1/*
2 *   Copyright (C) 2000 Tilmann Bitterberg
3 *   (tilmann@bitterberg.de)
4 *
5 *   RTAS (Runtime Abstraction Services) stuff
6 *   Intention is to provide a clean user interface
7 *   to use the RTAS.
8 *
9 *   TODO:
10 *   Split off a header file and maybe move it to a different
11 *   location. Write Documentation on what the /proc/rtas/ entries
12 *   actually do.
13 */
14
15#include <linux/errno.h>
16#include <linux/sched.h>
17#include <linux/proc_fs.h>
18#include <linux/stat.h>
19#include <linux/ctype.h>
20#include <linux/time.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/seq_file.h>
24#include <linux/bitops.h>
25#include <linux/rtc.h>
26
27#include <asm/uaccess.h>
28#include <asm/processor.h>
29#include <asm/io.h>
30#include <asm/prom.h>
31#include <asm/rtas.h>
32#include <asm/machdep.h> /* for ppc_md */
33#include <asm/time.h>
34
35/* Token for Sensors */
36#define KEY_SWITCH		0x0001
37#define ENCLOSURE_SWITCH	0x0002
38#define THERMAL_SENSOR		0x0003
39#define LID_STATUS		0x0004
40#define POWER_SOURCE		0x0005
41#define BATTERY_VOLTAGE		0x0006
42#define BATTERY_REMAINING	0x0007
43#define BATTERY_PERCENTAGE	0x0008
44#define EPOW_SENSOR		0x0009
45#define BATTERY_CYCLESTATE	0x000a
46#define BATTERY_CHARGING	0x000b
47
48/* IBM specific sensors */
49#define IBM_SURVEILLANCE	0x2328 /* 9000 */
50#define IBM_FANRPM		0x2329 /* 9001 */
51#define IBM_VOLTAGE		0x232a /* 9002 */
52#define IBM_DRCONNECTOR		0x232b /* 9003 */
53#define IBM_POWERSUPPLY		0x232c /* 9004 */
54
55/* Status return values */
56#define SENSOR_CRITICAL_HIGH	13
57#define SENSOR_WARNING_HIGH	12
58#define SENSOR_NORMAL		11
59#define SENSOR_WARNING_LOW	10
60#define SENSOR_CRITICAL_LOW	 9
61#define SENSOR_SUCCESS		 0
62#define SENSOR_HW_ERROR		-1
63#define SENSOR_BUSY		-2
64#define SENSOR_NOT_EXIST	-3
65#define SENSOR_DR_ENTITY	-9000
66
67/* Location Codes */
68#define LOC_SCSI_DEV_ADDR	'A'
69#define LOC_SCSI_DEV_LOC	'B'
70#define LOC_CPU			'C'
71#define LOC_DISKETTE		'D'
72#define LOC_ETHERNET		'E'
73#define LOC_FAN			'F'
74#define LOC_GRAPHICS		'G'
75/* reserved / not used		'H' */
76#define LOC_IO_ADAPTER		'I'
77/* reserved / not used		'J' */
78#define LOC_KEYBOARD		'K'
79#define LOC_LCD			'L'
80#define LOC_MEMORY		'M'
81#define LOC_NV_MEMORY		'N'
82#define LOC_MOUSE		'O'
83#define LOC_PLANAR		'P'
84#define LOC_OTHER_IO		'Q'
85#define LOC_PARALLEL		'R'
86#define LOC_SERIAL		'S'
87#define LOC_DEAD_RING		'T'
88#define LOC_RACKMOUNTED		'U' /* for _u_nit is rack mounted */
89#define LOC_VOLTAGE		'V'
90#define LOC_SWITCH_ADAPTER	'W'
91#define LOC_OTHER		'X'
92#define LOC_FIRMWARE		'Y'
93#define LOC_SCSI		'Z'
94
95/* Tokens for indicators */
96#define TONE_FREQUENCY		0x0001 /* 0 - 1000 (HZ)*/
97#define TONE_VOLUME		0x0002 /* 0 - 100 (%) */
98#define SYSTEM_POWER_STATE	0x0003
99#define WARNING_LIGHT		0x0004
100#define DISK_ACTIVITY_LIGHT	0x0005
101#define HEX_DISPLAY_UNIT	0x0006
102#define BATTERY_WARNING_TIME	0x0007
103#define CONDITION_CYCLE_REQUEST	0x0008
104#define SURVEILLANCE_INDICATOR	0x2328 /* 9000 */
105#define DR_ACTION		0x2329 /* 9001 */
106#define DR_INDICATOR		0x232a /* 9002 */
107/* 9003 - 9004: Vendor specific */
108/* 9006 - 9999: Vendor specific */
109
110/* other */
111#define MAX_SENSORS		 17  /* I only know of 17 sensors */
112#define MAX_LINELENGTH          256
113#define SENSOR_PREFIX		"ibm,sensor-"
114#define cel_to_fahr(x)		((x*9/5)+32)
115
116
117/* Globals */
118static struct rtas_sensors sensors;
119static struct device_node *rtas_node = NULL;
120static unsigned long power_on_time = 0; /* Save the time the user set */
121static char progress_led[MAX_LINELENGTH];
122
123static unsigned long rtas_tone_frequency = 1000;
124static unsigned long rtas_tone_volume = 0;
125
126/* ****************STRUCTS******************************************* */
127struct individual_sensor {
128	unsigned int token;
129	unsigned int quant;
130};
131
132struct rtas_sensors {
133        struct individual_sensor sensor[MAX_SENSORS];
134	unsigned int quant;
135};
136
137/* ****************************************************************** */
138/* Declarations */
139static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
140static int ppc_rtas_clock_show(struct seq_file *m, void *v);
141static ssize_t ppc_rtas_clock_write(struct file *file,
142		const char __user *buf, size_t count, loff_t *ppos);
143static int ppc_rtas_progress_show(struct seq_file *m, void *v);
144static ssize_t ppc_rtas_progress_write(struct file *file,
145		const char __user *buf, size_t count, loff_t *ppos);
146static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
147static ssize_t ppc_rtas_poweron_write(struct file *file,
148		const char __user *buf, size_t count, loff_t *ppos);
149
150static ssize_t ppc_rtas_tone_freq_write(struct file *file,
151		const char __user *buf, size_t count, loff_t *ppos);
152static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
153static ssize_t ppc_rtas_tone_volume_write(struct file *file,
154		const char __user *buf, size_t count, loff_t *ppos);
155static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
156static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
157
158static int sensors_open(struct inode *inode, struct file *file)
159{
160	return single_open(file, ppc_rtas_sensors_show, NULL);
161}
162
163const struct file_operations ppc_rtas_sensors_operations = {
164	.open		= sensors_open,
165	.read		= seq_read,
166	.llseek		= seq_lseek,
167	.release	= single_release,
168};
169
170static int poweron_open(struct inode *inode, struct file *file)
171{
172	return single_open(file, ppc_rtas_poweron_show, NULL);
173}
174
175const struct file_operations ppc_rtas_poweron_operations = {
176	.open		= poweron_open,
177	.read		= seq_read,
178	.llseek		= seq_lseek,
179	.write		= ppc_rtas_poweron_write,
180	.release	= single_release,
181};
182
183static int progress_open(struct inode *inode, struct file *file)
184{
185	return single_open(file, ppc_rtas_progress_show, NULL);
186}
187
188const struct file_operations ppc_rtas_progress_operations = {
189	.open		= progress_open,
190	.read		= seq_read,
191	.llseek		= seq_lseek,
192	.write		= ppc_rtas_progress_write,
193	.release	= single_release,
194};
195
196static int clock_open(struct inode *inode, struct file *file)
197{
198	return single_open(file, ppc_rtas_clock_show, NULL);
199}
200
201const struct file_operations ppc_rtas_clock_operations = {
202	.open		= clock_open,
203	.read		= seq_read,
204	.llseek		= seq_lseek,
205	.write		= ppc_rtas_clock_write,
206	.release	= single_release,
207};
208
209static int tone_freq_open(struct inode *inode, struct file *file)
210{
211	return single_open(file, ppc_rtas_tone_freq_show, NULL);
212}
213
214const struct file_operations ppc_rtas_tone_freq_operations = {
215	.open		= tone_freq_open,
216	.read		= seq_read,
217	.llseek		= seq_lseek,
218	.write		= ppc_rtas_tone_freq_write,
219	.release	= single_release,
220};
221
222static int tone_volume_open(struct inode *inode, struct file *file)
223{
224	return single_open(file, ppc_rtas_tone_volume_show, NULL);
225}
226
227const struct file_operations ppc_rtas_tone_volume_operations = {
228	.open		= tone_volume_open,
229	.read		= seq_read,
230	.llseek		= seq_lseek,
231	.write		= ppc_rtas_tone_volume_write,
232	.release	= single_release,
233};
234
235static int rmo_buf_open(struct inode *inode, struct file *file)
236{
237	return single_open(file, ppc_rtas_rmo_buf_show, NULL);
238}
239
240const struct file_operations ppc_rtas_rmo_buf_ops = {
241	.open		= rmo_buf_open,
242	.read		= seq_read,
243	.llseek		= seq_lseek,
244	.release	= single_release,
245};
246
247static int ppc_rtas_find_all_sensors(void);
248static void ppc_rtas_process_sensor(struct seq_file *m,
249	struct individual_sensor *s, int state, int error, const char *loc);
250static char *ppc_rtas_process_error(int error);
251static void get_location_code(struct seq_file *m,
252	struct individual_sensor *s, const char *loc);
253static void check_location_string(struct seq_file *m, const char *c);
254static void check_location(struct seq_file *m, const char *c);
255
256static int __init proc_rtas_init(void)
257{
258	struct proc_dir_entry *entry;
259
260	if (!machine_is(pseries))
261		return -ENODEV;
262
263	rtas_node = of_find_node_by_name(NULL, "rtas");
264	if (rtas_node == NULL)
265		return -ENODEV;
266
267	entry = create_proc_entry("ppc64/rtas/progress", S_IRUGO|S_IWUSR, NULL);
268	if (entry)
269		entry->proc_fops = &ppc_rtas_progress_operations;
270
271	entry = create_proc_entry("ppc64/rtas/clock", S_IRUGO|S_IWUSR, NULL);
272	if (entry)
273		entry->proc_fops = &ppc_rtas_clock_operations;
274
275	entry = create_proc_entry("ppc64/rtas/poweron", S_IWUSR|S_IRUGO, NULL);
276	if (entry)
277		entry->proc_fops = &ppc_rtas_poweron_operations;
278
279	entry = create_proc_entry("ppc64/rtas/sensors", S_IRUGO, NULL);
280	if (entry)
281		entry->proc_fops = &ppc_rtas_sensors_operations;
282
283	entry = create_proc_entry("ppc64/rtas/frequency", S_IWUSR|S_IRUGO,
284				  NULL);
285	if (entry)
286		entry->proc_fops = &ppc_rtas_tone_freq_operations;
287
288	entry = create_proc_entry("ppc64/rtas/volume", S_IWUSR|S_IRUGO, NULL);
289	if (entry)
290		entry->proc_fops = &ppc_rtas_tone_volume_operations;
291
292	entry = create_proc_entry("ppc64/rtas/rmo_buffer", S_IRUSR, NULL);
293	if (entry)
294		entry->proc_fops = &ppc_rtas_rmo_buf_ops;
295
296	return 0;
297}
298
299__initcall(proc_rtas_init);
300
301static int parse_number(const char __user *p, size_t count, unsigned long *val)
302{
303	char buf[40];
304	char *end;
305
306	if (count > 39)
307		return -EINVAL;
308
309	if (copy_from_user(buf, p, count))
310		return -EFAULT;
311
312	buf[count] = 0;
313
314	*val = simple_strtoul(buf, &end, 10);
315	if (*end && *end != '\n')
316		return -EINVAL;
317
318	return 0;
319}
320
321/* ****************************************************************** */
322/* POWER-ON-TIME                                                      */
323/* ****************************************************************** */
324static ssize_t ppc_rtas_poweron_write(struct file *file,
325		const char __user *buf, size_t count, loff_t *ppos)
326{
327	struct rtc_time tm;
328	unsigned long nowtime;
329	int error = parse_number(buf, count, &nowtime);
330	if (error)
331		return error;
332
333	power_on_time = nowtime; /* save the time */
334
335	to_tm(nowtime, &tm);
336
337	error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL,
338			tm.tm_year, tm.tm_mon, tm.tm_mday,
339			tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
340	if (error)
341		printk(KERN_WARNING "error: setting poweron time returned: %s\n",
342				ppc_rtas_process_error(error));
343	return count;
344}
345/* ****************************************************************** */
346static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
347{
348	if (power_on_time == 0)
349		seq_printf(m, "Power on time not set\n");
350	else
351		seq_printf(m, "%lu\n",power_on_time);
352	return 0;
353}
354
355/* ****************************************************************** */
356/* PROGRESS                                                           */
357/* ****************************************************************** */
358static ssize_t ppc_rtas_progress_write(struct file *file,
359		const char __user *buf, size_t count, loff_t *ppos)
360{
361	unsigned long hex;
362
363	if (count >= MAX_LINELENGTH)
364		count = MAX_LINELENGTH -1;
365	if (copy_from_user(progress_led, buf, count)) { /* save the string */
366		return -EFAULT;
367	}
368	progress_led[count] = 0;
369
370	/* Lets see if the user passed hexdigits */
371	hex = simple_strtoul(progress_led, NULL, 10);
372
373	rtas_progress ((char *)progress_led, hex);
374	return count;
375
376	/* clear the line */
377	/* rtas_progress("                   ", 0xffff);*/
378}
379/* ****************************************************************** */
380static int ppc_rtas_progress_show(struct seq_file *m, void *v)
381{
382	if (progress_led[0])
383		seq_printf(m, "%s\n", progress_led);
384	return 0;
385}
386
387/* ****************************************************************** */
388/* CLOCK                                                              */
389/* ****************************************************************** */
390static ssize_t ppc_rtas_clock_write(struct file *file,
391		const char __user *buf, size_t count, loff_t *ppos)
392{
393	struct rtc_time tm;
394	unsigned long nowtime;
395	int error = parse_number(buf, count, &nowtime);
396	if (error)
397		return error;
398
399	to_tm(nowtime, &tm);
400	error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
401			tm.tm_year, tm.tm_mon, tm.tm_mday,
402			tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
403	if (error)
404		printk(KERN_WARNING "error: setting the clock returned: %s\n",
405				ppc_rtas_process_error(error));
406	return count;
407}
408/* ****************************************************************** */
409static int ppc_rtas_clock_show(struct seq_file *m, void *v)
410{
411	int ret[8];
412	int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
413
414	if (error) {
415		printk(KERN_WARNING "error: reading the clock returned: %s\n",
416				ppc_rtas_process_error(error));
417		seq_printf(m, "0");
418	} else {
419		unsigned int year, mon, day, hour, min, sec;
420		year = ret[0]; mon  = ret[1]; day  = ret[2];
421		hour = ret[3]; min  = ret[4]; sec  = ret[5];
422		seq_printf(m, "%lu\n",
423				mktime(year, mon, day, hour, min, sec));
424	}
425	return 0;
426}
427
428/* ****************************************************************** */
429/* SENSOR STUFF                                                       */
430/* ****************************************************************** */
431static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
432{
433	int i,j;
434	int state, error;
435	int get_sensor_state = rtas_token("get-sensor-state");
436
437	seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
438	seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
439	seq_printf(m, "********************************************************\n");
440
441	if (ppc_rtas_find_all_sensors() != 0) {
442		seq_printf(m, "\nNo sensors are available\n");
443		return 0;
444	}
445
446	for (i=0; i<sensors.quant; i++) {
447		struct individual_sensor *p = &sensors.sensor[i];
448		char rstr[64];
449		const char *loc;
450		int llen, offs;
451
452		sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
453		loc = of_get_property(rtas_node, rstr, &llen);
454
455		/* A sensor may have multiple instances */
456		for (j = 0, offs = 0; j <= p->quant; j++) {
457			error =	rtas_call(get_sensor_state, 2, 2, &state,
458				  	  p->token, j);
459
460			ppc_rtas_process_sensor(m, p, state, error, loc);
461			seq_putc(m, '\n');
462			if (loc) {
463				offs += strlen(loc) + 1;
464				loc += strlen(loc) + 1;
465				if (offs >= llen)
466					loc = NULL;
467			}
468		}
469	}
470	return 0;
471}
472
473/* ****************************************************************** */
474
475static int ppc_rtas_find_all_sensors(void)
476{
477	const unsigned int *utmp;
478	int len, i;
479
480	utmp = of_get_property(rtas_node, "rtas-sensors", &len);
481	if (utmp == NULL) {
482		printk (KERN_ERR "error: could not get rtas-sensors\n");
483		return 1;
484	}
485
486	sensors.quant = len / 8;      /* int + int */
487
488	for (i=0; i<sensors.quant; i++) {
489		sensors.sensor[i].token = *utmp++;
490		sensors.sensor[i].quant = *utmp++;
491	}
492	return 0;
493}
494
495/* ****************************************************************** */
496/*
497 * Builds a string of what rtas returned
498 */
499static char *ppc_rtas_process_error(int error)
500{
501	switch (error) {
502		case SENSOR_CRITICAL_HIGH:
503			return "(critical high)";
504		case SENSOR_WARNING_HIGH:
505			return "(warning high)";
506		case SENSOR_NORMAL:
507			return "(normal)";
508		case SENSOR_WARNING_LOW:
509			return "(warning low)";
510		case SENSOR_CRITICAL_LOW:
511			return "(critical low)";
512		case SENSOR_SUCCESS:
513			return "(read ok)";
514		case SENSOR_HW_ERROR:
515			return "(hardware error)";
516		case SENSOR_BUSY:
517			return "(busy)";
518		case SENSOR_NOT_EXIST:
519			return "(non existent)";
520		case SENSOR_DR_ENTITY:
521			return "(dr entity removed)";
522		default:
523			return "(UNKNOWN)";
524	}
525}
526
527/* ****************************************************************** */
528/*
529 * Builds a string out of what the sensor said
530 */
531
532static void ppc_rtas_process_sensor(struct seq_file *m,
533	struct individual_sensor *s, int state, int error, const char *loc)
534{
535	/* Defined return vales */
536	const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t",
537						"Maintenance" };
538	const char * enclosure_switch[]  = { "Closed", "Open" };
539	const char * lid_status[]        = { " ", "Open", "Closed" };
540	const char * power_source[]      = { "AC\t", "Battery",
541		  				"AC & Battery" };
542	const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
543	const char * epow_sensor[]       = {
544		"EPOW Reset", "Cooling warning", "Power warning",
545		"System shutdown", "System halt", "EPOW main enclosure",
546		"EPOW power off" };
547	const char * battery_cyclestate[]  = { "None", "In progress",
548						"Requested" };
549	const char * battery_charging[]    = { "Charging", "Discharching",
550						"No current flow" };
551	const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable",
552						"Exchange" };
553
554	int have_strings = 0;
555	int num_states = 0;
556	int temperature = 0;
557	int unknown = 0;
558
559	/* What kind of sensor do we have here? */
560
561	switch (s->token) {
562		case KEY_SWITCH:
563			seq_printf(m, "Key switch:\t");
564			num_states = sizeof(key_switch) / sizeof(char *);
565			if (state < num_states) {
566				seq_printf(m, "%s\t", key_switch[state]);
567				have_strings = 1;
568			}
569			break;
570		case ENCLOSURE_SWITCH:
571			seq_printf(m, "Enclosure switch:\t");
572			num_states = sizeof(enclosure_switch) / sizeof(char *);
573			if (state < num_states) {
574				seq_printf(m, "%s\t",
575						enclosure_switch[state]);
576				have_strings = 1;
577			}
578			break;
579		case THERMAL_SENSOR:
580			seq_printf(m, "Temp. (C/F):\t");
581			temperature = 1;
582			break;
583		case LID_STATUS:
584			seq_printf(m, "Lid status:\t");
585			num_states = sizeof(lid_status) / sizeof(char *);
586			if (state < num_states) {
587				seq_printf(m, "%s\t", lid_status[state]);
588				have_strings = 1;
589			}
590			break;
591		case POWER_SOURCE:
592			seq_printf(m, "Power source:\t");
593			num_states = sizeof(power_source) / sizeof(char *);
594			if (state < num_states) {
595				seq_printf(m, "%s\t",
596						power_source[state]);
597				have_strings = 1;
598			}
599			break;
600		case BATTERY_VOLTAGE:
601			seq_printf(m, "Battery voltage:\t");
602			break;
603		case BATTERY_REMAINING:
604			seq_printf(m, "Battery remaining:\t");
605			num_states = sizeof(battery_remaining) / sizeof(char *);
606			if (state < num_states)
607			{
608				seq_printf(m, "%s\t",
609						battery_remaining[state]);
610				have_strings = 1;
611			}
612			break;
613		case BATTERY_PERCENTAGE:
614			seq_printf(m, "Battery percentage:\t");
615			break;
616		case EPOW_SENSOR:
617			seq_printf(m, "EPOW Sensor:\t");
618			num_states = sizeof(epow_sensor) / sizeof(char *);
619			if (state < num_states) {
620				seq_printf(m, "%s\t", epow_sensor[state]);
621				have_strings = 1;
622			}
623			break;
624		case BATTERY_CYCLESTATE:
625			seq_printf(m, "Battery cyclestate:\t");
626			num_states = sizeof(battery_cyclestate) /
627				     	sizeof(char *);
628			if (state < num_states) {
629				seq_printf(m, "%s\t",
630						battery_cyclestate[state]);
631				have_strings = 1;
632			}
633			break;
634		case BATTERY_CHARGING:
635			seq_printf(m, "Battery Charging:\t");
636			num_states = sizeof(battery_charging) / sizeof(char *);
637			if (state < num_states) {
638				seq_printf(m, "%s\t",
639						battery_charging[state]);
640				have_strings = 1;
641			}
642			break;
643		case IBM_SURVEILLANCE:
644			seq_printf(m, "Surveillance:\t");
645			break;
646		case IBM_FANRPM:
647			seq_printf(m, "Fan (rpm):\t");
648			break;
649		case IBM_VOLTAGE:
650			seq_printf(m, "Voltage (mv):\t");
651			break;
652		case IBM_DRCONNECTOR:
653			seq_printf(m, "DR connector:\t");
654			num_states = sizeof(ibm_drconnector) / sizeof(char *);
655			if (state < num_states) {
656				seq_printf(m, "%s\t",
657						ibm_drconnector[state]);
658				have_strings = 1;
659			}
660			break;
661		case IBM_POWERSUPPLY:
662			seq_printf(m, "Powersupply:\t");
663			break;
664		default:
665			seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
666					s->token);
667			unknown = 1;
668			have_strings = 1;
669			break;
670	}
671	if (have_strings == 0) {
672		if (temperature) {
673			seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
674		} else
675			seq_printf(m, "%10d\t", state);
676	}
677	if (unknown == 0) {
678		seq_printf(m, "%s\t", ppc_rtas_process_error(error));
679		get_location_code(m, s, loc);
680	}
681}
682
683/* ****************************************************************** */
684
685static void check_location(struct seq_file *m, const char *c)
686{
687	switch (c[0]) {
688		case LOC_PLANAR:
689			seq_printf(m, "Planar #%c", c[1]);
690			break;
691		case LOC_CPU:
692			seq_printf(m, "CPU #%c", c[1]);
693			break;
694		case LOC_FAN:
695			seq_printf(m, "Fan #%c", c[1]);
696			break;
697		case LOC_RACKMOUNTED:
698			seq_printf(m, "Rack #%c", c[1]);
699			break;
700		case LOC_VOLTAGE:
701			seq_printf(m, "Voltage #%c", c[1]);
702			break;
703		case LOC_LCD:
704			seq_printf(m, "LCD #%c", c[1]);
705			break;
706		case '.':
707			seq_printf(m, "- %c", c[1]);
708			break;
709		default:
710			seq_printf(m, "Unknown location");
711			break;
712	}
713}
714
715
716/* ****************************************************************** */
717/*
718 * Format:
719 * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
720 * the '.' may be an abbrevation
721 */
722static void check_location_string(struct seq_file *m, const char *c)
723{
724	while (*c) {
725		if (isalpha(*c) || *c == '.')
726			check_location(m, c);
727		else if (*c == '/' || *c == '-')
728			seq_printf(m, " at ");
729		c++;
730	}
731}
732
733
734/* ****************************************************************** */
735
736static void get_location_code(struct seq_file *m, struct individual_sensor *s,
737		const char *loc)
738{
739	if (!loc || !*loc) {
740		seq_printf(m, "---");/* does not have a location */
741	} else {
742		check_location_string(m, loc);
743	}
744	seq_putc(m, ' ');
745}
746/* ****************************************************************** */
747/* INDICATORS - Tone Frequency                                        */
748/* ****************************************************************** */
749static ssize_t ppc_rtas_tone_freq_write(struct file *file,
750		const char __user *buf, size_t count, loff_t *ppos)
751{
752	unsigned long freq;
753	int error = parse_number(buf, count, &freq);
754	if (error)
755		return error;
756
757	rtas_tone_frequency = freq; /* save it for later */
758	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
759			TONE_FREQUENCY, 0, freq);
760	if (error)
761		printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
762				ppc_rtas_process_error(error));
763	return count;
764}
765/* ****************************************************************** */
766static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
767{
768	seq_printf(m, "%lu\n", rtas_tone_frequency);
769	return 0;
770}
771/* ****************************************************************** */
772/* INDICATORS - Tone Volume                                           */
773/* ****************************************************************** */
774static ssize_t ppc_rtas_tone_volume_write(struct file *file,
775		const char __user *buf, size_t count, loff_t *ppos)
776{
777	unsigned long volume;
778	int error = parse_number(buf, count, &volume);
779	if (error)
780		return error;
781
782	if (volume > 100)
783		volume = 100;
784
785        rtas_tone_volume = volume; /* save it for later */
786	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
787			TONE_VOLUME, 0, volume);
788	if (error)
789		printk(KERN_WARNING "error: setting tone volume returned: %s\n",
790				ppc_rtas_process_error(error));
791	return count;
792}
793/* ****************************************************************** */
794static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
795{
796	seq_printf(m, "%lu\n", rtas_tone_volume);
797	return 0;
798}
799
800#define RMO_READ_BUF_MAX 30
801
802/* RTAS Userspace access */
803static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
804{
805	seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
806	return 0;
807}
808