1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5<book id="LKLockingGuide">
6 <bookinfo>
7  <title>Unreliable Guide To Locking</title>
8  
9  <authorgroup>
10   <author>
11    <firstname>Rusty</firstname>
12    <surname>Russell</surname>
13    <affiliation>
14     <address>
15      <email>rusty@rustcorp.com.au</email>
16     </address>
17    </affiliation>
18   </author>
19  </authorgroup>
20
21  <copyright>
22   <year>2003</year>
23   <holder>Rusty Russell</holder>
24  </copyright>
25
26  <legalnotice>
27   <para>
28     This documentation is free software; you can redistribute
29     it and/or modify it under the terms of the GNU General Public
30     License as published by the Free Software Foundation; either
31     version 2 of the License, or (at your option) any later
32     version.
33   </para>
34      
35   <para>
36     This program is distributed in the hope that it will be
37     useful, but WITHOUT ANY WARRANTY; without even the implied
38     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
39     See the GNU General Public License for more details.
40   </para>
41      
42   <para>
43     You should have received a copy of the GNU General Public
44     License along with this program; if not, write to the Free
45     Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
46     MA 02111-1307 USA
47   </para>
48      
49   <para>
50     For more details see the file COPYING in the source
51     distribution of Linux.
52   </para>
53  </legalnotice>
54 </bookinfo>
55
56 <toc></toc>
57  <chapter id="intro">
58   <title>Introduction</title>
59   <para>
60     Welcome, to Rusty's Remarkably Unreliable Guide to Kernel
61     Locking issues.  This document describes the locking systems in
62     the Linux Kernel in 2.6.
63   </para>
64   <para>
65     With the wide availability of HyperThreading, and <firstterm
66     linkend="gloss-preemption">preemption </firstterm> in the Linux
67     Kernel, everyone hacking on the kernel needs to know the
68     fundamentals of concurrency and locking for
69     <firstterm linkend="gloss-smp"><acronym>SMP</acronym></firstterm>.
70   </para>
71  </chapter>
72
73   <chapter id="races">
74    <title>The Problem With Concurrency</title>
75    <para>
76      (Skip this if you know what a Race Condition is).
77    </para>
78    <para>
79      In a normal program, you can increment a counter like so:
80    </para>
81    <programlisting>
82      very_important_count++;
83    </programlisting>
84
85    <para>
86      This is what they would expect to happen:
87    </para>
88
89    <table>
90     <title>Expected Results</title>
91
92     <tgroup cols="2" align="left">
93
94      <thead>
95       <row>
96        <entry>Instance 1</entry>
97        <entry>Instance 2</entry>
98       </row>
99      </thead>
100
101      <tbody>
102       <row>
103        <entry>read very_important_count (5)</entry>
104        <entry></entry>
105       </row>
106       <row>
107        <entry>add 1 (6)</entry>
108        <entry></entry>
109       </row>
110       <row>
111        <entry>write very_important_count (6)</entry>
112        <entry></entry>
113       </row>
114       <row>
115        <entry></entry>
116        <entry>read very_important_count (6)</entry>
117       </row>
118       <row>
119        <entry></entry>
120        <entry>add 1 (7)</entry>
121       </row>
122       <row>
123        <entry></entry>
124        <entry>write very_important_count (7)</entry>
125       </row>
126      </tbody>
127
128     </tgroup>
129    </table>
130
131    <para>
132     This is what might happen:
133    </para>
134
135    <table>
136     <title>Possible Results</title>
137
138     <tgroup cols="2" align="left">
139      <thead>
140       <row>
141        <entry>Instance 1</entry>
142        <entry>Instance 2</entry>
143       </row>
144      </thead>
145
146      <tbody>
147       <row>
148        <entry>read very_important_count (5)</entry>
149        <entry></entry>
150       </row>
151       <row>
152        <entry></entry>
153        <entry>read very_important_count (5)</entry>
154       </row>
155       <row>
156        <entry>add 1 (6)</entry>
157        <entry></entry>
158       </row>
159       <row>
160        <entry></entry>
161        <entry>add 1 (6)</entry>
162       </row>
163       <row>
164        <entry>write very_important_count (6)</entry>
165        <entry></entry>
166       </row>
167       <row>
168        <entry></entry>
169        <entry>write very_important_count (6)</entry>
170       </row>
171      </tbody>
172     </tgroup>
173    </table>
174
175    <sect1 id="race-condition">
176    <title>Race Conditions and Critical Regions</title>
177    <para>
178      This overlap, where the result depends on the
179      relative timing of multiple tasks, is called a <firstterm>race condition</firstterm>.
180      The piece of code containing the concurrency issue is called a
181      <firstterm>critical region</firstterm>.  And especially since Linux starting running
182      on SMP machines, they became one of the major issues in kernel
183      design and implementation.
184    </para>
185    <para>
186      Preemption can have the same effect, even if there is only one
187      CPU: by preempting one task during the critical region, we have
188      exactly the same race condition.  In this case the thread which
189      preempts might run the critical region itself.
190    </para>
191    <para>
192      The solution is to recognize when these simultaneous accesses
193      occur, and use locks to make sure that only one instance can
194      enter the critical region at any time.  There are many
195      friendly primitives in the Linux kernel to help you do this.
196      And then there are the unfriendly primitives, but I'll pretend
197      they don't exist.
198    </para>
199    </sect1>
200  </chapter>
201
202  <chapter id="locks">
203   <title>Locking in the Linux Kernel</title>
204
205   <para>
206     If I could give you one piece of advice: never sleep with anyone
207     crazier than yourself.  But if I had to give you advice on
208     locking: <emphasis>keep it simple</emphasis>.
209   </para>
210
211   <para>
212     Be reluctant to introduce new locks.
213   </para>
214
215   <para>
216     Strangely enough, this last one is the exact reverse of my advice when
217     you <emphasis>have</emphasis> slept with someone crazier than yourself.
218     And you should think about getting a big dog.
219   </para>
220
221   <sect1 id="lock-intro">
222   <title>Two Main Types of Kernel Locks: Spinlocks and Semaphores</title>
223
224   <para>
225     There are three main types of kernel locks.  The fundamental type
226     is the spinlock 
227     (<filename class="headerfile">include/asm/spinlock.h</filename>),
228     which is a very simple single-holder lock: if you can't get the 
229     spinlock, you keep trying (spinning) until you can.  Spinlocks are 
230     very small and fast, and can be used anywhere.
231   </para>
232   <para>
233     The second type is a mutex
234     (<filename class="headerfile">include/linux/mutex.h</filename>): it
235     is like a spinlock, but you may block holding a mutex.
236     If you can't lock a mutex, your task will suspend itself, and be woken
237     up when the mutex is released.  This means the CPU can do something
238     else while you are waiting.  There are many cases when you simply
239     can't sleep (see <xref linkend="sleeping-things"/>), and so have to
240     use a spinlock instead.
241   </para>
242   <para>
243     The third type is a semaphore
244     (<filename class="headerfile">include/asm/semaphore.h</filename>): it
245     can have more than one holder at any time (the number decided at
246     initialization time), although it is most commonly used as a
247     single-holder lock (a mutex).  If you can't get a semaphore, your
248     task will be suspended and later on woken up - just like for mutexes.
249   </para>
250   <para>
251     Neither type of lock is recursive: see
252     <xref linkend="deadlock"/>.
253   </para>
254   </sect1>
255 
256   <sect1 id="uniprocessor">
257    <title>Locks and Uniprocessor Kernels</title>
258
259    <para>
260      For kernels compiled without <symbol>CONFIG_SMP</symbol>, and
261      without <symbol>CONFIG_PREEMPT</symbol> spinlocks do not exist at
262      all.  This is an excellent design decision: when no-one else can
263      run at the same time, there is no reason to have a lock.
264    </para>
265
266    <para>
267      If the kernel is compiled without <symbol>CONFIG_SMP</symbol>,
268      but <symbol>CONFIG_PREEMPT</symbol> is set, then spinlocks
269      simply disable preemption, which is sufficient to prevent any
270      races.  For most purposes, we can think of preemption as
271      equivalent to SMP, and not worry about it separately.
272    </para>
273
274    <para>
275      You should always test your locking code with <symbol>CONFIG_SMP</symbol>
276      and <symbol>CONFIG_PREEMPT</symbol> enabled, even if you don't have an SMP test box, because it
277      will still catch some kinds of locking bugs.
278    </para>
279
280    <para>
281      Semaphores still exist, because they are required for
282      synchronization between <firstterm linkend="gloss-usercontext">user 
283      contexts</firstterm>, as we will see below.
284    </para>
285   </sect1>
286
287    <sect1 id="usercontextlocking">
288     <title>Locking Only In User Context</title>
289
290     <para>
291       If you have a data structure which is only ever accessed from
292       user context, then you can use a simple semaphore
293       (<filename>linux/asm/semaphore.h</filename>) to protect it.  This 
294       is the most trivial case: you initialize the semaphore to the number 
295       of resources available (usually 1), and call
296       <function>down_interruptible()</function> to grab the semaphore, and 
297       <function>up()</function> to release it.  There is also a 
298       <function>down()</function>, which should be avoided, because it 
299       will not return if a signal is received.
300     </para>
301
302     <para>
303       Example: <filename>linux/net/core/netfilter.c</filename> allows 
304       registration of new <function>setsockopt()</function> and 
305       <function>getsockopt()</function> calls, with
306       <function>nf_register_sockopt()</function>.  Registration and 
307       de-registration are only done on module load and unload (and boot 
308       time, where there is no concurrency), and the list of registrations 
309       is only consulted for an unknown <function>setsockopt()</function>
310       or <function>getsockopt()</function> system call.  The 
311       <varname>nf_sockopt_mutex</varname> is perfect to protect this,
312       especially since the setsockopt and getsockopt calls may well
313       sleep.
314     </para>
315   </sect1>
316
317   <sect1 id="lock-user-bh">
318    <title>Locking Between User Context and Softirqs</title>
319
320    <para>
321      If a <firstterm linkend="gloss-softirq">softirq</firstterm> shares
322      data with user context, you have two problems.  Firstly, the current 
323      user context can be interrupted by a softirq, and secondly, the
324      critical region could be entered from another CPU.  This is where
325      <function>spin_lock_bh()</function> 
326      (<filename class="headerfile">include/linux/spinlock.h</filename>) is
327      used.  It disables softirqs on that CPU, then grabs the lock.
328      <function>spin_unlock_bh()</function> does the reverse.  (The
329      '_bh' suffix is a historical reference to "Bottom Halves", the
330      old name for software interrupts.  It should really be
331      called spin_lock_softirq()' in a perfect world).
332    </para>
333
334    <para>
335      Note that you can also use <function>spin_lock_irq()</function>
336      or <function>spin_lock_irqsave()</function> here, which stop
337      hardware interrupts as well: see <xref linkend="hardirq-context"/>.
338    </para>
339
340    <para>
341      This works perfectly for <firstterm linkend="gloss-up"><acronym>UP
342      </acronym></firstterm> as well: the spin lock vanishes, and this macro 
343      simply becomes <function>local_bh_disable()</function>
344      (<filename class="headerfile">include/linux/interrupt.h</filename>), which
345      protects you from the softirq being run.
346    </para>
347   </sect1>
348
349   <sect1 id="lock-user-tasklet">
350    <title>Locking Between User Context and Tasklets</title>
351
352    <para>
353      This is exactly the same as above, because <firstterm
354      linkend="gloss-tasklet">tasklets</firstterm> are actually run
355      from a softirq.
356    </para>
357   </sect1>
358
359   <sect1 id="lock-user-timers">
360    <title>Locking Between User Context and Timers</title>
361
362    <para>
363      This, too, is exactly the same as above, because <firstterm
364      linkend="gloss-timers">timers</firstterm> are actually run from
365      a softirq.  From a locking point of view, tasklets and timers
366      are identical.
367    </para>
368   </sect1>
369
370   <sect1 id="lock-tasklets">
371    <title>Locking Between Tasklets/Timers</title>
372
373    <para>
374      Sometimes a tasklet or timer might want to share data with
375      another tasklet or timer.
376    </para>
377
378    <sect2 id="lock-tasklets-same">
379     <title>The Same Tasklet/Timer</title>
380     <para>
381       Since a tasklet is never run on two CPUs at once, you don't
382       need to worry about your tasklet being reentrant (running
383       twice at once), even on SMP.
384     </para>
385    </sect2>
386
387    <sect2 id="lock-tasklets-different">
388     <title>Different Tasklets/Timers</title>
389     <para>
390       If another tasklet/timer wants
391       to share data with your tasklet or timer , you will both need to use
392       <function>spin_lock()</function> and
393       <function>spin_unlock()</function> calls.  
394       <function>spin_lock_bh()</function> is
395       unnecessary here, as you are already in a tasklet, and
396       none will be run on the same CPU.
397     </para>
398    </sect2>
399   </sect1>
400
401   <sect1 id="lock-softirqs">
402    <title>Locking Between Softirqs</title>
403
404    <para>
405      Often a softirq might
406      want to share data with itself or a tasklet/timer.
407    </para>
408
409    <sect2 id="lock-softirqs-same">
410     <title>The Same Softirq</title>
411
412     <para>
413       The same softirq can run on the other CPUs: you can use a
414       per-CPU array (see <xref linkend="per-cpu"/>) for better
415       performance.  If you're going so far as to use a softirq,
416       you probably care about scalable performance enough
417       to justify the extra complexity.
418     </para>
419
420     <para>
421       You'll need to use <function>spin_lock()</function> and 
422       <function>spin_unlock()</function> for shared data.
423     </para>
424    </sect2>
425
426    <sect2 id="lock-softirqs-different">
427     <title>Different Softirqs</title>
428
429     <para>
430       You'll need to use <function>spin_lock()</function> and
431       <function>spin_unlock()</function> for shared data, whether it
432       be a timer, tasklet, different softirq or the same or another
433       softirq: any of them could be running on a different CPU.
434     </para>
435    </sect2>
436   </sect1>
437  </chapter>
438
439  <chapter id="hardirq-context">
440   <title>Hard IRQ Context</title>
441
442   <para>
443     Hardware interrupts usually communicate with a
444     tasklet or softirq.  Frequently this involves putting work in a
445     queue, which the softirq will take out.
446   </para>
447
448   <sect1 id="hardirq-softirq">
449    <title>Locking Between Hard IRQ and Softirqs/Tasklets</title>
450
451    <para>
452      If a hardware irq handler shares data with a softirq, you have
453      two concerns.  Firstly, the softirq processing can be
454      interrupted by a hardware interrupt, and secondly, the
455      critical region could be entered by a hardware interrupt on
456      another CPU.  This is where <function>spin_lock_irq()</function> is 
457      used.  It is defined to disable interrupts on that cpu, then grab 
458      the lock. <function>spin_unlock_irq()</function> does the reverse.
459    </para>
460
461    <para>
462      The irq handler does not to use
463      <function>spin_lock_irq()</function>, because the softirq cannot
464      run while the irq handler is running: it can use
465      <function>spin_lock()</function>, which is slightly faster.  The
466      only exception would be if a different hardware irq handler uses
467      the same lock: <function>spin_lock_irq()</function> will stop
468      that from interrupting us.
469    </para>
470
471    <para>
472      This works perfectly for UP as well: the spin lock vanishes,
473      and this macro simply becomes <function>local_irq_disable()</function>
474      (<filename class="headerfile">include/asm/smp.h</filename>), which
475      protects you from the softirq/tasklet/BH being run.
476    </para>
477
478    <para>
479      <function>spin_lock_irqsave()</function> 
480      (<filename>include/linux/spinlock.h</filename>) is a variant
481      which saves whether interrupts were on or off in a flags word,
482      which is passed to <function>spin_unlock_irqrestore()</function>.  This
483      means that the same code can be used inside an hard irq handler (where
484      interrupts are already off) and in softirqs (where the irq
485      disabling is required).
486    </para>
487
488    <para>
489      Note that softirqs (and hence tasklets and timers) are run on
490      return from hardware interrupts, so
491      <function>spin_lock_irq()</function> also stops these.  In that
492      sense, <function>spin_lock_irqsave()</function> is the most
493      general and powerful locking function.
494    </para>
495
496   </sect1>
497   <sect1 id="hardirq-hardirq">
498    <title>Locking Between Two Hard IRQ Handlers</title>
499    <para>
500      It is rare to have to share data between two IRQ handlers, but
501      if you do, <function>spin_lock_irqsave()</function> should be
502      used: it is architecture-specific whether all interrupts are
503      disabled inside irq handlers themselves.
504    </para>
505   </sect1>
506
507  </chapter>
508
509  <chapter id="cheatsheet">
510   <title>Cheat Sheet For Locking</title>
511   <para>
512     Pete Zaitcev gives the following summary:
513   </para>
514   <itemizedlist>
515      <listitem>
516	<para>
517          If you are in a process context (any syscall) and want to
518	lock other process out, use a semaphore.  You can take a semaphore
519	and sleep (<function>copy_from_user*(</function> or
520	<function>kmalloc(x,GFP_KERNEL)</function>).
521      </para>
522      </listitem>
523      <listitem>
524	<para>
525	Otherwise (== data can be touched in an interrupt), use
526	<function>spin_lock_irqsave()</function> and
527	<function>spin_unlock_irqrestore()</function>.
528	</para>
529      </listitem>
530      <listitem>
531	<para>
532	Avoid holding spinlock for more than 5 lines of code and
533	across any function call (except accessors like
534	<function>readb</function>).
535	</para>
536      </listitem>
537    </itemizedlist>
538
539   <sect1 id="minimum-lock-reqirements">
540   <title>Table of Minimum Requirements</title>
541
542   <para> The following table lists the <emphasis>minimum</emphasis>
543	locking requirements between various contexts.  In some cases,
544	the same context can only be running on one CPU at a time, so
545	no locking is required for that context (eg. a particular
546	thread can only run on one CPU at a time, but if it needs
547	shares data with another thread, locking is required).
548   </para>
549   <para>
550	Remember the advice above: you can always use
551	<function>spin_lock_irqsave()</function>, which is a superset
552	of all other spinlock primitives.
553   </para>
554
555   <table>
556<title>Table of Locking Requirements</title>
557<tgroup cols="11">
558<tbody>
559
560<row>
561<entry></entry>
562<entry>IRQ Handler A</entry>
563<entry>IRQ Handler B</entry>
564<entry>Softirq A</entry>
565<entry>Softirq B</entry>
566<entry>Tasklet A</entry>
567<entry>Tasklet B</entry>
568<entry>Timer A</entry>
569<entry>Timer B</entry>
570<entry>User Context A</entry>
571<entry>User Context B</entry>
572</row>
573
574<row>
575<entry>IRQ Handler A</entry>
576<entry>None</entry>
577</row>
578
579<row>
580<entry>IRQ Handler B</entry>
581<entry>SLIS</entry>
582<entry>None</entry>
583</row>
584
585<row>
586<entry>Softirq A</entry>
587<entry>SLI</entry>
588<entry>SLI</entry>
589<entry>SL</entry>
590</row>
591
592<row>
593<entry>Softirq B</entry>
594<entry>SLI</entry>
595<entry>SLI</entry>
596<entry>SL</entry>
597<entry>SL</entry>
598</row>
599
600<row>
601<entry>Tasklet A</entry>
602<entry>SLI</entry>
603<entry>SLI</entry>
604<entry>SL</entry>
605<entry>SL</entry>
606<entry>None</entry>
607</row>
608
609<row>
610<entry>Tasklet B</entry>
611<entry>SLI</entry>
612<entry>SLI</entry>
613<entry>SL</entry>
614<entry>SL</entry>
615<entry>SL</entry>
616<entry>None</entry>
617</row>
618
619<row>
620<entry>Timer A</entry>
621<entry>SLI</entry>
622<entry>SLI</entry>
623<entry>SL</entry>
624<entry>SL</entry>
625<entry>SL</entry>
626<entry>SL</entry>
627<entry>None</entry>
628</row>
629
630<row>
631<entry>Timer B</entry>
632<entry>SLI</entry>
633<entry>SLI</entry>
634<entry>SL</entry>
635<entry>SL</entry>
636<entry>SL</entry>
637<entry>SL</entry>
638<entry>SL</entry>
639<entry>None</entry>
640</row>
641
642<row>
643<entry>User Context A</entry>
644<entry>SLI</entry>
645<entry>SLI</entry>
646<entry>SLBH</entry>
647<entry>SLBH</entry>
648<entry>SLBH</entry>
649<entry>SLBH</entry>
650<entry>SLBH</entry>
651<entry>SLBH</entry>
652<entry>None</entry>
653</row>
654
655<row>
656<entry>User Context B</entry>
657<entry>SLI</entry>
658<entry>SLI</entry>
659<entry>SLBH</entry>
660<entry>SLBH</entry>
661<entry>SLBH</entry>
662<entry>SLBH</entry>
663<entry>SLBH</entry>
664<entry>SLBH</entry>
665<entry>DI</entry>
666<entry>None</entry>
667</row>
668
669</tbody>
670</tgroup>
671</table>
672
673   <table>
674<title>Legend for Locking Requirements Table</title>
675<tgroup cols="2">
676<tbody>
677
678<row>
679<entry>SLIS</entry>
680<entry>spin_lock_irqsave</entry>
681</row>
682<row>
683<entry>SLI</entry>
684<entry>spin_lock_irq</entry>
685</row>
686<row>
687<entry>SL</entry>
688<entry>spin_lock</entry>
689</row>
690<row>
691<entry>SLBH</entry>
692<entry>spin_lock_bh</entry>
693</row>
694<row>
695<entry>DI</entry>
696<entry>down_interruptible</entry>
697</row>
698
699</tbody>
700</tgroup>
701</table>
702
703</sect1>
704</chapter>
705
706  <chapter id="Examples">
707   <title>Common Examples</title>
708    <para>
709Let's step through a simple example: a cache of number to name
710mappings.  The cache keeps a count of how often each of the objects is
711used, and when it gets full, throws out the least used one.
712
713    </para>
714
715   <sect1 id="examples-usercontext">
716    <title>All In User Context</title>
717    <para>
718For our first example, we assume that all operations are in user
719context (ie. from system calls), so we can sleep.  This means we can
720use a semaphore to protect the cache and all the objects within
721it.  Here's the code:
722    </para>
723
724    <programlisting>
725#include &lt;linux/list.h&gt;
726#include &lt;linux/slab.h&gt;
727#include &lt;linux/string.h&gt;
728#include &lt;asm/semaphore.h&gt;
729#include &lt;asm/errno.h&gt;
730
731struct object
732{
733        struct list_head list;
734        int id;
735        char name[32];
736        int popularity;
737};
738
739/* Protects the cache, cache_num, and the objects within it */
740static DECLARE_MUTEX(cache_lock);
741static LIST_HEAD(cache);
742static unsigned int cache_num = 0;
743#define MAX_CACHE_SIZE 10
744
745/* Must be holding cache_lock */
746static struct object *__cache_find(int id)
747{
748        struct object *i;
749
750        list_for_each_entry(i, &amp;cache, list)
751                if (i-&gt;id == id) {
752                        i-&gt;popularity++;
753                        return i;
754                }
755        return NULL;
756}
757
758/* Must be holding cache_lock */
759static void __cache_delete(struct object *obj)
760{
761        BUG_ON(!obj);
762        list_del(&amp;obj-&gt;list);
763        kfree(obj);
764        cache_num--;
765}
766
767/* Must be holding cache_lock */
768static void __cache_add(struct object *obj)
769{
770        list_add(&amp;obj-&gt;list, &amp;cache);
771        if (++cache_num > MAX_CACHE_SIZE) {
772                struct object *i, *outcast = NULL;
773                list_for_each_entry(i, &amp;cache, list) {
774                        if (!outcast || i-&gt;popularity &lt; outcast-&gt;popularity)
775                                outcast = i;
776                }
777                __cache_delete(outcast);
778        }
779}
780
781int cache_add(int id, const char *name)
782{
783        struct object *obj;
784
785        if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
786                return -ENOMEM;
787
788        strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name));
789        obj-&gt;id = id;
790        obj-&gt;popularity = 0;
791
792        down(&amp;cache_lock);
793        __cache_add(obj);
794        up(&amp;cache_lock);
795        return 0;
796}
797
798void cache_delete(int id)
799{
800        down(&amp;cache_lock);
801        __cache_delete(__cache_find(id));
802        up(&amp;cache_lock);
803}
804
805int cache_find(int id, char *name)
806{
807        struct object *obj;
808        int ret = -ENOENT;
809
810        down(&amp;cache_lock);
811        obj = __cache_find(id);
812        if (obj) {
813                ret = 0;
814                strcpy(name, obj-&gt;name);
815        }
816        up(&amp;cache_lock);
817        return ret;
818}
819</programlisting>
820
821    <para>
822Note that we always make sure we have the cache_lock when we add,
823delete, or look up the cache: both the cache infrastructure itself and
824the contents of the objects are protected by the lock.  In this case
825it's easy, since we copy the data for the user, and never let them
826access the objects directly.
827    </para>
828    <para>
829There is a slight (and common) optimization here: in
830<function>cache_add</function> we set up the fields of the object
831before grabbing the lock.  This is safe, as no-one else can access it
832until we put it in cache.
833    </para>
834    </sect1>
835
836   <sect1 id="examples-interrupt">
837    <title>Accessing From Interrupt Context</title>
838    <para>
839Now consider the case where <function>cache_find</function> can be
840called from interrupt context: either a hardware interrupt or a
841softirq.  An example would be a timer which deletes object from the
842cache.
843    </para>
844    <para>
845The change is shown below, in standard patch format: the
846<symbol>-</symbol> are lines which are taken away, and the
847<symbol>+</symbol> are lines which are added.
848    </para>
849<programlisting>
850--- cache.c.usercontext	2003-12-09 13:58:54.000000000 +1100
851+++ cache.c.interrupt	2003-12-09 14:07:49.000000000 +1100
852@@ -12,7 +12,7 @@
853         int popularity;
854 };
855
856-static DECLARE_MUTEX(cache_lock);
857+static spinlock_t cache_lock = SPIN_LOCK_UNLOCKED;
858 static LIST_HEAD(cache);
859 static unsigned int cache_num = 0;
860 #define MAX_CACHE_SIZE 10
861@@ -55,6 +55,7 @@
862 int cache_add(int id, const char *name)
863 {
864         struct object *obj;
865+        unsigned long flags;
866
867         if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
868                 return -ENOMEM;
869@@ -63,30 +64,33 @@
870         obj-&gt;id = id;
871         obj-&gt;popularity = 0;
872
873-        down(&amp;cache_lock);
874+        spin_lock_irqsave(&amp;cache_lock, flags);
875         __cache_add(obj);
876-        up(&amp;cache_lock);
877+        spin_unlock_irqrestore(&amp;cache_lock, flags);
878         return 0;
879 }
880
881 void cache_delete(int id)
882 {
883-        down(&amp;cache_lock);
884+        unsigned long flags;
885+
886+        spin_lock_irqsave(&amp;cache_lock, flags);
887         __cache_delete(__cache_find(id));
888-        up(&amp;cache_lock);
889+        spin_unlock_irqrestore(&amp;cache_lock, flags);
890 }
891
892 int cache_find(int id, char *name)
893 {
894         struct object *obj;
895         int ret = -ENOENT;
896+        unsigned long flags;
897
898-        down(&amp;cache_lock);
899+        spin_lock_irqsave(&amp;cache_lock, flags);
900         obj = __cache_find(id);
901         if (obj) {
902                 ret = 0;
903                 strcpy(name, obj-&gt;name);
904         }
905-        up(&amp;cache_lock);
906+        spin_unlock_irqrestore(&amp;cache_lock, flags);
907         return ret;
908 }
909</programlisting>
910
911    <para>
912Note that the <function>spin_lock_irqsave</function> will turn off
913interrupts if they are on, otherwise does nothing (if we are already
914in an interrupt handler), hence these functions are safe to call from
915any context.
916    </para>
917    <para>
918Unfortunately, <function>cache_add</function> calls
919<function>kmalloc</function> with the <symbol>GFP_KERNEL</symbol>
920flag, which is only legal in user context.  I have assumed that
921<function>cache_add</function> is still only called in user context,
922otherwise this should become a parameter to
923<function>cache_add</function>.
924    </para>
925  </sect1>
926   <sect1 id="examples-refcnt">
927    <title>Exposing Objects Outside This File</title>
928    <para>
929If our objects contained more information, it might not be sufficient
930to copy the information in and out: other parts of the code might want
931to keep pointers to these objects, for example, rather than looking up
932the id every time.  This produces two problems.
933    </para>
934    <para>
935The first problem is that we use the <symbol>cache_lock</symbol> to
936protect objects: we'd need to make this non-static so the rest of the
937code can use it.  This makes locking trickier, as it is no longer all
938in one place.
939    </para>
940    <para>
941The second problem is the lifetime problem: if another structure keeps
942a pointer to an object, it presumably expects that pointer to remain
943valid.  Unfortunately, this is only guaranteed while you hold the
944lock, otherwise someone might call <function>cache_delete</function>
945and even worse, add another object, re-using the same address.
946    </para>
947    <para>
948As there is only one lock, you can't hold it forever: no-one else would
949get any work done.
950    </para>
951    <para>
952The solution to this problem is to use a reference count: everyone who
953has a pointer to the object increases it when they first get the
954object, and drops the reference count when they're finished with it.
955Whoever drops it to zero knows it is unused, and can actually delete it.
956    </para>
957    <para>
958Here is the code:
959    </para>
960
961<programlisting>
962--- cache.c.interrupt	2003-12-09 14:25:43.000000000 +1100
963+++ cache.c.refcnt	2003-12-09 14:33:05.000000000 +1100
964@@ -7,6 +7,7 @@
965 struct object
966 {
967         struct list_head list;
968+        unsigned int refcnt;
969         int id;
970         char name[32];
971         int popularity;
972@@ -17,6 +18,35 @@
973 static unsigned int cache_num = 0;
974 #define MAX_CACHE_SIZE 10
975
976+static void __object_put(struct object *obj)
977+{
978+        if (--obj-&gt;refcnt == 0)
979+                kfree(obj);
980+}
981+
982+static void __object_get(struct object *obj)
983+{
984+        obj-&gt;refcnt++;
985+}
986+
987+void object_put(struct object *obj)
988+{
989+        unsigned long flags;
990+
991+        spin_lock_irqsave(&amp;cache_lock, flags);
992+        __object_put(obj);
993+        spin_unlock_irqrestore(&amp;cache_lock, flags);
994+}
995+
996+void object_get(struct object *obj)
997+{
998+        unsigned long flags;
999+
1000+        spin_lock_irqsave(&amp;cache_lock, flags);
1001+        __object_get(obj);
1002+        spin_unlock_irqrestore(&amp;cache_lock, flags);
1003+}
1004+
1005 /* Must be holding cache_lock */
1006 static struct object *__cache_find(int id)
1007 {
1008@@ -35,6 +65,7 @@
1009 {
1010         BUG_ON(!obj);
1011         list_del(&amp;obj-&gt;list);
1012+        __object_put(obj);
1013         cache_num--;
1014 }
1015
1016@@ -63,6 +94,7 @@
1017         strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name));
1018         obj-&gt;id = id;
1019         obj-&gt;popularity = 0;
1020+        obj-&gt;refcnt = 1; /* The cache holds a reference */
1021
1022         spin_lock_irqsave(&amp;cache_lock, flags);
1023         __cache_add(obj);
1024@@ -79,18 +111,15 @@
1025         spin_unlock_irqrestore(&amp;cache_lock, flags);
1026 }
1027
1028-int cache_find(int id, char *name)
1029+struct object *cache_find(int id)
1030 {
1031         struct object *obj;
1032-        int ret = -ENOENT;
1033         unsigned long flags;
1034
1035         spin_lock_irqsave(&amp;cache_lock, flags);
1036         obj = __cache_find(id);
1037-        if (obj) {
1038-                ret = 0;
1039-                strcpy(name, obj-&gt;name);
1040-        }
1041+        if (obj)
1042+                __object_get(obj);
1043         spin_unlock_irqrestore(&amp;cache_lock, flags);
1044-        return ret;
1045+        return obj;
1046 }
1047</programlisting>
1048
1049<para>
1050We encapsulate the reference counting in the standard 'get' and 'put'
1051functions.  Now we can return the object itself from
1052<function>cache_find</function> which has the advantage that the user
1053can now sleep holding the object (eg. to
1054<function>copy_to_user</function> to name to userspace).
1055</para>
1056<para>
1057The other point to note is that I said a reference should be held for
1058every pointer to the object: thus the reference count is 1 when first
1059inserted into the cache.  In some versions the framework does not hold
1060a reference count, but they are more complicated.
1061</para>
1062
1063   <sect2 id="examples-refcnt-atomic">
1064    <title>Using Atomic Operations For The Reference Count</title>
1065<para>
1066In practice, <type>atomic_t</type> would usually be used for
1067<structfield>refcnt</structfield>.  There are a number of atomic
1068operations defined in
1069
1070<filename class="headerfile">include/asm/atomic.h</filename>: these are
1071guaranteed to be seen atomically from all CPUs in the system, so no
1072lock is required.  In this case, it is simpler than using spinlocks,
1073although for anything non-trivial using spinlocks is clearer.  The
1074<function>atomic_inc</function> and
1075<function>atomic_dec_and_test</function> are used instead of the
1076standard increment and decrement operators, and the lock is no longer
1077used to protect the reference count itself.
1078</para>
1079
1080<programlisting>
1081--- cache.c.refcnt	2003-12-09 15:00:35.000000000 +1100
1082+++ cache.c.refcnt-atomic	2003-12-11 15:49:42.000000000 +1100
1083@@ -7,7 +7,7 @@
1084 struct object
1085 {
1086         struct list_head list;
1087-        unsigned int refcnt;
1088+        atomic_t refcnt;
1089         int id;
1090         char name[32];
1091         int popularity;
1092@@ -18,33 +18,15 @@
1093 static unsigned int cache_num = 0;
1094 #define MAX_CACHE_SIZE 10
1095
1096-static void __object_put(struct object *obj)
1097-{
1098-        if (--obj-&gt;refcnt == 0)
1099-                kfree(obj);
1100-}
1101-
1102-static void __object_get(struct object *obj)
1103-{
1104-        obj-&gt;refcnt++;
1105-}
1106-
1107 void object_put(struct object *obj)
1108 {
1109-        unsigned long flags;
1110-
1111-        spin_lock_irqsave(&amp;cache_lock, flags);
1112-        __object_put(obj);
1113-        spin_unlock_irqrestore(&amp;cache_lock, flags);
1114+        if (atomic_dec_and_test(&amp;obj-&gt;refcnt))
1115+                kfree(obj);
1116 }
1117
1118 void object_get(struct object *obj)
1119 {
1120-        unsigned long flags;
1121-
1122-        spin_lock_irqsave(&amp;cache_lock, flags);
1123-        __object_get(obj);
1124-        spin_unlock_irqrestore(&amp;cache_lock, flags);
1125+        atomic_inc(&amp;obj-&gt;refcnt);
1126 }
1127
1128 /* Must be holding cache_lock */
1129@@ -65,7 +47,7 @@
1130 {
1131         BUG_ON(!obj);
1132         list_del(&amp;obj-&gt;list);
1133-        __object_put(obj);
1134+        object_put(obj);
1135         cache_num--;
1136 }
1137
1138@@ -94,7 +76,7 @@
1139         strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name));
1140         obj-&gt;id = id;
1141         obj-&gt;popularity = 0;
1142-        obj-&gt;refcnt = 1; /* The cache holds a reference */
1143+        atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */
1144
1145         spin_lock_irqsave(&amp;cache_lock, flags);
1146         __cache_add(obj);
1147@@ -119,7 +101,7 @@
1148         spin_lock_irqsave(&amp;cache_lock, flags);
1149         obj = __cache_find(id);
1150         if (obj)
1151-                __object_get(obj);
1152+                object_get(obj);
1153         spin_unlock_irqrestore(&amp;cache_lock, flags);
1154         return obj;
1155 }
1156</programlisting>
1157</sect2>
1158</sect1>
1159
1160   <sect1 id="examples-lock-per-obj">
1161    <title>Protecting The Objects Themselves</title>
1162    <para>
1163In these examples, we assumed that the objects (except the reference
1164counts) never changed once they are created.  If we wanted to allow
1165the name to change, there are three possibilities:
1166    </para>
1167    <itemizedlist>
1168      <listitem>
1169	<para>
1170You can make <symbol>cache_lock</symbol> non-static, and tell people
1171to grab that lock before changing the name in any object.
1172        </para>
1173      </listitem>
1174      <listitem>
1175        <para>
1176You can provide a <function>cache_obj_rename</function> which grabs
1177this lock and changes the name for the caller, and tell everyone to
1178use that function.
1179        </para>
1180      </listitem>
1181      <listitem>
1182        <para>
1183You can make the <symbol>cache_lock</symbol> protect only the cache
1184itself, and use another lock to protect the name.
1185        </para>
1186      </listitem>
1187    </itemizedlist>
1188
1189      <para>
1190Theoretically, you can make the locks as fine-grained as one lock for
1191every field, for every object.  In practice, the most common variants
1192are:
1193</para>
1194    <itemizedlist>
1195      <listitem>
1196	<para>
1197One lock which protects the infrastructure (the <symbol>cache</symbol>
1198list in this example) and all the objects.  This is what we have done
1199so far.
1200	</para>
1201      </listitem>
1202      <listitem>
1203        <para>
1204One lock which protects the infrastructure (including the list
1205pointers inside the objects), and one lock inside the object which
1206protects the rest of that object.
1207        </para>
1208      </listitem>
1209      <listitem>
1210        <para>
1211Multiple locks to protect the infrastructure (eg. one lock per hash
1212chain), possibly with a separate per-object lock.
1213        </para>
1214      </listitem>
1215    </itemizedlist>
1216
1217<para>
1218Here is the "lock-per-object" implementation:
1219</para>
1220<programlisting>
1221--- cache.c.refcnt-atomic	2003-12-11 15:50:54.000000000 +1100
1222+++ cache.c.perobjectlock	2003-12-11 17:15:03.000000000 +1100
1223@@ -6,11 +6,17 @@
1224
1225 struct object
1226 {
1227+        /* These two protected by cache_lock. */
1228         struct list_head list;
1229+        int popularity;
1230+
1231         atomic_t refcnt;
1232+
1233+        /* Doesn't change once created. */
1234         int id;
1235+
1236+        spinlock_t lock; /* Protects the name */
1237         char name[32];
1238-        int popularity;
1239 };
1240
1241 static spinlock_t cache_lock = SPIN_LOCK_UNLOCKED;
1242@@ -77,6 +84,7 @@
1243         obj-&gt;id = id;
1244         obj-&gt;popularity = 0;
1245         atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */
1246+        spin_lock_init(&amp;obj-&gt;lock);
1247
1248         spin_lock_irqsave(&amp;cache_lock, flags);
1249         __cache_add(obj);
1250</programlisting>
1251
1252<para>
1253Note that I decide that the <structfield>popularity</structfield>
1254count should be protected by the <symbol>cache_lock</symbol> rather
1255than the per-object lock: this is because it (like the
1256<structname>struct list_head</structname> inside the object) is
1257logically part of the infrastructure.  This way, I don't need to grab
1258the lock of every object in <function>__cache_add</function> when
1259seeking the least popular.
1260</para>
1261
1262<para>
1263I also decided that the <structfield>id</structfield> member is
1264unchangeable, so I don't need to grab each object lock in
1265<function>__cache_find()</function> to examine the
1266<structfield>id</structfield>: the object lock is only used by a
1267caller who wants to read or write the <structfield>name</structfield>
1268field.
1269</para>
1270
1271<para>
1272Note also that I added a comment describing what data was protected by
1273which locks.  This is extremely important, as it describes the runtime
1274behavior of the code, and can be hard to gain from just reading.  And
1275as Alan Cox says, <quote>Lock data, not code</quote>.
1276</para>
1277</sect1>
1278</chapter>
1279
1280   <chapter id="common-problems">
1281    <title>Common Problems</title>
1282    <sect1 id="deadlock">
1283    <title>Deadlock: Simple and Advanced</title>
1284
1285    <para>
1286      There is a coding bug where a piece of code tries to grab a
1287      spinlock twice: it will spin forever, waiting for the lock to
1288      be released (spinlocks, rwlocks and semaphores are not
1289      recursive in Linux).  This is trivial to diagnose: not a
1290      stay-up-five-nights-talk-to-fluffy-code-bunnies kind of
1291      problem.
1292    </para>
1293
1294    <para>
1295      For a slightly more complex case, imagine you have a region
1296      shared by a softirq and user context.  If you use a
1297      <function>spin_lock()</function> call to protect it, it is 
1298      possible that the user context will be interrupted by the softirq
1299      while it holds the lock, and the softirq will then spin
1300      forever trying to get the same lock.
1301    </para>
1302
1303    <para>
1304      Both of these are called deadlock, and as shown above, it can
1305      occur even with a single CPU (although not on UP compiles,
1306      since spinlocks vanish on kernel compiles with 
1307      <symbol>CONFIG_SMP</symbol>=n. You'll still get data corruption 
1308      in the second example).
1309    </para>
1310
1311    <para>
1312      This complete lockup is easy to diagnose: on SMP boxes the
1313      watchdog timer or compiling with <symbol>DEBUG_SPINLOCKS</symbol> set
1314      (<filename>include/linux/spinlock.h</filename>) will show this up 
1315      immediately when it happens.
1316    </para>
1317
1318    <para>
1319      A more complex problem is the so-called 'deadly embrace',
1320      involving two or more locks.  Say you have a hash table: each
1321      entry in the table is a spinlock, and a chain of hashed
1322      objects.  Inside a softirq handler, you sometimes want to
1323      alter an object from one place in the hash to another: you
1324      grab the spinlock of the old hash chain and the spinlock of
1325      the new hash chain, and delete the object from the old one,
1326      and insert it in the new one.
1327    </para>
1328
1329    <para>
1330      There are two problems here.  First, if your code ever
1331      tries to move the object to the same chain, it will deadlock
1332      with itself as it tries to lock it twice.  Secondly, if the
1333      same softirq on another CPU is trying to move another object
1334      in the reverse direction, the following could happen:
1335    </para>
1336
1337    <table>
1338     <title>Consequences</title>
1339
1340     <tgroup cols="2" align="left">
1341
1342      <thead>
1343       <row>
1344        <entry>CPU 1</entry>
1345        <entry>CPU 2</entry>
1346       </row>
1347      </thead>
1348
1349      <tbody>
1350       <row>
1351        <entry>Grab lock A -&gt; OK</entry>
1352        <entry>Grab lock B -&gt; OK</entry>
1353       </row>
1354       <row>
1355        <entry>Grab lock B -&gt; spin</entry>
1356        <entry>Grab lock A -&gt; spin</entry>
1357       </row>
1358      </tbody>
1359     </tgroup>
1360    </table>
1361
1362    <para>
1363      The two CPUs will spin forever, waiting for the other to give up
1364      their lock.  It will look, smell, and feel like a crash.
1365    </para>
1366    </sect1>
1367
1368    <sect1 id="techs-deadlock-prevent">
1369     <title>Preventing Deadlock</title>
1370
1371     <para>
1372       Textbooks will tell you that if you always lock in the same
1373       order, you will never get this kind of deadlock.  Practice
1374       will tell you that this approach doesn't scale: when I
1375       create a new lock, I don't understand enough of the kernel
1376       to figure out where in the 5000 lock hierarchy it will fit.
1377     </para>
1378
1379     <para>
1380       The best locks are encapsulated: they never get exposed in
1381       headers, and are never held around calls to non-trivial
1382       functions outside the same file.  You can read through this
1383       code and see that it will never deadlock, because it never
1384       tries to grab another lock while it has that one.  People
1385       using your code don't even need to know you are using a
1386       lock.
1387     </para>
1388
1389     <para>
1390       A classic problem here is when you provide callbacks or
1391       hooks: if you call these with the lock held, you risk simple
1392       deadlock, or a deadly embrace (who knows what the callback
1393       will do?).  Remember, the other programmers are out to get
1394       you, so don't do this.
1395     </para>
1396
1397    <sect2 id="techs-deadlock-overprevent">
1398     <title>Overzealous Prevention Of Deadlocks</title>
1399
1400     <para>
1401       Deadlocks are problematic, but not as bad as data
1402       corruption.  Code which grabs a read lock, searches a list,
1403       fails to find what it wants, drops the read lock, grabs a
1404       write lock and inserts the object has a race condition.
1405     </para>
1406
1407     <para>
1408       If you don't see why, please stay the fuck away from my code.
1409     </para>
1410    </sect2>
1411    </sect1>
1412
1413   <sect1 id="racing-timers">
1414    <title>Racing Timers: A Kernel Pastime</title>
1415
1416    <para>
1417      Timers can produce their own special problems with races.
1418      Consider a collection of objects (list, hash, etc) where each
1419      object has a timer which is due to destroy it.
1420    </para>
1421
1422    <para>
1423      If you want to destroy the entire collection (say on module
1424      removal), you might do the following:
1425    </para>
1426
1427    <programlisting>
1428        /* THIS CODE BAD BAD BAD BAD: IF IT WAS ANY WORSE IT WOULD USE
1429           HUNGARIAN NOTATION */
1430        spin_lock_bh(&amp;list_lock);
1431
1432        while (list) {
1433                struct foo *next = list-&gt;next;
1434                del_timer(&amp;list-&gt;timer);
1435                kfree(list);
1436                list = next;
1437        }
1438
1439        spin_unlock_bh(&amp;list_lock);
1440    </programlisting>
1441
1442    <para>
1443      Sooner or later, this will crash on SMP, because a timer can
1444      have just gone off before the <function>spin_lock_bh()</function>,
1445      and it will only get the lock after we
1446      <function>spin_unlock_bh()</function>, and then try to free
1447      the element (which has already been freed!).
1448    </para>
1449
1450    <para>
1451      This can be avoided by checking the result of
1452      <function>del_timer()</function>: if it returns
1453      <returnvalue>1</returnvalue>, the timer has been deleted.
1454      If <returnvalue>0</returnvalue>, it means (in this
1455      case) that it is currently running, so we can do:
1456    </para>
1457
1458    <programlisting>
1459        retry:
1460                spin_lock_bh(&amp;list_lock);
1461
1462                while (list) {
1463                        struct foo *next = list-&gt;next;
1464                        if (!del_timer(&amp;list-&gt;timer)) {
1465                                /* Give timer a chance to delete this */
1466                                spin_unlock_bh(&amp;list_lock);
1467                                goto retry;
1468                        }
1469                        kfree(list);
1470                        list = next;
1471                }
1472
1473                spin_unlock_bh(&amp;list_lock);
1474    </programlisting>
1475
1476    <para>
1477      Another common problem is deleting timers which restart
1478      themselves (by calling <function>add_timer()</function> at the end
1479      of their timer function).  Because this is a fairly common case
1480      which is prone to races, you should use <function>del_timer_sync()</function>
1481      (<filename class="headerfile">include/linux/timer.h</filename>)
1482      to handle this case.  It returns the number of times the timer
1483      had to be deleted before we finally stopped it from adding itself back
1484      in.
1485    </para>
1486   </sect1>
1487
1488  </chapter>
1489
1490 <chapter id="Efficiency">
1491    <title>Locking Speed</title>
1492
1493    <para>
1494There are three main things to worry about when considering speed of
1495some code which does locking.  First is concurrency: how many things
1496are going to be waiting while someone else is holding a lock.  Second
1497is the time taken to actually acquire and release an uncontended lock.
1498Third is using fewer, or smarter locks.  I'm assuming that the lock is
1499used fairly often: otherwise, you wouldn't be concerned about
1500efficiency.
1501</para>
1502    <para>
1503Concurrency depends on how long the lock is usually held: you should
1504hold the lock for as long as needed, but no longer.  In the cache
1505example, we always create the object without the lock held, and then
1506grab the lock only when we are ready to insert it in the list.
1507</para>
1508    <para>
1509Acquisition times depend on how much damage the lock operations do to
1510the pipeline (pipeline stalls) and how likely it is that this CPU was
1511the last one to grab the lock (ie. is the lock cache-hot for this
1512CPU): on a machine with more CPUs, this likelihood drops fast.
1513Consider a 700MHz Intel Pentium III: an instruction takes about 0.7ns,
1514an atomic increment takes about 58ns, a lock which is cache-hot on
1515this CPU takes 160ns, and a cacheline transfer from another CPU takes
1516an additional 170 to 360ns.  (These figures from Paul McKenney's
1517<ulink url="http://www.linuxjournal.com/article.php?sid=6993"> Linux
1518Journal RCU article</ulink>).
1519</para>
1520    <para>
1521These two aims conflict: holding a lock for a short time might be done
1522by splitting locks into parts (such as in our final per-object-lock
1523example), but this increases the number of lock acquisitions, and the
1524results are often slower than having a single lock.  This is another
1525reason to advocate locking simplicity.
1526</para>
1527    <para>
1528The third concern is addressed below: there are some methods to reduce
1529the amount of locking which needs to be done.
1530</para>
1531
1532  <sect1 id="efficiency-rwlocks">
1533   <title>Read/Write Lock Variants</title>
1534
1535   <para>
1536      Both spinlocks and semaphores have read/write variants:
1537      <type>rwlock_t</type> and <structname>struct rw_semaphore</structname>.
1538      These divide users into two classes: the readers and the writers.  If
1539      you are only reading the data, you can get a read lock, but to write to
1540      the data you need the write lock.  Many people can hold a read lock,
1541      but a writer must be sole holder.
1542    </para>
1543
1544   <para>
1545      If your code divides neatly along reader/writer lines (as our
1546      cache code does), and the lock is held by readers for
1547      significant lengths of time, using these locks can help.  They
1548      are slightly slower than the normal locks though, so in practice
1549      <type>rwlock_t</type> is not usually worthwhile.
1550    </para>
1551   </sect1>
1552
1553   <sect1 id="efficiency-read-copy-update">
1554    <title>Avoiding Locks: Read Copy Update</title>
1555
1556    <para>
1557      There is a special method of read/write locking called Read Copy
1558      Update.  Using RCU, the readers can avoid taking a lock
1559      altogether: as we expect our cache to be read more often than
1560      updated (otherwise the cache is a waste of time), it is a
1561      candidate for this optimization.
1562    </para>
1563
1564    <para>
1565      How do we get rid of read locks?  Getting rid of read locks
1566      means that writers may be changing the list underneath the
1567      readers.  That is actually quite simple: we can read a linked
1568      list while an element is being added if the writer adds the
1569      element very carefully.  For example, adding
1570      <symbol>new</symbol> to a single linked list called
1571      <symbol>list</symbol>:
1572    </para>
1573
1574    <programlisting>
1575        new-&gt;next = list-&gt;next;
1576        wmb();
1577        list-&gt;next = new;
1578    </programlisting>
1579
1580    <para>
1581      The <function>wmb()</function> is a write memory barrier.  It
1582      ensures that the first operation (setting the new element's
1583      <symbol>next</symbol> pointer) is complete and will be seen by
1584      all CPUs, before the second operation is (putting the new
1585      element into the list).  This is important, since modern
1586      compilers and modern CPUs can both reorder instructions unless
1587      told otherwise: we want a reader to either not see the new
1588      element at all, or see the new element with the
1589      <symbol>next</symbol> pointer correctly pointing at the rest of
1590      the list.
1591    </para>
1592    <para>
1593      Fortunately, there is a function to do this for standard
1594      <structname>struct list_head</structname> lists:
1595      <function>list_add_rcu()</function>
1596      (<filename>include/linux/list.h</filename>).
1597    </para>
1598    <para>
1599      Removing an element from the list is even simpler: we replace
1600      the pointer to the old element with a pointer to its successor,
1601      and readers will either see it, or skip over it.
1602    </para>
1603    <programlisting>
1604        list-&gt;next = old-&gt;next;
1605    </programlisting>
1606    <para>
1607      There is <function>list_del_rcu()</function>
1608      (<filename>include/linux/list.h</filename>) which does this (the
1609      normal version poisons the old object, which we don't want).
1610    </para>
1611    <para>
1612      The reader must also be careful: some CPUs can look through the
1613      <symbol>next</symbol> pointer to start reading the contents of
1614      the next element early, but don't realize that the pre-fetched
1615      contents is wrong when the <symbol>next</symbol> pointer changes
1616      underneath them.  Once again, there is a
1617      <function>list_for_each_entry_rcu()</function>
1618      (<filename>include/linux/list.h</filename>) to help you.  Of
1619      course, writers can just use
1620      <function>list_for_each_entry()</function>, since there cannot
1621      be two simultaneous writers.
1622    </para>
1623    <para>
1624      Our final dilemma is this: when can we actually destroy the
1625      removed element?  Remember, a reader might be stepping through
1626      this element in the list right now: if we free this element and
1627      the <symbol>next</symbol> pointer changes, the reader will jump
1628      off into garbage and crash.  We need to wait until we know that
1629      all the readers who were traversing the list when we deleted the
1630      element are finished.  We use <function>call_rcu()</function> to
1631      register a callback which will actually destroy the object once
1632      the readers are finished.
1633    </para>
1634    <para>
1635      But how does Read Copy Update know when the readers are
1636      finished?  The method is this: firstly, the readers always
1637      traverse the list inside
1638      <function>rcu_read_lock()</function>/<function>rcu_read_unlock()</function>
1639      pairs: these simply disable preemption so the reader won't go to
1640      sleep while reading the list.
1641    </para>
1642    <para>
1643      RCU then waits until every other CPU has slept at least once:
1644      since readers cannot sleep, we know that any readers which were
1645      traversing the list during the deletion are finished, and the
1646      callback is triggered.  The real Read Copy Update code is a
1647      little more optimized than this, but this is the fundamental
1648      idea.
1649    </para>
1650
1651<programlisting>
1652--- cache.c.perobjectlock	2003-12-11 17:15:03.000000000 +1100
1653+++ cache.c.rcupdate	2003-12-11 17:55:14.000000000 +1100
1654@@ -1,15 +1,18 @@
1655 #include &lt;linux/list.h&gt;
1656 #include &lt;linux/slab.h&gt;
1657 #include &lt;linux/string.h&gt;
1658+#include &lt;linux/rcupdate.h&gt;
1659 #include &lt;asm/semaphore.h&gt;
1660 #include &lt;asm/errno.h&gt;
1661
1662 struct object
1663 {
1664-        /* These two protected by cache_lock. */
1665+        /* This is protected by RCU */
1666         struct list_head list;
1667         int popularity;
1668
1669+        struct rcu_head rcu;
1670+
1671         atomic_t refcnt;
1672
1673         /* Doesn't change once created. */
1674@@ -40,7 +43,7 @@
1675 {
1676         struct object *i;
1677
1678-        list_for_each_entry(i, &amp;cache, list) {
1679+        list_for_each_entry_rcu(i, &amp;cache, list) {
1680                 if (i-&gt;id == id) {
1681                         i-&gt;popularity++;
1682                         return i;
1683@@ -49,19 +52,25 @@
1684         return NULL;
1685 }
1686
1687+/* Final discard done once we know no readers are looking. */
1688+static void cache_delete_rcu(void *arg)
1689+{
1690+        object_put(arg);
1691+}
1692+
1693 /* Must be holding cache_lock */
1694 static void __cache_delete(struct object *obj)
1695 {
1696         BUG_ON(!obj);
1697-        list_del(&amp;obj-&gt;list);
1698-        object_put(obj);
1699+        list_del_rcu(&amp;obj-&gt;list);
1700         cache_num--;
1701+        call_rcu(&amp;obj-&gt;rcu, cache_delete_rcu, obj);
1702 }
1703
1704 /* Must be holding cache_lock */
1705 static void __cache_add(struct object *obj)
1706 {
1707-        list_add(&amp;obj-&gt;list, &amp;cache);
1708+        list_add_rcu(&amp;obj-&gt;list, &amp;cache);
1709         if (++cache_num > MAX_CACHE_SIZE) {
1710                 struct object *i, *outcast = NULL;
1711                 list_for_each_entry(i, &amp;cache, list) {
1712@@ -85,6 +94,7 @@
1713         obj-&gt;popularity = 0;
1714         atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */
1715         spin_lock_init(&amp;obj-&gt;lock);
1716+        INIT_RCU_HEAD(&amp;obj-&gt;rcu);
1717
1718         spin_lock_irqsave(&amp;cache_lock, flags);
1719         __cache_add(obj);
1720@@ -104,12 +114,11 @@
1721 struct object *cache_find(int id)
1722 {
1723         struct object *obj;
1724-        unsigned long flags;
1725
1726-        spin_lock_irqsave(&amp;cache_lock, flags);
1727+        rcu_read_lock();
1728         obj = __cache_find(id);
1729         if (obj)
1730                 object_get(obj);
1731-        spin_unlock_irqrestore(&amp;cache_lock, flags);
1732+        rcu_read_unlock();
1733         return obj;
1734 }
1735</programlisting>
1736
1737<para>
1738Note that the reader will alter the
1739<structfield>popularity</structfield> member in
1740<function>__cache_find()</function>, and now it doesn't hold a lock.
1741One solution would be to make it an <type>atomic_t</type>, but for
1742this usage, we don't really care about races: an approximate result is
1743good enough, so I didn't change it.
1744</para>
1745
1746<para>
1747The result is that <function>cache_find()</function> requires no
1748synchronization with any other functions, so is almost as fast on SMP
1749as it would be on UP.
1750</para>
1751
1752<para>
1753There is a furthur optimization possible here: remember our original
1754cache code, where there were no reference counts and the caller simply
1755held the lock whenever using the object?  This is still possible: if
1756you hold the lock, noone can delete the object, so you don't need to
1757get and put the reference count.
1758</para>
1759
1760<para>
1761Now, because the 'read lock' in RCU is simply disabling preemption, a
1762caller which always has preemption disabled between calling
1763<function>cache_find()</function> and
1764<function>object_put()</function> does not need to actually get and
1765put the reference count: we could expose
1766<function>__cache_find()</function> by making it non-static, and
1767such callers could simply call that.
1768</para>
1769<para>
1770The benefit here is that the reference count is not written to: the
1771object is not altered in any way, which is much faster on SMP
1772machines due to caching.
1773</para>
1774  </sect1>
1775
1776   <sect1 id="per-cpu">
1777    <title>Per-CPU Data</title>
1778
1779    <para>
1780      Another technique for avoiding locking which is used fairly
1781      widely is to duplicate information for each CPU.  For example,
1782      if you wanted to keep a count of a common condition, you could
1783      use a spin lock and a single counter.  Nice and simple.
1784    </para>
1785
1786    <para>
1787      If that was too slow (it's usually not, but if you've got a
1788      really big machine to test on and can show that it is), you
1789      could instead use a counter for each CPU, then none of them need
1790      an exclusive lock.  See <function>DEFINE_PER_CPU()</function>,
1791      <function>get_cpu_var()</function> and
1792      <function>put_cpu_var()</function>
1793      (<filename class="headerfile">include/linux/percpu.h</filename>).
1794    </para>
1795
1796    <para>
1797      Of particular use for simple per-cpu counters is the
1798      <type>local_t</type> type, and the
1799      <function>cpu_local_inc()</function> and related functions,
1800      which are more efficient than simple code on some architectures
1801      (<filename class="headerfile">include/asm/local.h</filename>).
1802    </para>
1803
1804    <para>
1805      Note that there is no simple, reliable way of getting an exact
1806      value of such a counter, without introducing more locks.  This
1807      is not a problem for some uses.
1808    </para>
1809   </sect1>
1810
1811   <sect1 id="mostly-hardirq">
1812    <title>Data Which Mostly Used By An IRQ Handler</title>
1813
1814    <para>
1815      If data is always accessed from within the same IRQ handler, you
1816      don't need a lock at all: the kernel already guarantees that the
1817      irq handler will not run simultaneously on multiple CPUs.
1818    </para>
1819    <para>
1820      Manfred Spraul points out that you can still do this, even if
1821      the data is very occasionally accessed in user context or
1822      softirqs/tasklets.  The irq handler doesn't use a lock, and
1823      all other accesses are done as so:
1824    </para>
1825
1826<programlisting>
1827	spin_lock(&amp;lock);
1828	disable_irq(irq);
1829	...
1830	enable_irq(irq);
1831	spin_unlock(&amp;lock);
1832</programlisting>
1833    <para>
1834      The <function>disable_irq()</function> prevents the irq handler
1835      from running (and waits for it to finish if it's currently
1836      running on other CPUs).  The spinlock prevents any other
1837      accesses happening at the same time.  Naturally, this is slower
1838      than just a <function>spin_lock_irq()</function> call, so it
1839      only makes sense if this type of access happens extremely
1840      rarely.
1841    </para>
1842   </sect1>
1843  </chapter>
1844
1845 <chapter id="sleeping-things">
1846    <title>What Functions Are Safe To Call From Interrupts?</title>
1847
1848    <para>
1849      Many functions in the kernel sleep (ie. call schedule())
1850      directly or indirectly: you can never call them while holding a
1851      spinlock, or with preemption disabled.  This also means you need
1852      to be in user context: calling them from an interrupt is illegal.
1853    </para>
1854
1855   <sect1 id="sleeping">
1856    <title>Some Functions Which Sleep</title>
1857
1858    <para>
1859      The most common ones are listed below, but you usually have to
1860      read the code to find out if other calls are safe.  If everyone
1861      else who calls it can sleep, you probably need to be able to
1862      sleep, too.  In particular, registration and deregistration
1863      functions usually expect to be called from user context, and can
1864      sleep.
1865    </para>
1866
1867    <itemizedlist>
1868     <listitem>
1869      <para>
1870        Accesses to 
1871        <firstterm linkend="gloss-userspace">userspace</firstterm>:
1872      </para>
1873      <itemizedlist>
1874       <listitem>
1875        <para>
1876          <function>copy_from_user()</function>
1877        </para>
1878       </listitem>
1879       <listitem>
1880        <para>
1881          <function>copy_to_user()</function>
1882        </para>
1883       </listitem>
1884       <listitem>
1885        <para>
1886          <function>get_user()</function>
1887        </para>
1888       </listitem>
1889       <listitem>
1890        <para>
1891          <function> put_user()</function>
1892        </para>
1893       </listitem>
1894      </itemizedlist>
1895     </listitem>
1896
1897     <listitem>
1898      <para>
1899        <function>kmalloc(GFP_KERNEL)</function>
1900      </para>
1901     </listitem>
1902
1903     <listitem>
1904      <para>
1905      <function>down_interruptible()</function> and
1906      <function>down()</function>
1907      </para>
1908      <para>
1909       There is a <function>down_trylock()</function> which can be
1910       used inside interrupt context, as it will not sleep.
1911       <function>up()</function> will also never sleep.
1912      </para>
1913     </listitem>
1914    </itemizedlist>
1915   </sect1>
1916
1917   <sect1 id="dont-sleep">
1918    <title>Some Functions Which Don't Sleep</title>
1919
1920    <para>
1921     Some functions are safe to call from any context, or holding
1922     almost any lock.
1923    </para>
1924
1925    <itemizedlist>
1926     <listitem>
1927      <para>
1928	<function>printk()</function>
1929      </para>
1930     </listitem>
1931     <listitem>
1932      <para>
1933        <function>kfree()</function>
1934      </para>
1935     </listitem>
1936     <listitem>
1937      <para>
1938	<function>add_timer()</function> and <function>del_timer()</function>
1939      </para>
1940     </listitem>
1941    </itemizedlist>
1942   </sect1>
1943  </chapter>
1944
1945  <chapter id="references">
1946   <title>Further reading</title>
1947
1948   <itemizedlist>
1949    <listitem>
1950     <para>
1951       <filename>Documentation/spinlocks.txt</filename>: 
1952       Linus Torvalds' spinlocking tutorial in the kernel sources.
1953     </para>
1954    </listitem>
1955
1956    <listitem>
1957     <para>
1958       Unix Systems for Modern Architectures: Symmetric
1959       Multiprocessing and Caching for Kernel Programmers:
1960     </para>
1961
1962     <para>
1963       Curt Schimmel's very good introduction to kernel level
1964       locking (not written for Linux, but nearly everything
1965       applies).  The book is expensive, but really worth every
1966       penny to understand SMP locking. [ISBN: 0201633388]
1967     </para>
1968    </listitem>
1969   </itemizedlist>
1970  </chapter>
1971
1972  <chapter id="thanks">
1973    <title>Thanks</title>
1974
1975    <para>
1976      Thanks to Telsa Gwynne for DocBooking, neatening and adding
1977      style.
1978    </para>
1979
1980    <para>
1981      Thanks to Martin Pool, Philipp Rumpf, Stephen Rothwell, Paul
1982      Mackerras, Ruedi Aschwanden, Alan Cox, Manfred Spraul, Tim
1983      Waugh, Pete Zaitcev, James Morris, Robert Love, Paul McKenney,
1984      John Ashby for proofreading, correcting, flaming, commenting.
1985    </para>
1986
1987    <para>
1988      Thanks to the cabal for having no influence on this document.
1989    </para>
1990  </chapter>
1991
1992  <glossary id="glossary">
1993   <title>Glossary</title>
1994
1995   <glossentry id="gloss-preemption">
1996    <glossterm>preemption</glossterm>
1997     <glossdef>
1998      <para>
1999        Prior to 2.5, or when <symbol>CONFIG_PREEMPT</symbol> is
2000        unset, processes in user context inside the kernel would not
2001        preempt each other (ie. you had that CPU until you have it up,
2002        except for interrupts).  With the addition of
2003        <symbol>CONFIG_PREEMPT</symbol> in 2.5.4, this changed: when
2004        in user context, higher priority tasks can "cut in": spinlocks
2005        were changed to disable preemption, even on UP.
2006     </para>
2007    </glossdef>
2008   </glossentry>
2009
2010   <glossentry id="gloss-bh">
2011    <glossterm>bh</glossterm>
2012     <glossdef>
2013      <para>
2014        Bottom Half: for historical reasons, functions with
2015        '_bh' in them often now refer to any software interrupt, e.g.
2016        <function>spin_lock_bh()</function> blocks any software interrupt 
2017        on the current CPU.  Bottom halves are deprecated, and will 
2018        eventually be replaced by tasklets.  Only one bottom half will be 
2019        running at any time.
2020     </para>
2021    </glossdef>
2022   </glossentry>
2023
2024   <glossentry id="gloss-hwinterrupt">
2025    <glossterm>Hardware Interrupt / Hardware IRQ</glossterm>
2026    <glossdef>
2027     <para>
2028       Hardware interrupt request.  <function>in_irq()</function> returns 
2029       <returnvalue>true</returnvalue> in a hardware interrupt handler.
2030     </para>
2031    </glossdef>
2032   </glossentry>
2033
2034   <glossentry id="gloss-interruptcontext">
2035    <glossterm>Interrupt Context</glossterm>
2036    <glossdef>
2037     <para>
2038       Not user context: processing a hardware irq or software irq.
2039       Indicated by the <function>in_interrupt()</function> macro 
2040       returning <returnvalue>true</returnvalue>.
2041     </para>
2042    </glossdef>
2043   </glossentry>
2044
2045   <glossentry id="gloss-smp">
2046    <glossterm><acronym>SMP</acronym></glossterm>
2047    <glossdef>
2048     <para>
2049       Symmetric Multi-Processor: kernels compiled for multiple-CPU
2050       machines.  (CONFIG_SMP=y).
2051     </para>
2052    </glossdef>
2053   </glossentry>
2054
2055   <glossentry id="gloss-softirq">
2056    <glossterm>Software Interrupt / softirq</glossterm>
2057    <glossdef>
2058     <para>
2059       Software interrupt handler.  <function>in_irq()</function> returns
2060       <returnvalue>false</returnvalue>; <function>in_softirq()</function>
2061       returns <returnvalue>true</returnvalue>.  Tasklets and softirqs
2062	both fall into the category of 'software interrupts'.
2063     </para>
2064     <para>
2065       Strictly speaking a softirq is one of up to 32 enumerated software
2066       interrupts which can run on multiple CPUs at once.
2067       Sometimes used to refer to tasklets as
2068       well (ie. all software interrupts).
2069     </para>
2070    </glossdef>
2071   </glossentry>
2072
2073   <glossentry id="gloss-tasklet">
2074    <glossterm>tasklet</glossterm>
2075    <glossdef>
2076     <para>
2077       A dynamically-registrable software interrupt,
2078       which is guaranteed to only run on one CPU at a time.
2079     </para>
2080    </glossdef>
2081   </glossentry>
2082
2083   <glossentry id="gloss-timers">
2084    <glossterm>timer</glossterm>
2085    <glossdef>
2086     <para>
2087       A dynamically-registrable software interrupt, which is run at
2088       (or close to) a given time.  When running, it is just like a
2089       tasklet (in fact, they are called from the TIMER_SOFTIRQ).
2090     </para>
2091    </glossdef>
2092   </glossentry>
2093
2094   <glossentry id="gloss-up">
2095    <glossterm><acronym>UP</acronym></glossterm>
2096    <glossdef>
2097     <para>
2098       Uni-Processor: Non-SMP.  (CONFIG_SMP=n).
2099     </para>
2100    </glossdef>
2101   </glossentry>
2102
2103   <glossentry id="gloss-usercontext">
2104    <glossterm>User Context</glossterm>
2105    <glossdef>
2106     <para>
2107       The kernel executing on behalf of a particular process (ie. a
2108       system call or trap) or kernel thread.  You can tell which
2109       process with the <symbol>current</symbol> macro.)  Not to
2110       be confused with userspace.  Can be interrupted by software or
2111       hardware interrupts.
2112     </para>
2113    </glossdef>
2114   </glossentry>
2115
2116   <glossentry id="gloss-userspace">
2117    <glossterm>Userspace</glossterm>
2118    <glossdef>
2119     <para>
2120       A process executing its own code outside the kernel.
2121     </para>
2122    </glossdef>
2123   </glossentry>      
2124
2125  </glossary>
2126</book>
2127