1#ifndef __ASM_SH_IO_H
2#define __ASM_SH_IO_H
3
4/*
5 * Convention:
6 *    read{b,w,l}/write{b,w,l} are for PCI,
7 *    while in{b,w,l}/out{b,w,l} are for ISA
8 * These may (will) be platform specific function.
9 * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
10 * and 'string' versions: ins{b,w,l}/outs{b,w,l}
11 * For read{b,w,l} and write{b,w,l} there are also __raw versions, which
12 * do not have a memory barrier after them.
13 *
14 * In addition, we have
15 *   ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O.
16 *   which are processor specific.
17 */
18
19/*
20 * We follow the Alpha convention here:
21 *  __inb expands to an inline function call (which calls via the mv)
22 *  _inb  is a real function call (note ___raw fns are _ version of __raw)
23 *  inb   by default expands to _inb, but the machine specific code may
24 *        define it to __inb if it chooses.
25 */
26#include <asm/cache.h>
27#include <asm/system.h>
28#include <asm/addrspace.h>
29#include <asm/machvec.h>
30#include <asm/pgtable.h>
31#include <asm-generic/iomap.h>
32
33#ifdef __KERNEL__
34
35/*
36 * Depending on which platform we are running on, we need different
37 * I/O functions.
38 */
39#define __IO_PREFIX	generic
40#include <asm/io_generic.h>
41
42#define maybebadio(port) \
43  printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \
44	 __FUNCTION__, __LINE__, (port), (u32)__builtin_return_address(0))
45
46/*
47 * Since boards are able to define their own set of I/O routines through
48 * their respective machine vector, we always wrap through the mv.
49 *
50 * Also, in the event that a board hasn't provided its own definition for
51 * a given routine, it will be wrapped to generic code at run-time.
52 */
53
54#define __inb(p)	sh_mv.mv_inb((p))
55#define __inw(p)	sh_mv.mv_inw((p))
56#define __inl(p)	sh_mv.mv_inl((p))
57#define __outb(x,p)	sh_mv.mv_outb((x),(p))
58#define __outw(x,p)	sh_mv.mv_outw((x),(p))
59#define __outl(x,p)	sh_mv.mv_outl((x),(p))
60
61#define __inb_p(p)	sh_mv.mv_inb_p((p))
62#define __inw_p(p)	sh_mv.mv_inw_p((p))
63#define __inl_p(p)	sh_mv.mv_inl_p((p))
64#define __outb_p(x,p)	sh_mv.mv_outb_p((x),(p))
65#define __outw_p(x,p)	sh_mv.mv_outw_p((x),(p))
66#define __outl_p(x,p)	sh_mv.mv_outl_p((x),(p))
67
68#define __insb(p,b,c)	sh_mv.mv_insb((p), (b), (c))
69#define __insw(p,b,c)	sh_mv.mv_insw((p), (b), (c))
70#define __insl(p,b,c)	sh_mv.mv_insl((p), (b), (c))
71#define __outsb(p,b,c)	sh_mv.mv_outsb((p), (b), (c))
72#define __outsw(p,b,c)	sh_mv.mv_outsw((p), (b), (c))
73#define __outsl(p,b,c)	sh_mv.mv_outsl((p), (b), (c))
74
75#define __readb(a)	sh_mv.mv_readb((a))
76#define __readw(a)	sh_mv.mv_readw((a))
77#define __readl(a)	sh_mv.mv_readl((a))
78#define __writeb(v,a)	sh_mv.mv_writeb((v),(a))
79#define __writew(v,a)	sh_mv.mv_writew((v),(a))
80#define __writel(v,a)	sh_mv.mv_writel((v),(a))
81
82#define inb		__inb
83#define inw		__inw
84#define inl		__inl
85#define outb		__outb
86#define outw		__outw
87#define outl		__outl
88
89#define inb_p		__inb_p
90#define inw_p		__inw_p
91#define inl_p		__inl_p
92#define outb_p		__outb_p
93#define outw_p		__outw_p
94#define outl_p		__outl_p
95
96#define insb		__insb
97#define insw		__insw
98#define insl		__insl
99#define outsb		__outsb
100#define outsw		__outsw
101#define outsl		__outsl
102
103#define __raw_readb(a)		__readb((void __iomem *)(a))
104#define __raw_readw(a)		__readw((void __iomem *)(a))
105#define __raw_readl(a)		__readl((void __iomem *)(a))
106#define __raw_writeb(v, a)	__writeb(v, (void __iomem *)(a))
107#define __raw_writew(v, a)	__writew(v, (void __iomem *)(a))
108#define __raw_writel(v, a)	__writel(v, (void __iomem *)(a))
109
110void __raw_writesl(unsigned long addr, const void *data, int longlen);
111void __raw_readsl(unsigned long addr, void *data, int longlen);
112
113/*
114 * The platform header files may define some of these macros to use
115 * the inlined versions where appropriate.  These macros may also be
116 * redefined by userlevel programs.
117 */
118#ifdef __readb
119# define readb(a)	({ unsigned int r_ = __raw_readb(a); mb(); r_; })
120#endif
121#ifdef __raw_readw
122# define readw(a)	({ unsigned int r_ = __raw_readw(a); mb(); r_; })
123#endif
124#ifdef __raw_readl
125# define readl(a)	({ unsigned int r_ = __raw_readl(a); mb(); r_; })
126#endif
127
128#ifdef __raw_writeb
129# define writeb(v,a)	({ __raw_writeb((v),(a)); mb(); })
130#endif
131#ifdef __raw_writew
132# define writew(v,a)	({ __raw_writew((v),(a)); mb(); })
133#endif
134#ifdef __raw_writel
135# define writel(v,a)	({ __raw_writel((v),(a)); mb(); })
136#endif
137
138#define writesl __raw_writesl
139#define readsl  __raw_readsl
140
141#define readb_relaxed(a) readb(a)
142#define readw_relaxed(a) readw(a)
143#define readl_relaxed(a) readl(a)
144
145/* Simple MMIO */
146#define ioread8(a)		readb(a)
147#define ioread16(a)		readw(a)
148#define ioread16be(a)		be16_to_cpu(__raw_readw((a)))
149#define ioread32(a)		readl(a)
150#define ioread32be(a)		be32_to_cpu(__raw_readl((a)))
151
152#define iowrite8(v,a)		writeb((v),(a))
153#define iowrite16(v,a)		writew((v),(a))
154#define iowrite16be(v,a)	__raw_writew(cpu_to_be16((v)),(a))
155#define iowrite32(v,a)		writel((v),(a))
156#define iowrite32be(v,a)	__raw_writel(cpu_to_be32((v)),(a))
157
158#define ioread8_rep(a,d,c)	insb((a),(d),(c))
159#define ioread16_rep(a,d,c)	insw((a),(d),(c))
160#define ioread32_rep(a,d,c)	insl((a),(d),(c))
161
162#define iowrite8_rep(a,s,c)	outsb((a),(s),(c))
163#define iowrite16_rep(a,s,c)	outsw((a),(s),(c))
164#define iowrite32_rep(a,s,c)	outsl((a),(s),(c))
165
166#define mmiowb()	wmb()	/* synco on SH-4A, otherwise a nop */
167
168/*
169 * This function provides a method for the generic case where a board-specific
170 * ioport_map simply needs to return the port + some arbitrary port base.
171 *
172 * We use this at board setup time to implicitly set the port base, and
173 * as a result, we can use the generic ioport_map.
174 */
175static inline void __set_io_port_base(unsigned long pbase)
176{
177	extern unsigned long generic_io_base;
178
179	generic_io_base = pbase;
180}
181
182/* We really want to try and get these to memcpy etc */
183extern void memcpy_fromio(void *, volatile void __iomem *, unsigned long);
184extern void memcpy_toio(volatile void __iomem *, const void *, unsigned long);
185extern void memset_io(volatile void __iomem *, int, unsigned long);
186
187/* SuperH on-chip I/O functions */
188static inline unsigned char ctrl_inb(unsigned long addr)
189{
190	return *(volatile unsigned char*)addr;
191}
192
193static inline unsigned short ctrl_inw(unsigned long addr)
194{
195	return *(volatile unsigned short*)addr;
196}
197
198static inline unsigned int ctrl_inl(unsigned long addr)
199{
200	return *(volatile unsigned long*)addr;
201}
202
203static inline void ctrl_outb(unsigned char b, unsigned long addr)
204{
205	*(volatile unsigned char*)addr = b;
206}
207
208static inline void ctrl_outw(unsigned short b, unsigned long addr)
209{
210	*(volatile unsigned short*)addr = b;
211}
212
213static inline void ctrl_outl(unsigned int b, unsigned long addr)
214{
215        *(volatile unsigned long*)addr = b;
216}
217
218static inline void ctrl_delay(void)
219{
220	ctrl_inw(P2SEG);
221}
222
223#define IO_SPACE_LIMIT 0xffffffff
224
225#ifdef CONFIG_MMU
226/*
227 * Change virtual addresses to physical addresses and vv.
228 * These are trivial on the 1:1 Linux/SuperH mapping
229 */
230static inline unsigned long virt_to_phys(volatile void *address)
231{
232	return PHYSADDR(address);
233}
234
235static inline void *phys_to_virt(unsigned long address)
236{
237	return (void *)P1SEGADDR(address);
238}
239#else
240#define phys_to_virt(address)	((void *)(address))
241#define virt_to_phys(address)	((unsigned long)(address))
242#endif
243
244#define virt_to_bus virt_to_phys
245#define bus_to_virt phys_to_virt
246#define page_to_bus page_to_phys
247
248/*
249 * readX/writeX() are used to access memory mapped devices. On some
250 * architectures the memory mapped IO stuff needs to be accessed
251 * differently. On the x86 architecture, we just read/write the
252 * memory location directly.
253 *
254 * On SH, we traditionally have the whole physical address space mapped
255 * at all times (as MIPS does), so "ioremap()" and "iounmap()" do not
256 * need to do anything but place the address in the proper segment. This
257 * is true for P1 and P2 addresses, as well as some P3 ones. However,
258 * most of the P3 addresses and newer cores using extended addressing
259 * need to map through page tables, so the ioremap() implementation
260 * becomes a bit more complicated. See arch/sh/mm/ioremap.c for
261 * additional notes on this.
262 *
263 * We cheat a bit and always return uncachable areas until we've fixed
264 * the drivers to handle caching properly.
265 */
266#ifdef CONFIG_MMU
267void __iomem *__ioremap(unsigned long offset, unsigned long size,
268			unsigned long flags);
269void __iounmap(void __iomem *addr);
270#else
271#define __ioremap(offset, size, flags)	((void __iomem *)(offset))
272#define __iounmap(addr)			do { } while (0)
273#endif /* CONFIG_MMU */
274
275static inline void __iomem *
276__ioremap_mode(unsigned long offset, unsigned long size, unsigned long flags)
277{
278	unsigned long last_addr = offset + size - 1;
279
280	/*
281	 * For P1 and P2 space this is trivial, as everything is already
282	 * mapped. Uncached access for P1 addresses are done through P2.
283	 * In the P3 case or for addresses outside of the 29-bit space,
284	 * mapping must be done by the PMB or by using page tables.
285	 */
286	if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
287		if (unlikely(flags & _PAGE_CACHABLE))
288			return (void __iomem *)P1SEGADDR(offset);
289
290		return (void __iomem *)P2SEGADDR(offset);
291	}
292
293	return __ioremap(offset, size, flags);
294}
295
296#define ioremap(offset, size)				\
297	__ioremap_mode((offset), (size), 0)
298#define ioremap_nocache(offset, size)			\
299	__ioremap_mode((offset), (size), 0)
300#define ioremap_cache(offset, size)			\
301	__ioremap_mode((offset), (size), _PAGE_CACHABLE)
302#define p3_ioremap(offset, size, flags)			\
303	__ioremap((offset), (size), (flags))
304#define iounmap(addr)					\
305	__iounmap((addr))
306
307/*
308 * The caches on some architectures aren't dma-coherent and have need to
309 * handle this in software.  There are three types of operations that
310 * can be applied to dma buffers.
311 *
312 *  - dma_cache_wback_inv(start, size) makes caches and RAM coherent by
313 *    writing the content of the caches back to memory, if necessary.
314 *    The function also invalidates the affected part of the caches as
315 *    necessary before DMA transfers from outside to memory.
316 *  - dma_cache_inv(start, size) invalidates the affected parts of the
317 *    caches.  Dirty lines of the caches may be written back or simply
318 *    be discarded.  This operation is necessary before dma operations
319 *    to the memory.
320 *  - dma_cache_wback(start, size) writes back any dirty lines but does
321 *    not invalidate the cache.  This can be used before DMA reads from
322 *    memory,
323 */
324
325#define dma_cache_wback_inv(_start,_size) \
326    __flush_purge_region(_start,_size)
327#define dma_cache_inv(_start,_size) \
328    __flush_invalidate_region(_start,_size)
329#define dma_cache_wback(_start,_size) \
330    __flush_wback_region(_start,_size)
331
332/*
333 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
334 * access
335 */
336#define xlate_dev_mem_ptr(p)	__va(p)
337
338/*
339 * Convert a virtual cached pointer to an uncached pointer
340 */
341#define xlate_dev_kmem_ptr(p)	p
342
343#endif /* __KERNEL__ */
344
345#endif /* __ASM_SH_IO_H */
346