1/*
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 *      This program is free software; you can redistribute it and/or
30 *      modify it under the terms of the GNU General Public License
31 *      as published by the Free Software Foundation; either version
32 *      2 of the License, or (at your option) any later version.
33 */
34
35#include <linux/errno.h>
36#include <linux/module.h>
37#include <linux/sched.h>
38#include <linux/kernel.h>
39#include <linux/param.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/interrupt.h>
43#include <linux/timex.h>
44#include <linux/kernel_stat.h>
45#include <linux/time.h>
46#include <linux/init.h>
47#include <linux/profile.h>
48#include <linux/cpu.h>
49#include <linux/security.h>
50#include <linux/percpu.h>
51#include <linux/rtc.h>
52#include <linux/jiffies.h>
53#include <linux/posix-timers.h>
54#include <linux/irq.h>
55
56#include <asm/io.h>
57#include <asm/processor.h>
58#include <asm/nvram.h>
59#include <asm/cache.h>
60#include <asm/machdep.h>
61#include <asm/uaccess.h>
62#include <asm/time.h>
63#include <asm/prom.h>
64#include <asm/irq.h>
65#include <asm/div64.h>
66#include <asm/smp.h>
67#include <asm/vdso_datapage.h>
68#ifdef CONFIG_PPC64
69#include <asm/firmware.h>
70#endif
71#ifdef CONFIG_PPC_ISERIES
72#include <asm/iseries/it_lp_queue.h>
73#include <asm/iseries/hv_call_xm.h>
74#endif
75#include <asm/smp.h>
76
77/* keep track of when we need to update the rtc */
78time_t last_rtc_update;
79#ifdef CONFIG_PPC_ISERIES
80unsigned long iSeries_recal_titan = 0;
81unsigned long iSeries_recal_tb = 0;
82static unsigned long first_settimeofday = 1;
83#endif
84
85/* The decrementer counts down by 128 every 128ns on a 601. */
86#define DECREMENTER_COUNT_601	(1000000000 / HZ)
87
88#define XSEC_PER_SEC (1024*1024)
89
90#ifdef CONFIG_PPC64
91#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
92#else
93/* compute ((xsec << 12) * max) >> 32 */
94#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
95#endif
96
97unsigned long tb_ticks_per_jiffy;
98unsigned long tb_ticks_per_usec = 100; /* sane default */
99EXPORT_SYMBOL(tb_ticks_per_usec);
100unsigned long tb_ticks_per_sec;
101EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
102u64 tb_to_xs;
103unsigned tb_to_us;
104
105#define TICKLEN_SCALE	TICK_LENGTH_SHIFT
106u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
107u64 ticklen_to_xs;	/* 0.64 fraction */
108
109/* If last_tick_len corresponds to about 1/HZ seconds, then
110   last_tick_len << TICKLEN_SHIFT will be about 2^63. */
111#define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
112
113DEFINE_SPINLOCK(rtc_lock);
114EXPORT_SYMBOL_GPL(rtc_lock);
115
116u64 tb_to_ns_scale;
117unsigned tb_to_ns_shift;
118
119struct gettimeofday_struct do_gtod;
120
121extern struct timezone sys_tz;
122static long timezone_offset;
123
124unsigned long ppc_proc_freq;
125unsigned long ppc_tb_freq;
126
127static u64 tb_last_jiffy __cacheline_aligned_in_smp;
128static DEFINE_PER_CPU(u64, last_jiffy);
129
130#ifdef CONFIG_VIRT_CPU_ACCOUNTING
131/*
132 * Factors for converting from cputime_t (timebase ticks) to
133 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
134 * These are all stored as 0.64 fixed-point binary fractions.
135 */
136u64 __cputime_jiffies_factor;
137EXPORT_SYMBOL(__cputime_jiffies_factor);
138u64 __cputime_msec_factor;
139EXPORT_SYMBOL(__cputime_msec_factor);
140u64 __cputime_sec_factor;
141EXPORT_SYMBOL(__cputime_sec_factor);
142u64 __cputime_clockt_factor;
143EXPORT_SYMBOL(__cputime_clockt_factor);
144
145static void calc_cputime_factors(void)
146{
147	struct div_result res;
148
149	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
150	__cputime_jiffies_factor = res.result_low;
151	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
152	__cputime_msec_factor = res.result_low;
153	div128_by_32(1, 0, tb_ticks_per_sec, &res);
154	__cputime_sec_factor = res.result_low;
155	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
156	__cputime_clockt_factor = res.result_low;
157}
158
159/*
160 * Read the PURR on systems that have it, otherwise the timebase.
161 */
162static u64 read_purr(void)
163{
164	if (cpu_has_feature(CPU_FTR_PURR))
165		return mfspr(SPRN_PURR);
166	return mftb();
167}
168
169/*
170 * Account time for a transition between system, hard irq
171 * or soft irq state.
172 */
173void account_system_vtime(struct task_struct *tsk)
174{
175	u64 now, delta;
176	unsigned long flags;
177
178	local_irq_save(flags);
179	now = read_purr();
180	delta = now - get_paca()->startpurr;
181	get_paca()->startpurr = now;
182	if (!in_interrupt()) {
183		delta += get_paca()->system_time;
184		get_paca()->system_time = 0;
185	}
186	account_system_time(tsk, 0, delta);
187	local_irq_restore(flags);
188}
189
190/*
191 * Transfer the user and system times accumulated in the paca
192 * by the exception entry and exit code to the generic process
193 * user and system time records.
194 * Must be called with interrupts disabled.
195 */
196void account_process_vtime(struct task_struct *tsk)
197{
198	cputime_t utime;
199
200	utime = get_paca()->user_time;
201	get_paca()->user_time = 0;
202	account_user_time(tsk, utime);
203}
204
205static void account_process_time(struct pt_regs *regs)
206{
207	int cpu = smp_processor_id();
208
209	account_process_vtime(current);
210	run_local_timers();
211	if (rcu_pending(cpu))
212		rcu_check_callbacks(cpu, user_mode(regs));
213	scheduler_tick();
214 	run_posix_cpu_timers(current);
215}
216
217#ifdef CONFIG_PPC_SPLPAR
218/*
219 * Stuff for accounting stolen time.
220 */
221struct cpu_purr_data {
222	int	initialized;			/* thread is running */
223	u64	tb;			/* last TB value read */
224	u64	purr;			/* last PURR value read */
225	spinlock_t lock;
226};
227
228static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
229
230static void snapshot_tb_and_purr(void *data)
231{
232	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
233
234	p->tb = mftb();
235	p->purr = mfspr(SPRN_PURR);
236	wmb();
237	p->initialized = 1;
238}
239
240/*
241 * Called during boot when all cpus have come up.
242 */
243void snapshot_timebases(void)
244{
245	int cpu;
246
247	if (!cpu_has_feature(CPU_FTR_PURR))
248		return;
249	for_each_possible_cpu(cpu)
250		spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
251	on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
252}
253
254void calculate_steal_time(void)
255{
256	u64 tb, purr;
257	s64 stolen;
258	struct cpu_purr_data *pme;
259
260	if (!cpu_has_feature(CPU_FTR_PURR))
261		return;
262	pme = &per_cpu(cpu_purr_data, smp_processor_id());
263	if (!pme->initialized)
264		return;		/* this can happen in early boot */
265	spin_lock(&pme->lock);
266	tb = mftb();
267	purr = mfspr(SPRN_PURR);
268	stolen = (tb - pme->tb) - (purr - pme->purr);
269	if (stolen > 0)
270		account_steal_time(current, stolen);
271	pme->tb = tb;
272	pme->purr = purr;
273	spin_unlock(&pme->lock);
274}
275
276/*
277 * Must be called before the cpu is added to the online map when
278 * a cpu is being brought up at runtime.
279 */
280static void snapshot_purr(void)
281{
282	struct cpu_purr_data *pme;
283	unsigned long flags;
284
285	if (!cpu_has_feature(CPU_FTR_PURR))
286		return;
287	pme = &per_cpu(cpu_purr_data, smp_processor_id());
288	spin_lock_irqsave(&pme->lock, flags);
289	pme->tb = mftb();
290	pme->purr = mfspr(SPRN_PURR);
291	pme->initialized = 1;
292	spin_unlock_irqrestore(&pme->lock, flags);
293}
294
295#endif /* CONFIG_PPC_SPLPAR */
296
297#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
298#define calc_cputime_factors()
299#define account_process_time(regs)	update_process_times(user_mode(regs))
300#define calculate_steal_time()		do { } while (0)
301#endif
302
303#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
304#define snapshot_purr()			do { } while (0)
305#endif
306
307/*
308 * Called when a cpu comes up after the system has finished booting,
309 * i.e. as a result of a hotplug cpu action.
310 */
311void snapshot_timebase(void)
312{
313	__get_cpu_var(last_jiffy) = get_tb();
314	snapshot_purr();
315}
316
317void __delay(unsigned long loops)
318{
319	unsigned long start;
320	int diff;
321
322	if (__USE_RTC()) {
323		start = get_rtcl();
324		do {
325			/* the RTCL register wraps at 1000000000 */
326			diff = get_rtcl() - start;
327			if (diff < 0)
328				diff += 1000000000;
329		} while (diff < loops);
330	} else {
331		start = get_tbl();
332		while (get_tbl() - start < loops)
333			HMT_low();
334		HMT_medium();
335	}
336}
337EXPORT_SYMBOL(__delay);
338
339void udelay(unsigned long usecs)
340{
341	__delay(tb_ticks_per_usec * usecs);
342}
343EXPORT_SYMBOL(udelay);
344
345static __inline__ void timer_check_rtc(void)
346{
347        /*
348         * update the rtc when needed, this should be performed on the
349         * right fraction of a second. Half or full second ?
350         * Full second works on mk48t59 clocks, others need testing.
351         * Note that this update is basically only used through
352         * the adjtimex system calls. Setting the HW clock in
353         * any other way is a /dev/rtc and userland business.
354         * This is still wrong by -0.5/+1.5 jiffies because of the
355         * timer interrupt resolution and possible delay, but here we
356         * hit a quantization limit which can only be solved by higher
357         * resolution timers and decoupling time management from timer
358         * interrupts. This is also wrong on the clocks
359         * which require being written at the half second boundary.
360         * We should have an rtc call that only sets the minutes and
361         * seconds like on Intel to avoid problems with non UTC clocks.
362         */
363        if (ppc_md.set_rtc_time && ntp_synced() &&
364	    xtime.tv_sec - last_rtc_update >= 659 &&
365	    abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
366		struct rtc_time tm;
367		to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
368		tm.tm_year -= 1900;
369		tm.tm_mon -= 1;
370		if (ppc_md.set_rtc_time(&tm) == 0)
371			last_rtc_update = xtime.tv_sec + 1;
372		else
373			/* Try again one minute later */
374			last_rtc_update += 60;
375        }
376}
377
378/*
379 * This version of gettimeofday has microsecond resolution.
380 */
381static inline void __do_gettimeofday(struct timeval *tv)
382{
383	unsigned long sec, usec;
384	u64 tb_ticks, xsec;
385	struct gettimeofday_vars *temp_varp;
386	u64 temp_tb_to_xs, temp_stamp_xsec;
387
388	/*
389	 * These calculations are faster (gets rid of divides)
390	 * if done in units of 1/2^20 rather than microseconds.
391	 * The conversion to microseconds at the end is done
392	 * without a divide (and in fact, without a multiply)
393	 */
394	temp_varp = do_gtod.varp;
395
396	/* Sampling the time base must be done after loading
397	 * do_gtod.varp in order to avoid racing with update_gtod.
398	 */
399	data_barrier(temp_varp);
400	tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
401	temp_tb_to_xs = temp_varp->tb_to_xs;
402	temp_stamp_xsec = temp_varp->stamp_xsec;
403	xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
404	sec = xsec / XSEC_PER_SEC;
405	usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
406	usec = SCALE_XSEC(usec, 1000000);
407
408	tv->tv_sec = sec;
409	tv->tv_usec = usec;
410}
411
412void do_gettimeofday(struct timeval *tv)
413{
414	if (__USE_RTC()) {
415		/* do this the old way */
416		unsigned long flags, seq;
417		unsigned int sec, nsec, usec;
418
419		do {
420			seq = read_seqbegin_irqsave(&xtime_lock, flags);
421			sec = xtime.tv_sec;
422			nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
423		} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
424		usec = nsec / 1000;
425		while (usec >= 1000000) {
426			usec -= 1000000;
427			++sec;
428		}
429		tv->tv_sec = sec;
430		tv->tv_usec = usec;
431		return;
432	}
433	__do_gettimeofday(tv);
434}
435
436EXPORT_SYMBOL(do_gettimeofday);
437
438/*
439 * There are two copies of tb_to_xs and stamp_xsec so that no
440 * lock is needed to access and use these values in
441 * do_gettimeofday.  We alternate the copies and as long as a
442 * reasonable time elapses between changes, there will never
443 * be inconsistent values.  ntpd has a minimum of one minute
444 * between updates.
445 */
446static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
447			       u64 new_tb_to_xs)
448{
449	unsigned temp_idx;
450	struct gettimeofday_vars *temp_varp;
451
452	temp_idx = (do_gtod.var_idx == 0);
453	temp_varp = &do_gtod.vars[temp_idx];
454
455	temp_varp->tb_to_xs = new_tb_to_xs;
456	temp_varp->tb_orig_stamp = new_tb_stamp;
457	temp_varp->stamp_xsec = new_stamp_xsec;
458	smp_mb();
459	do_gtod.varp = temp_varp;
460	do_gtod.var_idx = temp_idx;
461
462	/*
463	 * tb_update_count is used to allow the userspace gettimeofday code
464	 * to assure itself that it sees a consistent view of the tb_to_xs and
465	 * stamp_xsec variables.  It reads the tb_update_count, then reads
466	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
467	 * the two values of tb_update_count match and are even then the
468	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
469	 * loops back and reads them again until this criteria is met.
470	 * We expect the caller to have done the first increment of
471	 * vdso_data->tb_update_count already.
472	 */
473	vdso_data->tb_orig_stamp = new_tb_stamp;
474	vdso_data->stamp_xsec = new_stamp_xsec;
475	vdso_data->tb_to_xs = new_tb_to_xs;
476	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
477	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
478	smp_wmb();
479	++(vdso_data->tb_update_count);
480}
481
482/*
483 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
484 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
485 * difference tb - tb_orig_stamp small enough to always fit inside a
486 * 32 bits number. This is a requirement of our fast 32 bits userland
487 * implementation in the vdso. If we "miss" a call to this function
488 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
489 * with a too big difference, then the vdso will fallback to calling
490 * the syscall
491 */
492static __inline__ void timer_recalc_offset(u64 cur_tb)
493{
494	unsigned long offset;
495	u64 new_stamp_xsec;
496	u64 tlen, t2x;
497	u64 tb, xsec_old, xsec_new;
498	struct gettimeofday_vars *varp;
499
500	if (__USE_RTC())
501		return;
502	tlen = current_tick_length();
503	offset = cur_tb - do_gtod.varp->tb_orig_stamp;
504	if (tlen == last_tick_len && offset < 0x80000000u)
505		return;
506	if (tlen != last_tick_len) {
507		t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
508		last_tick_len = tlen;
509	} else
510		t2x = do_gtod.varp->tb_to_xs;
511	new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
512	do_div(new_stamp_xsec, 1000000000);
513	new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
514
515	++vdso_data->tb_update_count;
516	smp_mb();
517
518	/*
519	 * Make sure time doesn't go backwards for userspace gettimeofday.
520	 */
521	tb = get_tb();
522	varp = do_gtod.varp;
523	xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
524		+ varp->stamp_xsec;
525	xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
526	if (xsec_new < xsec_old)
527		new_stamp_xsec += xsec_old - xsec_new;
528
529	update_gtod(cur_tb, new_stamp_xsec, t2x);
530}
531
532#ifdef CONFIG_SMP
533unsigned long profile_pc(struct pt_regs *regs)
534{
535	unsigned long pc = instruction_pointer(regs);
536
537	if (in_lock_functions(pc))
538		return regs->link;
539
540	return pc;
541}
542EXPORT_SYMBOL(profile_pc);
543#endif
544
545#ifdef CONFIG_PPC_ISERIES
546
547/*
548 * This function recalibrates the timebase based on the 49-bit time-of-day
549 * value in the Titan chip.  The Titan is much more accurate than the value
550 * returned by the service processor for the timebase frequency.
551 */
552
553static void iSeries_tb_recal(void)
554{
555	struct div_result divres;
556	unsigned long titan, tb;
557	tb = get_tb();
558	titan = HvCallXm_loadTod();
559	if ( iSeries_recal_titan ) {
560		unsigned long tb_ticks = tb - iSeries_recal_tb;
561		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
562		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
563		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
564		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
565		char sign = '+';
566		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
567		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
568
569		if ( tick_diff < 0 ) {
570			tick_diff = -tick_diff;
571			sign = '-';
572		}
573		if ( tick_diff ) {
574			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
575				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
576						new_tb_ticks_per_jiffy, sign, tick_diff );
577				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
578				tb_ticks_per_sec   = new_tb_ticks_per_sec;
579				calc_cputime_factors();
580				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
581				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
582				tb_to_xs = divres.result_low;
583				do_gtod.varp->tb_to_xs = tb_to_xs;
584				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
585				vdso_data->tb_to_xs = tb_to_xs;
586			}
587			else {
588				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
589					"                   new tb_ticks_per_jiffy = %lu\n"
590					"                   old tb_ticks_per_jiffy = %lu\n",
591					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
592			}
593		}
594	}
595	iSeries_recal_titan = titan;
596	iSeries_recal_tb = tb;
597}
598#endif
599
600/*
601 * For iSeries shared processors, we have to let the hypervisor
602 * set the hardware decrementer.  We set a virtual decrementer
603 * in the lppaca and call the hypervisor if the virtual
604 * decrementer is less than the current value in the hardware
605 * decrementer. (almost always the new decrementer value will
606 * be greater than the current hardware decementer so the hypervisor
607 * call will not be needed)
608 */
609
610/*
611 * timer_interrupt - gets called when the decrementer overflows,
612 * with interrupts disabled.
613 */
614void timer_interrupt(struct pt_regs * regs)
615{
616	struct pt_regs *old_regs;
617	int next_dec;
618	int cpu = smp_processor_id();
619	unsigned long ticks;
620	u64 tb_next_jiffy;
621
622#ifdef CONFIG_PPC32
623	if (atomic_read(&ppc_n_lost_interrupts) != 0)
624		do_IRQ(regs);
625#endif
626
627	old_regs = set_irq_regs(regs);
628	irq_enter();
629
630	profile_tick(CPU_PROFILING);
631	calculate_steal_time();
632
633#ifdef CONFIG_PPC_ISERIES
634	if (firmware_has_feature(FW_FEATURE_ISERIES))
635		get_lppaca()->int_dword.fields.decr_int = 0;
636#endif
637
638	while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
639	       >= tb_ticks_per_jiffy) {
640		/* Update last_jiffy */
641		per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
642		/* Handle RTCL overflow on 601 */
643		if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
644			per_cpu(last_jiffy, cpu) -= 1000000000;
645
646		/*
647		 * We cannot disable the decrementer, so in the period
648		 * between this cpu's being marked offline in cpu_online_map
649		 * and calling stop-self, it is taking timer interrupts.
650		 * Avoid calling into the scheduler rebalancing code if this
651		 * is the case.
652		 */
653		if (!cpu_is_offline(cpu))
654			account_process_time(regs);
655
656		/*
657		 * No need to check whether cpu is offline here; boot_cpuid
658		 * should have been fixed up by now.
659		 */
660		if (cpu != boot_cpuid)
661			continue;
662
663		write_seqlock(&xtime_lock);
664		tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
665		if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
666			tb_last_jiffy = tb_next_jiffy;
667			do_timer(1);
668			timer_recalc_offset(tb_last_jiffy);
669			timer_check_rtc();
670		}
671		write_sequnlock(&xtime_lock);
672	}
673
674	next_dec = tb_ticks_per_jiffy - ticks;
675	set_dec(next_dec);
676
677#ifdef CONFIG_PPC_ISERIES
678	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
679		process_hvlpevents();
680#endif
681
682#ifdef CONFIG_PPC64
683	/* collect purr register values often, for accurate calculations */
684	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
685		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
686		cu->current_tb = mfspr(SPRN_PURR);
687	}
688#endif
689
690	irq_exit();
691	set_irq_regs(old_regs);
692}
693
694void wakeup_decrementer(void)
695{
696	unsigned long ticks;
697
698	/*
699	 * The timebase gets saved on sleep and restored on wakeup,
700	 * so all we need to do is to reset the decrementer.
701	 */
702	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
703	if (ticks < tb_ticks_per_jiffy)
704		ticks = tb_ticks_per_jiffy - ticks;
705	else
706		ticks = 1;
707	set_dec(ticks);
708}
709
710#ifdef CONFIG_SMP
711void __init smp_space_timers(unsigned int max_cpus)
712{
713	int i;
714	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
715
716	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
717	previous_tb -= tb_ticks_per_jiffy;
718
719	for_each_possible_cpu(i) {
720		if (i == boot_cpuid)
721			continue;
722		per_cpu(last_jiffy, i) = previous_tb;
723	}
724}
725#endif
726
727/*
728 * Scheduler clock - returns current time in nanosec units.
729 *
730 * Note: mulhdu(a, b) (multiply high double unsigned) returns
731 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
732 * are 64-bit unsigned numbers.
733 */
734unsigned long long sched_clock(void)
735{
736	if (__USE_RTC())
737		return get_rtc();
738	return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
739}
740
741int do_settimeofday(struct timespec *tv)
742{
743	time_t wtm_sec, new_sec = tv->tv_sec;
744	long wtm_nsec, new_nsec = tv->tv_nsec;
745	unsigned long flags;
746	u64 new_xsec;
747	unsigned long tb_delta;
748
749	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
750		return -EINVAL;
751
752	write_seqlock_irqsave(&xtime_lock, flags);
753
754	/*
755	 * Updating the RTC is not the job of this code. If the time is
756	 * stepped under NTP, the RTC will be updated after STA_UNSYNC
757	 * is cleared.  Tools like clock/hwclock either copy the RTC
758	 * to the system time, in which case there is no point in writing
759	 * to the RTC again, or write to the RTC but then they don't call
760	 * settimeofday to perform this operation.
761	 */
762#ifdef CONFIG_PPC_ISERIES
763	if (firmware_has_feature(FW_FEATURE_ISERIES) && first_settimeofday) {
764		iSeries_tb_recal();
765		first_settimeofday = 0;
766	}
767#endif
768
769	/* Make userspace gettimeofday spin until we're done. */
770	++vdso_data->tb_update_count;
771	smp_mb();
772
773	/*
774	 * Subtract off the number of nanoseconds since the
775	 * beginning of the last tick.
776	 */
777	tb_delta = tb_ticks_since(tb_last_jiffy);
778	tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
779	new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
780
781	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
782	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
783
784 	set_normalized_timespec(&xtime, new_sec, new_nsec);
785	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
786
787	/* In case of a large backwards jump in time with NTP, we want the
788	 * clock to be updated as soon as the PLL is again in lock.
789	 */
790	last_rtc_update = new_sec - 658;
791
792	ntp_clear();
793
794	new_xsec = xtime.tv_nsec;
795	if (new_xsec != 0) {
796		new_xsec *= XSEC_PER_SEC;
797		do_div(new_xsec, NSEC_PER_SEC);
798	}
799	new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
800	update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
801
802	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
803	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
804
805	write_sequnlock_irqrestore(&xtime_lock, flags);
806	clock_was_set();
807	return 0;
808}
809
810EXPORT_SYMBOL(do_settimeofday);
811
812static int __init get_freq(char *name, int cells, unsigned long *val)
813{
814	struct device_node *cpu;
815	const unsigned int *fp;
816	int found = 0;
817
818	/* The cpu node should have timebase and clock frequency properties */
819	cpu = of_find_node_by_type(NULL, "cpu");
820
821	if (cpu) {
822		fp = of_get_property(cpu, name, NULL);
823		if (fp) {
824			found = 1;
825			*val = of_read_ulong(fp, cells);
826		}
827
828		of_node_put(cpu);
829	}
830
831	return found;
832}
833
834void __init generic_calibrate_decr(void)
835{
836	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
837
838	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
839	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
840
841		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
842				"(not found)\n");
843	}
844
845	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
846
847	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
848	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
849
850		printk(KERN_ERR "WARNING: Estimating processor frequency "
851				"(not found)\n");
852	}
853
854#ifdef CONFIG_BOOKE
855	/* Set the time base to zero */
856	mtspr(SPRN_TBWL, 0);
857	mtspr(SPRN_TBWU, 0);
858
859	/* Clear any pending timer interrupts */
860	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
861
862	/* Enable decrementer interrupt */
863	mtspr(SPRN_TCR, TCR_DIE);
864#endif
865}
866
867unsigned long get_boot_time(void)
868{
869	struct rtc_time tm;
870
871	if (ppc_md.get_boot_time)
872		return ppc_md.get_boot_time();
873	if (!ppc_md.get_rtc_time)
874		return 0;
875	ppc_md.get_rtc_time(&tm);
876	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
877		      tm.tm_hour, tm.tm_min, tm.tm_sec);
878}
879
880/* This function is only called on the boot processor */
881void __init time_init(void)
882{
883	unsigned long flags;
884	unsigned long tm = 0;
885	struct div_result res;
886	u64 scale, x;
887	unsigned shift;
888
889        if (ppc_md.time_init != NULL)
890                timezone_offset = ppc_md.time_init();
891
892	if (__USE_RTC()) {
893		/* 601 processor: dec counts down by 128 every 128ns */
894		ppc_tb_freq = 1000000000;
895		tb_last_jiffy = get_rtcl();
896	} else {
897		/* Normal PowerPC with timebase register */
898		ppc_md.calibrate_decr();
899		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
900		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
901		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
902		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
903		tb_last_jiffy = get_tb();
904	}
905
906	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
907	tb_ticks_per_sec = ppc_tb_freq;
908	tb_ticks_per_usec = ppc_tb_freq / 1000000;
909	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
910	calc_cputime_factors();
911
912	/*
913	 * Calculate the length of each tick in ns.  It will not be
914	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
915	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
916	 * rounded up.
917	 */
918	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
919	do_div(x, ppc_tb_freq);
920	tick_nsec = x;
921	last_tick_len = x << TICKLEN_SCALE;
922
923	/*
924	 * Compute ticklen_to_xs, which is a factor which gets multiplied
925	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
926	 * It is computed as:
927	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
928	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
929	 * which turns out to be N = 51 - SHIFT_HZ.
930	 * This gives the result as a 0.64 fixed-point fraction.
931	 * That value is reduced by an offset amounting to 1 xsec per
932	 * 2^31 timebase ticks to avoid problems with time going backwards
933	 * by 1 xsec when we do timer_recalc_offset due to losing the
934	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
935	 * since there are 2^20 xsec in a second.
936	 */
937	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
938		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
939	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
940	ticklen_to_xs = res.result_low;
941
942	/* Compute tb_to_xs from tick_nsec */
943	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
944
945	/*
946	 * Compute scale factor for sched_clock.
947	 * The calibrate_decr() function has set tb_ticks_per_sec,
948	 * which is the timebase frequency.
949	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
950	 * the 128-bit result as a 64.64 fixed-point number.
951	 * We then shift that number right until it is less than 1.0,
952	 * giving us the scale factor and shift count to use in
953	 * sched_clock().
954	 */
955	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
956	scale = res.result_low;
957	for (shift = 0; res.result_high != 0; ++shift) {
958		scale = (scale >> 1) | (res.result_high << 63);
959		res.result_high >>= 1;
960	}
961	tb_to_ns_scale = scale;
962	tb_to_ns_shift = shift;
963
964	tm = get_boot_time();
965
966	write_seqlock_irqsave(&xtime_lock, flags);
967
968	/* If platform provided a timezone (pmac), we correct the time */
969        if (timezone_offset) {
970		sys_tz.tz_minuteswest = -timezone_offset / 60;
971		sys_tz.tz_dsttime = 0;
972		tm -= timezone_offset;
973        }
974
975	xtime.tv_sec = tm;
976	xtime.tv_nsec = 0;
977	do_gtod.varp = &do_gtod.vars[0];
978	do_gtod.var_idx = 0;
979	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
980	__get_cpu_var(last_jiffy) = tb_last_jiffy;
981	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
982	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
983	do_gtod.varp->tb_to_xs = tb_to_xs;
984	do_gtod.tb_to_us = tb_to_us;
985
986	vdso_data->tb_orig_stamp = tb_last_jiffy;
987	vdso_data->tb_update_count = 0;
988	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
989	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
990	vdso_data->tb_to_xs = tb_to_xs;
991
992	time_freq = 0;
993
994	last_rtc_update = xtime.tv_sec;
995	set_normalized_timespec(&wall_to_monotonic,
996	                        -xtime.tv_sec, -xtime.tv_nsec);
997	write_sequnlock_irqrestore(&xtime_lock, flags);
998
999	/* Not exact, but the timer interrupt takes care of this */
1000	set_dec(tb_ticks_per_jiffy);
1001}
1002
1003
1004#define FEBRUARY	2
1005#define	STARTOFTIME	1970
1006#define SECDAY		86400L
1007#define SECYR		(SECDAY * 365)
1008#define	leapyear(year)		((year) % 4 == 0 && \
1009				 ((year) % 100 != 0 || (year) % 400 == 0))
1010#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1011#define	days_in_month(a) 	(month_days[(a) - 1])
1012
1013static int month_days[12] = {
1014	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1015};
1016
1017/*
1018 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1019 */
1020void GregorianDay(struct rtc_time * tm)
1021{
1022	int leapsToDate;
1023	int lastYear;
1024	int day;
1025	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1026
1027	lastYear = tm->tm_year - 1;
1028
1029	/*
1030	 * Number of leap corrections to apply up to end of last year
1031	 */
1032	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1033
1034	/*
1035	 * This year is a leap year if it is divisible by 4 except when it is
1036	 * divisible by 100 unless it is divisible by 400
1037	 *
1038	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1039	 */
1040	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1041
1042	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1043		   tm->tm_mday;
1044
1045	tm->tm_wday = day % 7;
1046}
1047
1048void to_tm(int tim, struct rtc_time * tm)
1049{
1050	register int    i;
1051	register long   hms, day;
1052
1053	day = tim / SECDAY;
1054	hms = tim % SECDAY;
1055
1056	/* Hours, minutes, seconds are easy */
1057	tm->tm_hour = hms / 3600;
1058	tm->tm_min = (hms % 3600) / 60;
1059	tm->tm_sec = (hms % 3600) % 60;
1060
1061	/* Number of years in days */
1062	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1063		day -= days_in_year(i);
1064	tm->tm_year = i;
1065
1066	/* Number of months in days left */
1067	if (leapyear(tm->tm_year))
1068		days_in_month(FEBRUARY) = 29;
1069	for (i = 1; day >= days_in_month(i); i++)
1070		day -= days_in_month(i);
1071	days_in_month(FEBRUARY) = 28;
1072	tm->tm_mon = i;
1073
1074	/* Days are what is left over (+1) from all that. */
1075	tm->tm_mday = day + 1;
1076
1077	/*
1078	 * Determine the day of week
1079	 */
1080	GregorianDay(tm);
1081}
1082
1083/* Auxiliary function to compute scaling factors */
1084/* Actually the choice of a timebase running at 1/4 the of the bus
1085 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1086 * It makes this computation very precise (27-28 bits typically) which
1087 * is optimistic considering the stability of most processor clock
1088 * oscillators and the precision with which the timebase frequency
1089 * is measured but does not harm.
1090 */
1091unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1092{
1093        unsigned mlt=0, tmp, err;
1094        /* No concern for performance, it's done once: use a stupid
1095         * but safe and compact method to find the multiplier.
1096         */
1097
1098        for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1099                if (mulhwu(inscale, mlt|tmp) < outscale)
1100			mlt |= tmp;
1101        }
1102
1103        /* We might still be off by 1 for the best approximation.
1104         * A side effect of this is that if outscale is too large
1105         * the returned value will be zero.
1106         * Many corner cases have been checked and seem to work,
1107         * some might have been forgotten in the test however.
1108         */
1109
1110        err = inscale * (mlt+1);
1111        if (err <= inscale/2)
1112		mlt++;
1113        return mlt;
1114}
1115
1116/*
1117 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1118 * result.
1119 */
1120void div128_by_32(u64 dividend_high, u64 dividend_low,
1121		  unsigned divisor, struct div_result *dr)
1122{
1123	unsigned long a, b, c, d;
1124	unsigned long w, x, y, z;
1125	u64 ra, rb, rc;
1126
1127	a = dividend_high >> 32;
1128	b = dividend_high & 0xffffffff;
1129	c = dividend_low >> 32;
1130	d = dividend_low & 0xffffffff;
1131
1132	w = a / divisor;
1133	ra = ((u64)(a - (w * divisor)) << 32) + b;
1134
1135	rb = ((u64) do_div(ra, divisor) << 32) + c;
1136	x = ra;
1137
1138	rc = ((u64) do_div(rb, divisor) << 32) + d;
1139	y = rb;
1140
1141	do_div(rc, divisor);
1142	z = rc;
1143
1144	dr->result_high = ((u64)w << 32) + x;
1145	dr->result_low  = ((u64)y << 32) + z;
1146
1147}
1148