1/*
2 * Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License").  You may not use
5 * this file except in compliance with the License.  You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include <openssl/opensslconf.h>
11
12#include <stdio.h>
13#include <string.h>
14
15
16#include <openssl/evp.h>
17#include <openssl/objects.h>
18#include <openssl/aes.h>
19#include <openssl/sha.h>
20#include <openssl/rand.h>
21#include "modes_local.h"
22#include "internal/constant_time.h"
23#include "crypto/evp.h"
24
25typedef struct {
26    AES_KEY ks;
27    SHA256_CTX head, tail, md;
28    size_t payload_length;      /* AAD length in decrypt case */
29    union {
30        unsigned int tls_ver;
31        unsigned char tls_aad[16]; /* 13 used */
32    } aux;
33} EVP_AES_HMAC_SHA256;
34
35# define NO_PAYLOAD_LENGTH       ((size_t)-1)
36
37#if     defined(AESNI_ASM) &&   ( \
38        defined(__x86_64)       || defined(__x86_64__)  || \
39        defined(_M_AMD64)       || defined(_M_X64)      )
40
41extern unsigned int OPENSSL_ia32cap_P[];
42# define AESNI_CAPABLE   (1<<(57-32))
43
44int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
45                          AES_KEY *key);
46int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
47                          AES_KEY *key);
48
49void aesni_cbc_encrypt(const unsigned char *in,
50                       unsigned char *out,
51                       size_t length,
52                       const AES_KEY *key, unsigned char *ivec, int enc);
53
54int aesni_cbc_sha256_enc(const void *inp, void *out, size_t blocks,
55                         const AES_KEY *key, unsigned char iv[16],
56                         SHA256_CTX *ctx, const void *in0);
57
58# define data(ctx) ((EVP_AES_HMAC_SHA256 *)EVP_CIPHER_CTX_get_cipher_data(ctx))
59
60static int aesni_cbc_hmac_sha256_init_key(EVP_CIPHER_CTX *ctx,
61                                          const unsigned char *inkey,
62                                          const unsigned char *iv, int enc)
63{
64    EVP_AES_HMAC_SHA256 *key = data(ctx);
65    int ret;
66
67    if (enc)
68        ret = aesni_set_encrypt_key(inkey,
69                                    EVP_CIPHER_CTX_key_length(ctx) * 8,
70                                    &key->ks);
71    else
72        ret = aesni_set_decrypt_key(inkey,
73                                    EVP_CIPHER_CTX_key_length(ctx) * 8,
74                                    &key->ks);
75
76    SHA256_Init(&key->head);    /* handy when benchmarking */
77    key->tail = key->head;
78    key->md = key->head;
79
80    key->payload_length = NO_PAYLOAD_LENGTH;
81
82    return ret < 0 ? 0 : 1;
83}
84
85# define STITCHED_CALL
86
87# if !defined(STITCHED_CALL)
88#  define aes_off 0
89# endif
90
91void sha256_block_data_order(void *c, const void *p, size_t len);
92
93static void sha256_update(SHA256_CTX *c, const void *data, size_t len)
94{
95    const unsigned char *ptr = data;
96    size_t res;
97
98    if ((res = c->num)) {
99        res = SHA256_CBLOCK - res;
100        if (len < res)
101            res = len;
102        SHA256_Update(c, ptr, res);
103        ptr += res;
104        len -= res;
105    }
106
107    res = len % SHA256_CBLOCK;
108    len -= res;
109
110    if (len) {
111        sha256_block_data_order(c, ptr, len / SHA256_CBLOCK);
112
113        ptr += len;
114        c->Nh += len >> 29;
115        c->Nl += len <<= 3;
116        if (c->Nl < (unsigned int)len)
117            c->Nh++;
118    }
119
120    if (res)
121        SHA256_Update(c, ptr, res);
122}
123
124# ifdef SHA256_Update
125#  undef SHA256_Update
126# endif
127# define SHA256_Update sha256_update
128
129# if !defined(OPENSSL_NO_MULTIBLOCK)
130
131typedef struct {
132    unsigned int A[8], B[8], C[8], D[8], E[8], F[8], G[8], H[8];
133} SHA256_MB_CTX;
134typedef struct {
135    const unsigned char *ptr;
136    int blocks;
137} HASH_DESC;
138
139void sha256_multi_block(SHA256_MB_CTX *, const HASH_DESC *, int);
140
141typedef struct {
142    const unsigned char *inp;
143    unsigned char *out;
144    int blocks;
145    u64 iv[2];
146} CIPH_DESC;
147
148void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);
149
150static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA256 *key,
151                                         unsigned char *out,
152                                         const unsigned char *inp,
153                                         size_t inp_len, int n4x)
154{                               /* n4x is 1 or 2 */
155    HASH_DESC hash_d[8], edges[8];
156    CIPH_DESC ciph_d[8];
157    unsigned char storage[sizeof(SHA256_MB_CTX) + 32];
158    union {
159        u64 q[16];
160        u32 d[32];
161        u8 c[128];
162    } blocks[8];
163    SHA256_MB_CTX *ctx;
164    unsigned int frag, last, packlen, i, x4 = 4 * n4x, minblocks, processed =
165        0;
166    size_t ret = 0;
167    u8 *IVs;
168#  if defined(BSWAP8)
169    u64 seqnum;
170#  endif
171
172    /* ask for IVs in bulk */
173    if (RAND_bytes((IVs = blocks[0].c), 16 * x4) <= 0)
174        return 0;
175
176    /* align */
177    ctx = (SHA256_MB_CTX *) (storage + 32 - ((size_t)storage % 32));
178
179    frag = (unsigned int)inp_len >> (1 + n4x);
180    last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
181    if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
182        frag++;
183        last -= x4 - 1;
184    }
185
186    packlen = 5 + 16 + ((frag + 32 + 16) & -16);
187
188    /* populate descriptors with pointers and IVs */
189    hash_d[0].ptr = inp;
190    ciph_d[0].inp = inp;
191    /* 5+16 is place for header and explicit IV */
192    ciph_d[0].out = out + 5 + 16;
193    memcpy(ciph_d[0].out - 16, IVs, 16);
194    memcpy(ciph_d[0].iv, IVs, 16);
195    IVs += 16;
196
197    for (i = 1; i < x4; i++) {
198        ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
199        ciph_d[i].out = ciph_d[i - 1].out + packlen;
200        memcpy(ciph_d[i].out - 16, IVs, 16);
201        memcpy(ciph_d[i].iv, IVs, 16);
202        IVs += 16;
203    }
204
205#  if defined(BSWAP8)
206    memcpy(blocks[0].c, key->md.data, 8);
207    seqnum = BSWAP8(blocks[0].q[0]);
208#  endif
209    for (i = 0; i < x4; i++) {
210        unsigned int len = (i == (x4 - 1) ? last : frag);
211#  if !defined(BSWAP8)
212        unsigned int carry, j;
213#  endif
214
215        ctx->A[i] = key->md.h[0];
216        ctx->B[i] = key->md.h[1];
217        ctx->C[i] = key->md.h[2];
218        ctx->D[i] = key->md.h[3];
219        ctx->E[i] = key->md.h[4];
220        ctx->F[i] = key->md.h[5];
221        ctx->G[i] = key->md.h[6];
222        ctx->H[i] = key->md.h[7];
223
224        /* fix seqnum */
225#  if defined(BSWAP8)
226        blocks[i].q[0] = BSWAP8(seqnum + i);
227#  else
228        for (carry = i, j = 8; j--;) {
229            blocks[i].c[j] = ((u8 *)key->md.data)[j] + carry;
230            carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
231        }
232#  endif
233        blocks[i].c[8] = ((u8 *)key->md.data)[8];
234        blocks[i].c[9] = ((u8 *)key->md.data)[9];
235        blocks[i].c[10] = ((u8 *)key->md.data)[10];
236        /* fix length */
237        blocks[i].c[11] = (u8)(len >> 8);
238        blocks[i].c[12] = (u8)(len);
239
240        memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
241        hash_d[i].ptr += 64 - 13;
242        hash_d[i].blocks = (len - (64 - 13)) / 64;
243
244        edges[i].ptr = blocks[i].c;
245        edges[i].blocks = 1;
246    }
247
248    /* hash 13-byte headers and first 64-13 bytes of inputs */
249    sha256_multi_block(ctx, edges, n4x);
250    /* hash bulk inputs */
251#  define MAXCHUNKSIZE    2048
252#  if     MAXCHUNKSIZE%64
253#   error  "MAXCHUNKSIZE is not divisible by 64"
254#  elif   MAXCHUNKSIZE
255    /*
256     * goal is to minimize pressure on L1 cache by moving in shorter steps,
257     * so that hashed data is still in the cache by the time we encrypt it
258     */
259    minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
260    if (minblocks > MAXCHUNKSIZE / 64) {
261        for (i = 0; i < x4; i++) {
262            edges[i].ptr = hash_d[i].ptr;
263            edges[i].blocks = MAXCHUNKSIZE / 64;
264            ciph_d[i].blocks = MAXCHUNKSIZE / 16;
265        }
266        do {
267            sha256_multi_block(ctx, edges, n4x);
268            aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
269
270            for (i = 0; i < x4; i++) {
271                edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
272                hash_d[i].blocks -= MAXCHUNKSIZE / 64;
273                edges[i].blocks = MAXCHUNKSIZE / 64;
274                ciph_d[i].inp += MAXCHUNKSIZE;
275                ciph_d[i].out += MAXCHUNKSIZE;
276                ciph_d[i].blocks = MAXCHUNKSIZE / 16;
277                memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
278            }
279            processed += MAXCHUNKSIZE;
280            minblocks -= MAXCHUNKSIZE / 64;
281        } while (minblocks > MAXCHUNKSIZE / 64);
282    }
283#  endif
284#  undef  MAXCHUNKSIZE
285    sha256_multi_block(ctx, hash_d, n4x);
286
287    memset(blocks, 0, sizeof(blocks));
288    for (i = 0; i < x4; i++) {
289        unsigned int len = (i == (x4 - 1) ? last : frag),
290            off = hash_d[i].blocks * 64;
291        const unsigned char *ptr = hash_d[i].ptr + off;
292
293        off = (len - processed) - (64 - 13) - off; /* remainder actually */
294        memcpy(blocks[i].c, ptr, off);
295        blocks[i].c[off] = 0x80;
296        len += 64 + 13;         /* 64 is HMAC header */
297        len *= 8;               /* convert to bits */
298        if (off < (64 - 8)) {
299#  ifdef BSWAP4
300            blocks[i].d[15] = BSWAP4(len);
301#  else
302            PUTU32(blocks[i].c + 60, len);
303#  endif
304            edges[i].blocks = 1;
305        } else {
306#  ifdef BSWAP4
307            blocks[i].d[31] = BSWAP4(len);
308#  else
309            PUTU32(blocks[i].c + 124, len);
310#  endif
311            edges[i].blocks = 2;
312        }
313        edges[i].ptr = blocks[i].c;
314    }
315
316    /* hash input tails and finalize */
317    sha256_multi_block(ctx, edges, n4x);
318
319    memset(blocks, 0, sizeof(blocks));
320    for (i = 0; i < x4; i++) {
321#  ifdef BSWAP4
322        blocks[i].d[0] = BSWAP4(ctx->A[i]);
323        ctx->A[i] = key->tail.h[0];
324        blocks[i].d[1] = BSWAP4(ctx->B[i]);
325        ctx->B[i] = key->tail.h[1];
326        blocks[i].d[2] = BSWAP4(ctx->C[i]);
327        ctx->C[i] = key->tail.h[2];
328        blocks[i].d[3] = BSWAP4(ctx->D[i]);
329        ctx->D[i] = key->tail.h[3];
330        blocks[i].d[4] = BSWAP4(ctx->E[i]);
331        ctx->E[i] = key->tail.h[4];
332        blocks[i].d[5] = BSWAP4(ctx->F[i]);
333        ctx->F[i] = key->tail.h[5];
334        blocks[i].d[6] = BSWAP4(ctx->G[i]);
335        ctx->G[i] = key->tail.h[6];
336        blocks[i].d[7] = BSWAP4(ctx->H[i]);
337        ctx->H[i] = key->tail.h[7];
338        blocks[i].c[32] = 0x80;
339        blocks[i].d[15] = BSWAP4((64 + 32) * 8);
340#  else
341        PUTU32(blocks[i].c + 0, ctx->A[i]);
342        ctx->A[i] = key->tail.h[0];
343        PUTU32(blocks[i].c + 4, ctx->B[i]);
344        ctx->B[i] = key->tail.h[1];
345        PUTU32(blocks[i].c + 8, ctx->C[i]);
346        ctx->C[i] = key->tail.h[2];
347        PUTU32(blocks[i].c + 12, ctx->D[i]);
348        ctx->D[i] = key->tail.h[3];
349        PUTU32(blocks[i].c + 16, ctx->E[i]);
350        ctx->E[i] = key->tail.h[4];
351        PUTU32(blocks[i].c + 20, ctx->F[i]);
352        ctx->F[i] = key->tail.h[5];
353        PUTU32(blocks[i].c + 24, ctx->G[i]);
354        ctx->G[i] = key->tail.h[6];
355        PUTU32(blocks[i].c + 28, ctx->H[i]);
356        ctx->H[i] = key->tail.h[7];
357        blocks[i].c[32] = 0x80;
358        PUTU32(blocks[i].c + 60, (64 + 32) * 8);
359#  endif
360        edges[i].ptr = blocks[i].c;
361        edges[i].blocks = 1;
362    }
363
364    /* finalize MACs */
365    sha256_multi_block(ctx, edges, n4x);
366
367    for (i = 0; i < x4; i++) {
368        unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
369        unsigned char *out0 = out;
370
371        memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
372        ciph_d[i].inp = ciph_d[i].out;
373
374        out += 5 + 16 + len;
375
376        /* write MAC */
377        PUTU32(out + 0, ctx->A[i]);
378        PUTU32(out + 4, ctx->B[i]);
379        PUTU32(out + 8, ctx->C[i]);
380        PUTU32(out + 12, ctx->D[i]);
381        PUTU32(out + 16, ctx->E[i]);
382        PUTU32(out + 20, ctx->F[i]);
383        PUTU32(out + 24, ctx->G[i]);
384        PUTU32(out + 28, ctx->H[i]);
385        out += 32;
386        len += 32;
387
388        /* pad */
389        pad = 15 - len % 16;
390        for (j = 0; j <= pad; j++)
391            *(out++) = pad;
392        len += pad + 1;
393
394        ciph_d[i].blocks = (len - processed) / 16;
395        len += 16;              /* account for explicit iv */
396
397        /* arrange header */
398        out0[0] = ((u8 *)key->md.data)[8];
399        out0[1] = ((u8 *)key->md.data)[9];
400        out0[2] = ((u8 *)key->md.data)[10];
401        out0[3] = (u8)(len >> 8);
402        out0[4] = (u8)(len);
403
404        ret += len + 5;
405        inp += frag;
406    }
407
408    aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
409
410    OPENSSL_cleanse(blocks, sizeof(blocks));
411    OPENSSL_cleanse(ctx, sizeof(*ctx));
412
413    return ret;
414}
415# endif
416
417static int aesni_cbc_hmac_sha256_cipher(EVP_CIPHER_CTX *ctx,
418                                        unsigned char *out,
419                                        const unsigned char *in, size_t len)
420{
421    EVP_AES_HMAC_SHA256 *key = data(ctx);
422    unsigned int l;
423    size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and
424                                                * later */
425        sha_off = 0;
426# if defined(STITCHED_CALL)
427    size_t aes_off = 0, blocks;
428
429    sha_off = SHA256_CBLOCK - key->md.num;
430# endif
431
432    key->payload_length = NO_PAYLOAD_LENGTH;
433
434    if (len % AES_BLOCK_SIZE)
435        return 0;
436
437    if (EVP_CIPHER_CTX_encrypting(ctx)) {
438        if (plen == NO_PAYLOAD_LENGTH)
439            plen = len;
440        else if (len !=
441                 ((plen + SHA256_DIGEST_LENGTH +
442                   AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
443            return 0;
444        else if (key->aux.tls_ver >= TLS1_1_VERSION)
445            iv = AES_BLOCK_SIZE;
446
447# if defined(STITCHED_CALL)
448        /*
449         * Assembly stitch handles AVX-capable processors, but its
450         * performance is not optimal on AMD Jaguar, ~40% worse, for
451         * unknown reasons. Incidentally processor in question supports
452         * AVX, but not AMD-specific XOP extension, which can be used
453         * to identify it and avoid stitch invocation. So that after we
454         * establish that current CPU supports AVX, we even see if it's
455         * either even XOP-capable Bulldozer-based or GenuineIntel one.
456         * But SHAEXT-capable go ahead...
457         */
458        if (((OPENSSL_ia32cap_P[2] & (1 << 29)) ||         /* SHAEXT? */
459             ((OPENSSL_ia32cap_P[1] & (1 << (60 - 32))) && /* AVX? */
460              ((OPENSSL_ia32cap_P[1] & (1 << (43 - 32)))   /* XOP? */
461               | (OPENSSL_ia32cap_P[0] & (1 << 30))))) &&  /* "Intel CPU"? */
462            plen > (sha_off + iv) &&
463            (blocks = (plen - (sha_off + iv)) / SHA256_CBLOCK)) {
464            SHA256_Update(&key->md, in + iv, sha_off);
465
466            (void)aesni_cbc_sha256_enc(in, out, blocks, &key->ks,
467                                       EVP_CIPHER_CTX_iv_noconst(ctx),
468                                       &key->md, in + iv + sha_off);
469            blocks *= SHA256_CBLOCK;
470            aes_off += blocks;
471            sha_off += blocks;
472            key->md.Nh += blocks >> 29;
473            key->md.Nl += blocks <<= 3;
474            if (key->md.Nl < (unsigned int)blocks)
475                key->md.Nh++;
476        } else {
477            sha_off = 0;
478        }
479# endif
480        sha_off += iv;
481        SHA256_Update(&key->md, in + sha_off, plen - sha_off);
482
483        if (plen != len) {      /* "TLS" mode of operation */
484            if (in != out)
485                memcpy(out + aes_off, in + aes_off, plen - aes_off);
486
487            /* calculate HMAC and append it to payload */
488            SHA256_Final(out + plen, &key->md);
489            key->md = key->tail;
490            SHA256_Update(&key->md, out + plen, SHA256_DIGEST_LENGTH);
491            SHA256_Final(out + plen, &key->md);
492
493            /* pad the payload|hmac */
494            plen += SHA256_DIGEST_LENGTH;
495            for (l = len - plen - 1; plen < len; plen++)
496                out[plen] = l;
497            /* encrypt HMAC|padding at once */
498            aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
499                              &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 1);
500        } else {
501            aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
502                              &key->ks, EVP_CIPHER_CTX_iv_noconst(ctx), 1);
503        }
504    } else {
505        union {
506            unsigned int u[SHA256_DIGEST_LENGTH / sizeof(unsigned int)];
507            unsigned char c[64 + SHA256_DIGEST_LENGTH];
508        } mac, *pmac;
509
510        /* arrange cache line alignment */
511        pmac = (void *)(((size_t)mac.c + 63) & ((size_t)0 - 64));
512
513        /* decrypt HMAC|padding at once */
514        aesni_cbc_encrypt(in, out, len, &key->ks,
515                          EVP_CIPHER_CTX_iv_noconst(ctx), 0);
516
517        if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
518            size_t inp_len, mask, j, i;
519            unsigned int res, maxpad, pad, bitlen;
520            int ret = 1;
521            union {
522                unsigned int u[SHA_LBLOCK];
523                unsigned char c[SHA256_CBLOCK];
524            } *data = (void *)key->md.data;
525
526            if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3])
527                >= TLS1_1_VERSION)
528                iv = AES_BLOCK_SIZE;
529
530            if (len < (iv + SHA256_DIGEST_LENGTH + 1))
531                return 0;
532
533            /* omit explicit iv */
534            out += iv;
535            len -= iv;
536
537            /* figure out payload length */
538            pad = out[len - 1];
539            maxpad = len - (SHA256_DIGEST_LENGTH + 1);
540            maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
541            maxpad &= 255;
542
543            mask = constant_time_ge(maxpad, pad);
544            ret &= mask;
545            /*
546             * If pad is invalid then we will fail the above test but we must
547             * continue anyway because we are in constant time code. However,
548             * we'll use the maxpad value instead of the supplied pad to make
549             * sure we perform well defined pointer arithmetic.
550             */
551            pad = constant_time_select(mask, pad, maxpad);
552
553            inp_len = len - (SHA256_DIGEST_LENGTH + pad + 1);
554
555            key->aux.tls_aad[plen - 2] = inp_len >> 8;
556            key->aux.tls_aad[plen - 1] = inp_len;
557
558            /* calculate HMAC */
559            key->md = key->head;
560            SHA256_Update(&key->md, key->aux.tls_aad, plen);
561
562# if 1      /* see original reference version in #else */
563            len -= SHA256_DIGEST_LENGTH; /* amend mac */
564            if (len >= (256 + SHA256_CBLOCK)) {
565                j = (len - (256 + SHA256_CBLOCK)) & (0 - SHA256_CBLOCK);
566                j += SHA256_CBLOCK - key->md.num;
567                SHA256_Update(&key->md, out, j);
568                out += j;
569                len -= j;
570                inp_len -= j;
571            }
572
573            /* but pretend as if we hashed padded payload */
574            bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */
575#  ifdef BSWAP4
576            bitlen = BSWAP4(bitlen);
577#  else
578            mac.c[0] = 0;
579            mac.c[1] = (unsigned char)(bitlen >> 16);
580            mac.c[2] = (unsigned char)(bitlen >> 8);
581            mac.c[3] = (unsigned char)bitlen;
582            bitlen = mac.u[0];
583#  endif
584
585            pmac->u[0] = 0;
586            pmac->u[1] = 0;
587            pmac->u[2] = 0;
588            pmac->u[3] = 0;
589            pmac->u[4] = 0;
590            pmac->u[5] = 0;
591            pmac->u[6] = 0;
592            pmac->u[7] = 0;
593
594            for (res = key->md.num, j = 0; j < len; j++) {
595                size_t c = out[j];
596                mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
597                c &= mask;
598                c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
599                data->c[res++] = (unsigned char)c;
600
601                if (res != SHA256_CBLOCK)
602                    continue;
603
604                /* j is not incremented yet */
605                mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
606                data->u[SHA_LBLOCK - 1] |= bitlen & mask;
607                sha256_block_data_order(&key->md, data, 1);
608                mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
609                pmac->u[0] |= key->md.h[0] & mask;
610                pmac->u[1] |= key->md.h[1] & mask;
611                pmac->u[2] |= key->md.h[2] & mask;
612                pmac->u[3] |= key->md.h[3] & mask;
613                pmac->u[4] |= key->md.h[4] & mask;
614                pmac->u[5] |= key->md.h[5] & mask;
615                pmac->u[6] |= key->md.h[6] & mask;
616                pmac->u[7] |= key->md.h[7] & mask;
617                res = 0;
618            }
619
620            for (i = res; i < SHA256_CBLOCK; i++, j++)
621                data->c[i] = 0;
622
623            if (res > SHA256_CBLOCK - 8) {
624                mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
625                data->u[SHA_LBLOCK - 1] |= bitlen & mask;
626                sha256_block_data_order(&key->md, data, 1);
627                mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
628                pmac->u[0] |= key->md.h[0] & mask;
629                pmac->u[1] |= key->md.h[1] & mask;
630                pmac->u[2] |= key->md.h[2] & mask;
631                pmac->u[3] |= key->md.h[3] & mask;
632                pmac->u[4] |= key->md.h[4] & mask;
633                pmac->u[5] |= key->md.h[5] & mask;
634                pmac->u[6] |= key->md.h[6] & mask;
635                pmac->u[7] |= key->md.h[7] & mask;
636
637                memset(data, 0, SHA256_CBLOCK);
638                j += 64;
639            }
640            data->u[SHA_LBLOCK - 1] = bitlen;
641            sha256_block_data_order(&key->md, data, 1);
642            mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
643            pmac->u[0] |= key->md.h[0] & mask;
644            pmac->u[1] |= key->md.h[1] & mask;
645            pmac->u[2] |= key->md.h[2] & mask;
646            pmac->u[3] |= key->md.h[3] & mask;
647            pmac->u[4] |= key->md.h[4] & mask;
648            pmac->u[5] |= key->md.h[5] & mask;
649            pmac->u[6] |= key->md.h[6] & mask;
650            pmac->u[7] |= key->md.h[7] & mask;
651
652#  ifdef BSWAP4
653            pmac->u[0] = BSWAP4(pmac->u[0]);
654            pmac->u[1] = BSWAP4(pmac->u[1]);
655            pmac->u[2] = BSWAP4(pmac->u[2]);
656            pmac->u[3] = BSWAP4(pmac->u[3]);
657            pmac->u[4] = BSWAP4(pmac->u[4]);
658            pmac->u[5] = BSWAP4(pmac->u[5]);
659            pmac->u[6] = BSWAP4(pmac->u[6]);
660            pmac->u[7] = BSWAP4(pmac->u[7]);
661#  else
662            for (i = 0; i < 8; i++) {
663                res = pmac->u[i];
664                pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
665                pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
666                pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
667                pmac->c[4 * i + 3] = (unsigned char)res;
668            }
669#  endif
670            len += SHA256_DIGEST_LENGTH;
671# else
672            SHA256_Update(&key->md, out, inp_len);
673            res = key->md.num;
674            SHA256_Final(pmac->c, &key->md);
675
676            {
677                unsigned int inp_blocks, pad_blocks;
678
679                /* but pretend as if we hashed padded payload */
680                inp_blocks =
681                    1 + ((SHA256_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
682                res += (unsigned int)(len - inp_len);
683                pad_blocks = res / SHA256_CBLOCK;
684                res %= SHA256_CBLOCK;
685                pad_blocks +=
686                    1 + ((SHA256_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
687                for (; inp_blocks < pad_blocks; inp_blocks++)
688                    sha1_block_data_order(&key->md, data, 1);
689            }
690# endif      /* pre-lucky-13 reference version of above */
691            key->md = key->tail;
692            SHA256_Update(&key->md, pmac->c, SHA256_DIGEST_LENGTH);
693            SHA256_Final(pmac->c, &key->md);
694
695            /* verify HMAC */
696            out += inp_len;
697            len -= inp_len;
698# if 1      /* see original reference version in #else */
699            {
700                unsigned char *p =
701                    out + len - 1 - maxpad - SHA256_DIGEST_LENGTH;
702                size_t off = out - p;
703                unsigned int c, cmask;
704
705                maxpad += SHA256_DIGEST_LENGTH;
706                for (res = 0, i = 0, j = 0; j < maxpad; j++) {
707                    c = p[j];
708                    cmask =
709                        ((int)(j - off - SHA256_DIGEST_LENGTH)) >>
710                        (sizeof(int) * 8 - 1);
711                    res |= (c ^ pad) & ~cmask; /* ... and padding */
712                    cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
713                    res |= (c ^ pmac->c[i]) & cmask;
714                    i += 1 & cmask;
715                }
716                maxpad -= SHA256_DIGEST_LENGTH;
717
718                res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
719                ret &= (int)~res;
720            }
721# else      /* pre-lucky-13 reference version of above */
722            for (res = 0, i = 0; i < SHA256_DIGEST_LENGTH; i++)
723                res |= out[i] ^ pmac->c[i];
724            res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
725            ret &= (int)~res;
726
727            /* verify padding */
728            pad = (pad & ~res) | (maxpad & res);
729            out = out + len - 1 - pad;
730            for (res = 0, i = 0; i < pad; i++)
731                res |= out[i] ^ pad;
732
733            res = (0 - res) >> (sizeof(res) * 8 - 1);
734            ret &= (int)~res;
735# endif
736            return ret;
737        } else {
738            SHA256_Update(&key->md, out, len);
739        }
740    }
741
742    return 1;
743}
744
745static int aesni_cbc_hmac_sha256_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
746                                      void *ptr)
747{
748    EVP_AES_HMAC_SHA256 *key = data(ctx);
749    unsigned int u_arg = (unsigned int)arg;
750
751    switch (type) {
752    case EVP_CTRL_AEAD_SET_MAC_KEY:
753        {
754            unsigned int i;
755            unsigned char hmac_key[64];
756
757            memset(hmac_key, 0, sizeof(hmac_key));
758
759            if (arg < 0)
760                return -1;
761
762            if (u_arg > sizeof(hmac_key)) {
763                SHA256_Init(&key->head);
764                SHA256_Update(&key->head, ptr, arg);
765                SHA256_Final(hmac_key, &key->head);
766            } else {
767                memcpy(hmac_key, ptr, arg);
768            }
769
770            for (i = 0; i < sizeof(hmac_key); i++)
771                hmac_key[i] ^= 0x36; /* ipad */
772            SHA256_Init(&key->head);
773            SHA256_Update(&key->head, hmac_key, sizeof(hmac_key));
774
775            for (i = 0; i < sizeof(hmac_key); i++)
776                hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
777            SHA256_Init(&key->tail);
778            SHA256_Update(&key->tail, hmac_key, sizeof(hmac_key));
779
780            OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
781
782            return 1;
783        }
784    case EVP_CTRL_AEAD_TLS1_AAD:
785        {
786            unsigned char *p = ptr;
787            unsigned int len;
788
789            if (arg != EVP_AEAD_TLS1_AAD_LEN)
790                return -1;
791
792            len = p[arg - 2] << 8 | p[arg - 1];
793
794            if (EVP_CIPHER_CTX_encrypting(ctx)) {
795                key->payload_length = len;
796                if ((key->aux.tls_ver =
797                     p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
798                    if (len < AES_BLOCK_SIZE)
799                        return 0;
800                    len -= AES_BLOCK_SIZE;
801                    p[arg - 2] = len >> 8;
802                    p[arg - 1] = len;
803                }
804                key->md = key->head;
805                SHA256_Update(&key->md, p, arg);
806
807                return (int)(((len + SHA256_DIGEST_LENGTH +
808                               AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
809                             - len);
810            } else {
811                memcpy(key->aux.tls_aad, ptr, arg);
812                key->payload_length = arg;
813
814                return SHA256_DIGEST_LENGTH;
815            }
816        }
817# if !defined(OPENSSL_NO_MULTIBLOCK)
818    case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE:
819        return (int)(5 + 16 + ((arg + 32 + 16) & -16));
820    case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD:
821        {
822            EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
823                (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
824            unsigned int n4x = 1, x4;
825            unsigned int frag, last, packlen, inp_len;
826
827            if (arg < 0)
828                return -1;
829
830            if (u_arg < sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM))
831                return -1;
832
833            inp_len = param->inp[11] << 8 | param->inp[12];
834
835            if (EVP_CIPHER_CTX_encrypting(ctx)) {
836                if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
837                    return -1;
838
839                if (inp_len) {
840                    if (inp_len < 4096)
841                        return 0; /* too short */
842
843                    if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
844                        n4x = 2; /* AVX2 */
845                } else if ((n4x = param->interleave / 4) && n4x <= 2)
846                    inp_len = param->len;
847                else
848                    return -1;
849
850                key->md = key->head;
851                SHA256_Update(&key->md, param->inp, 13);
852
853                x4 = 4 * n4x;
854                n4x += 1;
855
856                frag = inp_len >> n4x;
857                last = inp_len + frag - (frag << n4x);
858                if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
859                    frag++;
860                    last -= x4 - 1;
861                }
862
863                packlen = 5 + 16 + ((frag + 32 + 16) & -16);
864                packlen = (packlen << n4x) - packlen;
865                packlen += 5 + 16 + ((last + 32 + 16) & -16);
866
867                param->interleave = x4;
868
869                return (int)packlen;
870            } else
871                return -1;      /* not yet */
872        }
873    case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT:
874        {
875            EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
876                (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
877
878            return (int)tls1_1_multi_block_encrypt(key, param->out,
879                                                   param->inp, param->len,
880                                                   param->interleave / 4);
881        }
882    case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT:
883# endif
884    default:
885        return -1;
886    }
887}
888
889static EVP_CIPHER aesni_128_cbc_hmac_sha256_cipher = {
890# ifdef NID_aes_128_cbc_hmac_sha256
891    NID_aes_128_cbc_hmac_sha256,
892# else
893    NID_undef,
894# endif
895    AES_BLOCK_SIZE, 16, AES_BLOCK_SIZE,
896    EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
897        EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
898    aesni_cbc_hmac_sha256_init_key,
899    aesni_cbc_hmac_sha256_cipher,
900    NULL,
901    sizeof(EVP_AES_HMAC_SHA256),
902    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
903    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
904    aesni_cbc_hmac_sha256_ctrl,
905    NULL
906};
907
908static EVP_CIPHER aesni_256_cbc_hmac_sha256_cipher = {
909# ifdef NID_aes_256_cbc_hmac_sha256
910    NID_aes_256_cbc_hmac_sha256,
911# else
912    NID_undef,
913# endif
914    AES_BLOCK_SIZE, 32, AES_BLOCK_SIZE,
915    EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
916        EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
917    aesni_cbc_hmac_sha256_init_key,
918    aesni_cbc_hmac_sha256_cipher,
919    NULL,
920    sizeof(EVP_AES_HMAC_SHA256),
921    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
922    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
923    aesni_cbc_hmac_sha256_ctrl,
924    NULL
925};
926
927const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void)
928{
929    return ((OPENSSL_ia32cap_P[1] & AESNI_CAPABLE) &&
930            aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL) ?
931            &aesni_128_cbc_hmac_sha256_cipher : NULL);
932}
933
934const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void)
935{
936    return ((OPENSSL_ia32cap_P[1] & AESNI_CAPABLE) &&
937            aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL) ?
938            &aesni_256_cbc_hmac_sha256_cipher : NULL);
939}
940#else
941const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void)
942{
943    return NULL;
944}
945
946const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void)
947{
948    return NULL;
949}
950#endif  /* AESNI_ASM */
951