindingsMapTy LazyBindingsMap;
341
342  /// The largest number of fields a struct can have and still be
343  /// considered "small".
344  ///
345  /// This is currently used to decide whether or not it is worth "forcing" a
346  /// LazyCompoundVal on bind.
347  ///
348  /// This is controlled by 'region-store-small-struct-limit' option.
349  /// To disable all small-struct-dependent behavior, set the option to "0".
350  unsigned SmallStructLimit;
351
352  /// The largest number of element an array can have and still be
353  /// considered "small".
354  ///
355  /// This is currently used to decide whether or not it is worth "forcing" a
356  /// LazyCompoundVal on bind.
357  ///
358  /// This is controlled by 'region-store-small-struct-limit' option.
359  /// To disable all small-struct-dependent behavior, set the option to "0".
360  unsigned SmallArrayLimit;
361
362  /// A helper used to populate the work list with the given set of
363  /// regions.
364  void populateWorkList(InvalidateRegionsWorker &W,
365                        ArrayRef<SVal> Values,
366                        InvalidatedRegions *TopLevelRegions);
367
368public:
369  RegionStoreManager(ProgramStateManager &mgr)
370      : StoreManager(mgr), RBFactory(mgr.getAllocator()),
371        CBFactory(mgr.getAllocator()), SmallStructLimit(0), SmallArrayLimit(0) {
372    ExprEngine &Eng = StateMgr.getOwningEngine();
373    AnalyzerOptions &Options = Eng.getAnalysisManager().options;
374    SmallStructLimit = Options.RegionStoreSmallStructLimit;
375    SmallArrayLimit = Options.RegionStoreSmallArrayLimit;
376  }
377
378  /// setImplicitDefaultValue - Set the default binding for the provided
379  ///  MemRegion to the value implicitly defined for compound literals when
380  ///  the value is not specified.
381  RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
382                                            const MemRegion *R, QualType T);
383
384  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
385  ///  type.  'Array' represents the lvalue of the array being decayed
386  ///  to a pointer, and the returned SVal represents the decayed
387  ///  version of that lvalue (i.e., a pointer to the first element of
388  ///  the array).  This is called by ExprEngine when evaluating
389  ///  casts from arrays to pointers.
390  SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
391
392  /// Creates the Store that correctly represents memory contents before
393  /// the beginning of the analysis of the given top-level stack frame.
394  StoreRef getInitialStore(const LocationContext *InitLoc) override {
395    bool IsMainAnalysis = false;
396    if (const auto *FD = dyn_cast<FunctionDecl>(InitLoc->getDecl()))
397      IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus;
398    return StoreRef(RegionBindingsRef(
399        RegionBindingsRef::ParentTy(RBFactory.getEmptyMap(), RBFactory),
400        CBFactory, IsMainAnalysis).asStore(), *this);
401  }
402
403  //===-------------------------------------------------------------------===//
404  // Binding values to regions.
405  //===-------------------------------------------------------------------===//
406  RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
407                                           const Expr *Ex,
408                                           unsigned Count,
409                                           const LocationContext *LCtx,
410                                           RegionBindingsRef B,
411                                           InvalidatedRegions *Invalidated);
412
413  StoreRef invalidateRegions(Store store,
414                             ArrayRef<SVal> Values,
415                             const Expr *E, unsigned Count,
416                             const LocationContext *LCtx,
417                             const CallEvent *Call,
418                             InvalidatedSymbols &IS,
419                             RegionAndSymbolInvalidationTraits &ITraits,
420                             InvalidatedRegions *Invalidated,
421                             InvalidatedRegions *InvalidatedTopLevel) override;
422
423  bool scanReachableSymbols(Store S, const MemRegion *R,
424                            ScanReachableSymbols &Callbacks) override;
425
426  RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
427                                            const SubRegion *R);
428  std::optional<SVal>
429  getConstantValFromConstArrayInitializer(RegionBindingsConstRef B,
430                                          const ElementRegion *R);
431  std::optional<SVal>
432  getSValFromInitListExpr(const InitListExpr *ILE,
433                          const SmallVector<uint64_t, 2> &ConcreteOffsets,
434                          QualType ElemT);
435  SVal getSValFromStringLiteral(const StringLiteral *SL, uint64_t Offset,
436                                QualType ElemT);
437
438public: // Part of public interface to class.
439
440  StoreRef Bind(Store store, Loc LV, SVal V) override {
441    return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
442  }
443
444  RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
445
446  // BindDefaultInitial is only used to initialize a region with
447  // a default value.
448  StoreRef BindDefaultInitial(Store store, const MemRegion *R,
449                              SVal V) override {
450    RegionBindingsRef B = getRegionBindings(store);
451    // Use other APIs when you have to wipe the region that was initialized
452    // earlier.
453    assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) &&
454           "Double initialization!");
455    B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
456    return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
457  }
458
459  // BindDefaultZero is used for zeroing constructors that may accidentally
460  // overwrite existing bindings.
461  StoreRef BindDefaultZero(Store store, const MemRegion *R) override {
462    // FIXME: The offsets of empty bases can be tricky because of
463    // of the so called "empty base class optimization".
464    // If a base class has been optimized out
465    // we should not try to create a binding, otherwise we should.
466    // Unfortunately, at the moment ASTRecordLayout doesn't expose
467    // the actual sizes of the empty bases
468    // and trying to infer them from offsets/alignments
469    // seems to be error-prone and non-trivial because of the trailing padding.
470    // As a temporary mitigation we don't create bindings for empty bases.
471    if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R))
472      if (BR->getDecl()->isEmpty())
473        return StoreRef(store, *this);
474
475    RegionBindingsRef B = getRegionBindings(store);
476    SVal V = svalBuilder.makeZeroVal(Ctx.CharTy);
477    B = removeSubRegionBindings(B, cast<SubRegion>(R));
478    B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
479    return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
480  }
481
482  /// Attempt to extract the fields of \p LCV and bind them to the struct region
483  /// \p R.
484  ///
485  /// This path is used when it seems advantageous to "force" loading the values
486  /// within a LazyCompoundVal to bind memberwise to the struct region, rather
487  /// than using a Default binding at the base of the entire region. This is a
488  /// heuristic attempting to avoid building long chains of LazyCompoundVals.
489  ///
490  /// \returns The updated store bindings, or \c std::nullopt if binding
491  ///          non-lazily would be too expensive.
492  std::optional<RegionBindingsRef>
493  tryBindSmallStruct(RegionBindingsConstRef B, const TypedValueRegion *R,
494                     const RecordDecl *RD, nonloc::LazyCompoundVal LCV);
495
496  /// BindStruct - Bind a compound value to a structure.
497  RegionBindingsRef bindStruct(RegionBindingsConstRef B,
498                               const TypedValueRegion* R, SVal V);
499
500  /// BindVector - Bind a compound value to a vector.
501  RegionBindingsRef bindVector(RegionBindingsConstRef B,
502                               const TypedValueRegion* R, SVal V);
503
504  std::optional<RegionBindingsRef>
505  tryBindSmallArray(RegionBindingsConstRef B, const TypedValueRegion *R,
506                    const ArrayType *AT, nonloc::LazyCompoundVal LCV);
507
508  RegionBindingsRef bindArray(RegionBindingsConstRef B,
509                              const TypedValueRegion* R,
510                              SVal V);
511
512  /// Clears out all bindings in the given region and assigns a new value
513  /// as a Default binding.
514  RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
515                                  const TypedRegion *R,
516                                  SVal DefaultVal);
517
518  /// Create a new store with the specified binding removed.
519  /// \param ST the original store, that is the basis for the new store.
520  /// \param L the location whose binding should be removed.
521  StoreRef killBinding(Store ST, Loc L) override;
522
523  void incrementReferenceCount(Store store) override {
524    getRegionBindings(store).manualRetain();
525  }
526
527  /// If the StoreManager supports it, decrement the reference count of
528  /// the specified Store object.  If the reference count hits 0, the memory
529  /// associated with the object is recycled.
530  void decrementReferenceCount(Store store) override {
531    getRegionBindings(store).manualRelease();
532  }
533
534  bool includedInBindings(Store store, const MemRegion *region) const override;
535
536  /// Return the value bound to specified location in a given state.
537  ///
538  /// The high level logic for this method is this:
539  /// getBinding (L)
540  ///   if L has binding
541  ///     return L's binding
542  ///   else if L is in killset
543  ///     return unknown
544  ///   else
545  ///     if L is on stack or heap
546  ///       return undefined
547  ///     else
548  ///       return symbolic
549  SVal getBinding(Store S, Loc L, QualType T) override {
550    return getBinding(getRegionBindings(S), L, T);
551  }
552
553  std::optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override {
554    RegionBindingsRef B = getRegionBindings(S);
555    // Default bindings are always applied over a base region so look up the
556    // base region's default binding, otherwise the lookup will fail when R
557    // is at an offset from R->getBaseRegion().
558    return B.getDefaultBinding(R->getBaseRegion());
559  }
560
561  SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
562
563  SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
564
565  SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
566
567  SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
568
569  SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
570
571  SVal getBindingForLazySymbol(const TypedValueRegion *R);
572
573  SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
574                                         const TypedValueRegion *R,
575                                         QualType Ty);
576
577  SVal getLazyBinding(const SubRegion *LazyBindingRegion,
578                      RegionBindingsRef LazyBinding);
579
580  /// Get bindings for the values in a struct and return a CompoundVal, used
581  /// when doing struct copy:
582  /// struct s x, y;
583  /// x = y;
584  /// y's value is retrieved by this method.
585  SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
586  SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
587  NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
588
589  /// Used to lazily generate derived symbols for bindings that are defined
590  /// implicitly by default bindings in a super region.
591  ///
592  /// Note that callers may need to specially handle LazyCompoundVals, which
593  /// are returned as is in case the caller needs to treat them differently.
594  std::optional<SVal>
595  getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
596                                   const MemRegion *superR,
597                                   const TypedValueRegion *R, QualType Ty);
598
599  /// Get the state and region whose binding this region \p R corresponds to.
600  ///
601  /// If there is no lazy binding for \p R, the returned value will have a null
602  /// \c second. Note that a null pointer can represents a valid Store.
603  std::pair<Store, const SubRegion *>
604  findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
605                  const SubRegion *originalRegion);
606
607  /// Returns the cached set of interesting SVals contained within a lazy
608  /// binding.
609  ///
610  /// The precise value of "interesting" is determined for the purposes of
611  /// RegionStore's internal analysis. It must always contain all regions and
612  /// symbols, but may omit constants and other kinds of SVal.
613  ///
614  /// In contrast to compound values, LazyCompoundVals are also added
615  /// to the 'interesting values' list in addition to the child interesting
616  /// values.
617  const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
618
619  //===------------------------------------------------------------------===//
620  // State pruning.
621  //===------------------------------------------------------------------===//
622
623  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
624  ///  It returns a new Store with these values removed.
625  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
626                              SymbolReaper& SymReaper) override;
627
628  //===------------------------------------------------------------------===//
629  // Utility methods.
630  //===------------------------------------------------------------------===//
631
632  RegionBindingsRef getRegionBindings(Store store) const {
633    llvm::PointerIntPair<Store, 1, bool> Ptr;
634    Ptr.setFromOpaqueValue(const_cast<void *>(store));
635    return RegionBindingsRef(
636        CBFactory,
637        static_cast<const RegionBindings::TreeTy *>(Ptr.getPointer()),
638        RBFactory.getTreeFactory(),
639        Ptr.getInt());
640  }
641
642  void printJson(raw_ostream &Out, Store S, const char *NL = "\n",
643                 unsigned int Space = 0, bool IsDot = false) const override;
644
645  void iterBindings(Store store, BindingsHandler& f) override {
646    RegionBindingsRef B = getRegionBindings(store);
647    for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
648      const ClusterBindings &Cluster = I.getData();
649      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
650           CI != CE; ++CI) {
651        const BindingKey &K = CI.getKey();
652        if (!K.isDirect())
653          continue;
654        if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
655          // FIXME: Possibly incorporate the offset?
656          if (!f.HandleBinding(*this, store, R, CI.getData()))
657            return;
658        }
659      }
660    }
661  }
662};
663
664} // end anonymous namespace
665
666//===----------------------------------------------------------------------===//
667// RegionStore creation.
668//===----------------------------------------------------------------------===//
669
670std::unique_ptr<StoreManager>
671ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
672  return std::make_unique<RegionStoreManager>(StMgr);
673}
674
675//===----------------------------------------------------------------------===//
676// Region Cluster analysis.
677//===----------------------------------------------------------------------===//
678
679namespace {
680/// Used to determine which global regions are automatically included in the
681/// initial worklist of a ClusterAnalysis.
682enum GlobalsFilterKind {
683  /// Don't include any global regions.
684  GFK_None,
685  /// Only include system globals.
686  GFK_SystemOnly,
687  /// Include all global regions.
688  GFK_All
689};
690
691template <typename DERIVED>
692class ClusterAnalysis  {
693protected:
694  typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
695  typedef const MemRegion * WorkListElement;
696  typedef SmallVector<WorkListElement, 10> WorkList;
697
698  llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
699
700  WorkList WL;
701
702  RegionStoreManager &RM;
703  ASTContext &Ctx;
704  SValBuilder &svalBuilder;
705
706  RegionBindingsRef B;
707
708
709protected:
710  const ClusterBindings *getCluster(const MemRegion *R) {
711    return B.lookup(R);
712  }
713
714  /// Returns true if all clusters in the given memspace should be initially
715  /// included in the cluster analysis. Subclasses may provide their
716  /// own implementation.
717  bool includeEntireMemorySpace(const MemRegion *Base) {
718    return false;
719  }
720
721public:
722  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
723                  RegionBindingsRef b)
724      : RM(rm), Ctx(StateMgr.getContext()),
725        svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
726
727  RegionBindingsRef getRegionBindings() const { return B; }
728
729  bool isVisited(const MemRegion *R) {
730    return Visited.count(getCluster(R));
731  }
732
733  void GenerateClusters() {
734    // Scan the entire set of bindings and record the region clusters.
735    for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
736         RI != RE; ++RI){
737      const MemRegion *Base = RI.getKey();
738
739      const ClusterBindings &Cluster = RI.getData();
740      assert(!Cluster.isEmpty() && "Empty clusters should be removed");
741      static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
742
743      // If the base's memspace should be entirely invalidated, add the cluster
744      // to the workspace up front.
745      if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
746        AddToWorkList(WorkListElement(Base), &Cluster);
747    }
748  }
749
750  bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
751    if (C && !Visited.insert(C).second)
752      return false;
753    WL.push_back(E);
754    return true;
755  }
756
757  bool AddToWorkList(const MemRegion *R) {
758    return static_cast<DERIVED*>(this)->AddToWorkList(R);
759  }
760
761  void RunWorkList() {
762    while (!WL.empty()) {
763      WorkListElement E = WL.pop_back_val();
764      const MemRegion *BaseR = E;
765
766      static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
767    }
768  }
769
770  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
771  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
772
773  void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
774                    bool Flag) {
775    static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
776  }
777};
778}
779
780//===----------------------------------------------------------------------===//
781// Binding invalidation.
782//===----------------------------------------------------------------------===//
783
784bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
785                                              ScanReachableSymbols &Callbacks) {
786  assert(R == R->getBaseRegion() && "Should only be called for base regions");
787  RegionBindingsRef B = getRegionBindings(S);
788  const ClusterBindings *Cluster = B.lookup(R);
789
790  if (!Cluster)
791    return true;
792
793  for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
794       RI != RE; ++RI) {
795    if (!Callbacks.scan(RI.getData()))
796      return false;
797  }
798
799  return true;
800}
801
802static inline bool isUnionField(const FieldRegion *FR) {
803  return FR->getDecl()->getParent()->isUnion();
804}
805
806typedef SmallVector<const FieldDecl *, 8> FieldVector;
807
808static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
809  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
810
811  const MemRegion *Base = K.getConcreteOffsetRegion();
812  const MemRegion *R = K.getRegion();
813
814  while (R != Base) {
815    if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
816      if (!isUnionField(FR))
817        Fields.push_back(FR->getDecl());
818
819    R = cast<SubRegion>(R)->getSuperRegion();
820  }
821}
822
823static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
824  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
825
826  if (Fields.empty())
827    return true;
828
829  FieldVector FieldsInBindingKey;
830  getSymbolicOffsetFields(K, FieldsInBindingKey);
831
832  ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
833  if (Delta >= 0)
834    return std::equal(FieldsInBindingKey.begin() + Delta,
835                      FieldsInBindingKey.end(),
836                      Fields.begin());
837  else
838    return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
839                      Fields.begin() - Delta);
840}
841
842/// Collects all bindings in \p Cluster that may refer to bindings within
843/// \p Top.
844///
845/// Each binding is a pair whose \c first is the key (a BindingKey) and whose
846/// \c second is the value (an SVal).
847///
848/// The \p IncludeAllDefaultBindings parameter specifies whether to include
849/// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
850/// an aggregate within a larger aggregate with a default binding.
851static void
852collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
853                         SValBuilder &SVB, const ClusterBindings &Cluster,
854                         const SubRegion *Top, BindingKey TopKey,
855                         bool IncludeAllDefaultBindings) {
856  FieldVector FieldsInSymbolicSubregions;
857  if (TopKey.hasSymbolicOffset()) {
858    getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
859    Top = TopKey.getConcreteOffsetRegion();
860    TopKey = BindingKey::Make(Top, BindingKey::Default);
861  }
862
863  // Find the length (in bits) of the region being invalidated.
864  uint64_t Length = UINT64_MAX;
865  SVal Extent = Top->getMemRegionManager().getStaticSize(Top, SVB);
866  if (std::optional<nonloc::ConcreteInt> ExtentCI =
867          Extent.getAs<nonloc::ConcreteInt>()) {
868    const llvm::APSInt &ExtentInt = ExtentCI->getValue();
869    assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
870    // Extents are in bytes but region offsets are in bits. Be careful!
871    Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
872  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
873    if (FR->getDecl()->isBitField())
874      Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
875  }
876
877  for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
878       I != E; ++I) {
879    BindingKey NextKey = I.getKey();
880    if (NextKey.getRegion() == TopKey.getRegion()) {
881      // FIXME: This doesn't catch the case where we're really invalidating a
882      // region with a symbolic offset. Example:
883      //      R: points[i].y
884      //   Next: points[0].x
885
886      if (NextKey.getOffset() > TopKey.getOffset() &&
887          NextKey.getOffset() - TopKey.getOffset() < Length) {
888        // Case 1: The next binding is inside the region we're invalidating.
889        // Include it.
890        Bindings.push_back(*I);
891
892      } else if (NextKey.getOffset() == TopKey.getOffset()) {
893        // Case 2: The next binding is at the same offset as the region we're
894        // invalidating. In this case, we need to leave default bindings alone,
895        // since they may be providing a default value for a regions beyond what
896        // we're invalidating.
897        // FIXME: This is probably incorrect; consider invalidating an outer
898        // struct whose first field is bound to a LazyCompoundVal.
899        if (IncludeAllDefaultBindings || NextKey.isDirect())
900          Bindings.push_back(*I);
901      }
902
903    } else if (NextKey.hasSymbolicOffset()) {
904      const MemRegion *Base = NextKey.getConcreteOffsetRegion();
905      if (Top->isSubRegionOf(Base) && Top != Base) {
906        // Case 3: The next key is symbolic and we just changed something within
907        // its concrete region. We don't know if the binding is still valid, so
908        // we'll be conservative and include it.
909        if (IncludeAllDefaultBindings || NextKey.isDirect())
910          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
911            Bindings.push_back(*I);
912      } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
913        // Case 4: The next key is symbolic, but we changed a known
914        // super-region. In this case the binding is certainly included.
915        if (BaseSR->isSubRegionOf(Top))
916          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
917            Bindings.push_back(*I);
918      }
919    }
920  }
921}
922
923static void
924collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
925                         SValBuilder &SVB, const ClusterBindings &Cluster,
926                         const SubRegion *Top, bool IncludeAllDefaultBindings) {
927  collectSubRegionBindings(Bindings, SVB, Cluster, Top,
928                           BindingKey::Make(Top, BindingKey::Default),
929                           IncludeAllDefaultBindings);
930}
931
932RegionBindingsRef
933RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
934                                            const SubRegion *Top) {
935  BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
936  const MemRegion *ClusterHead = TopKey.getBaseRegion();
937
938  if (Top == ClusterHead) {
939    // We can remove an entire cluster's bindings all in one go.
940    return B.remove(Top);
941  }
942
943  const ClusterBindings *Cluster = B.lookup(ClusterHead);
944  if (!Cluster) {
945    // If we're invalidating a region with a symbolic offset, we need to make
946    // sure we don't treat the base region as uninitialized anymore.
947    if (TopKey.hasSymbolicOffset()) {
948      const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
949      return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
950    }
951    return B;
952  }
953
954  SmallVector<BindingPair, 32> Bindings;
955  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
956                           /*IncludeAllDefaultBindings=*/false);
957
958  ClusterBindingsRef Result(*Cluster, CBFactory);
959  for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
960                                                    E = Bindings.end();
961       I != E; ++I)
962    Result = Result.remove(I->first);
963
964  // If we're invalidating a region with a symbolic offset, we need to make sure
965  // we don't treat the base region as uninitialized anymore.
966  // FIXME: This isn't very precise; see the example in
967  // collectSubRegionBindings.
968  if (TopKey.hasSymbolicOffset()) {
969    const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
970    Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
971                        UnknownVal());
972  }
973
974  if (Result.isEmpty())
975    return B.remove(ClusterHead);
976  return B.add(ClusterHead, Result.asImmutableMap());
977}
978
979namespace {
980class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker>
981{
982  const Expr *Ex;
983  unsigned Count;
984  const LocationContext *LCtx;
985  InvalidatedSymbols &IS;
986  RegionAndSymbolInvalidationTraits &ITraits;
987  StoreManager::InvalidatedRegions *Regions;
988  GlobalsFilterKind GlobalsFilter;
989public:
990  InvalidateRegionsWorker(RegionStoreManager &rm,
991                          ProgramStateManager &stateMgr,
992                          RegionBindingsRef b,
993                          const Expr *ex, unsigned count,
994                          const LocationContext *lctx,
995                          InvalidatedSymbols &is,
996                          RegionAndSymbolInvalidationTraits &ITraitsIn,
997                          StoreManager::InvalidatedRegions *r,
998                          GlobalsFilterKind GFK)
999     : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b),
1000       Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
1001       GlobalsFilter(GFK) {}
1002
1003  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
1004  void VisitBinding(SVal V);
1005
1006  using ClusterAnalysis::AddToWorkList;
1007
1008  bool AddToWorkList(const MemRegion *R);
1009
1010  /// Returns true if all clusters in the memory space for \p Base should be
1011  /// be invalidated.
1012  bool includeEntireMemorySpace(const MemRegion *Base);
1013
1014  /// Returns true if the memory space of the given region is one of the global
1015  /// regions specially included at the start of invalidation.
1016  bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
1017};
1018}
1019
1020bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
1021  bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1022      R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1023  const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
1024  return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
1025}
1026
1027void InvalidateRegionsWorker::VisitBinding(SVal V) {
1028  // A symbol?  Mark it touched by the invalidation.
1029  if (SymbolRef Sym = V.getAsSymbol())
1030    IS.insert(Sym);
1031
1032  if (const MemRegion *R = V.getAsRegion()) {
1033    AddToWorkList(R);
1034    return;
1035  }
1036
1037  // Is it a LazyCompoundVal?  All references get invalidated as well.
1038  if (std::optional<nonloc::LazyCompoundVal> LCS =
1039          V.getAs<nonloc::LazyCompoundVal>()) {
1040
1041    // `getInterestingValues()` returns SVals contained within LazyCompoundVals,
1042    // so there is no need to visit them.
1043    for (SVal V : RM.getInterestingValues(*LCS))
1044      if (!isa<nonloc::LazyCompoundVal>(V))
1045        VisitBinding(V);
1046
1047    return;
1048  }
1049}
1050
1051void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
1052                                           const ClusterBindings *C) {
1053
1054  bool PreserveRegionsContents =
1055      ITraits.hasTrait(baseR,
1056                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1057
1058  if (C) {
1059    for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
1060      VisitBinding(I.getData());
1061
1062    // Invalidate regions contents.
1063    if (!PreserveRegionsContents)
1064      B = B.remove(baseR);
1065  }
1066
1067  if (const auto *TO = dyn_cast<TypedValueRegion>(baseR)) {
1068    if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) {
1069
1070      // Lambdas can affect all static local variables without explicitly
1071      // capturing those.
1072      // We invalidate all static locals referenced inside the lambda body.
1073      if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) {
1074        using namespace ast_matchers;
1075
1076        const char *DeclBind = "DeclBind";
1077        StatementMatcher RefToStatic = stmt(hasDescendant(declRefExpr(
1078              to(varDecl(hasStaticStorageDuration()).bind(DeclBind)))));
1079        auto Matches =
1080            match(RefToStatic, *RD->getLambdaCallOperator()->getBody(),
1081                  RD->getASTContext());
1082
1083        for (BoundNodes &Match : Matches) {
1084          auto *VD = Match.getNodeAs<VarDecl>(DeclBind);
1085          const VarRegion *ToInvalidate =
1086              RM.getRegionManager().getVarRegion(VD, LCtx);
1087          AddToWorkList(ToInvalidate);
1088        }
1089      }
1090    }
1091  }
1092
1093  // BlockDataRegion?  If so, invalidate captured variables that are passed
1094  // by reference.
1095  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1096    for (BlockDataRegion::referenced_vars_iterator
1097         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1098         BI != BE; ++BI) {
1099      const VarRegion *VR = BI.getCapturedRegion();
1100      const VarDecl *VD = VR->getDecl();
1101      if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1102        AddToWorkList(VR);
1103      }
1104      else if (Loc::isLocType(VR->getValueType())) {
1105        // Map the current bindings to a Store to retrieve the value
1106        // of the binding.  If that binding itself is a region, we should
1107        // invalidate that region.  This is because a block may capture
1108        // a pointer value, but the thing pointed by that pointer may
1109        // get invalidated.
1110        SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1111        if (std::optional<Loc> L = V.getAs<Loc>()) {
1112          if (const MemRegion *LR = L->getAsRegion())
1113            AddToWorkList(LR);
1114        }
1115      }
1116    }
1117    return;
1118  }
1119
1120  // Symbolic region?
1121  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1122    IS.insert(SR->getSymbol());
1123
1124  // Nothing else should be done in the case when we preserve regions context.
1125  if (PreserveRegionsContents)
1126    return;
1127
1128  // Otherwise, we have a normal data region. Record that we touched the region.
1129  if (Regions)
1130    Regions->push_back(baseR);
1131
1132  if (isa<AllocaRegion, SymbolicRegion>(baseR)) {
1133    // Invalidate the region by setting its default value to
1134    // conjured symbol. The type of the symbol is irrelevant.
1135    DefinedOrUnknownSVal V =
1136      svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1137    B = B.addBinding(baseR, BindingKey::Default, V);
1138    return;
1139  }
1140
1141  if (!baseR->isBoundable())
1142    return;
1143
1144  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1145  QualType T = TR->getValueType();
1146
1147  if (isInitiallyIncludedGlobalRegion(baseR)) {
1148    // If the region is a global and we are invalidating all globals,
1149    // erasing the entry is good enough.  This causes all globals to be lazily
1150    // symbolicated from the same base symbol.
1151    return;
1152  }
1153
1154  if (T->isRecordType()) {
1155    // Invalidate the region by setting its default value to
1156    // conjured symbol. The type of the symbol is irrelevant.
1157    DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1158                                                          Ctx.IntTy, Count);
1159    B = B.addBinding(baseR, BindingKey::Default, V);
1160    return;
1161  }
1162
1163  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1164    bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1165        baseR,
1166        RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1167
1168    if (doNotInvalidateSuperRegion) {
1169      // We are not doing blank invalidation of the whole array region so we
1170      // have to manually invalidate each elements.
1171      std::optional<uint64_t> NumElements;
1172
1173      // Compute lower and upper offsets for region within array.
1174      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1175        NumElements = CAT->getSize().getZExtValue();
1176      if (!NumElements) // We are not dealing with a constant size array
1177        goto conjure_default;
1178      QualType ElementTy = AT->getElementType();
1179      uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1180      const RegionOffset &RO = baseR->getAsOffset();
1181      const MemRegion *SuperR = baseR->getBaseRegion();
1182      if (RO.hasSymbolicOffset()) {
1183        // If base region has a symbolic offset,
1184        // we revert to invalidating the super region.
1185        if (SuperR)
1186          AddToWorkList(SuperR);
1187        goto conjure_default;
1188      }
1189
1190      uint64_t LowerOffset = RO.getOffset();
1191      uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1192      bool UpperOverflow = UpperOffset < LowerOffset;
1193
1194      // Invalidate regions which are within array boundaries,
1195      // or have a symbolic offset.
1196      if (!SuperR)
1197        goto conjure_default;
1198
1199      const ClusterBindings *C = B.lookup(SuperR);
1200      if (!C)
1201        goto conjure_default;
1202
1203      for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
1204           ++I) {
1205        const BindingKey &BK = I.getKey();
1206        std::optional<uint64_t> ROffset =
1207            BK.hasSymbolicOffset() ? std::optional<uint64_t>() : BK.getOffset();
1208
1209        // Check offset is not symbolic and within array's boundaries.
1210        // Handles arrays of 0 elements and of 0-sized elements as well.
1211        if (!ROffset ||
1212            ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1213             (UpperOverflow &&
1214              (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1215             (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
1216          B = B.removeBinding(I.getKey());
1217          // Bound symbolic regions need to be invalidated for dead symbol
1218          // detection.
1219          SVal V = I.getData();
1220          const MemRegion *R = V.getAsRegion();
1221          if (isa_and_nonnull<SymbolicRegion>(R))
1222            VisitBinding(V);
1223        }
1224      }
1225    }
1226  conjure_default:
1227      // Set the default value of the array to conjured symbol.
1228    DefinedOrUnknownSVal V =
1229    svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1230                                     AT->getElementType(), Count);
1231    B = B.addBinding(baseR, BindingKey::Default, V);
1232    return;
1233  }
1234
1235  DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1236                                                        T,Count);
1237  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1238  B = B.addBinding(baseR, BindingKey::Direct, V);
1239}
1240
1241bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
1242    const MemRegion *R) {
1243  switch (GlobalsFilter) {
1244  case GFK_None:
1245    return false;
1246  case GFK_SystemOnly:
1247    return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
1248  case GFK_All:
1249    return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
1250  }
1251
1252  llvm_unreachable("unknown globals filter");
1253}
1254
1255bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
1256  if (isInitiallyIncludedGlobalRegion(Base))
1257    return true;
1258
1259  const MemSpaceRegion *MemSpace = Base->getMemorySpace();
1260  return ITraits.hasTrait(MemSpace,
1261                          RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
1262}
1263
1264RegionBindingsRef
1265RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1266                                           const Expr *Ex,
1267                                           unsigned Count,
1268                                           const LocationContext *LCtx,
1269                                           RegionBindingsRef B,
1270                                           InvalidatedRegions *Invalidated) {
1271  // Bind the globals memory space to a new symbol that we will use to derive
1272  // the bindings for all globals.
1273  const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1274  SVal V = svalBuilder.conjureSymbolVal(/* symbolTag = */ (const void*) GS, Ex, LCtx,
1275                                        /* type does not matter */ Ctx.IntTy,
1276                                        Count);
1277
1278  B = B.removeBinding(GS)
1279       .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1280
1281  // Even if there are no bindings in the global scope, we still need to
1282  // record that we touched it.
1283  if (Invalidated)
1284    Invalidated->push_back(GS);
1285
1286  return B;
1287}
1288
1289void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W,
1290                                          ArrayRef<SVal> Values,
1291                                          InvalidatedRegions *TopLevelRegions) {
1292  for (ArrayRef<SVal>::iterator I = Values.begin(),
1293                                E = Values.end(); I != E; ++I) {
1294    SVal V = *I;
1295    if (std::optional<nonloc::LazyCompoundVal> LCS =
1296            V.getAs<nonloc::LazyCompoundVal>()) {
1297
1298      for (SVal S : getInterestingValues(*LCS))
1299        if (const MemRegion *R = S.getAsRegion())
1300          W.AddToWorkList(R);
1301
1302      continue;
1303    }
1304
1305    if (const MemRegion *R = V.getAsRegion()) {
1306      if (TopLevelRegions)
1307        TopLevelRegions->push_back(R);
1308      W.AddToWorkList(R);
1309      continue;
1310    }
1311  }
1312}
1313
1314StoreRef
1315RegionStoreManager::invalidateRegions(Store store,
1316                                     ArrayRef<SVal> Values,
1317                                     const Expr *Ex, unsigned Count,
1318                                     const LocationContext *LCtx,
1319                                     const CallEvent *Call,
1320                                     InvalidatedSymbols &IS,
1321                                     RegionAndSymbolInvalidationTraits &ITraits,
1322                                     InvalidatedRegions *TopLevelRegions,
1323                                     InvalidatedRegions *Invalidated) {
1324  GlobalsFilterKind GlobalsFilter;
1325  if (Call) {
1326    if (Call->isInSystemHeader())
1327      GlobalsFilter = GFK_SystemOnly;
1328    else
1329      GlobalsFilter = GFK_All;
1330  } else {
1331    GlobalsFilter = GFK_None;
1332  }
1333
1334  RegionBindingsRef B = getRegionBindings(store);
1335  InvalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1336                            Invalidated, GlobalsFilter);
1337
1338  // Scan the bindings and generate the clusters.
1339  W.GenerateClusters();
1340
1341  // Add the regions to the worklist.
1342  populateWorkList(W, Values, TopLevelRegions);
1343
1344  W.RunWorkList();
1345
1346  // Return the new bindings.
1347  B = W.getRegionBindings();
1348
1349  // For calls, determine which global regions should be invalidated and
1350  // invalidate them. (Note that function-static and immutable globals are never
1351  // invalidated by this.)
1352  // TODO: This could possibly be more precise with modules.
1353  switch (GlobalsFilter) {
1354  case GFK_All:
1355    B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1356                               Ex, Count, LCtx, B, Invalidated);
1357    [[fallthrough]];
1358  case GFK_SystemOnly:
1359    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1360                               Ex, Count, LCtx, B, Invalidated);
1361    [[fallthrough]];
1362  case GFK_None:
1363    break;
1364  }
1365
1366  return StoreRef(B.asStore(), *this);
1367}
1368
1369//===----------------------------------------------------------------------===//
1370// Location and region casting.
1371//===----------------------------------------------------------------------===//
1372
1373/// ArrayToPointer - Emulates the "decay" of an array to a pointer
1374///  type.  'Array' represents the lvalue of the array being decayed
1375///  to a pointer, and the returned SVal represents the decayed
1376///  version of that lvalue (i.e., a pointer to the first element of
1377///  the array).  This is called by ExprEngine when evaluating casts
1378///  from arrays to pointers.
1379SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1380  if (isa<loc::ConcreteInt>(Array))
1381    return Array;
1382
1383  if (!isa<loc::MemRegionVal>(Array))
1384    return UnknownVal();
1385
1386  const SubRegion *R =
1387      cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion());
1388  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1389  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1390}
1391
1392//===----------------------------------------------------------------------===//
1393// Loading values from regions.
1394//===----------------------------------------------------------------------===//
1395
1396SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1397  assert(!isa<UnknownVal>(L) && "location unknown");
1398  assert(!isa<UndefinedVal>(L) && "location undefined");
1399
1400  // For access to concrete addresses, return UnknownVal.  Checks
1401  // for null dereferences (and similar errors) are done by checkers, not
1402  // the Store.
1403  // FIXME: We can consider lazily symbolicating such memory, but we really
1404  // should defer this when we can reason easily about symbolicating arrays
1405  // of bytes.
1406  if (L.getAs<loc::ConcreteInt>()) {
1407    return UnknownVal();
1408  }
1409  if (!L.getAs<loc::MemRegionVal>()) {
1410    return UnknownVal();
1411  }
1412
1413  const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1414
1415  if (isa<BlockDataRegion>(MR)) {
1416    return UnknownVal();
1417  }
1418
1419  // Auto-detect the binding type.
1420  if (T.isNull()) {
1421    if (const auto *TVR = dyn_cast<TypedValueRegion>(MR))
1422      T = TVR->getValueType();
1423    else if (const auto *TR = dyn_cast<TypedRegion>(MR))
1424      T = TR->getLocationType()->getPointeeType();
1425    else if (const auto *SR = dyn_cast<SymbolicRegion>(MR))
1426      T = SR->getPointeeStaticType();
1427  }
1428  assert(!T.isNull() && "Unable to auto-detect binding type!");
1429  assert(!T->isVoidType() && "Attempting to dereference a void pointer!");
1430
1431  if (!isa<TypedValueRegion>(MR))
1432    MR = GetElementZeroRegion(cast<SubRegion>(MR), T);
1433
1434  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1435  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1436  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1437  QualType RTy = R->getValueType();
1438
1439  // FIXME: we do not yet model the parts of a complex type, so treat the
1440  // whole thing as "unknown".
1441  if (RTy->isAnyComplexType())
1442    return UnknownVal();
1443
1444  // FIXME: We should eventually handle funny addressing.  e.g.:
1445  //
1446  //   int x = ...;
1447  //   int *p = &x;
1448  //   char *q = (char*) p;
1449  //   char c = *q;  // returns the first byte of 'x'.
1450  //
1451  // Such funny addressing will occur due to layering of regions.
1452  if (RTy->isStructureOrClassType())
1453    return getBindingForStruct(B, R);
1454
1455  // FIXME: Handle unions.
1456  if (RTy->isUnionType())
1457    return createLazyBinding(B, R);
1458
1459  if (RTy->isArrayType()) {
1460    if (RTy->isConstantArrayType())
1461      return getBindingForArray(B, R);
1462    else
1463      return UnknownVal();
1464  }
1465
1466  // FIXME: handle Vector types.
1467  if (RTy->isVectorType())
1468    return UnknownVal();
1469
1470  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1471    return svalBuilder.evalCast(getBindingForField(B, FR), T, QualType{});
1472
1473  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1474    // FIXME: Here we actually perform an implicit conversion from the loaded
1475    // value to the element type.  Eventually we want to compose these values
1476    // more intelligently.  For example, an 'element' can encompass multiple
1477    // bound regions (e.g., several bound bytes), or could be a subset of
1478    // a larger value.
1479    return svalBuilder.evalCast(getBindingForElement(B, ER), T, QualType{});
1480  }
1481
1482  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1483    // FIXME: Here we actually perform an implicit conversion from the loaded
1484    // value to the ivar type.  What we should model is stores to ivars
1485    // that blow past the extent of the ivar.  If the address of the ivar is
1486    // reinterpretted, it is possible we stored a different value that could
1487    // fit within the ivar.  Either we need to cast these when storing them
1488    // or reinterpret them lazily (as we do here).
1489    return svalBuilder.evalCast(getBindingForObjCIvar(B, IVR), T, QualType{});
1490  }
1491
1492  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1493    // FIXME: Here we actually perform an implicit conversion from the loaded
1494    // value to the variable type.  What we should model is stores to variables
1495    // that blow past the extent of the variable.  If the address of the
1496    // variable is reinterpretted, it is possible we stored a different value
1497    // that could fit within the variable.  Either we need to cast these when
1498    // storing them or reinterpret them lazily (as we do here).
1499    return svalBuilder.evalCast(getBindingForVar(B, VR), T, QualType{});
1500  }
1501
1502  const SVal *V = B.lookup(R, BindingKey::Direct);
1503
1504  // Check if the region has a binding.
1505  if (V)
1506    return *V;
1507
1508  // The location does not have a bound value.  This means that it has
1509  // the value it had upon its creation and/or entry to the analyzed
1510  // function/method.  These are either symbolic values or 'undefined'.
1511  if (R->hasStackNonParametersStorage()) {
1512    // All stack variables are considered to have undefined values
1513    // upon creation.  All heap allocated blocks are considered to
1514    // have undefined values as well unless they are explicitly bound
1515    // to specific values.
1516    return UndefinedVal();
1517  }
1518
1519  // All other values are symbolic.
1520  return svalBuilder.getRegionValueSymbolVal(R);
1521}
1522
1523static QualType getUnderlyingType(const SubRegion *R) {
1524  QualType RegionTy;
1525  if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1526    RegionTy = TVR->getValueType();
1527
1528  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1529    RegionTy = SR->getSymbol()->getType();
1530
1531  return RegionTy;
1532}
1533
1534/// Checks to see if store \p B has a lazy binding for region \p R.
1535///
1536/// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1537/// if there are additional bindings within \p R.
1538///
1539/// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1540/// for lazy bindings for super-regions of \p R.
1541static std::optional<nonloc::LazyCompoundVal>
1542getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1543                       const SubRegion *R, bool AllowSubregionBindings) {
1544  std::optional<SVal> V = B.getDefaultBinding(R);
1545  if (!V)
1546    return std::nullopt;
1547
1548  std::optional<nonloc::LazyCompoundVal> LCV =
1549      V->getAs<nonloc::LazyCompoundVal>();
1550  if (!LCV)
1551    return std::nullopt;
1552
1553  // If the LCV is for a subregion, the types might not match, and we shouldn't
1554  // reuse the binding.
1555  QualType RegionTy = getUnderlyingType(R);
1556  if (!RegionTy.isNull() &&
1557      !RegionTy->isVoidPointerType()) {
1558    QualType SourceRegionTy = LCV->getRegion()->getValueType();
1559    if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1560      return std::nullopt;
1561  }
1562
1563  if (!AllowSubregionBindings) {
1564    // If there are any other bindings within this region, we shouldn't reuse
1565    // the top-level binding.
1566    SmallVector<BindingPair, 16> Bindings;
1567    collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1568                             /*IncludeAllDefaultBindings=*/true);
1569    if (Bindings.size() > 1)
1570      return std::nullopt;
1571  }
1572
1573  return *LCV;
1574}
1575
1576std::pair<Store, const SubRegion *>
1577RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1578                                   const SubRegion *R,
1579                                   const SubRegion *originalRegion) {
1580  if (originalRegion != R) {
1581    if (std::optional<nonloc::LazyCompoundVal> V =
1582            getExistingLazyBinding(svalBuilder, B, R, true))
1583      return std::make_pair(V->getStore(), V->getRegion());
1584  }
1585
1586  typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1587  StoreRegionPair Result = StoreRegionPair();
1588
1589  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1590    Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1591                             originalRegion);
1592
1593    if (Result.second)
1594      Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1595
1596  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1597    Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1598                                       originalRegion);
1599
1600    if (Result.second)
1601      Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1602
1603  } else if (const CXXBaseObjectRegion *BaseReg =
1604               dyn_cast<CXXBaseObjectRegion>(R)) {
1605    // C++ base object region is another kind of region that we should blast
1606    // through to look for lazy compound value. It is like a field region.
1607    Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1608                             originalRegion);
1609
1610    if (Result.second)
1611      Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1612                                                            Result.second);
1613  }
1614
1615  return Result;
1616}
1617
1618/// This is a helper function for `getConstantValFromConstArrayInitializer`.
1619///
1620/// Return an array of extents of the declared array type.
1621///
1622/// E.g. for `int x[1][2][3];` returns { 1, 2, 3 }.
1623static SmallVector<uint64_t, 2>
1624getConstantArrayExtents(const ConstantArrayType *CAT) {
1625  assert(CAT && "ConstantArrayType should not be null");
1626  CAT = cast<ConstantArrayType>(CAT->getCanonicalTypeInternal());
1627  SmallVector<uint64_t, 2> Extents;
1628  do {
1629    Extents.push_back(CAT->getSize().getZExtValue());
1630  } while ((CAT = dyn_cast<ConstantArrayType>(CAT->getElementType())));
1631  return Extents;
1632}
1633
1634/// This is a helper function for `getConstantValFromConstArrayInitializer`.
1635///
1636/// Return an array of offsets from nested ElementRegions and a root base
1637/// region. The array is never empty and a base region is never null.
1638///
1639/// E.g. for `Element{Element{Element{VarRegion},1},2},3}` returns { 3, 2, 1 }.
1640/// This represents an access through indirection: `arr[1][2][3];`
1641///
1642/// \param ER The given (possibly nested) ElementRegion.
1643///
1644/// \note The result array is in the reverse order of indirection expression:
1645/// arr[1][2][3] -> { 3, 2, 1 }. This helps to provide complexity O(n), where n
1646/// is a number of indirections. It may not affect performance in real-life
1647/// code, though.
1648static std::pair<SmallVector<SVal, 2>, const MemRegion *>
1649getElementRegionOffsetsWithBase(const ElementRegion *ER) {
1650  assert(ER && "ConstantArrayType should not be null");
1651  const MemRegion *Base;
1652  SmallVector<SVal, 2> SValOffsets;
1653  do {
1654    SValOffsets.push_back(ER->getIndex());
1655    Base = ER->getSuperRegion();
1656    ER = dyn_cast<ElementRegion>(Base);
1657  } while (ER);
1658  return {SValOffsets, Base};
1659}
1660
1661/// This is a helper function for `getConstantValFromConstArrayInitializer`.
1662///
1663/// Convert array of offsets from `SVal` to `uint64_t` in consideration of
1664/// respective array extents.
1665/// \param SrcOffsets [in]   The array of offsets of type `SVal` in reversed
1666///   order (expectedly received from `getElementRegionOffsetsWithBase`).
1667/// \param ArrayExtents [in] The array of extents.
1668/// \param DstOffsets [out]  The array of offsets of type `uint64_t`.
1669/// \returns:
1670/// - `std::nullopt` for successful convertion.
1671/// - `UndefinedVal` or `UnknownVal` otherwise. It's expected that this SVal
1672///   will be returned as a suitable value of the access operation.
1673///   which should be returned as a correct
1674///
1675/// \example:
1676///   const int arr[10][20][30] = {}; // ArrayExtents { 10, 20, 30 }
1677///   int x1 = arr[4][5][6]; // SrcOffsets { NonLoc(6), NonLoc(5), NonLoc(4) }
1678///                          // DstOffsets { 4, 5, 6 }
1679///                          // returns std::nullopt
1680///   int x2 = arr[42][5][-6]; // returns UndefinedVal
1681///   int x3 = arr[4][5][x2];  // returns UnknownVal
1682static std::optional<SVal>
1683convertOffsetsFromSvalToUnsigneds(const SmallVector<SVal, 2> &SrcOffsets,
1684                                  const SmallVector<uint64_t, 2> ArrayExtents,
1685                                  SmallVector<uint64_t, 2> &DstOffsets) {
1686  // Check offsets for being out of bounds.
1687  // C++20 [expr.add] 7.6.6.4 (excerpt):
1688  //   If P points to an array element i of an array object x with n
1689  //   elements, where i < 0 or i > n, the behavior is undefined.
1690  //   Dereferencing is not allowed on the "one past the last
1691  //   element", when i == n.
1692  // Example:
1693  //  const int arr[3][2] = {{1, 2}, {3, 4}};
1694  //  arr[0][0];  // 1
1695  //  arr[0][1];  // 2
1696  //  arr[0][2];  // UB
1697  //  arr[1][0];  // 3
1698  //  arr[1][1];  // 4
1699  //  arr[1][-1]; // UB
1700  //  arr[2][0];  // 0
1701  //  arr[2][1];  // 0
1702  //  arr[-2][0]; // UB
1703  DstOffsets.resize(SrcOffsets.size());
1704  auto ExtentIt = ArrayExtents.begin();
1705  auto OffsetIt = DstOffsets.begin();
1706  // Reverse `SValOffsets` to make it consistent with `ArrayExtents`.
1707  for (SVal V : llvm::reverse(SrcOffsets)) {
1708    if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
1709      // When offset is out of array's bounds, result is UB.
1710      const llvm::APSInt &Offset = CI->getValue();
1711      if (Offset.isNegative() || Offset.uge(*(ExtentIt++)))
1712        return UndefinedVal();
1713      // Store index in a reversive order.
1714      *(OffsetIt++) = Offset.getZExtValue();
1715      continue;
1716    }
1717    // Symbolic index presented. Return Unknown value.
1718    // FIXME: We also need to take ElementRegions with symbolic indexes into
1719    // account.
1720    return UnknownVal();
1721  }
1722  return std::nullopt;
1723}
1724
1725std::optional<SVal> RegionStoreManager::getConstantValFromConstArrayInitializer(
1726    RegionBindingsConstRef B, const ElementRegion *R) {
1727  assert(R && "ElementRegion should not be null");
1728
1729  // Treat an n-dimensional array.
1730  SmallVector<SVal, 2> SValOffsets;
1731  const MemRegion *Base;
1732  std::tie(SValOffsets, Base) = getElementRegionOffsetsWithBase(R);
1733  const VarRegion *VR = dyn_cast<VarRegion>(Base);
1734  if (!VR)
1735    return std::nullopt;
1736
1737  assert(!SValOffsets.empty() && "getElementRegionOffsets guarantees the "
1738                                 "offsets vector is not empty.");
1739
1740  // Check if the containing array has an initialized value that we can trust.
1741  // We can trust a const value or a value of a global initializer in main().
1742  const VarDecl *VD = VR->getDecl();
1743  if (!VD->getType().isConstQualified() &&
1744      !R->getElementType().isConstQualified() &&
1745      (!B.isMainAnalysis() || !VD->hasGlobalStorage()))
1746    return std::nullopt;
1747
1748  // Array's declaration should have `ConstantArrayType` type, because only this
1749  // type contains an array extent. It may happen that array type can be of
1750  // `IncompleteArrayType` type. To get the declaration of `ConstantArrayType`
1751  // type, we should find the declaration in the redeclarations chain that has
1752  // the initialization expression.
1753  // NOTE: `getAnyInitializer` has an out-parameter, which returns a new `VD`
1754  // from which an initializer is obtained. We replace current `VD` with the new
1755  // `VD`. If the return value of the function is null than `VD` won't be
1756  // replaced.
1757  const Expr *Init = VD->getAnyInitializer(VD);
1758  // NOTE: If `Init` is non-null, then a new `VD` is non-null for sure. So check
1759  // `Init` for null only and don't worry about the replaced `VD`.
1760  if (!Init)
1761    return std::nullopt;
1762
1763  // Array's declaration should have ConstantArrayType type, because only this
1764  // type contains an array extent.
1765  const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(VD->getType());
1766  if (!CAT)
1767    return std::nullopt;
1768
1769  // Get array extents.
1770  SmallVector<uint64_t, 2> Extents = getConstantArrayExtents(CAT);
1771
1772  // The number of offsets should equal to the numbers of extents,
1773  // otherwise wrong type punning occurred. For instance:
1774  //  int arr[1][2][3];
1775  //  auto ptr = (int(*)[42])arr;
1776  //  auto x = ptr[4][2]; // UB
1777  // FIXME: Should return UndefinedVal.
1778  if (SValOffsets.size() != Extents.size())
1779    return std::nullopt;
1780
1781  SmallVector<uint64_t, 2> ConcreteOffsets;
1782  if (std::optional<SVal> V = convertOffsetsFromSvalToUnsigneds(
1783          SValOffsets, Extents, ConcreteOffsets))
1784    return *V;
1785
1786  // Handle InitListExpr.
1787  // Example:
1788  //   const char arr[4][2] = { { 1, 2 }, { 3 }, 4, 5 };
1789  if (const auto *ILE = dyn_cast<InitListExpr>(Init))
1790    return getSValFromInitListExpr(ILE, ConcreteOffsets, R->getElementType());
1791
1792  // Handle StringLiteral.
1793  // Example:
1794  //   const char arr[] = "abc";
1795  if (const auto *SL = dyn_cast<StringLiteral>(Init))
1796    return getSValFromStringLiteral(SL, ConcreteOffsets.front(),
1797                                    R->getElementType());
1798
1799  // FIXME: Handle CompoundLiteralExpr.
1800
1801  return std::nullopt;
1802}
1803
1804/// Returns an SVal, if possible, for the specified position of an
1805/// initialization list.
1806///
1807/// \param ILE The given initialization list.
1808/// \param Offsets The array of unsigned offsets. E.g. for the expression
1809///  `int x = arr[1][2][3];` an array should be { 1, 2, 3 }.
1810/// \param ElemT The type of the result SVal expression.
1811/// \return Optional SVal for the particular position in the initialization
1812///   list. E.g. for the list `{{1, 2},[3, 4],{5, 6}, {}}` offsets:
1813///   - {1, 1} returns SVal{4}, because it's the second position in the second
1814///     sublist;
1815///   - {3, 0} returns SVal{0}, because there's no explicit value at this
1816///     position in the sublist.
1817///
1818/// NOTE: Inorder to get a valid SVal, a caller shall guarantee valid offsets
1819/// for the given initialization list. Otherwise SVal can be an equivalent to 0
1820/// or lead to assertion.
1821std::optional<SVal> RegionStoreManager::getSValFromInitListExpr(
1822    const InitListExpr *ILE, const SmallVector<uint64_t, 2> &Offsets,
1823    QualType ElemT) {
1824  assert(ILE && "InitListExpr should not be null");
1825
1826  for (uint64_t Offset : Offsets) {
1827    // C++20 [dcl.init.string] 9.4.2.1:
1828    //   An array of ordinary character type [...] can be initialized by [...]
1829    //   an appropriately-typed string-literal enclosed in braces.
1830    // Example:
1831    //   const char arr[] = { "abc" };
1832    if (ILE->isStringLiteralInit())
1833      if (const auto *SL = dyn_cast<StringLiteral>(ILE->getInit(0)))
1834        return getSValFromStringLiteral(SL, Offset, ElemT);
1835
1836    // C++20 [expr.add] 9.4.17.5 (excerpt):
1837    //   i-th array element is value-initialized for each k < i ��� n,
1838    //   where k is an expression-list size and n is an array extent.
1839    if (Offset >= ILE->getNumInits())
1840      return svalBuilder.makeZeroVal(ElemT);
1841
1842    const Expr *E = ILE->getInit(Offset);
1843    const auto *IL = dyn_cast<InitListExpr>(E);
1844    if (!IL)
1845      // Return a constant value, if it is presented.
1846      // FIXME: Support other SVals.
1847      return svalBuilder.getConstantVal(E);
1848
1849    // Go to the nested initializer list.
1850    ILE = IL;
1851  }
1852
1853  assert(ILE);
1854
1855  // FIXME: Unhandeled InitListExpr sub-expression, possibly constructing an
1856  //        enum?
1857  return std::nullopt;
1858}
1859
1860/// Returns an SVal, if possible, for the specified position in a string
1861/// literal.
1862///
1863/// \param SL The given string literal.
1864/// \param Offset The unsigned offset. E.g. for the expression
1865///   `char x = str[42];` an offset should be 42.
1866///   E.g. for the string "abc" offset:
1867///   - 1 returns SVal{b}, because it's the second position in the string.
1868///   - 42 returns SVal{0}, because there's no explicit value at this
1869///     position in the string.
1870/// \param ElemT The type of the result SVal expression.
1871///
1872/// NOTE: We return `0` for every offset >= the literal length for array
1873/// declarations, like:
1874///   const char str[42] = "123"; // Literal length is 4.
1875///   char c = str[41];           // Offset is 41.
1876/// FIXME: Nevertheless, we can't do the same for pointer declaraions, like:
1877///   const char * const str = "123"; // Literal length is 4.
1878///   char c = str[41];               // Offset is 41. Returns `0`, but Undef
1879///                                   // expected.
1880/// It should be properly handled before reaching this point.
1881/// The main problem is that we can't distinguish between these declarations,
1882/// because in case of array we can get the Decl from VarRegion, but in case
1883/// of pointer the region is a StringRegion, which doesn't contain a Decl.
1884/// Possible solution could be passing an array extent along with the offset.
1885SVal RegionStoreManager::getSValFromStringLiteral(const StringLiteral *SL,
1886                                                  uint64_t Offset,
1887                                                  QualType ElemT) {
1888  assert(SL && "StringLiteral should not be null");
1889  // C++20 [dcl.init.string] 9.4.2.3:
1890  //   If there are fewer initializers than there are array elements, each
1891  //   element not explicitly initialized shall be zero-initialized [dcl.init].
1892  uint32_t Code = (Offset >= SL->getLength()) ? 0 : SL->getCodeUnit(Offset);
1893  return svalBuilder.makeIntVal(Code, ElemT);
1894}
1895
1896static std::optional<SVal> getDerivedSymbolForBinding(
1897    RegionBindingsConstRef B, const TypedValueRegion *BaseRegion,
1898    const TypedValueRegion *SubReg, const ASTContext &Ctx, SValBuilder &SVB) {
1899  assert(BaseRegion);
1900  QualType BaseTy = BaseRegion->getValueType();
1901  QualType Ty = SubReg->getValueType();
1902  if (BaseTy->isScalarType() && Ty->isScalarType()) {
1903    if (Ctx.getTypeSizeInChars(BaseTy) >= Ctx.getTypeSizeInChars(Ty)) {
1904      if (const std::optional<SVal> &ParentValue =
1905              B.getDirectBinding(BaseRegion)) {
1906        if (SymbolRef ParentValueAsSym = ParentValue->getAsSymbol())
1907          return SVB.getDerivedRegionValueSymbolVal(ParentValueAsSym, SubReg);
1908
1909        if (ParentValue->isUndef())
1910          return UndefinedVal();
1911
1912        // Other cases: give up.  We are indexing into a larger object
1913        // that has some value, but we don't know how to handle that yet.
1914        return UnknownVal();
1915      }
1916    }
1917  }
1918  return std::nullopt;
1919}
1920
1921SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1922                                              const ElementRegion* R) {
1923  // Check if the region has a binding.
1924  if (const std::optional<SVal> &V = B.getDirectBinding(R))
1925    return *V;
1926
1927  const MemRegion* superR = R->getSuperRegion();
1928
1929  // Check if the region is an element region of a string literal.
1930  if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) {
1931    // FIXME: Handle loads from strings where the literal is treated as
1932    // an integer, e.g., *((unsigned int*)"hello"). Such loads are UB according
1933    // to C++20 7.2.1.11 [basic.lval].
1934    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1935    if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1936      return UnknownVal();
1937    if (const auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) {
1938      const llvm::APSInt &Idx = CI->getValue();
1939      if (Idx < 0)
1940        return UndefinedVal();
1941      const StringLiteral *SL = StrR->getStringLiteral();
1942      return getSValFromStringLiteral(SL, Idx.getZExtValue(), T);
1943    }
1944  } else if (isa<ElementRegion, VarRegion>(superR)) {
1945    if (std::optional<SVal> V = getConstantValFromConstArrayInitializer(B, R))
1946      return *V;
1947  }
1948
1949  // Check for loads from a code text region.  For such loads, just give up.
1950  if (isa<CodeTextRegion>(superR))
1951    return UnknownVal();
1952
1953  // Handle the case where we are indexing into a larger scalar object.
1954  // For example, this handles:
1955  //   int x = ...
1956  //   char *y = &x;
1957  //   return *y;
1958  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1959  const RegionRawOffset &O = R->getAsArrayOffset();
1960
1961  // If we cannot reason about the offset, return an unknown value.
1962  if (!O.getRegion())
1963    return UnknownVal();
1964
1965  if (const TypedValueRegion *baseR = dyn_cast<TypedValueRegion>(O.getRegion()))
1966    if (auto V = getDerivedSymbolForBinding(B, baseR, R, Ctx, svalBuilder))
1967      return *V;
1968
1969  return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1970}
1971
1972SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1973                                            const FieldRegion* R) {
1974
1975  // Check if the region has a binding.
1976  if (const std::optional<SVal> &V = B.getDirectBinding(R))
1977    return *V;
1978
1979  // If the containing record was initialized, try to get its constant value.
1980  const FieldDecl *FD = R->getDecl();
1981  QualType Ty = FD->getType();
1982  const MemRegion* superR = R->getSuperRegion();
1983  if (const auto *VR = dyn_cast<VarRegion>(superR)) {
1984    const VarDecl *VD = VR->getDecl();
1985    QualType RecordVarTy = VD->getType();
1986    unsigned Index = FD->getFieldIndex();
1987    // Either the record variable or the field has an initializer that we can
1988    // trust. We trust initializers of constants and, additionally, respect
1989    // initializers of globals when analyzing main().
1990    if (RecordVarTy.isConstQualified() || Ty.isConstQualified() ||
1991        (B.isMainAnalysis() && VD->hasGlobalStorage()))
1992      if (const Expr *Init = VD->getAnyInitializer())
1993        if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
1994          if (Index < InitList->getNumInits()) {
1995            if (const Expr *FieldInit = InitList->getInit(Index))
1996              if (std::optional<SVal> V = svalBuilder.getConstantVal(FieldInit))
1997                return *V;
1998          } else {
1999            return svalBuilder.makeZeroVal(Ty);
2000          }
2001        }
2002  }
2003
2004  // Handle the case where we are accessing into a larger scalar object.
2005  // For example, this handles:
2006  //   struct header {
2007  //     unsigned a : 1;
2008  //     unsigned b : 1;
2009  //   };
2010  //   struct parse_t {
2011  //     unsigned bits0 : 1;
2012  //     unsigned bits2 : 2; // <-- header
2013  //     unsigned bits4 : 4;
2014  //   };
2015  //   int parse(parse_t *p) {
2016  //     unsigned copy = p->bits2;
2017  //     header *bits = (header *)&copy;
2018  //     return bits->b;  <-- here
2019  //   }
2020  if (const auto *Base = dyn_cast<TypedValueRegion>(R->getBaseRegion()))
2021    if (auto V = getDerivedSymbolForBinding(B, Base, R, Ctx, svalBuilder))
2022      return *V;
2023
2024  return getBindingForFieldOrElementCommon(B, R, Ty);
2025}
2026
2027std::optional<SVal> RegionStoreManager::getBindingForDerivedDefaultValue(
2028    RegionBindingsConstRef B, const MemRegion *superR,
2029    const TypedValueRegion *R, QualType Ty) {
2030
2031  if (const std::optional<SVal> &D = B.getDefaultBinding(superR)) {
2032    const SVal &val = *D;
2033    if (SymbolRef parentSym = val.getAsSymbol())
2034      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
2035
2036    if (val.isZeroConstant())
2037      return svalBuilder.makeZeroVal(Ty);
2038
2039    if (val.isUnknownOrUndef())
2040      return val;
2041
2042    // Lazy bindings are usually handled through getExistingLazyBinding().
2043    // We should unify these two code paths at some point.
2044    if (isa<nonloc::LazyCompoundVal, nonloc::CompoundVal>(val))
2045      return val;
2046
2047    llvm_unreachable("Unknown default value");
2048  }
2049
2050  return std::nullopt;
2051}
2052
2053SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
2054                                        RegionBindingsRef LazyBinding) {
2055  SVal Result;
2056  if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
2057    Result = getBindingForElement(LazyBinding, ER);
2058  else
2059    Result = getBindingForField(LazyBinding,
2060                                cast<FieldRegion>(LazyBindingRegion));
2061
2062  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
2063  // default value for /part/ of an aggregate from a default value for the
2064  // /entire/ aggregate. The most common case of this is when struct Outer
2065  // has as its first member a struct Inner, which is copied in from a stack
2066  // variable. In this case, even if the Outer's default value is symbolic, 0,
2067  // or unknown, it gets overridden by the Inner's default value of undefined.
2068  //
2069  // This is a general problem -- if the Inner is zero-initialized, the Outer
2070  // will now look zero-initialized. The proper way to solve this is with a
2071  // new version of RegionStore that tracks the extent of a binding as well
2072  // as the offset.
2073  //
2074  // This hack only takes care of the undefined case because that can very
2075  // quickly result in a warning.
2076  if (Result.isUndef())
2077    Result = UnknownVal();
2078
2079  return Result;
2080}
2081
2082SVal
2083RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
2084                                                      const TypedValueRegion *R,
2085                                                      QualType Ty) {
2086
2087  // At this point we have already checked in either getBindingForElement or
2088  // getBindingForField if 'R' has a direct binding.
2089
2090  // Lazy binding?
2091  Store lazyBindingStore = nullptr;
2092  const SubRegion *lazyBindingRegion = nullptr;
2093  std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
2094  if (lazyBindingRegion)
2095    return getLazyBinding(lazyBindingRegion,
2096                          getRegionBindings(lazyBindingStore));
2097
2098  // Record whether or not we see a symbolic index.  That can completely
2099  // be out of scope of our lookup.
2100  bool hasSymbolicIndex = false;
2101
2102  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
2103  // default value for /part/ of an aggregate from a default value for the
2104  // /entire/ aggregate. The most common case of this is when struct Outer
2105  // has as its first member a struct Inner, which is copied in from a stack
2106  // variable. In this case, even if the Outer's default value is symbolic, 0,
2107  // or unknown, it gets overridden by the Inner's default value of undefined.
2108  //
2109  // This is a general problem -- if the Inner is zero-initialized, the Outer
2110  // will now look zero-initialized. The proper way to solve this is with a
2111  // new version of RegionStore that tracks the extent of a binding as well
2112  // as the offset.
2113  //
2114  // This hack only takes care of the undefined case because that can very
2115  // quickly result in a warning.
2116  bool hasPartialLazyBinding = false;
2117
2118  const SubRegion *SR = R;
2119  while (SR) {
2120    const MemRegion *Base = SR->getSuperRegion();
2121    if (std::optional<SVal> D =
2122            getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
2123      if (D->getAs<nonloc::LazyCompoundVal>()) {
2124        hasPartialLazyBinding = true;
2125        break;
2126      }
2127
2128      return *D;
2129    }
2130
2131    if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
2132      NonLoc index = ER->getIndex();
2133      if (!index.isConstant())
2134        hasSymbolicIndex = true;
2135    }
2136
2137    // If our super region is a field or element itself, walk up the region
2138    // hierarchy to see if there is a default value installed in an ancestor.
2139    SR = dyn_cast<SubRegion>(Base);
2140  }
2141
2142  if (R->hasStackNonParametersStorage()) {
2143    if (isa<ElementRegion>(R)) {
2144      // Currently we don't reason specially about Clang-style vectors.  Check
2145      // if superR is a vector and if so return Unknown.
2146      if (const TypedValueRegion *typedSuperR =
2147            dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
2148        if (typedSuperR->getValueType()->isVectorType())
2149          return UnknownVal();
2150      }
2151    }
2152
2153    // FIXME: We also need to take ElementRegions with symbolic indexes into
2154    // account.  This case handles both directly accessing an ElementRegion
2155    // with a symbolic offset, but also fields within an element with
2156    // a symbolic offset.
2157    if (hasSymbolicIndex)
2158      return UnknownVal();
2159
2160    // Additionally allow introspection of a block's internal layout.
2161    // Try to get direct binding if all other attempts failed thus far.
2162    // Else, return UndefinedVal()
2163    if (!hasPartialLazyBinding && !isa<BlockDataRegion>(R->getBaseRegion())) {
2164      if (const std::optional<SVal> &V = B.getDefaultBinding(R))
2165        return *V;
2166      return UndefinedVal();
2167    }
2168  }
2169
2170  // All other values are symbolic.
2171  return svalBuilder.getRegionValueSymbolVal(R);
2172}
2173
2174SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
2175                                               const ObjCIvarRegion* R) {
2176  // Check if the region has a binding.
2177  if (const std::optional<SVal> &V = B.getDirectBinding(R))
2178    return *V;
2179
2180  const MemRegion *superR = R->getSuperRegion();
2181
2182  // Check if the super region has a default binding.
2183  if (const std::optional<SVal> &V = B.getDefaultBinding(superR)) {
2184    if (SymbolRef parentSym = V->getAsSymbol())
2185      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
2186
2187    // Other cases: give up.
2188    return UnknownVal();
2189  }
2190
2191  return getBindingForLazySymbol(R);
2192}
2193
2194SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
2195                                          const VarRegion *R) {
2196
2197  // Check if the region has a binding.
2198  if (std::optional<SVal> V = B.getDirectBinding(R))
2199    return *V;
2200
2201  if (std::optional<SVal> V = B.getDefaultBinding(R))
2202    return *V;
2203
2204  // Lazily derive a value for the VarRegion.
2205  const VarDecl *VD = R->getDecl();
2206  const MemSpaceRegion *MS = R->getMemorySpace();
2207
2208  // Arguments are always symbolic.
2209  if (isa<StackArgumentsSpaceRegion>(MS))
2210    return svalBuilder.getRegionValueSymbolVal(R);
2211
2212  // Is 'VD' declared constant?  If so, retrieve the constant value.
2213  if (VD->getType().isConstQualified()) {
2214    if (const Expr *Init = VD->getAnyInitializer()) {
2215      if (std::optional<SVal> V = svalBuilder.getConstantVal(Init))
2216        return *V;
2217
2218      // If the variable is const qualified and has an initializer but
2219      // we couldn't evaluate initializer to a value, treat the value as
2220      // unknown.
2221      return UnknownVal();
2222    }
2223  }
2224
2225  // This must come after the check for constants because closure-captured
2226  // constant variables may appear in UnknownSpaceRegion.
2227  if (isa<UnknownSpaceRegion>(MS))
2228    return svalBuilder.getRegionValueSymbolVal(R);
2229
2230  if (isa<GlobalsSpaceRegion>(MS)) {
2231    QualType T = VD->getType();
2232
2233    // If we're in main(), then global initializers have not become stale yet.
2234    if (B.isMainAnalysis())
2235      if (const Expr *Init = VD->getAnyInitializer())
2236        if (std::optional<SVal> V = svalBuilder.getConstantVal(Init))
2237          return *V;
2238
2239    // Function-scoped static variables are default-initialized to 0; if they
2240    // have an initializer, it would have been processed by now.
2241    // FIXME: This is only true when we're starting analysis from main().
2242    // We're losing a lot of coverage here.
2243    if (isa<StaticGlobalSpaceRegion>(MS))
2244      return svalBuilder.makeZeroVal(T);
2245
2246    if (std::optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
2247      assert(!V->getAs<nonloc::LazyCompoundVal>());
2248      return *V;
2249    }
2250
2251    return svalBuilder.getRegionValueSymbolVal(R);
2252  }
2253
2254  return UndefinedVal();
2255}
2256
2257SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
2258  // All other values are symbolic.
2259  return svalBuilder.getRegionValueSymbolVal(R);
2260}
2261
2262const RegionStoreManager::SValListTy &
2263RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
2264  // First, check the cache.
2265  LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
2266  if (I != LazyBindingsMap.end())
2267    return I->second;
2268
2269  // If we don't have a list of values cached, start constructing it.
2270  SValListTy List;
2271
2272  const SubRegion *LazyR = LCV.getRegion();
2273  RegionBindingsRef B = getRegionBindings(LCV.getStore());
2274
2275  // If this region had /no/ bindings at the time, there are no interesting
2276  // values to return.
2277  const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
2278  if (!Cluster)
2279    return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2280
2281  SmallVector<BindingPair, 32> Bindings;
2282  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
2283                           /*IncludeAllDefaultBindings=*/true);
2284  for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
2285                                                    E = Bindings.end();
2286       I != E; ++I) {
2287    SVal V = I->second;
2288    if (V.isUnknownOrUndef() || V.isConstant())
2289      continue;
2290
2291    if (auto InnerLCV = V.getAs<nonloc::LazyCompoundVal>()) {
2292      const SValListTy &InnerList = getInterestingValues(*InnerLCV);
2293      List.insert(List.end(), InnerList.begin(), InnerList.end());
2294    }
2295
2296    List.push_back(V);
2297  }
2298
2299  return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2300}
2301
2302NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
2303                                             const TypedValueRegion *R) {
2304  if (std::optional<nonloc::LazyCompoundVal> V =
2305          getExistingLazyBinding(svalBuilder, B, R, false))
2306    return *V;
2307
2308  return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
2309}
2310
2311static bool isRecordEmpty(const RecordDecl *RD) {
2312  if (!RD->field_empty())
2313    return false;
2314  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
2315    return CRD->getNumBases() == 0;
2316  return true;
2317}
2318
2319SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
2320                                             const TypedValueRegion *R) {
2321  const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
2322  if (!RD->getDefinition() || isRecordEmpty(RD))
2323    return UnknownVal();
2324
2325  return createLazyBinding(B, R);
2326}
2327
2328SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
2329                                            const TypedValueRegion *R) {
2330  assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
2331         "Only constant array types can have compound bindings.");
2332
2333  return createLazyBinding(B, R);
2334}
2335
2336bool RegionStoreManager::includedInBindings(Store store,
2337                                            const MemRegion *region) const {
2338  RegionBindingsRef B = getRegionBindings(store);
2339  region = region->getBaseRegion();
2340
2341  // Quick path: if the base is the head of a cluster, the region is live.
2342  if (B.lookup(region))
2343    return true;
2344
2345  // Slow path: if the region is the VALUE of any binding, it is live.
2346  for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
2347    const ClusterBindings &Cluster = RI.getData();
2348    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2349         CI != CE; ++CI) {
2350      const SVal &D = CI.getData();
2351      if (const MemRegion *R = D.getAsRegion())
2352        if (R->getBaseRegion() == region)
2353          return true;
2354    }
2355  }
2356
2357  return false;
2358}
2359
2360//===----------------------------------------------------------------------===//
2361// Binding values to regions.
2362//===----------------------------------------------------------------------===//
2363
2364StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
2365  if (std::optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
2366    if (const MemRegion* R = LV->getRegion())
2367      return StoreRef(getRegionBindings(ST).removeBinding(R)
2368                                           .asImmutableMap()
2369                                           .getRootWithoutRetain(),
2370                      *this);
2371
2372  return StoreRef(ST, *this);
2373}
2374
2375RegionBindingsRef
2376RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
2377  if (L.getAs<loc::ConcreteInt>())
2378    return B;
2379
2380  // If we get here, the location should be a region.
2381  const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
2382
2383  // Check if the region is a struct region.
2384  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
2385    QualType Ty = TR->getValueType();
2386    if (Ty->isArrayType())
2387      return bindArray(B, TR, V);
2388    if (Ty->isStructureOrClassType())
2389      return bindStruct(B, TR, V);
2390    if (Ty->isVectorType())
2391      return bindVector(B, TR, V);
2392    if (Ty->isUnionType())
2393      return bindAggregate(B, TR, V);
2394  }
2395
2396  // Binding directly to a symbolic region should be treated as binding
2397  // to element 0.
2398  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2399    R = GetElementZeroRegion(SR, SR->getPointeeStaticType());
2400
2401  assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) &&
2402         "'this' pointer is not an l-value and is not assignable");
2403
2404  // Clear out bindings that may overlap with this binding.
2405  RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
2406
2407  // LazyCompoundVals should be always bound as 'default' bindings.
2408  auto KeyKind = isa<nonloc::LazyCompoundVal>(V) ? BindingKey::Default
2409                                                 : BindingKey::Direct;
2410  return NewB.addBinding(BindingKey::Make(R, KeyKind), V);
2411}
2412
2413RegionBindingsRef
2414RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
2415                                            const MemRegion *R,
2416                                            QualType T) {
2417  SVal V;
2418
2419  if (Loc::isLocType(T))
2420    V = svalBuilder.makeNullWithType(T);
2421  else if (T->isIntegralOrEnumerationType())
2422    V = svalBuilder.makeZeroVal(T);
2423  else if (T->isStructureOrClassType() || T->isArrayType()) {
2424    // Set the default value to a zero constant when it is a structure
2425    // or array.  The type doesn't really matter.
2426    V = svalBuilder.makeZeroVal(Ctx.IntTy);
2427  }
2428  else {
2429    // We can't represent values of this type, but we still need to set a value
2430    // to record that the region has been initialized.
2431    // If this assertion ever fires, a new case should be added above -- we
2432    // should know how to default-initialize any value we can symbolicate.
2433    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2434    V = UnknownVal();
2435  }
2436
2437  return B.addBinding(R, BindingKey::Default, V);
2438}
2439
2440std::optional<RegionBindingsRef> RegionStoreManager::tryBindSmallArray(
2441    RegionBindingsConstRef B, const TypedValueRegion *R, const ArrayType *AT,
2442    nonloc::LazyCompoundVal LCV) {
2443
2444  auto CAT = dyn_cast<ConstantArrayType>(AT);
2445
2446  // If we don't know the size, create a lazyCompoundVal instead.
2447  if (!CAT)
2448    return std::nullopt;
2449
2450  QualType Ty = CAT->getElementType();
2451  if (!(Ty->isScalarType() || Ty->isReferenceType()))
2452    return std::nullopt;
2453
2454  // If the array is too big, create a LCV instead.
2455  uint64_t ArrSize = CAT->getSize().getLimitedValue();
2456  if (ArrSize > SmallArrayLimit)
2457    return std::nullopt;
2458
2459  RegionBindingsRef NewB = B;
2460
2461  for (uint64_t i = 0; i < ArrSize; ++i) {
2462    auto Idx = svalBuilder.makeArrayIndex(i);
2463    const ElementRegion *SrcER =
2464        MRMgr.getElementRegion(Ty, Idx, LCV.getRegion(), Ctx);
2465    SVal V = getBindingForElement(getRegionBindings(LCV.getStore()), SrcER);
2466
2467    const ElementRegion *DstER = MRMgr.getElementRegion(Ty, Idx, R, Ctx);
2468    NewB = bind(NewB, loc::MemRegionVal(DstER), V);
2469  }
2470
2471  return NewB;
2472}
2473
2474RegionBindingsRef
2475RegionStoreManager::bindArray(RegionBindingsConstRef B,
2476                              const TypedValueRegion* R,
2477                              SVal Init) {
2478
2479  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2480  QualType ElementTy = AT->getElementType();
2481  std::optional<uint64_t> Size;
2482
2483  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2484    Size = CAT->getSize().getZExtValue();
2485
2486  // Check if the init expr is a literal. If so, bind the rvalue instead.
2487  // FIXME: It's not responsibility of the Store to transform this lvalue
2488  // to rvalue. ExprEngine or maybe even CFG should do this before binding.
2489  if (std::optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2490    SVal V = getBinding(B.asStore(), *MRV, R->getValueType());
2491    return bindAggregate(B, R, V);
2492  }
2493
2494  // Handle lazy compound values.
2495  if (std::optional<nonloc::LazyCompoundVal> LCV =
2496          Init.getAs<nonloc::LazyCompoundVal>()) {
2497    if (std::optional<RegionBindingsRef> NewB =
2498            tryBindSmallArray(B, R, AT, *LCV))
2499      return *NewB;
2500
2501    return bindAggregate(B, R, Init);
2502  }
2503
2504  if (Init.isUnknown())
2505    return bindAggregate(B, R, UnknownVal());
2506
2507  // Remaining case: explicit compound values.
2508  const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2509  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2510  uint64_t i = 0;
2511
2512  RegionBindingsRef NewB(B);
2513
2514  for (; Size ? i < *Size : true; ++i, ++VI) {
2515    // The init list might be shorter than the array length.
2516    if (VI == VE)
2517      break;
2518
2519    const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
2520    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2521
2522    if (ElementTy->isStructureOrClassType())
2523      NewB = bindStruct(NewB, ER, *VI);
2524    else if (ElementTy->isArrayType())
2525      NewB = bindArray(NewB, ER, *VI);
2526    else
2527      NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2528  }
2529
2530  // If the init list is shorter than the array length (or the array has
2531  // variable length), set the array default value. Values that are already set
2532  // are not overwritten.
2533  if (!Size || i < *Size)
2534    NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2535
2536  return NewB;
2537}
2538
2539RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2540                                                 const TypedValueRegion* R,
2541                                                 SVal V) {
2542  QualType T = R->getValueType();
2543  const VectorType *VT = T->castAs<VectorType>(); // Use castAs for typedefs.
2544
2545  // Handle lazy compound values and symbolic values.
2546  if (isa<nonloc::LazyCompoundVal, nonloc::SymbolVal>(V))
2547    return bindAggregate(B, R, V);
2548
2549  // We may get non-CompoundVal accidentally due to imprecise cast logic or
2550  // that we are binding symbolic struct value. Kill the field values, and if
2551  // the value is symbolic go and bind it as a "default" binding.
2552  if (!isa<nonloc::CompoundVal>(V)) {
2553    return bindAggregate(B, R, UnknownVal());
2554  }
2555
2556  QualType ElemType = VT->getElementType();
2557  nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2558  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2559  unsigned index = 0, numElements = VT->getNumElements();
2560  RegionBindingsRef NewB(B);
2561
2562  for ( ; index != numElements ; ++index) {
2563    if (VI == VE)
2564      break;
2565
2566    NonLoc Idx = svalBuilder.makeArrayIndex(index);
2567    const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2568
2569    if (ElemType->isArrayType())
2570      NewB = bindArray(NewB, ER, *VI);
2571    else if (ElemType->isStructureOrClassType())
2572      NewB = bindStruct(NewB, ER, *VI);
2573    else
2574      NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2575  }
2576  return NewB;
2577}
2578
2579std::optional<RegionBindingsRef> RegionStoreManager::tryBindSmallStruct(
2580    RegionBindingsConstRef B, const TypedValueRegion *R, const RecordDecl *RD,
2581    nonloc::LazyCompoundVal LCV) {
2582  FieldVector Fields;
2583
2584  if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2585    if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2586      return std::nullopt;
2587
2588  for (const auto *FD : RD->fields()) {
2589    if (FD->isUnnamedBitfield())
2590      continue;
2591
2592    // If there are too many fields, or if any of the fields are aggregates,
2593    // just use the LCV as a default binding.
2594    if (Fields.size() == SmallStructLimit)
2595      return std::nullopt;
2596
2597    QualType Ty = FD->getType();
2598
2599    // Zero length arrays are basically no-ops, so we also ignore them here.
2600    if (Ty->isConstantArrayType() &&
2601        Ctx.getConstantArrayElementCount(Ctx.getAsConstantArrayType(Ty)) == 0)
2602      continue;
2603
2604    if (!(Ty->isScalarType() || Ty->isReferenceType()))
2605      return std::nullopt;
2606
2607    Fields.push_back(FD);
2608  }
2609
2610  RegionBindingsRef NewB = B;
2611
2612  for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2613    const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2614    SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2615
2616    const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2617    NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2618  }
2619
2620  return NewB;
2621}
2622
2623RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2624                                                 const TypedValueRegion *R,
2625                                                 SVal V) {
2626  QualType T = R->getValueType();
2627  assert(T->isStructureOrClassType());
2628
2629  const RecordType* RT = T->castAs<RecordType>();
2630  const RecordDecl *RD = RT->getDecl();
2631
2632  if (!RD->isCompleteDefinition())
2633    return B;
2634
2635  // Handle lazy compound values and symbolic values.
2636  if (std::optional<nonloc::LazyCompoundVal> LCV =
2637          V.getAs<nonloc::LazyCompoundVal>()) {
2638    if (std::optional<RegionBindingsRef> NewB =
2639            tryBindSmallStruct(B, R, RD, *LCV))
2640      return *NewB;
2641    return bindAggregate(B, R, V);
2642  }
2643  if (isa<nonloc::SymbolVal>(V))
2644    return bindAggregate(B, R, V);
2645
2646  // We may get non-CompoundVal accidentally due to imprecise cast logic or
2647  // that we are binding symbolic struct value. Kill the field values, and if
2648  // the value is symbolic go and bind it as a "default" binding.
2649  if (V.isUnknown() || !isa<nonloc::CompoundVal>(V))
2650    return bindAggregate(B, R, UnknownVal());
2651
2652  // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable)
2653  // list of other values. It appears pretty much only when there's an actual
2654  // initializer list expression in the program, and the analyzer tries to
2655  // unwrap it as soon as possible.
2656  // This code is where such unwrap happens: when the compound value is put into
2657  // the object that it was supposed to initialize (it's an *initializer* list,
2658  // after all), instead of binding the whole value to the whole object, we bind
2659  // sub-values to sub-objects. Sub-values may themselves be compound values,
2660  // and in this case the procedure becomes recursive.
2661  // FIXME: The annoying part about compound values is that they don't carry
2662  // any sort of information about which value corresponds to which sub-object.
2663  // It's simply a list of values in the middle of nowhere; we expect to match
2664  // them to sub-objects, essentially, "by index": first value binds to
2665  // the first field, second value binds to the second field, etc.
2666  // It would have been much safer to organize non-lazy compound values as
2667  // a mapping from fields/bases to values.
2668  const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2669  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2670
2671  RegionBindingsRef NewB(B);
2672
2673  // In C++17 aggregates may have base classes, handle those as well.
2674  // They appear before fields in the initializer list / compound value.
2675  if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
2676    // If the object was constructed with a constructor, its value is a
2677    // LazyCompoundVal. If it's a raw CompoundVal, it means that we're
2678    // performing aggregate initialization. The only exception from this
2679    // rule is sending an Objective-C++ message that returns a C++ object
2680    // to a nil receiver; in this case the semantics is to return a
2681    // zero-initialized object even if it's a C++ object that doesn't have
2682    // this sort of constructor; the CompoundVal is empty in this case.
2683    assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) &&
2684           "Non-aggregates are constructed with a constructor!");
2685
2686    for (const auto &B : CRD->bases()) {
2687      // (Multiple inheritance is fine though.)
2688      assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!");
2689
2690      if (VI == VE)
2691        break;
2692
2693      QualType BTy = B.getType();
2694      assert(BTy->isStructureOrClassType() && "Base classes must be classes!");
2695
2696      const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl();
2697      assert(BRD && "Base classes must be C++ classes!");
2698
2699      const CXXBaseObjectRegion *BR =
2700          MRMgr.getCXXBaseObjectRegion(BRD, R, /*IsVirtual=*/false);
2701
2702      NewB = bindStruct(NewB, BR, *VI);
2703
2704      ++VI;
2705    }
2706  }
2707
2708  RecordDecl::field_iterator FI, FE;
2709
2710  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2711
2712    if (VI == VE)
2713      break;
2714
2715    // Skip any unnamed bitfields to stay in sync with the initializers.
2716    if (FI->isUnnamedBitfield())
2717      continue;
2718
2719    QualType FTy = FI->getType();
2720    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2721
2722    if (FTy->isArrayType())
2723      NewB = bindArray(NewB, FR, *VI);
2724    else if (FTy->isStructureOrClassType())
2725      NewB = bindStruct(NewB, FR, *VI);
2726    else
2727      NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2728    ++VI;
2729  }
2730
2731  // There may be fewer values in the initialize list than the fields of struct.
2732  if (FI != FE) {
2733    NewB = NewB.addBinding(R, BindingKey::Default,
2734                           svalBuilder.makeIntVal(0, false));
2735  }
2736
2737  return NewB;
2738}
2739
2740RegionBindingsRef
2741RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2742                                  const TypedRegion *R,
2743                                  SVal Val) {
2744  // Remove the old bindings, using 'R' as the root of all regions
2745  // we will invalidate. Then add the new binding.
2746  return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2747}
2748
2749//===----------------------------------------------------------------------===//
2750// State pruning.
2751//===----------------------------------------------------------------------===//
2752
2753namespace {
2754class RemoveDeadBindingsWorker
2755    : public ClusterAnalysis<RemoveDeadBindingsWorker> {
2756  SmallVector<const SymbolicRegion *, 12> Postponed;
2757  SymbolReaper &SymReaper;
2758  const StackFrameContext *CurrentLCtx;
2759
2760public:
2761  RemoveDeadBindingsWorker(RegionStoreManager &rm,
2762                           ProgramStateManager &stateMgr,
2763                           RegionBindingsRef b, SymbolReaper &symReaper,
2764                           const StackFrameContext *LCtx)
2765    : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b),
2766      SymReaper(symReaper), CurrentLCtx(LCtx) {}
2767
2768  // Called by ClusterAnalysis.
2769  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2770  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2771  using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster;
2772
2773  using ClusterAnalysis::AddToWorkList;
2774
2775  bool AddToWorkList(const MemRegion *R);
2776
2777  bool UpdatePostponed();
2778  void VisitBinding(SVal V);
2779};
2780}
2781
2782bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2783  const MemRegion *BaseR = R->getBaseRegion();
2784  return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2785}
2786
2787void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2788                                                   const ClusterBindings &C) {
2789
2790  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2791    if (SymReaper.isLive(VR))
2792      AddToWorkList(baseR, &C);
2793
2794    return;
2795  }
2796
2797  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2798    if (SymReaper.isLive(SR->getSymbol()))
2799      AddToWorkList(SR, &C);
2800    else
2801      Postponed.push_back(SR);
2802
2803    return;
2804  }
2805
2806  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2807    AddToWorkList(baseR, &C);
2808    return;
2809  }
2810
2811  // CXXThisRegion in the current or parent location context is live.
2812  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2813    const auto *StackReg =
2814        cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2815    const StackFrameContext *RegCtx = StackReg->getStackFrame();
2816    if (CurrentLCtx &&
2817        (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2818      AddToWorkList(TR, &C);
2819  }
2820}
2821
2822void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2823                                            const ClusterBindings *C) {
2824  if (!C)
2825    return;
2826
2827  // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2828  // This means we should continue to track that symbol.
2829  if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2830    SymReaper.markLive(SymR->getSymbol());
2831
2832  for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) {
2833    // Element index of a binding key is live.
2834    SymReaper.markElementIndicesLive(I.getKey().getRegion());
2835
2836    VisitBinding(I.getData());
2837  }
2838}
2839
2840void RemoveDeadBindingsWorker::VisitBinding(SVal V) {
2841  // Is it a LazyCompoundVal? All referenced regions are live as well.
2842  // The LazyCompoundVal itself is not live but should be readable.
2843  if (auto LCS = V.getAs<nonloc::LazyCompoundVal>()) {
2844    SymReaper.markLazilyCopied(LCS->getRegion());
2845
2846    for (SVal V : RM.getInterestingValues(*LCS)) {
2847      if (auto DepLCS = V.getAs<nonloc::LazyCompoundVal>())
2848        SymReaper.markLazilyCopied(DepLCS->getRegion());
2849      else
2850        VisitBinding(V);
2851    }
2852
2853    return;
2854  }
2855
2856  // If V is a region, then add it to the worklist.
2857  if (const MemRegion *R = V.getAsRegion()) {
2858    AddToWorkList(R);
2859    SymReaper.markLive(R);
2860
2861    // All regions captured by a block are also live.
2862    if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2863      BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2864                                                E = BR->referenced_vars_end();
2865      for ( ; I != E; ++I)
2866        AddToWorkList(I.getCapturedRegion());
2867    }
2868  }
2869
2870
2871  // Update the set of live symbols.
2872  for (auto SI = V.symbol_begin(), SE = V.symbol_end(); SI!=SE; ++SI)
2873    SymReaper.markLive(*SI);
2874}
2875
2876bool RemoveDeadBindingsWorker::UpdatePostponed() {
2877  // See if any postponed SymbolicRegions are actually live now, after
2878  // having done a scan.
2879  bool Changed = false;
2880
2881  for (auto I = Postponed.begin(), E = Postponed.end(); I != E; ++I) {
2882    if (const SymbolicRegion *SR = *I) {
2883      if (SymReaper.isLive(SR->getSymbol())) {
2884        Changed |= AddToWorkList(SR);
2885        *I = nullptr;
2886      }
2887    }
2888  }
2889
2890  return Changed;
2891}
2892
2893StoreRef RegionStoreManager::removeDeadBindings(Store store,
2894                                                const StackFrameContext *LCtx,
2895                                                SymbolReaper& SymReaper) {
2896  RegionBindingsRef B = getRegionBindings(store);
2897  RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2898  W.GenerateClusters();
2899
2900  // Enqueue the region roots onto the worklist.
2901  for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2902       E = SymReaper.region_end(); I != E; ++I) {
2903    W.AddToWorkList(*I);
2904  }
2905
2906  do W.RunWorkList(); while (W.UpdatePostponed());
2907
2908  // We have now scanned the store, marking reachable regions and symbols
2909  // as live.  We now remove all the regions that are dead from the store
2910  // as well as update DSymbols with the set symbols that are now dead.
2911  for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2912    const MemRegion *Base = I.getKey();
2913
2914    // If the cluster has been visited, we know the region has been marked.
2915    // Otherwise, remove the dead entry.
2916    if (!W.isVisited(Base))
2917      B = B.remove(Base);
2918  }
2919
2920  return StoreRef(B.asStore(), *this);
2921}
2922
2923//===----------------------------------------------------------------------===//
2924// Utility methods.
2925//===----------------------------------------------------------------------===//
2926
2927void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL,
2928                                   unsigned int Space, bool IsDot) const {
2929  RegionBindingsRef Bindings = getRegionBindings(S);
2930
2931  Indent(Out, Space, IsDot) << "\"store\": ";
2932
2933  if (Bindings.isEmpty()) {
2934    Out << "null," << NL;
2935    return;
2936  }
2937
2938  Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL;
2939  Bindings.printJson(Out, NL, Space + 1, IsDot);
2940  Indent(Out, Space, IsDot) << "]}," << NL;
2941}
2942