1#ifndef _SPARC64_TSB_H
2#define _SPARC64_TSB_H
3
4/* The sparc64 TSB is similar to the powerpc hashtables.  It's a
5 * power-of-2 sized table of TAG/PTE pairs.  The cpu precomputes
6 * pointers into this table for 8K and 64K page sizes, and also a
7 * comparison TAG based upon the virtual address and context which
8 * faults.
9 *
10 * TLB miss trap handler software does the actual lookup via something
11 * of the form:
12 *
13 * 	ldxa		[%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
14 * 	ldxa		[%g0] ASI_{D,I}MMU, %g6
15 *	sllx		%g6, 22, %g6
16 *	srlx		%g6, 22, %g6
17 * 	ldda		[%g1] ASI_NUCLEUS_QUAD_LDD, %g4
18 * 	cmp		%g4, %g6
19 * 	bne,pn	%xcc, tsb_miss_{d,i}tlb
20 * 	 mov		FAULT_CODE_{D,I}TLB, %g3
21 * 	stxa		%g5, [%g0] ASI_{D,I}TLB_DATA_IN
22 * 	retry
23 *
24 *
25 * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
26 * PTE.  The TAG is of the same layout as the TLB TAG TARGET mmu
27 * register which is:
28 *
29 * -------------------------------------------------
30 * |  -  |  CONTEXT |  -  |    VADDR bits 63:22    |
31 * -------------------------------------------------
32 *  63 61 60      48 47 42 41                     0
33 *
34 * But actually, since we use per-mm TSB's, we zero out the CONTEXT
35 * field.
36 *
37 * Like the powerpc hashtables we need to use locking in order to
38 * synchronize while we update the entries.  PTE updates need locking
39 * as well.
40 *
41 * We need to carefully choose a lock bits for the TSB entry.  We
42 * choose to use bit 47 in the tag.  Also, since we never map anything
43 * at page zero in context zero, we use zero as an invalid tag entry.
44 * When the lock bit is set, this forces a tag comparison failure.
45 */
46
47#define TSB_TAG_LOCK_BIT	47
48#define TSB_TAG_LOCK_HIGH	(1 << (TSB_TAG_LOCK_BIT - 32))
49
50#define TSB_TAG_INVALID_BIT	46
51#define TSB_TAG_INVALID_HIGH	(1 << (TSB_TAG_INVALID_BIT - 32))
52
53#define TSB_MEMBAR	membar	#StoreStore
54
55/* Some cpus support physical address quad loads.  We want to use
56 * those if possible so we don't need to hard-lock the TSB mapping
57 * into the TLB.  We encode some instruction patching in order to
58 * support this.
59 *
60 * The kernel TSB is locked into the TLB by virtue of being in the
61 * kernel image, so we don't play these games for swapper_tsb access.
62 */
63#ifndef __ASSEMBLY__
64struct tsb_ldquad_phys_patch_entry {
65	unsigned int	addr;
66	unsigned int	sun4u_insn;
67	unsigned int	sun4v_insn;
68};
69extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch,
70	__tsb_ldquad_phys_patch_end;
71
72struct tsb_phys_patch_entry {
73	unsigned int	addr;
74	unsigned int	insn;
75};
76extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
77#endif
78#define TSB_LOAD_QUAD(TSB, REG)	\
79661:	ldda		[TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
80	.section	.tsb_ldquad_phys_patch, "ax"; \
81	.word		661b; \
82	ldda		[TSB] ASI_QUAD_LDD_PHYS, REG; \
83	ldda		[TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
84	.previous
85
86#define TSB_LOAD_TAG_HIGH(TSB, REG) \
87661:	lduwa		[TSB] ASI_N, REG; \
88	.section	.tsb_phys_patch, "ax"; \
89	.word		661b; \
90	lduwa		[TSB] ASI_PHYS_USE_EC, REG; \
91	.previous
92
93#define TSB_LOAD_TAG(TSB, REG) \
94661:	ldxa		[TSB] ASI_N, REG; \
95	.section	.tsb_phys_patch, "ax"; \
96	.word		661b; \
97	ldxa		[TSB] ASI_PHYS_USE_EC, REG; \
98	.previous
99
100#define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
101661:	casa		[TSB] ASI_N, REG1, REG2; \
102	.section	.tsb_phys_patch, "ax"; \
103	.word		661b; \
104	casa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
105	.previous
106
107#define TSB_CAS_TAG(TSB, REG1, REG2) \
108661:	casxa		[TSB] ASI_N, REG1, REG2; \
109	.section	.tsb_phys_patch, "ax"; \
110	.word		661b; \
111	casxa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
112	.previous
113
114#define TSB_STORE(ADDR, VAL) \
115661:	stxa		VAL, [ADDR] ASI_N; \
116	.section	.tsb_phys_patch, "ax"; \
117	.word		661b; \
118	stxa		VAL, [ADDR] ASI_PHYS_USE_EC; \
119	.previous
120
121#define TSB_LOCK_TAG(TSB, REG1, REG2)	\
12299:	TSB_LOAD_TAG_HIGH(TSB, REG1);	\
123	sethi	%hi(TSB_TAG_LOCK_HIGH), REG2;\
124	andcc	REG1, REG2, %g0;	\
125	bne,pn	%icc, 99b;		\
126	 nop;				\
127	TSB_CAS_TAG_HIGH(TSB, REG1, REG2);	\
128	cmp	REG1, REG2;		\
129	bne,pn	%icc, 99b;		\
130	 nop;				\
131	TSB_MEMBAR
132
133#define TSB_WRITE(TSB, TTE, TAG) \
134	add	TSB, 0x8, TSB;   \
135	TSB_STORE(TSB, TTE);     \
136	sub	TSB, 0x8, TSB;   \
137	TSB_MEMBAR;              \
138	TSB_STORE(TSB, TAG);
139
140#define KTSB_LOAD_QUAD(TSB, REG) \
141	ldda		[TSB] ASI_NUCLEUS_QUAD_LDD, REG;
142
143#define KTSB_STORE(ADDR, VAL) \
144	stxa		VAL, [ADDR] ASI_N;
145
146#define KTSB_LOCK_TAG(TSB, REG1, REG2)	\
14799:	lduwa	[TSB] ASI_N, REG1;	\
148	sethi	%hi(TSB_TAG_LOCK_HIGH), REG2;\
149	andcc	REG1, REG2, %g0;	\
150	bne,pn	%icc, 99b;		\
151	 nop;				\
152	casa	[TSB] ASI_N, REG1, REG2;\
153	cmp	REG1, REG2;		\
154	bne,pn	%icc, 99b;		\
155	 nop;				\
156	TSB_MEMBAR
157
158#define KTSB_WRITE(TSB, TTE, TAG) \
159	add	TSB, 0x8, TSB;   \
160	stxa	TTE, [TSB] ASI_N;     \
161	sub	TSB, 0x8, TSB;   \
162	TSB_MEMBAR;              \
163	stxa	TAG, [TSB] ASI_N;
164
165	/* Do a kernel page table walk.  Leaves physical PTE pointer in
166	 * REG1.  Jumps to FAIL_LABEL on early page table walk termination.
167	 * VADDR will not be clobbered, but REG2 will.
168	 */
169#define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL)	\
170	sethi		%hi(swapper_pg_dir), REG1; \
171	or		REG1, %lo(swapper_pg_dir), REG1; \
172	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
173	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
174	andn		REG2, 0x3, REG2; \
175	lduw		[REG1 + REG2], REG1; \
176	brz,pn		REG1, FAIL_LABEL; \
177	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
178	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
179	sllx		REG1, 11, REG1; \
180	andn		REG2, 0x3, REG2; \
181	lduwa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
182	brz,pn		REG1, FAIL_LABEL; \
183	 sllx		VADDR, 64 - PMD_SHIFT, REG2; \
184	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
185	sllx		REG1, 11, REG1; \
186	andn		REG2, 0x7, REG2; \
187	add		REG1, REG2, REG1;
188
189	/* Do a user page table walk in MMU globals.  Leaves physical PTE
190	 * pointer in REG1.  Jumps to FAIL_LABEL on early page table walk
191	 * termination.  Physical base of page tables is in PHYS_PGD which
192	 * will not be modified.
193	 *
194	 * VADDR will not be clobbered, but REG1 and REG2 will.
195	 */
196#define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL)	\
197	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
198	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
199	andn		REG2, 0x3, REG2; \
200	lduwa		[PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
201	brz,pn		REG1, FAIL_LABEL; \
202	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
203	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
204	sllx		REG1, 11, REG1; \
205	andn		REG2, 0x3, REG2; \
206	lduwa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
207	brz,pn		REG1, FAIL_LABEL; \
208	 sllx		VADDR, 64 - PMD_SHIFT, REG2; \
209	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
210	sllx		REG1, 11, REG1; \
211	andn		REG2, 0x7, REG2; \
212	add		REG1, REG2, REG1;
213
214/* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
215 * If no entry is found, FAIL_LABEL will be branched to.  On success
216 * the resulting PTE value will be left in REG1.  VADDR is preserved
217 * by this routine.
218 */
219#define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
220	sethi		%hi(prom_trans), REG1; \
221	or		REG1, %lo(prom_trans), REG1; \
22297:	ldx		[REG1 + 0x00], REG2; \
223	brz,pn		REG2, FAIL_LABEL; \
224	 nop; \
225	ldx		[REG1 + 0x08], REG3; \
226	add		REG2, REG3, REG3; \
227	cmp		REG2, VADDR; \
228	bgu,pt		%xcc, 98f; \
229	 cmp		VADDR, REG3; \
230	bgeu,pt		%xcc, 98f; \
231	 ldx		[REG1 + 0x10], REG3; \
232	sub		VADDR, REG2, REG2; \
233	ba,pt		%xcc, 99f; \
234	 add		REG3, REG2, REG1; \
23598:	ba,pt		%xcc, 97b; \
236	 add		REG1, (3 * 8), REG1; \
23799:
238
239	/* We use a 32K TSB for the whole kernel, this allows to
240	 * handle about 16MB of modules and vmalloc mappings without
241	 * incurring many hash conflicts.
242	 */
243#define KERNEL_TSB_SIZE_BYTES	(32 * 1024)
244#define KERNEL_TSB_NENTRIES	\
245	(KERNEL_TSB_SIZE_BYTES / 16)
246#define KERNEL_TSB4M_NENTRIES	4096
247
248	/* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
249	 * on TSB hit.  REG1, REG2, REG3, and REG4 are used as temporaries
250	 * and the found TTE will be left in REG1.  REG3 and REG4 must
251	 * be an even/odd pair of registers.
252	 *
253	 * VADDR and TAG will be preserved and not clobbered by this macro.
254	 */
255#define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
256	sethi		%hi(swapper_tsb), REG1; \
257	or		REG1, %lo(swapper_tsb), REG1; \
258	srlx		VADDR, PAGE_SHIFT, REG2; \
259	and		REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
260	sllx		REG2, 4, REG2; \
261	add		REG1, REG2, REG2; \
262	KTSB_LOAD_QUAD(REG2, REG3); \
263	cmp		REG3, TAG; \
264	be,a,pt		%xcc, OK_LABEL; \
265	 mov		REG4, REG1;
266
267#ifndef CONFIG_DEBUG_PAGEALLOC
268	/* This version uses a trick, the TAG is already (VADDR >> 22) so
269	 * we can make use of that for the index computation.
270	 */
271#define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
272	sethi		%hi(swapper_4m_tsb), REG1; \
273	or		REG1, %lo(swapper_4m_tsb), REG1; \
274	and		TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
275	sllx		REG2, 4, REG2; \
276	add		REG1, REG2, REG2; \
277	KTSB_LOAD_QUAD(REG2, REG3); \
278	cmp		REG3, TAG; \
279	be,a,pt		%xcc, OK_LABEL; \
280	 mov		REG4, REG1;
281#endif
282
283#endif /* !(_SPARC64_TSB_H) */
284