1/* 32-bit ELF support for ARM
2   Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3   2008, 2009, 2010  Free Software Foundation, Inc.
4
5   This file is part of BFD, the Binary File Descriptor library.
6
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 3 of the License, or
10   (at your option) any later version.
11
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with this program; if not, write to the Free Software
19   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20   MA 02110-1301, USA.  */
21
22#include "sysdep.h"
23#include <limits.h>
24
25#include "bfd.h"
26#include "libiberty.h"
27#include "libbfd.h"
28#include "elf-bfd.h"
29#include "elf-vxworks.h"
30#include "elf/arm.h"
31
32/* Return the relocation section associated with NAME.  HTAB is the
33   bfd's elf32_arm_link_hash_entry.  */
34#define RELOC_SECTION(HTAB, NAME) \
35  ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36
37/* Return size of a relocation entry.  HTAB is the bfd's
38   elf32_arm_link_hash_entry.  */
39#define RELOC_SIZE(HTAB) \
40  ((HTAB)->use_rel \
41   ? sizeof (Elf32_External_Rel) \
42   : sizeof (Elf32_External_Rela))
43
44/* Return function to swap relocations in.  HTAB is the bfd's
45   elf32_arm_link_hash_entry.  */
46#define SWAP_RELOC_IN(HTAB) \
47  ((HTAB)->use_rel \
48   ? bfd_elf32_swap_reloc_in \
49   : bfd_elf32_swap_reloca_in)
50
51/* Return function to swap relocations out.  HTAB is the bfd's
52   elf32_arm_link_hash_entry.  */
53#define SWAP_RELOC_OUT(HTAB) \
54  ((HTAB)->use_rel \
55   ? bfd_elf32_swap_reloc_out \
56   : bfd_elf32_swap_reloca_out)
57
58#define elf_info_to_howto               0
59#define elf_info_to_howto_rel           elf32_arm_info_to_howto
60
61#define ARM_ELF_ABI_VERSION		0
62#define ARM_ELF_OS_ABI_VERSION		ELFOSABI_ARM
63
64static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
65					    struct bfd_link_info *link_info,
66					    asection *sec,
67					    bfd_byte *contents);
68
69/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70   R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
71   in that slot.  */
72
73static reloc_howto_type elf32_arm_howto_table_1[] =
74{
75  /* No relocation.  */
76  HOWTO (R_ARM_NONE,		/* type */
77	 0,			/* rightshift */
78	 0,			/* size (0 = byte, 1 = short, 2 = long) */
79	 0,			/* bitsize */
80	 FALSE,			/* pc_relative */
81	 0,			/* bitpos */
82	 complain_overflow_dont,/* complain_on_overflow */
83	 bfd_elf_generic_reloc,	/* special_function */
84	 "R_ARM_NONE",		/* name */
85	 FALSE,			/* partial_inplace */
86	 0,			/* src_mask */
87	 0,			/* dst_mask */
88	 FALSE),		/* pcrel_offset */
89
90  HOWTO (R_ARM_PC24,		/* type */
91	 2,			/* rightshift */
92	 2,			/* size (0 = byte, 1 = short, 2 = long) */
93	 24,			/* bitsize */
94	 TRUE,			/* pc_relative */
95	 0,			/* bitpos */
96	 complain_overflow_signed,/* complain_on_overflow */
97	 bfd_elf_generic_reloc,	/* special_function */
98	 "R_ARM_PC24",		/* name */
99	 FALSE,			/* partial_inplace */
100	 0x00ffffff,		/* src_mask */
101	 0x00ffffff,		/* dst_mask */
102	 TRUE),			/* pcrel_offset */
103
104  /* 32 bit absolute */
105  HOWTO (R_ARM_ABS32,		/* type */
106	 0,			/* rightshift */
107	 2,			/* size (0 = byte, 1 = short, 2 = long) */
108	 32,			/* bitsize */
109	 FALSE,			/* pc_relative */
110	 0,			/* bitpos */
111	 complain_overflow_bitfield,/* complain_on_overflow */
112	 bfd_elf_generic_reloc,	/* special_function */
113	 "R_ARM_ABS32",		/* name */
114	 FALSE,			/* partial_inplace */
115	 0xffffffff,		/* src_mask */
116	 0xffffffff,		/* dst_mask */
117	 FALSE),		/* pcrel_offset */
118
119  /* standard 32bit pc-relative reloc */
120  HOWTO (R_ARM_REL32,		/* type */
121	 0,			/* rightshift */
122	 2,			/* size (0 = byte, 1 = short, 2 = long) */
123	 32,			/* bitsize */
124	 TRUE,			/* pc_relative */
125	 0,			/* bitpos */
126	 complain_overflow_bitfield,/* complain_on_overflow */
127	 bfd_elf_generic_reloc,	/* special_function */
128	 "R_ARM_REL32",		/* name */
129	 FALSE,			/* partial_inplace */
130	 0xffffffff,		/* src_mask */
131	 0xffffffff,		/* dst_mask */
132	 TRUE),			/* pcrel_offset */
133
134  /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
135  HOWTO (R_ARM_LDR_PC_G0,	/* type */
136	 0,			/* rightshift */
137	 0,			/* size (0 = byte, 1 = short, 2 = long) */
138	 32,			/* bitsize */
139	 TRUE,			/* pc_relative */
140	 0,			/* bitpos */
141	 complain_overflow_dont,/* complain_on_overflow */
142	 bfd_elf_generic_reloc,	/* special_function */
143	 "R_ARM_LDR_PC_G0",     /* name */
144	 FALSE,			/* partial_inplace */
145	 0xffffffff,		/* src_mask */
146	 0xffffffff,		/* dst_mask */
147	 TRUE),			/* pcrel_offset */
148
149   /* 16 bit absolute */
150  HOWTO (R_ARM_ABS16,		/* type */
151	 0,			/* rightshift */
152	 1,			/* size (0 = byte, 1 = short, 2 = long) */
153	 16,			/* bitsize */
154	 FALSE,			/* pc_relative */
155	 0,			/* bitpos */
156	 complain_overflow_bitfield,/* complain_on_overflow */
157	 bfd_elf_generic_reloc,	/* special_function */
158	 "R_ARM_ABS16",		/* name */
159	 FALSE,			/* partial_inplace */
160	 0x0000ffff,		/* src_mask */
161	 0x0000ffff,		/* dst_mask */
162	 FALSE),		/* pcrel_offset */
163
164  /* 12 bit absolute */
165  HOWTO (R_ARM_ABS12,		/* type */
166	 0,			/* rightshift */
167	 2,			/* size (0 = byte, 1 = short, 2 = long) */
168	 12,			/* bitsize */
169	 FALSE,			/* pc_relative */
170	 0,			/* bitpos */
171	 complain_overflow_bitfield,/* complain_on_overflow */
172	 bfd_elf_generic_reloc,	/* special_function */
173	 "R_ARM_ABS12",		/* name */
174	 FALSE,			/* partial_inplace */
175	 0x00000fff,		/* src_mask */
176	 0x00000fff,		/* dst_mask */
177	 FALSE),		/* pcrel_offset */
178
179  HOWTO (R_ARM_THM_ABS5,	/* type */
180	 6,			/* rightshift */
181	 1,			/* size (0 = byte, 1 = short, 2 = long) */
182	 5,			/* bitsize */
183	 FALSE,			/* pc_relative */
184	 0,			/* bitpos */
185	 complain_overflow_bitfield,/* complain_on_overflow */
186	 bfd_elf_generic_reloc,	/* special_function */
187	 "R_ARM_THM_ABS5",	/* name */
188	 FALSE,			/* partial_inplace */
189	 0x000007e0,		/* src_mask */
190	 0x000007e0,		/* dst_mask */
191	 FALSE),		/* pcrel_offset */
192
193  /* 8 bit absolute */
194  HOWTO (R_ARM_ABS8,		/* type */
195	 0,			/* rightshift */
196	 0,			/* size (0 = byte, 1 = short, 2 = long) */
197	 8,			/* bitsize */
198	 FALSE,			/* pc_relative */
199	 0,			/* bitpos */
200	 complain_overflow_bitfield,/* complain_on_overflow */
201	 bfd_elf_generic_reloc,	/* special_function */
202	 "R_ARM_ABS8",		/* name */
203	 FALSE,			/* partial_inplace */
204	 0x000000ff,		/* src_mask */
205	 0x000000ff,		/* dst_mask */
206	 FALSE),		/* pcrel_offset */
207
208  HOWTO (R_ARM_SBREL32,		/* type */
209	 0,			/* rightshift */
210	 2,			/* size (0 = byte, 1 = short, 2 = long) */
211	 32,			/* bitsize */
212	 FALSE,			/* pc_relative */
213	 0,			/* bitpos */
214	 complain_overflow_dont,/* complain_on_overflow */
215	 bfd_elf_generic_reloc,	/* special_function */
216	 "R_ARM_SBREL32",	/* name */
217	 FALSE,			/* partial_inplace */
218	 0xffffffff,		/* src_mask */
219	 0xffffffff,		/* dst_mask */
220	 FALSE),		/* pcrel_offset */
221
222  HOWTO (R_ARM_THM_CALL,	/* type */
223	 1,			/* rightshift */
224	 2,			/* size (0 = byte, 1 = short, 2 = long) */
225	 24,			/* bitsize */
226	 TRUE,			/* pc_relative */
227	 0,			/* bitpos */
228	 complain_overflow_signed,/* complain_on_overflow */
229	 bfd_elf_generic_reloc,	/* special_function */
230	 "R_ARM_THM_CALL",	/* name */
231	 FALSE,			/* partial_inplace */
232	 0x07ff07ff,		/* src_mask */
233	 0x07ff07ff,		/* dst_mask */
234	 TRUE),			/* pcrel_offset */
235
236  HOWTO (R_ARM_THM_PC8,	        /* type */
237	 1,			/* rightshift */
238	 1,			/* size (0 = byte, 1 = short, 2 = long) */
239	 8,			/* bitsize */
240	 TRUE,			/* pc_relative */
241	 0,			/* bitpos */
242	 complain_overflow_signed,/* complain_on_overflow */
243	 bfd_elf_generic_reloc,	/* special_function */
244	 "R_ARM_THM_PC8",	/* name */
245	 FALSE,			/* partial_inplace */
246	 0x000000ff,		/* src_mask */
247	 0x000000ff,		/* dst_mask */
248	 TRUE),			/* pcrel_offset */
249
250  HOWTO (R_ARM_BREL_ADJ,	/* type */
251	 1,			/* rightshift */
252	 1,			/* size (0 = byte, 1 = short, 2 = long) */
253	 32,			/* bitsize */
254	 FALSE,			/* pc_relative */
255	 0,			/* bitpos */
256	 complain_overflow_signed,/* complain_on_overflow */
257	 bfd_elf_generic_reloc,	/* special_function */
258	 "R_ARM_BREL_ADJ",	/* name */
259	 FALSE,			/* partial_inplace */
260	 0xffffffff,		/* src_mask */
261	 0xffffffff,		/* dst_mask */
262	 FALSE),		/* pcrel_offset */
263
264  HOWTO (R_ARM_SWI24,		/* type */
265	 0,			/* rightshift */
266	 0,			/* size (0 = byte, 1 = short, 2 = long) */
267	 0,			/* bitsize */
268	 FALSE,			/* pc_relative */
269	 0,			/* bitpos */
270	 complain_overflow_signed,/* complain_on_overflow */
271	 bfd_elf_generic_reloc,	/* special_function */
272	 "R_ARM_SWI24",		/* name */
273	 FALSE,			/* partial_inplace */
274	 0x00000000,		/* src_mask */
275	 0x00000000,		/* dst_mask */
276	 FALSE),		/* pcrel_offset */
277
278  HOWTO (R_ARM_THM_SWI8,	/* type */
279	 0,			/* rightshift */
280	 0,			/* size (0 = byte, 1 = short, 2 = long) */
281	 0,			/* bitsize */
282	 FALSE,			/* pc_relative */
283	 0,			/* bitpos */
284	 complain_overflow_signed,/* complain_on_overflow */
285	 bfd_elf_generic_reloc,	/* special_function */
286	 "R_ARM_SWI8",		/* name */
287	 FALSE,			/* partial_inplace */
288	 0x00000000,		/* src_mask */
289	 0x00000000,		/* dst_mask */
290	 FALSE),		/* pcrel_offset */
291
292  /* BLX instruction for the ARM.  */
293  HOWTO (R_ARM_XPC25,		/* type */
294	 2,			/* rightshift */
295	 2,			/* size (0 = byte, 1 = short, 2 = long) */
296	 25,			/* bitsize */
297	 TRUE,			/* pc_relative */
298	 0,			/* bitpos */
299	 complain_overflow_signed,/* complain_on_overflow */
300	 bfd_elf_generic_reloc,	/* special_function */
301	 "R_ARM_XPC25",		/* name */
302	 FALSE,			/* partial_inplace */
303	 0x00ffffff,		/* src_mask */
304	 0x00ffffff,		/* dst_mask */
305	 TRUE),			/* pcrel_offset */
306
307  /* BLX instruction for the Thumb.  */
308  HOWTO (R_ARM_THM_XPC22,	/* type */
309	 2,			/* rightshift */
310	 2,			/* size (0 = byte, 1 = short, 2 = long) */
311	 22,			/* bitsize */
312	 TRUE,			/* pc_relative */
313	 0,			/* bitpos */
314	 complain_overflow_signed,/* complain_on_overflow */
315	 bfd_elf_generic_reloc,	/* special_function */
316	 "R_ARM_THM_XPC22",	/* name */
317	 FALSE,			/* partial_inplace */
318	 0x07ff07ff,		/* src_mask */
319	 0x07ff07ff,		/* dst_mask */
320	 TRUE),			/* pcrel_offset */
321
322  /* Dynamic TLS relocations.  */
323
324  HOWTO (R_ARM_TLS_DTPMOD32,	/* type */
325         0,                     /* rightshift */
326         2,                     /* size (0 = byte, 1 = short, 2 = long) */
327         32,                    /* bitsize */
328         FALSE,                 /* pc_relative */
329         0,                     /* bitpos */
330         complain_overflow_bitfield,/* complain_on_overflow */
331         bfd_elf_generic_reloc, /* special_function */
332         "R_ARM_TLS_DTPMOD32",	/* name */
333         TRUE,			/* partial_inplace */
334         0xffffffff,		/* src_mask */
335         0xffffffff,		/* dst_mask */
336         FALSE),                /* pcrel_offset */
337
338  HOWTO (R_ARM_TLS_DTPOFF32,	/* type */
339         0,                     /* rightshift */
340         2,                     /* size (0 = byte, 1 = short, 2 = long) */
341         32,                    /* bitsize */
342         FALSE,                 /* pc_relative */
343         0,                     /* bitpos */
344         complain_overflow_bitfield,/* complain_on_overflow */
345         bfd_elf_generic_reloc, /* special_function */
346         "R_ARM_TLS_DTPOFF32",	/* name */
347         TRUE,			/* partial_inplace */
348         0xffffffff,		/* src_mask */
349         0xffffffff,		/* dst_mask */
350         FALSE),                /* pcrel_offset */
351
352  HOWTO (R_ARM_TLS_TPOFF32,	/* type */
353         0,                     /* rightshift */
354         2,                     /* size (0 = byte, 1 = short, 2 = long) */
355         32,                    /* bitsize */
356         FALSE,                 /* pc_relative */
357         0,                     /* bitpos */
358         complain_overflow_bitfield,/* complain_on_overflow */
359         bfd_elf_generic_reloc, /* special_function */
360         "R_ARM_TLS_TPOFF32",	/* name */
361         TRUE,			/* partial_inplace */
362         0xffffffff,		/* src_mask */
363         0xffffffff,		/* dst_mask */
364         FALSE),                /* pcrel_offset */
365
366  /* Relocs used in ARM Linux */
367
368  HOWTO (R_ARM_COPY,		/* type */
369         0,                     /* rightshift */
370         2,                     /* size (0 = byte, 1 = short, 2 = long) */
371         32,                    /* bitsize */
372         FALSE,                 /* pc_relative */
373         0,                     /* bitpos */
374         complain_overflow_bitfield,/* complain_on_overflow */
375         bfd_elf_generic_reloc, /* special_function */
376         "R_ARM_COPY",		/* name */
377         TRUE,			/* partial_inplace */
378         0xffffffff,		/* src_mask */
379         0xffffffff,		/* dst_mask */
380         FALSE),                /* pcrel_offset */
381
382  HOWTO (R_ARM_GLOB_DAT,	/* type */
383         0,                     /* rightshift */
384         2,                     /* size (0 = byte, 1 = short, 2 = long) */
385         32,                    /* bitsize */
386         FALSE,                 /* pc_relative */
387         0,                     /* bitpos */
388         complain_overflow_bitfield,/* complain_on_overflow */
389         bfd_elf_generic_reloc, /* special_function */
390         "R_ARM_GLOB_DAT",	/* name */
391         TRUE,			/* partial_inplace */
392         0xffffffff,		/* src_mask */
393         0xffffffff,		/* dst_mask */
394         FALSE),                /* pcrel_offset */
395
396  HOWTO (R_ARM_JUMP_SLOT,	/* type */
397         0,                     /* rightshift */
398         2,                     /* size (0 = byte, 1 = short, 2 = long) */
399         32,                    /* bitsize */
400         FALSE,                 /* pc_relative */
401         0,                     /* bitpos */
402         complain_overflow_bitfield,/* complain_on_overflow */
403         bfd_elf_generic_reloc, /* special_function */
404         "R_ARM_JUMP_SLOT",	/* name */
405         TRUE,			/* partial_inplace */
406         0xffffffff,		/* src_mask */
407         0xffffffff,		/* dst_mask */
408         FALSE),                /* pcrel_offset */
409
410  HOWTO (R_ARM_RELATIVE,	/* type */
411         0,                     /* rightshift */
412         2,                     /* size (0 = byte, 1 = short, 2 = long) */
413         32,                    /* bitsize */
414         FALSE,                 /* pc_relative */
415         0,                     /* bitpos */
416         complain_overflow_bitfield,/* complain_on_overflow */
417         bfd_elf_generic_reloc, /* special_function */
418         "R_ARM_RELATIVE",	/* name */
419         TRUE,			/* partial_inplace */
420         0xffffffff,		/* src_mask */
421         0xffffffff,		/* dst_mask */
422         FALSE),                /* pcrel_offset */
423
424  HOWTO (R_ARM_GOTOFF32,	/* type */
425         0,                     /* rightshift */
426         2,                     /* size (0 = byte, 1 = short, 2 = long) */
427         32,                    /* bitsize */
428         FALSE,                 /* pc_relative */
429         0,                     /* bitpos */
430         complain_overflow_bitfield,/* complain_on_overflow */
431         bfd_elf_generic_reloc, /* special_function */
432         "R_ARM_GOTOFF32",	/* name */
433         TRUE,			/* partial_inplace */
434         0xffffffff,		/* src_mask */
435         0xffffffff,		/* dst_mask */
436         FALSE),                /* pcrel_offset */
437
438  HOWTO (R_ARM_GOTPC,		/* type */
439         0,                     /* rightshift */
440         2,                     /* size (0 = byte, 1 = short, 2 = long) */
441         32,                    /* bitsize */
442         TRUE,			/* pc_relative */
443         0,                     /* bitpos */
444         complain_overflow_bitfield,/* complain_on_overflow */
445         bfd_elf_generic_reloc, /* special_function */
446         "R_ARM_GOTPC",		/* name */
447         TRUE,			/* partial_inplace */
448         0xffffffff,		/* src_mask */
449         0xffffffff,		/* dst_mask */
450         TRUE),			/* pcrel_offset */
451
452  HOWTO (R_ARM_GOT32,		/* type */
453         0,                     /* rightshift */
454         2,                     /* size (0 = byte, 1 = short, 2 = long) */
455         32,                    /* bitsize */
456         FALSE,			/* pc_relative */
457         0,                     /* bitpos */
458         complain_overflow_bitfield,/* complain_on_overflow */
459         bfd_elf_generic_reloc, /* special_function */
460         "R_ARM_GOT32",		/* name */
461         TRUE,			/* partial_inplace */
462         0xffffffff,		/* src_mask */
463         0xffffffff,		/* dst_mask */
464         FALSE),		/* pcrel_offset */
465
466  HOWTO (R_ARM_PLT32,		/* type */
467         2,                     /* rightshift */
468         2,                     /* size (0 = byte, 1 = short, 2 = long) */
469         24,                    /* bitsize */
470         TRUE,			/* pc_relative */
471         0,                     /* bitpos */
472         complain_overflow_bitfield,/* complain_on_overflow */
473         bfd_elf_generic_reloc, /* special_function */
474         "R_ARM_PLT32",		/* name */
475         FALSE,			/* partial_inplace */
476         0x00ffffff,		/* src_mask */
477         0x00ffffff,		/* dst_mask */
478         TRUE),			/* pcrel_offset */
479
480  HOWTO (R_ARM_CALL,		/* type */
481	 2,			/* rightshift */
482	 2,			/* size (0 = byte, 1 = short, 2 = long) */
483	 24,			/* bitsize */
484	 TRUE,			/* pc_relative */
485	 0,			/* bitpos */
486	 complain_overflow_signed,/* complain_on_overflow */
487	 bfd_elf_generic_reloc,	/* special_function */
488	 "R_ARM_CALL",		/* name */
489	 FALSE,			/* partial_inplace */
490	 0x00ffffff,		/* src_mask */
491	 0x00ffffff,		/* dst_mask */
492	 TRUE),			/* pcrel_offset */
493
494  HOWTO (R_ARM_JUMP24,		/* type */
495	 2,			/* rightshift */
496	 2,			/* size (0 = byte, 1 = short, 2 = long) */
497	 24,			/* bitsize */
498	 TRUE,			/* pc_relative */
499	 0,			/* bitpos */
500	 complain_overflow_signed,/* complain_on_overflow */
501	 bfd_elf_generic_reloc,	/* special_function */
502	 "R_ARM_JUMP24",	/* name */
503	 FALSE,			/* partial_inplace */
504	 0x00ffffff,		/* src_mask */
505	 0x00ffffff,		/* dst_mask */
506	 TRUE),			/* pcrel_offset */
507
508  HOWTO (R_ARM_THM_JUMP24,	/* type */
509	 1,			/* rightshift */
510	 2,			/* size (0 = byte, 1 = short, 2 = long) */
511	 24,			/* bitsize */
512	 TRUE,			/* pc_relative */
513	 0,			/* bitpos */
514	 complain_overflow_signed,/* complain_on_overflow */
515	 bfd_elf_generic_reloc,	/* special_function */
516	 "R_ARM_THM_JUMP24",	/* name */
517	 FALSE,			/* partial_inplace */
518	 0x07ff2fff,		/* src_mask */
519	 0x07ff2fff,		/* dst_mask */
520	 TRUE),			/* pcrel_offset */
521
522  HOWTO (R_ARM_BASE_ABS,	/* type */
523	 0,			/* rightshift */
524	 2,			/* size (0 = byte, 1 = short, 2 = long) */
525	 32,			/* bitsize */
526	 FALSE,			/* pc_relative */
527	 0,			/* bitpos */
528	 complain_overflow_dont,/* complain_on_overflow */
529	 bfd_elf_generic_reloc,	/* special_function */
530	 "R_ARM_BASE_ABS",	/* name */
531	 FALSE,			/* partial_inplace */
532	 0xffffffff,		/* src_mask */
533	 0xffffffff,		/* dst_mask */
534	 FALSE),		/* pcrel_offset */
535
536  HOWTO (R_ARM_ALU_PCREL7_0,	/* type */
537	 0,			/* rightshift */
538	 2,			/* size (0 = byte, 1 = short, 2 = long) */
539	 12,			/* bitsize */
540	 TRUE,			/* pc_relative */
541	 0,			/* bitpos */
542	 complain_overflow_dont,/* complain_on_overflow */
543	 bfd_elf_generic_reloc,	/* special_function */
544	 "R_ARM_ALU_PCREL_7_0",	/* name */
545	 FALSE,			/* partial_inplace */
546	 0x00000fff,		/* src_mask */
547	 0x00000fff,		/* dst_mask */
548	 TRUE),			/* pcrel_offset */
549
550  HOWTO (R_ARM_ALU_PCREL15_8,	/* type */
551	 0,			/* rightshift */
552	 2,			/* size (0 = byte, 1 = short, 2 = long) */
553	 12,			/* bitsize */
554	 TRUE,			/* pc_relative */
555	 8,			/* bitpos */
556	 complain_overflow_dont,/* complain_on_overflow */
557	 bfd_elf_generic_reloc,	/* special_function */
558	 "R_ARM_ALU_PCREL_15_8",/* name */
559	 FALSE,			/* partial_inplace */
560	 0x00000fff,		/* src_mask */
561	 0x00000fff,		/* dst_mask */
562	 TRUE),			/* pcrel_offset */
563
564  HOWTO (R_ARM_ALU_PCREL23_15,	/* type */
565	 0,			/* rightshift */
566	 2,			/* size (0 = byte, 1 = short, 2 = long) */
567	 12,			/* bitsize */
568	 TRUE,			/* pc_relative */
569	 16,			/* bitpos */
570	 complain_overflow_dont,/* complain_on_overflow */
571	 bfd_elf_generic_reloc,	/* special_function */
572	 "R_ARM_ALU_PCREL_23_15",/* name */
573	 FALSE,			/* partial_inplace */
574	 0x00000fff,		/* src_mask */
575	 0x00000fff,		/* dst_mask */
576	 TRUE),			/* pcrel_offset */
577
578  HOWTO (R_ARM_LDR_SBREL_11_0,	/* type */
579	 0,			/* rightshift */
580	 2,			/* size (0 = byte, 1 = short, 2 = long) */
581	 12,			/* bitsize */
582	 FALSE,			/* pc_relative */
583	 0,			/* bitpos */
584	 complain_overflow_dont,/* complain_on_overflow */
585	 bfd_elf_generic_reloc,	/* special_function */
586	 "R_ARM_LDR_SBREL_11_0",/* name */
587	 FALSE,			/* partial_inplace */
588	 0x00000fff,		/* src_mask */
589	 0x00000fff,		/* dst_mask */
590	 FALSE),		/* pcrel_offset */
591
592  HOWTO (R_ARM_ALU_SBREL_19_12,	/* type */
593	 0,			/* rightshift */
594	 2,			/* size (0 = byte, 1 = short, 2 = long) */
595	 8,			/* bitsize */
596	 FALSE,			/* pc_relative */
597	 12,			/* bitpos */
598	 complain_overflow_dont,/* complain_on_overflow */
599	 bfd_elf_generic_reloc,	/* special_function */
600	 "R_ARM_ALU_SBREL_19_12",/* name */
601	 FALSE,			/* partial_inplace */
602	 0x000ff000,		/* src_mask */
603	 0x000ff000,		/* dst_mask */
604	 FALSE),		/* pcrel_offset */
605
606  HOWTO (R_ARM_ALU_SBREL_27_20,	/* type */
607	 0,			/* rightshift */
608	 2,			/* size (0 = byte, 1 = short, 2 = long) */
609	 8,			/* bitsize */
610	 FALSE,			/* pc_relative */
611	 20,			/* bitpos */
612	 complain_overflow_dont,/* complain_on_overflow */
613	 bfd_elf_generic_reloc,	/* special_function */
614	 "R_ARM_ALU_SBREL_27_20",/* name */
615	 FALSE,			/* partial_inplace */
616	 0x0ff00000,		/* src_mask */
617	 0x0ff00000,		/* dst_mask */
618	 FALSE),		/* pcrel_offset */
619
620  HOWTO (R_ARM_TARGET1,		/* type */
621	 0,			/* rightshift */
622	 2,			/* size (0 = byte, 1 = short, 2 = long) */
623	 32,			/* bitsize */
624	 FALSE,			/* pc_relative */
625	 0,			/* bitpos */
626	 complain_overflow_dont,/* complain_on_overflow */
627	 bfd_elf_generic_reloc,	/* special_function */
628	 "R_ARM_TARGET1",	/* name */
629	 FALSE,			/* partial_inplace */
630	 0xffffffff,		/* src_mask */
631	 0xffffffff,		/* dst_mask */
632	 FALSE),		/* pcrel_offset */
633
634  HOWTO (R_ARM_ROSEGREL32,	/* type */
635	 0,			/* rightshift */
636	 2,			/* size (0 = byte, 1 = short, 2 = long) */
637	 32,			/* bitsize */
638	 FALSE,			/* pc_relative */
639	 0,			/* bitpos */
640	 complain_overflow_dont,/* complain_on_overflow */
641	 bfd_elf_generic_reloc,	/* special_function */
642	 "R_ARM_ROSEGREL32",	/* name */
643	 FALSE,			/* partial_inplace */
644	 0xffffffff,		/* src_mask */
645	 0xffffffff,		/* dst_mask */
646	 FALSE),		/* pcrel_offset */
647
648  HOWTO (R_ARM_V4BX,		/* type */
649	 0,			/* rightshift */
650	 2,			/* size (0 = byte, 1 = short, 2 = long) */
651	 32,			/* bitsize */
652	 FALSE,			/* pc_relative */
653	 0,			/* bitpos */
654	 complain_overflow_dont,/* complain_on_overflow */
655	 bfd_elf_generic_reloc,	/* special_function */
656	 "R_ARM_V4BX",		/* name */
657	 FALSE,			/* partial_inplace */
658	 0xffffffff,		/* src_mask */
659	 0xffffffff,		/* dst_mask */
660	 FALSE),		/* pcrel_offset */
661
662  HOWTO (R_ARM_TARGET2,		/* type */
663	 0,			/* rightshift */
664	 2,			/* size (0 = byte, 1 = short, 2 = long) */
665	 32,			/* bitsize */
666	 FALSE,			/* pc_relative */
667	 0,			/* bitpos */
668	 complain_overflow_signed,/* complain_on_overflow */
669	 bfd_elf_generic_reloc,	/* special_function */
670	 "R_ARM_TARGET2",	/* name */
671	 FALSE,			/* partial_inplace */
672	 0xffffffff,		/* src_mask */
673	 0xffffffff,		/* dst_mask */
674	 TRUE),			/* pcrel_offset */
675
676  HOWTO (R_ARM_PREL31,		/* type */
677	 0,			/* rightshift */
678	 2,			/* size (0 = byte, 1 = short, 2 = long) */
679	 31,			/* bitsize */
680	 TRUE,			/* pc_relative */
681	 0,			/* bitpos */
682	 complain_overflow_signed,/* complain_on_overflow */
683	 bfd_elf_generic_reloc,	/* special_function */
684	 "R_ARM_PREL31",	/* name */
685	 FALSE,			/* partial_inplace */
686	 0x7fffffff,		/* src_mask */
687	 0x7fffffff,		/* dst_mask */
688	 TRUE),			/* pcrel_offset */
689
690  HOWTO (R_ARM_MOVW_ABS_NC,	/* type */
691	 0,			/* rightshift */
692	 2,			/* size (0 = byte, 1 = short, 2 = long) */
693	 16,			/* bitsize */
694	 FALSE,			/* pc_relative */
695	 0,			/* bitpos */
696	 complain_overflow_dont,/* complain_on_overflow */
697	 bfd_elf_generic_reloc,	/* special_function */
698	 "R_ARM_MOVW_ABS_NC",	/* name */
699	 FALSE,			/* partial_inplace */
700	 0x000f0fff,		/* src_mask */
701	 0x000f0fff,		/* dst_mask */
702	 FALSE),		/* pcrel_offset */
703
704  HOWTO (R_ARM_MOVT_ABS,	/* type */
705	 0,			/* rightshift */
706	 2,			/* size (0 = byte, 1 = short, 2 = long) */
707	 16,			/* bitsize */
708	 FALSE,			/* pc_relative */
709	 0,			/* bitpos */
710	 complain_overflow_bitfield,/* complain_on_overflow */
711	 bfd_elf_generic_reloc,	/* special_function */
712	 "R_ARM_MOVT_ABS",	/* name */
713	 FALSE,			/* partial_inplace */
714	 0x000f0fff,		/* src_mask */
715	 0x000f0fff,		/* dst_mask */
716	 FALSE),		/* pcrel_offset */
717
718  HOWTO (R_ARM_MOVW_PREL_NC,	/* type */
719	 0,			/* rightshift */
720	 2,			/* size (0 = byte, 1 = short, 2 = long) */
721	 16,			/* bitsize */
722	 TRUE,			/* pc_relative */
723	 0,			/* bitpos */
724	 complain_overflow_dont,/* complain_on_overflow */
725	 bfd_elf_generic_reloc,	/* special_function */
726	 "R_ARM_MOVW_PREL_NC",	/* name */
727	 FALSE,			/* partial_inplace */
728	 0x000f0fff,		/* src_mask */
729	 0x000f0fff,		/* dst_mask */
730	 TRUE),			/* pcrel_offset */
731
732  HOWTO (R_ARM_MOVT_PREL,	/* type */
733	 0,			/* rightshift */
734	 2,			/* size (0 = byte, 1 = short, 2 = long) */
735	 16,			/* bitsize */
736	 TRUE,			/* pc_relative */
737	 0,			/* bitpos */
738	 complain_overflow_bitfield,/* complain_on_overflow */
739	 bfd_elf_generic_reloc,	/* special_function */
740	 "R_ARM_MOVT_PREL",	/* name */
741	 FALSE,			/* partial_inplace */
742	 0x000f0fff,		/* src_mask */
743	 0x000f0fff,		/* dst_mask */
744	 TRUE),			/* pcrel_offset */
745
746  HOWTO (R_ARM_THM_MOVW_ABS_NC,	/* type */
747	 0,			/* rightshift */
748	 2,			/* size (0 = byte, 1 = short, 2 = long) */
749	 16,			/* bitsize */
750	 FALSE,			/* pc_relative */
751	 0,			/* bitpos */
752	 complain_overflow_dont,/* complain_on_overflow */
753	 bfd_elf_generic_reloc,	/* special_function */
754	 "R_ARM_THM_MOVW_ABS_NC",/* name */
755	 FALSE,			/* partial_inplace */
756	 0x040f70ff,		/* src_mask */
757	 0x040f70ff,		/* dst_mask */
758	 FALSE),		/* pcrel_offset */
759
760  HOWTO (R_ARM_THM_MOVT_ABS,	/* type */
761	 0,			/* rightshift */
762	 2,			/* size (0 = byte, 1 = short, 2 = long) */
763	 16,			/* bitsize */
764	 FALSE,			/* pc_relative */
765	 0,			/* bitpos */
766	 complain_overflow_bitfield,/* complain_on_overflow */
767	 bfd_elf_generic_reloc,	/* special_function */
768	 "R_ARM_THM_MOVT_ABS",	/* name */
769	 FALSE,			/* partial_inplace */
770	 0x040f70ff,		/* src_mask */
771	 0x040f70ff,		/* dst_mask */
772	 FALSE),		/* pcrel_offset */
773
774  HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
775	 0,			/* rightshift */
776	 2,			/* size (0 = byte, 1 = short, 2 = long) */
777	 16,			/* bitsize */
778	 TRUE,			/* pc_relative */
779	 0,			/* bitpos */
780	 complain_overflow_dont,/* complain_on_overflow */
781	 bfd_elf_generic_reloc,	/* special_function */
782	 "R_ARM_THM_MOVW_PREL_NC",/* name */
783	 FALSE,			/* partial_inplace */
784	 0x040f70ff,		/* src_mask */
785	 0x040f70ff,		/* dst_mask */
786	 TRUE),			/* pcrel_offset */
787
788  HOWTO (R_ARM_THM_MOVT_PREL,	/* type */
789	 0,			/* rightshift */
790	 2,			/* size (0 = byte, 1 = short, 2 = long) */
791	 16,			/* bitsize */
792	 TRUE,			/* pc_relative */
793	 0,			/* bitpos */
794	 complain_overflow_bitfield,/* complain_on_overflow */
795	 bfd_elf_generic_reloc,	/* special_function */
796	 "R_ARM_THM_MOVT_PREL",	/* name */
797	 FALSE,			/* partial_inplace */
798	 0x040f70ff,		/* src_mask */
799	 0x040f70ff,		/* dst_mask */
800	 TRUE),			/* pcrel_offset */
801
802  HOWTO (R_ARM_THM_JUMP19,	/* type */
803	 1,			/* rightshift */
804	 2,			/* size (0 = byte, 1 = short, 2 = long) */
805	 19,			/* bitsize */
806	 TRUE,			/* pc_relative */
807	 0,			/* bitpos */
808	 complain_overflow_signed,/* complain_on_overflow */
809	 bfd_elf_generic_reloc, /* special_function */
810	 "R_ARM_THM_JUMP19",	/* name */
811	 FALSE,			/* partial_inplace */
812	 0x043f2fff,		/* src_mask */
813	 0x043f2fff,		/* dst_mask */
814	 TRUE),			/* pcrel_offset */
815
816  HOWTO (R_ARM_THM_JUMP6,	/* type */
817	 1,			/* rightshift */
818	 1,			/* size (0 = byte, 1 = short, 2 = long) */
819	 6,			/* bitsize */
820	 TRUE,			/* pc_relative */
821	 0,			/* bitpos */
822	 complain_overflow_unsigned,/* complain_on_overflow */
823	 bfd_elf_generic_reloc,	/* special_function */
824	 "R_ARM_THM_JUMP6",	/* name */
825	 FALSE,			/* partial_inplace */
826	 0x02f8,		/* src_mask */
827	 0x02f8,		/* dst_mask */
828	 TRUE),			/* pcrel_offset */
829
830  /* These are declared as 13-bit signed relocations because we can
831     address -4095 .. 4095(base) by altering ADDW to SUBW or vice
832     versa.  */
833  HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
834	 0,			/* rightshift */
835	 2,			/* size (0 = byte, 1 = short, 2 = long) */
836	 13,			/* bitsize */
837	 TRUE,			/* pc_relative */
838	 0,			/* bitpos */
839	 complain_overflow_dont,/* complain_on_overflow */
840	 bfd_elf_generic_reloc,	/* special_function */
841	 "R_ARM_THM_ALU_PREL_11_0",/* name */
842	 FALSE,			/* partial_inplace */
843	 0xffffffff,		/* src_mask */
844	 0xffffffff,		/* dst_mask */
845	 TRUE),			/* pcrel_offset */
846
847  HOWTO (R_ARM_THM_PC12,	/* type */
848	 0,			/* rightshift */
849	 2,			/* size (0 = byte, 1 = short, 2 = long) */
850	 13,			/* bitsize */
851	 TRUE,			/* pc_relative */
852	 0,			/* bitpos */
853	 complain_overflow_dont,/* complain_on_overflow */
854	 bfd_elf_generic_reloc,	/* special_function */
855	 "R_ARM_THM_PC12",	/* name */
856	 FALSE,			/* partial_inplace */
857	 0xffffffff,		/* src_mask */
858	 0xffffffff,		/* dst_mask */
859	 TRUE),			/* pcrel_offset */
860
861  HOWTO (R_ARM_ABS32_NOI,	/* type */
862	 0,			/* rightshift */
863	 2,			/* size (0 = byte, 1 = short, 2 = long) */
864	 32,			/* bitsize */
865	 FALSE,			/* pc_relative */
866	 0,			/* bitpos */
867	 complain_overflow_dont,/* complain_on_overflow */
868	 bfd_elf_generic_reloc,	/* special_function */
869	 "R_ARM_ABS32_NOI",	/* name */
870	 FALSE,			/* partial_inplace */
871	 0xffffffff,		/* src_mask */
872	 0xffffffff,		/* dst_mask */
873	 FALSE),		/* pcrel_offset */
874
875  HOWTO (R_ARM_REL32_NOI,	/* type */
876	 0,			/* rightshift */
877	 2,			/* size (0 = byte, 1 = short, 2 = long) */
878	 32,			/* bitsize */
879	 TRUE,			/* pc_relative */
880	 0,			/* bitpos */
881	 complain_overflow_dont,/* complain_on_overflow */
882	 bfd_elf_generic_reloc,	/* special_function */
883	 "R_ARM_REL32_NOI",	/* name */
884	 FALSE,			/* partial_inplace */
885	 0xffffffff,		/* src_mask */
886	 0xffffffff,		/* dst_mask */
887	 FALSE),		/* pcrel_offset */
888
889  /* Group relocations.  */
890
891  HOWTO (R_ARM_ALU_PC_G0_NC,	/* type */
892	 0,			/* rightshift */
893	 2,			/* size (0 = byte, 1 = short, 2 = long) */
894	 32,			/* bitsize */
895	 TRUE,			/* pc_relative */
896	 0,			/* bitpos */
897	 complain_overflow_dont,/* complain_on_overflow */
898	 bfd_elf_generic_reloc,	/* special_function */
899	 "R_ARM_ALU_PC_G0_NC",	/* name */
900	 FALSE,			/* partial_inplace */
901	 0xffffffff,		/* src_mask */
902	 0xffffffff,		/* dst_mask */
903	 TRUE),			/* pcrel_offset */
904
905  HOWTO (R_ARM_ALU_PC_G0,   	/* type */
906	 0,			/* rightshift */
907	 2,			/* size (0 = byte, 1 = short, 2 = long) */
908	 32,			/* bitsize */
909	 TRUE,			/* pc_relative */
910	 0,			/* bitpos */
911	 complain_overflow_dont,/* complain_on_overflow */
912	 bfd_elf_generic_reloc,	/* special_function */
913	 "R_ARM_ALU_PC_G0",   	/* name */
914	 FALSE,			/* partial_inplace */
915	 0xffffffff,		/* src_mask */
916	 0xffffffff,		/* dst_mask */
917	 TRUE),			/* pcrel_offset */
918
919  HOWTO (R_ARM_ALU_PC_G1_NC,	/* type */
920	 0,			/* rightshift */
921	 2,			/* size (0 = byte, 1 = short, 2 = long) */
922	 32,			/* bitsize */
923	 TRUE,			/* pc_relative */
924	 0,			/* bitpos */
925	 complain_overflow_dont,/* complain_on_overflow */
926	 bfd_elf_generic_reloc,	/* special_function */
927	 "R_ARM_ALU_PC_G1_NC",	/* name */
928	 FALSE,			/* partial_inplace */
929	 0xffffffff,		/* src_mask */
930	 0xffffffff,		/* dst_mask */
931	 TRUE),			/* pcrel_offset */
932
933  HOWTO (R_ARM_ALU_PC_G1,   	/* type */
934	 0,			/* rightshift */
935	 2,			/* size (0 = byte, 1 = short, 2 = long) */
936	 32,			/* bitsize */
937	 TRUE,			/* pc_relative */
938	 0,			/* bitpos */
939	 complain_overflow_dont,/* complain_on_overflow */
940	 bfd_elf_generic_reloc,	/* special_function */
941	 "R_ARM_ALU_PC_G1",   	/* name */
942	 FALSE,			/* partial_inplace */
943	 0xffffffff,		/* src_mask */
944	 0xffffffff,		/* dst_mask */
945	 TRUE),			/* pcrel_offset */
946
947  HOWTO (R_ARM_ALU_PC_G2,   	/* type */
948	 0,			/* rightshift */
949	 2,			/* size (0 = byte, 1 = short, 2 = long) */
950	 32,			/* bitsize */
951	 TRUE,			/* pc_relative */
952	 0,			/* bitpos */
953	 complain_overflow_dont,/* complain_on_overflow */
954	 bfd_elf_generic_reloc,	/* special_function */
955	 "R_ARM_ALU_PC_G2",   	/* name */
956	 FALSE,			/* partial_inplace */
957	 0xffffffff,		/* src_mask */
958	 0xffffffff,		/* dst_mask */
959	 TRUE),			/* pcrel_offset */
960
961  HOWTO (R_ARM_LDR_PC_G1,   	/* type */
962	 0,			/* rightshift */
963	 2,			/* size (0 = byte, 1 = short, 2 = long) */
964	 32,			/* bitsize */
965	 TRUE,			/* pc_relative */
966	 0,			/* bitpos */
967	 complain_overflow_dont,/* complain_on_overflow */
968	 bfd_elf_generic_reloc,	/* special_function */
969	 "R_ARM_LDR_PC_G1",   	/* name */
970	 FALSE,			/* partial_inplace */
971	 0xffffffff,		/* src_mask */
972	 0xffffffff,		/* dst_mask */
973	 TRUE),			/* pcrel_offset */
974
975  HOWTO (R_ARM_LDR_PC_G2,   	/* type */
976	 0,			/* rightshift */
977	 2,			/* size (0 = byte, 1 = short, 2 = long) */
978	 32,			/* bitsize */
979	 TRUE,			/* pc_relative */
980	 0,			/* bitpos */
981	 complain_overflow_dont,/* complain_on_overflow */
982	 bfd_elf_generic_reloc,	/* special_function */
983	 "R_ARM_LDR_PC_G2",   	/* name */
984	 FALSE,			/* partial_inplace */
985	 0xffffffff,		/* src_mask */
986	 0xffffffff,		/* dst_mask */
987	 TRUE),			/* pcrel_offset */
988
989  HOWTO (R_ARM_LDRS_PC_G0,   	/* type */
990	 0,			/* rightshift */
991	 2,			/* size (0 = byte, 1 = short, 2 = long) */
992	 32,			/* bitsize */
993	 TRUE,			/* pc_relative */
994	 0,			/* bitpos */
995	 complain_overflow_dont,/* complain_on_overflow */
996	 bfd_elf_generic_reloc,	/* special_function */
997	 "R_ARM_LDRS_PC_G0",   	/* name */
998	 FALSE,			/* partial_inplace */
999	 0xffffffff,		/* src_mask */
1000	 0xffffffff,		/* dst_mask */
1001	 TRUE),			/* pcrel_offset */
1002
1003  HOWTO (R_ARM_LDRS_PC_G1,   	/* type */
1004	 0,			/* rightshift */
1005	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1006	 32,			/* bitsize */
1007	 TRUE,			/* pc_relative */
1008	 0,			/* bitpos */
1009	 complain_overflow_dont,/* complain_on_overflow */
1010	 bfd_elf_generic_reloc,	/* special_function */
1011	 "R_ARM_LDRS_PC_G1",   	/* name */
1012	 FALSE,			/* partial_inplace */
1013	 0xffffffff,		/* src_mask */
1014	 0xffffffff,		/* dst_mask */
1015	 TRUE),			/* pcrel_offset */
1016
1017  HOWTO (R_ARM_LDRS_PC_G2,   	/* type */
1018	 0,			/* rightshift */
1019	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1020	 32,			/* bitsize */
1021	 TRUE,			/* pc_relative */
1022	 0,			/* bitpos */
1023	 complain_overflow_dont,/* complain_on_overflow */
1024	 bfd_elf_generic_reloc,	/* special_function */
1025	 "R_ARM_LDRS_PC_G2",   	/* name */
1026	 FALSE,			/* partial_inplace */
1027	 0xffffffff,		/* src_mask */
1028	 0xffffffff,		/* dst_mask */
1029	 TRUE),			/* pcrel_offset */
1030
1031  HOWTO (R_ARM_LDC_PC_G0,   	/* type */
1032	 0,			/* rightshift */
1033	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1034	 32,			/* bitsize */
1035	 TRUE,			/* pc_relative */
1036	 0,			/* bitpos */
1037	 complain_overflow_dont,/* complain_on_overflow */
1038	 bfd_elf_generic_reloc,	/* special_function */
1039	 "R_ARM_LDC_PC_G0",   	/* name */
1040	 FALSE,			/* partial_inplace */
1041	 0xffffffff,		/* src_mask */
1042	 0xffffffff,		/* dst_mask */
1043	 TRUE),			/* pcrel_offset */
1044
1045  HOWTO (R_ARM_LDC_PC_G1,   	/* type */
1046	 0,			/* rightshift */
1047	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1048	 32,			/* bitsize */
1049	 TRUE,			/* pc_relative */
1050	 0,			/* bitpos */
1051	 complain_overflow_dont,/* complain_on_overflow */
1052	 bfd_elf_generic_reloc,	/* special_function */
1053	 "R_ARM_LDC_PC_G1",   	/* name */
1054	 FALSE,			/* partial_inplace */
1055	 0xffffffff,		/* src_mask */
1056	 0xffffffff,		/* dst_mask */
1057	 TRUE),			/* pcrel_offset */
1058
1059  HOWTO (R_ARM_LDC_PC_G2,   	/* type */
1060	 0,			/* rightshift */
1061	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1062	 32,			/* bitsize */
1063	 TRUE,			/* pc_relative */
1064	 0,			/* bitpos */
1065	 complain_overflow_dont,/* complain_on_overflow */
1066	 bfd_elf_generic_reloc,	/* special_function */
1067	 "R_ARM_LDC_PC_G2",   	/* name */
1068	 FALSE,			/* partial_inplace */
1069	 0xffffffff,		/* src_mask */
1070	 0xffffffff,		/* dst_mask */
1071	 TRUE),			/* pcrel_offset */
1072
1073  HOWTO (R_ARM_ALU_SB_G0_NC,   	/* type */
1074	 0,			/* rightshift */
1075	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1076	 32,			/* bitsize */
1077	 TRUE,			/* pc_relative */
1078	 0,			/* bitpos */
1079	 complain_overflow_dont,/* complain_on_overflow */
1080	 bfd_elf_generic_reloc,	/* special_function */
1081	 "R_ARM_ALU_SB_G0_NC", 	/* name */
1082	 FALSE,			/* partial_inplace */
1083	 0xffffffff,		/* src_mask */
1084	 0xffffffff,		/* dst_mask */
1085	 TRUE),			/* pcrel_offset */
1086
1087  HOWTO (R_ARM_ALU_SB_G0,   	/* type */
1088	 0,			/* rightshift */
1089	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1090	 32,			/* bitsize */
1091	 TRUE,			/* pc_relative */
1092	 0,			/* bitpos */
1093	 complain_overflow_dont,/* complain_on_overflow */
1094	 bfd_elf_generic_reloc,	/* special_function */
1095	 "R_ARM_ALU_SB_G0", 	/* name */
1096	 FALSE,			/* partial_inplace */
1097	 0xffffffff,		/* src_mask */
1098	 0xffffffff,		/* dst_mask */
1099	 TRUE),			/* pcrel_offset */
1100
1101  HOWTO (R_ARM_ALU_SB_G1_NC,   	/* type */
1102	 0,			/* rightshift */
1103	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1104	 32,			/* bitsize */
1105	 TRUE,			/* pc_relative */
1106	 0,			/* bitpos */
1107	 complain_overflow_dont,/* complain_on_overflow */
1108	 bfd_elf_generic_reloc,	/* special_function */
1109	 "R_ARM_ALU_SB_G1_NC", 	/* name */
1110	 FALSE,			/* partial_inplace */
1111	 0xffffffff,		/* src_mask */
1112	 0xffffffff,		/* dst_mask */
1113	 TRUE),			/* pcrel_offset */
1114
1115  HOWTO (R_ARM_ALU_SB_G1,   	/* type */
1116	 0,			/* rightshift */
1117	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1118	 32,			/* bitsize */
1119	 TRUE,			/* pc_relative */
1120	 0,			/* bitpos */
1121	 complain_overflow_dont,/* complain_on_overflow */
1122	 bfd_elf_generic_reloc,	/* special_function */
1123	 "R_ARM_ALU_SB_G1", 	/* name */
1124	 FALSE,			/* partial_inplace */
1125	 0xffffffff,		/* src_mask */
1126	 0xffffffff,		/* dst_mask */
1127	 TRUE),			/* pcrel_offset */
1128
1129  HOWTO (R_ARM_ALU_SB_G2,   	/* type */
1130	 0,			/* rightshift */
1131	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1132	 32,			/* bitsize */
1133	 TRUE,			/* pc_relative */
1134	 0,			/* bitpos */
1135	 complain_overflow_dont,/* complain_on_overflow */
1136	 bfd_elf_generic_reloc,	/* special_function */
1137	 "R_ARM_ALU_SB_G2", 	/* name */
1138	 FALSE,			/* partial_inplace */
1139	 0xffffffff,		/* src_mask */
1140	 0xffffffff,		/* dst_mask */
1141	 TRUE),			/* pcrel_offset */
1142
1143  HOWTO (R_ARM_LDR_SB_G0,   	/* type */
1144	 0,			/* rightshift */
1145	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1146	 32,			/* bitsize */
1147	 TRUE,			/* pc_relative */
1148	 0,			/* bitpos */
1149	 complain_overflow_dont,/* complain_on_overflow */
1150	 bfd_elf_generic_reloc,	/* special_function */
1151	 "R_ARM_LDR_SB_G0", 	/* name */
1152	 FALSE,			/* partial_inplace */
1153	 0xffffffff,		/* src_mask */
1154	 0xffffffff,		/* dst_mask */
1155	 TRUE),			/* pcrel_offset */
1156
1157  HOWTO (R_ARM_LDR_SB_G1,   	/* type */
1158	 0,			/* rightshift */
1159	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1160	 32,			/* bitsize */
1161	 TRUE,			/* pc_relative */
1162	 0,			/* bitpos */
1163	 complain_overflow_dont,/* complain_on_overflow */
1164	 bfd_elf_generic_reloc,	/* special_function */
1165	 "R_ARM_LDR_SB_G1", 	/* name */
1166	 FALSE,			/* partial_inplace */
1167	 0xffffffff,		/* src_mask */
1168	 0xffffffff,		/* dst_mask */
1169	 TRUE),			/* pcrel_offset */
1170
1171  HOWTO (R_ARM_LDR_SB_G2,   	/* type */
1172	 0,			/* rightshift */
1173	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1174	 32,			/* bitsize */
1175	 TRUE,			/* pc_relative */
1176	 0,			/* bitpos */
1177	 complain_overflow_dont,/* complain_on_overflow */
1178	 bfd_elf_generic_reloc,	/* special_function */
1179	 "R_ARM_LDR_SB_G2", 	/* name */
1180	 FALSE,			/* partial_inplace */
1181	 0xffffffff,		/* src_mask */
1182	 0xffffffff,		/* dst_mask */
1183	 TRUE),			/* pcrel_offset */
1184
1185  HOWTO (R_ARM_LDRS_SB_G0,   	/* type */
1186	 0,			/* rightshift */
1187	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1188	 32,			/* bitsize */
1189	 TRUE,			/* pc_relative */
1190	 0,			/* bitpos */
1191	 complain_overflow_dont,/* complain_on_overflow */
1192	 bfd_elf_generic_reloc,	/* special_function */
1193	 "R_ARM_LDRS_SB_G0", 	/* name */
1194	 FALSE,			/* partial_inplace */
1195	 0xffffffff,		/* src_mask */
1196	 0xffffffff,		/* dst_mask */
1197	 TRUE),			/* pcrel_offset */
1198
1199  HOWTO (R_ARM_LDRS_SB_G1,   	/* type */
1200	 0,			/* rightshift */
1201	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1202	 32,			/* bitsize */
1203	 TRUE,			/* pc_relative */
1204	 0,			/* bitpos */
1205	 complain_overflow_dont,/* complain_on_overflow */
1206	 bfd_elf_generic_reloc,	/* special_function */
1207	 "R_ARM_LDRS_SB_G1", 	/* name */
1208	 FALSE,			/* partial_inplace */
1209	 0xffffffff,		/* src_mask */
1210	 0xffffffff,		/* dst_mask */
1211	 TRUE),			/* pcrel_offset */
1212
1213  HOWTO (R_ARM_LDRS_SB_G2,   	/* type */
1214	 0,			/* rightshift */
1215	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1216	 32,			/* bitsize */
1217	 TRUE,			/* pc_relative */
1218	 0,			/* bitpos */
1219	 complain_overflow_dont,/* complain_on_overflow */
1220	 bfd_elf_generic_reloc,	/* special_function */
1221	 "R_ARM_LDRS_SB_G2", 	/* name */
1222	 FALSE,			/* partial_inplace */
1223	 0xffffffff,		/* src_mask */
1224	 0xffffffff,		/* dst_mask */
1225	 TRUE),			/* pcrel_offset */
1226
1227  HOWTO (R_ARM_LDC_SB_G0,   	/* type */
1228	 0,			/* rightshift */
1229	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1230	 32,			/* bitsize */
1231	 TRUE,			/* pc_relative */
1232	 0,			/* bitpos */
1233	 complain_overflow_dont,/* complain_on_overflow */
1234	 bfd_elf_generic_reloc,	/* special_function */
1235	 "R_ARM_LDC_SB_G0", 	/* name */
1236	 FALSE,			/* partial_inplace */
1237	 0xffffffff,		/* src_mask */
1238	 0xffffffff,		/* dst_mask */
1239	 TRUE),			/* pcrel_offset */
1240
1241  HOWTO (R_ARM_LDC_SB_G1,   	/* type */
1242	 0,			/* rightshift */
1243	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1244	 32,			/* bitsize */
1245	 TRUE,			/* pc_relative */
1246	 0,			/* bitpos */
1247	 complain_overflow_dont,/* complain_on_overflow */
1248	 bfd_elf_generic_reloc,	/* special_function */
1249	 "R_ARM_LDC_SB_G1", 	/* name */
1250	 FALSE,			/* partial_inplace */
1251	 0xffffffff,		/* src_mask */
1252	 0xffffffff,		/* dst_mask */
1253	 TRUE),			/* pcrel_offset */
1254
1255  HOWTO (R_ARM_LDC_SB_G2,   	/* type */
1256	 0,			/* rightshift */
1257	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1258	 32,			/* bitsize */
1259	 TRUE,			/* pc_relative */
1260	 0,			/* bitpos */
1261	 complain_overflow_dont,/* complain_on_overflow */
1262	 bfd_elf_generic_reloc,	/* special_function */
1263	 "R_ARM_LDC_SB_G2", 	/* name */
1264	 FALSE,			/* partial_inplace */
1265	 0xffffffff,		/* src_mask */
1266	 0xffffffff,		/* dst_mask */
1267	 TRUE),			/* pcrel_offset */
1268
1269  /* End of group relocations.  */
1270
1271  HOWTO (R_ARM_MOVW_BREL_NC,	/* type */
1272	 0,			/* rightshift */
1273	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1274	 16,			/* bitsize */
1275	 FALSE,			/* pc_relative */
1276	 0,			/* bitpos */
1277	 complain_overflow_dont,/* complain_on_overflow */
1278	 bfd_elf_generic_reloc,	/* special_function */
1279	 "R_ARM_MOVW_BREL_NC",	/* name */
1280	 FALSE,			/* partial_inplace */
1281	 0x0000ffff,		/* src_mask */
1282	 0x0000ffff,		/* dst_mask */
1283	 FALSE),		/* pcrel_offset */
1284
1285  HOWTO (R_ARM_MOVT_BREL,	/* type */
1286	 0,			/* rightshift */
1287	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1288	 16,			/* bitsize */
1289	 FALSE,			/* pc_relative */
1290	 0,			/* bitpos */
1291	 complain_overflow_bitfield,/* complain_on_overflow */
1292	 bfd_elf_generic_reloc,	/* special_function */
1293	 "R_ARM_MOVT_BREL",	/* name */
1294	 FALSE,			/* partial_inplace */
1295	 0x0000ffff,		/* src_mask */
1296	 0x0000ffff,		/* dst_mask */
1297	 FALSE),		/* pcrel_offset */
1298
1299  HOWTO (R_ARM_MOVW_BREL,	/* type */
1300	 0,			/* rightshift */
1301	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1302	 16,			/* bitsize */
1303	 FALSE,			/* pc_relative */
1304	 0,			/* bitpos */
1305	 complain_overflow_dont,/* complain_on_overflow */
1306	 bfd_elf_generic_reloc,	/* special_function */
1307	 "R_ARM_MOVW_BREL",	/* name */
1308	 FALSE,			/* partial_inplace */
1309	 0x0000ffff,		/* src_mask */
1310	 0x0000ffff,		/* dst_mask */
1311	 FALSE),		/* pcrel_offset */
1312
1313  HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1314	 0,			/* rightshift */
1315	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1316	 16,			/* bitsize */
1317	 FALSE,			/* pc_relative */
1318	 0,			/* bitpos */
1319	 complain_overflow_dont,/* complain_on_overflow */
1320	 bfd_elf_generic_reloc,	/* special_function */
1321	 "R_ARM_THM_MOVW_BREL_NC",/* name */
1322	 FALSE,			/* partial_inplace */
1323	 0x040f70ff,		/* src_mask */
1324	 0x040f70ff,		/* dst_mask */
1325	 FALSE),		/* pcrel_offset */
1326
1327  HOWTO (R_ARM_THM_MOVT_BREL,	/* type */
1328	 0,			/* rightshift */
1329	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1330	 16,			/* bitsize */
1331	 FALSE,			/* pc_relative */
1332	 0,			/* bitpos */
1333	 complain_overflow_bitfield,/* complain_on_overflow */
1334	 bfd_elf_generic_reloc,	/* special_function */
1335	 "R_ARM_THM_MOVT_BREL",	/* name */
1336	 FALSE,			/* partial_inplace */
1337	 0x040f70ff,		/* src_mask */
1338	 0x040f70ff,		/* dst_mask */
1339	 FALSE),		/* pcrel_offset */
1340
1341  HOWTO (R_ARM_THM_MOVW_BREL,	/* type */
1342	 0,			/* rightshift */
1343	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1344	 16,			/* bitsize */
1345	 FALSE,			/* pc_relative */
1346	 0,			/* bitpos */
1347	 complain_overflow_dont,/* complain_on_overflow */
1348	 bfd_elf_generic_reloc,	/* special_function */
1349	 "R_ARM_THM_MOVW_BREL",	/* name */
1350	 FALSE,			/* partial_inplace */
1351	 0x040f70ff,		/* src_mask */
1352	 0x040f70ff,		/* dst_mask */
1353	 FALSE),		/* pcrel_offset */
1354
1355  EMPTY_HOWTO (90),   /* Unallocated.  */
1356  EMPTY_HOWTO (91),
1357  EMPTY_HOWTO (92),
1358  EMPTY_HOWTO (93),
1359
1360  HOWTO (R_ARM_PLT32_ABS,	/* type */
1361	 0,			/* rightshift */
1362	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1363	 32,			/* bitsize */
1364	 FALSE,			/* pc_relative */
1365	 0,			/* bitpos */
1366	 complain_overflow_dont,/* complain_on_overflow */
1367	 bfd_elf_generic_reloc,	/* special_function */
1368	 "R_ARM_PLT32_ABS",	/* name */
1369	 FALSE,			/* partial_inplace */
1370	 0xffffffff,		/* src_mask */
1371	 0xffffffff,		/* dst_mask */
1372	 FALSE),		/* pcrel_offset */
1373
1374  HOWTO (R_ARM_GOT_ABS,		/* type */
1375	 0,			/* rightshift */
1376	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1377	 32,			/* bitsize */
1378	 FALSE,			/* pc_relative */
1379	 0,			/* bitpos */
1380	 complain_overflow_dont,/* complain_on_overflow */
1381	 bfd_elf_generic_reloc,	/* special_function */
1382	 "R_ARM_GOT_ABS",	/* name */
1383	 FALSE,			/* partial_inplace */
1384	 0xffffffff,		/* src_mask */
1385	 0xffffffff,		/* dst_mask */
1386	 FALSE),			/* pcrel_offset */
1387
1388  HOWTO (R_ARM_GOT_PREL,	/* type */
1389	 0,			/* rightshift */
1390	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1391	 32,			/* bitsize */
1392	 TRUE,			/* pc_relative */
1393	 0,			/* bitpos */
1394	 complain_overflow_dont,	/* complain_on_overflow */
1395	 bfd_elf_generic_reloc,	/* special_function */
1396	 "R_ARM_GOT_PREL",	/* name */
1397	 FALSE,			/* partial_inplace */
1398	 0xffffffff,		/* src_mask */
1399	 0xffffffff,		/* dst_mask */
1400	 TRUE),			/* pcrel_offset */
1401
1402  HOWTO (R_ARM_GOT_BREL12,	/* type */
1403	 0,			/* rightshift */
1404	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1405	 12,			/* bitsize */
1406	 FALSE,			/* pc_relative */
1407	 0,			/* bitpos */
1408	 complain_overflow_bitfield,/* complain_on_overflow */
1409	 bfd_elf_generic_reloc,	/* special_function */
1410	 "R_ARM_GOT_BREL12",	/* name */
1411	 FALSE,			/* partial_inplace */
1412	 0x00000fff,		/* src_mask */
1413	 0x00000fff,		/* dst_mask */
1414	 FALSE),		/* pcrel_offset */
1415
1416  HOWTO (R_ARM_GOTOFF12,	/* type */
1417	 0,			/* rightshift */
1418	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1419	 12,			/* bitsize */
1420	 FALSE,			/* pc_relative */
1421	 0,			/* bitpos */
1422	 complain_overflow_bitfield,/* complain_on_overflow */
1423	 bfd_elf_generic_reloc,	/* special_function */
1424	 "R_ARM_GOTOFF12",	/* name */
1425	 FALSE,			/* partial_inplace */
1426	 0x00000fff,		/* src_mask */
1427	 0x00000fff,		/* dst_mask */
1428	 FALSE),		/* pcrel_offset */
1429
1430  EMPTY_HOWTO (R_ARM_GOTRELAX),  /* reserved for future GOT-load optimizations */
1431
1432  /* GNU extension to record C++ vtable member usage */
1433  HOWTO (R_ARM_GNU_VTENTRY,     /* type */
1434         0,                     /* rightshift */
1435         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1436         0,                     /* bitsize */
1437         FALSE,                 /* pc_relative */
1438         0,                     /* bitpos */
1439         complain_overflow_dont, /* complain_on_overflow */
1440         _bfd_elf_rel_vtable_reloc_fn,  /* special_function */
1441         "R_ARM_GNU_VTENTRY",   /* name */
1442         FALSE,                 /* partial_inplace */
1443         0,                     /* src_mask */
1444         0,                     /* dst_mask */
1445         FALSE),                /* pcrel_offset */
1446
1447  /* GNU extension to record C++ vtable hierarchy */
1448  HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1449         0,                     /* rightshift */
1450         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1451         0,                     /* bitsize */
1452         FALSE,                 /* pc_relative */
1453         0,                     /* bitpos */
1454         complain_overflow_dont, /* complain_on_overflow */
1455         NULL,                  /* special_function */
1456         "R_ARM_GNU_VTINHERIT", /* name */
1457         FALSE,                 /* partial_inplace */
1458         0,                     /* src_mask */
1459         0,                     /* dst_mask */
1460         FALSE),                /* pcrel_offset */
1461
1462  HOWTO (R_ARM_THM_JUMP11,	/* type */
1463	 1,			/* rightshift */
1464	 1,			/* size (0 = byte, 1 = short, 2 = long) */
1465	 11,			/* bitsize */
1466	 TRUE,			/* pc_relative */
1467	 0,			/* bitpos */
1468	 complain_overflow_signed,	/* complain_on_overflow */
1469	 bfd_elf_generic_reloc,	/* special_function */
1470	 "R_ARM_THM_JUMP11",	/* name */
1471	 FALSE,			/* partial_inplace */
1472	 0x000007ff,		/* src_mask */
1473	 0x000007ff,		/* dst_mask */
1474	 TRUE),			/* pcrel_offset */
1475
1476  HOWTO (R_ARM_THM_JUMP8,	/* type */
1477	 1,			/* rightshift */
1478	 1,			/* size (0 = byte, 1 = short, 2 = long) */
1479	 8,			/* bitsize */
1480	 TRUE,			/* pc_relative */
1481	 0,			/* bitpos */
1482	 complain_overflow_signed,	/* complain_on_overflow */
1483	 bfd_elf_generic_reloc,	/* special_function */
1484	 "R_ARM_THM_JUMP8",	/* name */
1485	 FALSE,			/* partial_inplace */
1486	 0x000000ff,		/* src_mask */
1487	 0x000000ff,		/* dst_mask */
1488	 TRUE),			/* pcrel_offset */
1489
1490  /* TLS relocations */
1491  HOWTO (R_ARM_TLS_GD32,	/* type */
1492         0,                     /* rightshift */
1493         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1494         32,                    /* bitsize */
1495         FALSE,                 /* pc_relative */
1496         0,                     /* bitpos */
1497         complain_overflow_bitfield,/* complain_on_overflow */
1498         NULL,			/* special_function */
1499         "R_ARM_TLS_GD32",	/* name */
1500         TRUE,			/* partial_inplace */
1501         0xffffffff,		/* src_mask */
1502         0xffffffff,		/* dst_mask */
1503         FALSE),                /* pcrel_offset */
1504
1505  HOWTO (R_ARM_TLS_LDM32,	/* type */
1506         0,                     /* rightshift */
1507         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1508         32,                    /* bitsize */
1509         FALSE,                 /* pc_relative */
1510         0,                     /* bitpos */
1511         complain_overflow_bitfield,/* complain_on_overflow */
1512         bfd_elf_generic_reloc, /* special_function */
1513         "R_ARM_TLS_LDM32",	/* name */
1514         TRUE,			/* partial_inplace */
1515         0xffffffff,		/* src_mask */
1516         0xffffffff,		/* dst_mask */
1517         FALSE),                /* pcrel_offset */
1518
1519  HOWTO (R_ARM_TLS_LDO32,	/* type */
1520         0,                     /* rightshift */
1521         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1522         32,                    /* bitsize */
1523         FALSE,                 /* pc_relative */
1524         0,                     /* bitpos */
1525         complain_overflow_bitfield,/* complain_on_overflow */
1526         bfd_elf_generic_reloc, /* special_function */
1527         "R_ARM_TLS_LDO32",	/* name */
1528         TRUE,			/* partial_inplace */
1529         0xffffffff,		/* src_mask */
1530         0xffffffff,		/* dst_mask */
1531         FALSE),                /* pcrel_offset */
1532
1533  HOWTO (R_ARM_TLS_IE32,	/* type */
1534         0,                     /* rightshift */
1535         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1536         32,                    /* bitsize */
1537         FALSE,                  /* pc_relative */
1538         0,                     /* bitpos */
1539         complain_overflow_bitfield,/* complain_on_overflow */
1540         NULL,			/* special_function */
1541         "R_ARM_TLS_IE32",	/* name */
1542         TRUE,			/* partial_inplace */
1543         0xffffffff,		/* src_mask */
1544         0xffffffff,		/* dst_mask */
1545         FALSE),                /* pcrel_offset */
1546
1547  HOWTO (R_ARM_TLS_LE32,	/* type */
1548         0,                     /* rightshift */
1549         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1550         32,                    /* bitsize */
1551         FALSE,                 /* pc_relative */
1552         0,                     /* bitpos */
1553         complain_overflow_bitfield,/* complain_on_overflow */
1554         bfd_elf_generic_reloc, /* special_function */
1555         "R_ARM_TLS_LE32",	/* name */
1556         TRUE,			/* partial_inplace */
1557         0xffffffff,		/* src_mask */
1558         0xffffffff,		/* dst_mask */
1559         FALSE),                /* pcrel_offset */
1560
1561  HOWTO (R_ARM_TLS_LDO12,	/* type */
1562	 0,			/* rightshift */
1563	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1564	 12,			/* bitsize */
1565	 FALSE,			/* pc_relative */
1566	 0,			/* bitpos */
1567	 complain_overflow_bitfield,/* complain_on_overflow */
1568	 bfd_elf_generic_reloc,	/* special_function */
1569	 "R_ARM_TLS_LDO12",	/* name */
1570	 FALSE,			/* partial_inplace */
1571	 0x00000fff,		/* src_mask */
1572	 0x00000fff,		/* dst_mask */
1573	 FALSE),		/* pcrel_offset */
1574
1575  HOWTO (R_ARM_TLS_LE12,	/* type */
1576	 0,			/* rightshift */
1577	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1578	 12,			/* bitsize */
1579	 FALSE,			/* pc_relative */
1580	 0,			/* bitpos */
1581	 complain_overflow_bitfield,/* complain_on_overflow */
1582	 bfd_elf_generic_reloc,	/* special_function */
1583	 "R_ARM_TLS_LE12",	/* name */
1584	 FALSE,			/* partial_inplace */
1585	 0x00000fff,		/* src_mask */
1586	 0x00000fff,		/* dst_mask */
1587	 FALSE),		/* pcrel_offset */
1588
1589  HOWTO (R_ARM_TLS_IE12GP,	/* type */
1590	 0,			/* rightshift */
1591	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1592	 12,			/* bitsize */
1593	 FALSE,			/* pc_relative */
1594	 0,			/* bitpos */
1595	 complain_overflow_bitfield,/* complain_on_overflow */
1596	 bfd_elf_generic_reloc,	/* special_function */
1597	 "R_ARM_TLS_IE12GP",	/* name */
1598	 FALSE,			/* partial_inplace */
1599	 0x00000fff,		/* src_mask */
1600	 0x00000fff,		/* dst_mask */
1601	 FALSE),		/* pcrel_offset */
1602};
1603
1604/* 112-127 private relocations
1605   128 R_ARM_ME_TOO, obsolete
1606   129-255 unallocated in AAELF.
1607
1608   249-255 extended, currently unused, relocations:  */
1609
1610static reloc_howto_type elf32_arm_howto_table_2[4] =
1611{
1612  HOWTO (R_ARM_RREL32,		/* type */
1613	 0,			/* rightshift */
1614	 0,			/* size (0 = byte, 1 = short, 2 = long) */
1615	 0,			/* bitsize */
1616	 FALSE,			/* pc_relative */
1617	 0,			/* bitpos */
1618	 complain_overflow_dont,/* complain_on_overflow */
1619	 bfd_elf_generic_reloc,	/* special_function */
1620	 "R_ARM_RREL32",	/* name */
1621	 FALSE,			/* partial_inplace */
1622	 0,			/* src_mask */
1623	 0,			/* dst_mask */
1624	 FALSE),		/* pcrel_offset */
1625
1626  HOWTO (R_ARM_RABS32,		/* type */
1627	 0,			/* rightshift */
1628	 0,			/* size (0 = byte, 1 = short, 2 = long) */
1629	 0,			/* bitsize */
1630	 FALSE,			/* pc_relative */
1631	 0,			/* bitpos */
1632	 complain_overflow_dont,/* complain_on_overflow */
1633	 bfd_elf_generic_reloc,	/* special_function */
1634	 "R_ARM_RABS32",	/* name */
1635	 FALSE,			/* partial_inplace */
1636	 0,			/* src_mask */
1637	 0,			/* dst_mask */
1638	 FALSE),		/* pcrel_offset */
1639
1640  HOWTO (R_ARM_RPC24,		/* type */
1641	 0,			/* rightshift */
1642	 0,			/* size (0 = byte, 1 = short, 2 = long) */
1643	 0,			/* bitsize */
1644	 FALSE,			/* pc_relative */
1645	 0,			/* bitpos */
1646	 complain_overflow_dont,/* complain_on_overflow */
1647	 bfd_elf_generic_reloc,	/* special_function */
1648	 "R_ARM_RPC24",		/* name */
1649	 FALSE,			/* partial_inplace */
1650	 0,			/* src_mask */
1651	 0,			/* dst_mask */
1652	 FALSE),		/* pcrel_offset */
1653
1654  HOWTO (R_ARM_RBASE,		/* type */
1655	 0,			/* rightshift */
1656	 0,			/* size (0 = byte, 1 = short, 2 = long) */
1657	 0,			/* bitsize */
1658	 FALSE,			/* pc_relative */
1659	 0,			/* bitpos */
1660	 complain_overflow_dont,/* complain_on_overflow */
1661	 bfd_elf_generic_reloc,	/* special_function */
1662	 "R_ARM_RBASE",		/* name */
1663	 FALSE,			/* partial_inplace */
1664	 0,			/* src_mask */
1665	 0,			/* dst_mask */
1666	 FALSE)			/* pcrel_offset */
1667};
1668
1669static reloc_howto_type *
1670elf32_arm_howto_from_type (unsigned int r_type)
1671{
1672  if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1673    return &elf32_arm_howto_table_1[r_type];
1674
1675  if (r_type >= R_ARM_RREL32
1676      && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1677    return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1678
1679  return NULL;
1680}
1681
1682static void
1683elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1684			 Elf_Internal_Rela * elf_reloc)
1685{
1686  unsigned int r_type;
1687
1688  r_type = ELF32_R_TYPE (elf_reloc->r_info);
1689  bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1690}
1691
1692struct elf32_arm_reloc_map
1693  {
1694    bfd_reloc_code_real_type  bfd_reloc_val;
1695    unsigned char             elf_reloc_val;
1696  };
1697
1698/* All entries in this list must also be present in elf32_arm_howto_table.  */
1699static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1700  {
1701    {BFD_RELOC_NONE,                 R_ARM_NONE},
1702    {BFD_RELOC_ARM_PCREL_BRANCH,     R_ARM_PC24},
1703    {BFD_RELOC_ARM_PCREL_CALL,	     R_ARM_CALL},
1704    {BFD_RELOC_ARM_PCREL_JUMP,	     R_ARM_JUMP24},
1705    {BFD_RELOC_ARM_PCREL_BLX,        R_ARM_XPC25},
1706    {BFD_RELOC_THUMB_PCREL_BLX,      R_ARM_THM_XPC22},
1707    {BFD_RELOC_32,                   R_ARM_ABS32},
1708    {BFD_RELOC_32_PCREL,             R_ARM_REL32},
1709    {BFD_RELOC_8,                    R_ARM_ABS8},
1710    {BFD_RELOC_16,                   R_ARM_ABS16},
1711    {BFD_RELOC_ARM_OFFSET_IMM,       R_ARM_ABS12},
1712    {BFD_RELOC_ARM_THUMB_OFFSET,     R_ARM_THM_ABS5},
1713    {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1714    {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1715    {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1716    {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1717    {BFD_RELOC_THUMB_PCREL_BRANCH9,  R_ARM_THM_JUMP8},
1718    {BFD_RELOC_THUMB_PCREL_BRANCH7,  R_ARM_THM_JUMP6},
1719    {BFD_RELOC_ARM_GLOB_DAT,         R_ARM_GLOB_DAT},
1720    {BFD_RELOC_ARM_JUMP_SLOT,        R_ARM_JUMP_SLOT},
1721    {BFD_RELOC_ARM_RELATIVE,         R_ARM_RELATIVE},
1722    {BFD_RELOC_ARM_GOTOFF,           R_ARM_GOTOFF32},
1723    {BFD_RELOC_ARM_GOTPC,            R_ARM_GOTPC},
1724    {BFD_RELOC_ARM_GOT_PREL,         R_ARM_GOT_PREL},
1725    {BFD_RELOC_ARM_GOT32,            R_ARM_GOT32},
1726    {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
1727    {BFD_RELOC_ARM_TARGET1,	     R_ARM_TARGET1},
1728    {BFD_RELOC_ARM_ROSEGREL32,	     R_ARM_ROSEGREL32},
1729    {BFD_RELOC_ARM_SBREL32,	     R_ARM_SBREL32},
1730    {BFD_RELOC_ARM_PREL31,	     R_ARM_PREL31},
1731    {BFD_RELOC_ARM_TARGET2,	     R_ARM_TARGET2},
1732    {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
1733    {BFD_RELOC_ARM_TLS_GD32,	     R_ARM_TLS_GD32},
1734    {BFD_RELOC_ARM_TLS_LDO32,	     R_ARM_TLS_LDO32},
1735    {BFD_RELOC_ARM_TLS_LDM32,	     R_ARM_TLS_LDM32},
1736    {BFD_RELOC_ARM_TLS_DTPMOD32,     R_ARM_TLS_DTPMOD32},
1737    {BFD_RELOC_ARM_TLS_DTPOFF32,     R_ARM_TLS_DTPOFF32},
1738    {BFD_RELOC_ARM_TLS_TPOFF32,      R_ARM_TLS_TPOFF32},
1739    {BFD_RELOC_ARM_TLS_IE32,         R_ARM_TLS_IE32},
1740    {BFD_RELOC_ARM_TLS_LE32,         R_ARM_TLS_LE32},
1741    {BFD_RELOC_VTABLE_INHERIT,	     R_ARM_GNU_VTINHERIT},
1742    {BFD_RELOC_VTABLE_ENTRY,	     R_ARM_GNU_VTENTRY},
1743    {BFD_RELOC_ARM_MOVW,	     R_ARM_MOVW_ABS_NC},
1744    {BFD_RELOC_ARM_MOVT,	     R_ARM_MOVT_ABS},
1745    {BFD_RELOC_ARM_MOVW_PCREL,	     R_ARM_MOVW_PREL_NC},
1746    {BFD_RELOC_ARM_MOVT_PCREL,	     R_ARM_MOVT_PREL},
1747    {BFD_RELOC_ARM_THUMB_MOVW,	     R_ARM_THM_MOVW_ABS_NC},
1748    {BFD_RELOC_ARM_THUMB_MOVT,	     R_ARM_THM_MOVT_ABS},
1749    {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1750    {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1751    {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1752    {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1753    {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1754    {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1755    {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1756    {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1757    {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1758    {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1759    {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1760    {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1761    {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1762    {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1763    {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1764    {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1765    {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1766    {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1767    {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1768    {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1769    {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1770    {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1771    {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1772    {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1773    {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1774    {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1775    {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1776    {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1777    {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1778    {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1779    {BFD_RELOC_ARM_V4BX,	     R_ARM_V4BX}
1780  };
1781
1782static reloc_howto_type *
1783elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1784			     bfd_reloc_code_real_type code)
1785{
1786  unsigned int i;
1787
1788  for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1789    if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1790      return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1791
1792  return NULL;
1793}
1794
1795static reloc_howto_type *
1796elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1797			     const char *r_name)
1798{
1799  unsigned int i;
1800
1801  for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1802    if (elf32_arm_howto_table_1[i].name != NULL
1803	&& strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1804      return &elf32_arm_howto_table_1[i];
1805
1806  for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1807    if (elf32_arm_howto_table_2[i].name != NULL
1808	&& strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1809      return &elf32_arm_howto_table_2[i];
1810
1811  return NULL;
1812}
1813
1814/* Support for core dump NOTE sections.  */
1815
1816static bfd_boolean
1817elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1818{
1819  int offset;
1820  size_t size;
1821
1822  switch (note->descsz)
1823    {
1824      default:
1825	return FALSE;
1826
1827      case 148:		/* Linux/ARM 32-bit.  */
1828	/* pr_cursig */
1829	elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1830
1831	/* pr_pid */
1832	elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
1833
1834	/* pr_reg */
1835	offset = 72;
1836	size = 72;
1837
1838	break;
1839    }
1840
1841  /* Make a ".reg/999" section.  */
1842  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1843					  size, note->descpos + offset);
1844}
1845
1846static bfd_boolean
1847elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1848{
1849  switch (note->descsz)
1850    {
1851      default:
1852	return FALSE;
1853
1854      case 124:		/* Linux/ARM elf_prpsinfo.  */
1855	elf_tdata (abfd)->core_program
1856	 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1857	elf_tdata (abfd)->core_command
1858	 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1859    }
1860
1861  /* Note that for some reason, a spurious space is tacked
1862     onto the end of the args in some (at least one anyway)
1863     implementations, so strip it off if it exists.  */
1864  {
1865    char *command = elf_tdata (abfd)->core_command;
1866    int n = strlen (command);
1867
1868    if (0 < n && command[n - 1] == ' ')
1869      command[n - 1] = '\0';
1870  }
1871
1872  return TRUE;
1873}
1874
1875#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_vec
1876#define TARGET_LITTLE_NAME              "elf32-littlearm"
1877#define TARGET_BIG_SYM                  bfd_elf32_bigarm_vec
1878#define TARGET_BIG_NAME                 "elf32-bigarm"
1879
1880#define elf_backend_grok_prstatus	elf32_arm_nabi_grok_prstatus
1881#define elf_backend_grok_psinfo		elf32_arm_nabi_grok_psinfo
1882
1883typedef unsigned long int insn32;
1884typedef unsigned short int insn16;
1885
1886/* In lieu of proper flags, assume all EABIv4 or later objects are
1887   interworkable.  */
1888#define INTERWORK_FLAG(abfd)  \
1889  (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1890  || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
1891  || ((abfd)->flags & BFD_LINKER_CREATED))
1892
1893/* The linker script knows the section names for placement.
1894   The entry_names are used to do simple name mangling on the stubs.
1895   Given a function name, and its type, the stub can be found. The
1896   name can be changed. The only requirement is the %s be present.  */
1897#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1898#define THUMB2ARM_GLUE_ENTRY_NAME   "__%s_from_thumb"
1899
1900#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1901#define ARM2THUMB_GLUE_ENTRY_NAME   "__%s_from_arm"
1902
1903#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1904#define VFP11_ERRATUM_VENEER_ENTRY_NAME   "__vfp11_veneer_%x"
1905
1906#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1907#define ARM_BX_GLUE_ENTRY_NAME   "__bx_r%d"
1908
1909#define STUB_ENTRY_NAME   "__%s_veneer"
1910
1911/* The name of the dynamic interpreter.  This is put in the .interp
1912   section.  */
1913#define ELF_DYNAMIC_INTERPRETER     "/usr/lib/ld.so.1"
1914
1915#ifdef FOUR_WORD_PLT
1916
1917/* The first entry in a procedure linkage table looks like
1918   this.  It is set up so that any shared library function that is
1919   called before the relocation has been set up calls the dynamic
1920   linker first.  */
1921static const bfd_vma elf32_arm_plt0_entry [] =
1922  {
1923    0xe52de004,		/* str   lr, [sp, #-4]! */
1924    0xe59fe010,		/* ldr   lr, [pc, #16]  */
1925    0xe08fe00e,		/* add   lr, pc, lr     */
1926    0xe5bef008,		/* ldr   pc, [lr, #8]!  */
1927  };
1928
1929/* Subsequent entries in a procedure linkage table look like
1930   this.  */
1931static const bfd_vma elf32_arm_plt_entry [] =
1932  {
1933    0xe28fc600,		/* add   ip, pc, #NN	*/
1934    0xe28cca00,		/* add	 ip, ip, #NN	*/
1935    0xe5bcf000,		/* ldr	 pc, [ip, #NN]! */
1936    0x00000000,		/* unused		*/
1937  };
1938
1939#else
1940
1941/* The first entry in a procedure linkage table looks like
1942   this.  It is set up so that any shared library function that is
1943   called before the relocation has been set up calls the dynamic
1944   linker first.  */
1945static const bfd_vma elf32_arm_plt0_entry [] =
1946  {
1947    0xe52de004,		/* str   lr, [sp, #-4]! */
1948    0xe59fe004,		/* ldr   lr, [pc, #4]   */
1949    0xe08fe00e,		/* add   lr, pc, lr     */
1950    0xe5bef008,		/* ldr   pc, [lr, #8]!  */
1951    0x00000000,		/* &GOT[0] - .          */
1952  };
1953
1954/* Subsequent entries in a procedure linkage table look like
1955   this.  */
1956static const bfd_vma elf32_arm_plt_entry [] =
1957  {
1958    0xe28fc600,		/* add   ip, pc, #0xNN00000 */
1959    0xe28cca00,		/* add	 ip, ip, #0xNN000   */
1960    0xe5bcf000,		/* ldr	 pc, [ip, #0xNNN]!  */
1961  };
1962
1963#endif
1964
1965/* The format of the first entry in the procedure linkage table
1966   for a VxWorks executable.  */
1967static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1968  {
1969    0xe52dc008,	        /* str    ip,[sp,#-8]!			*/
1970    0xe59fc000,         /* ldr    ip,[pc]			*/
1971    0xe59cf008,         /* ldr    pc,[ip,#8]			*/
1972    0x00000000,         /* .long  _GLOBAL_OFFSET_TABLE_		*/
1973  };
1974
1975/* The format of subsequent entries in a VxWorks executable.  */
1976static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1977  {
1978    0xe59fc000,         /* ldr    ip,[pc]			*/
1979    0xe59cf000,         /* ldr    pc,[ip]			*/
1980    0x00000000,         /* .long  @got				*/
1981    0xe59fc000,         /* ldr    ip,[pc]			*/
1982    0xea000000,         /* b      _PLT				*/
1983    0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)	*/
1984  };
1985
1986/* The format of entries in a VxWorks shared library.  */
1987static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1988  {
1989    0xe59fc000,         /* ldr    ip,[pc]			*/
1990    0xe79cf009,         /* ldr    pc,[ip,r9]			*/
1991    0x00000000,         /* .long  @got				*/
1992    0xe59fc000,         /* ldr    ip,[pc]			*/
1993    0xe599f008,         /* ldr    pc,[r9,#8]			*/
1994    0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)	*/
1995  };
1996
1997/* An initial stub used if the PLT entry is referenced from Thumb code.  */
1998#define PLT_THUMB_STUB_SIZE 4
1999static const bfd_vma elf32_arm_plt_thumb_stub [] =
2000  {
2001    0x4778,		/* bx pc */
2002    0x46c0		/* nop   */
2003  };
2004
2005/* The entries in a PLT when using a DLL-based target with multiple
2006   address spaces.  */
2007static const bfd_vma elf32_arm_symbian_plt_entry [] =
2008  {
2009    0xe51ff004,         /* ldr   pc, [pc, #-4] */
2010    0x00000000,         /* dcd   R_ARM_GLOB_DAT(X) */
2011  };
2012
2013#define ARM_MAX_FWD_BRANCH_OFFSET  ((((1 << 23) - 1) << 2) + 8)
2014#define ARM_MAX_BWD_BRANCH_OFFSET  ((-((1 << 23) << 2)) + 8)
2015#define THM_MAX_FWD_BRANCH_OFFSET  ((1 << 22) -2 + 4)
2016#define THM_MAX_BWD_BRANCH_OFFSET  (-(1 << 22) + 4)
2017#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2018#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2019
2020enum stub_insn_type
2021  {
2022    THUMB16_TYPE = 1,
2023    THUMB32_TYPE,
2024    ARM_TYPE,
2025    DATA_TYPE
2026  };
2027
2028#define THUMB16_INSN(X)		{(X), THUMB16_TYPE, R_ARM_NONE, 0}
2029/* A bit of a hack.  A Thumb conditional branch, in which the proper condition
2030   is inserted in arm_build_one_stub().  */
2031#define THUMB16_BCOND_INSN(X)	{(X), THUMB16_TYPE, R_ARM_NONE, 1}
2032#define THUMB32_INSN(X)		{(X), THUMB32_TYPE, R_ARM_NONE, 0}
2033#define THUMB32_B_INSN(X, Z)	{(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2034#define ARM_INSN(X)		{(X), ARM_TYPE, R_ARM_NONE, 0}
2035#define ARM_REL_INSN(X, Z)	{(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2036#define DATA_WORD(X,Y,Z)	{(X), DATA_TYPE, (Y), (Z)}
2037
2038typedef struct
2039{
2040  bfd_vma data;
2041  enum stub_insn_type type;
2042  unsigned int r_type;
2043  int reloc_addend;
2044}  insn_sequence;
2045
2046/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2047   to reach the stub if necessary.  */
2048static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2049  {
2050    ARM_INSN(0xe51ff004),            /* ldr   pc, [pc, #-4] */
2051    DATA_WORD(0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
2052  };
2053
2054/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2055   available.  */
2056static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2057  {
2058    ARM_INSN(0xe59fc000),            /* ldr   ip, [pc, #0] */
2059    ARM_INSN(0xe12fff1c),            /* bx    ip */
2060    DATA_WORD(0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
2061  };
2062
2063/* Thumb -> Thumb long branch stub. Used on M-profile architectures.  */
2064static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2065  {
2066    THUMB16_INSN(0xb401),             /* push {r0} */
2067    THUMB16_INSN(0x4802),             /* ldr  r0, [pc, #8] */
2068    THUMB16_INSN(0x4684),             /* mov  ip, r0 */
2069    THUMB16_INSN(0xbc01),             /* pop  {r0} */
2070    THUMB16_INSN(0x4760),             /* bx   ip */
2071    THUMB16_INSN(0xbf00),             /* nop */
2072    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
2073  };
2074
2075/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2076   allowed.  */
2077static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2078  {
2079    THUMB16_INSN(0x4778),             /* bx   pc */
2080    THUMB16_INSN(0x46c0),             /* nop */
2081    ARM_INSN(0xe59fc000),             /* ldr  ip, [pc, #0] */
2082    ARM_INSN(0xe12fff1c),             /* bx   ip */
2083    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
2084  };
2085
2086/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2087   available.  */
2088static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2089  {
2090    THUMB16_INSN(0x4778),             /* bx   pc */
2091    THUMB16_INSN(0x46c0),             /* nop   */
2092    ARM_INSN(0xe51ff004),             /* ldr   pc, [pc, #-4] */
2093    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd   R_ARM_ABS32(X) */
2094  };
2095
2096/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2097   one, when the destination is close enough.  */
2098static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2099  {
2100    THUMB16_INSN(0x4778),             /* bx   pc */
2101    THUMB16_INSN(0x46c0),             /* nop   */
2102    ARM_REL_INSN(0xea000000, -8),     /* b    (X-8) */
2103  };
2104
2105/* ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
2106   blx to reach the stub if necessary.  */
2107static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2108  {
2109    ARM_INSN(0xe59fc000),             /* ldr   ip, [pc] */
2110    ARM_INSN(0xe08ff00c),             /* add   pc, pc, ip */
2111    DATA_WORD(0, R_ARM_REL32, -4),    /* dcd   R_ARM_REL32(X-4) */
2112  };
2113
2114/* ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
2115   blx to reach the stub if necessary.  We can not add into pc;
2116   it is not guaranteed to mode switch (different in ARMv6 and
2117   ARMv7).  */
2118static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2119  {
2120    ARM_INSN(0xe59fc004),             /* ldr   ip, [pc, #4] */
2121    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
2122    ARM_INSN(0xe12fff1c),             /* bx    ip */
2123    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
2124  };
2125
2126/* V4T ARM -> ARM long branch stub, PIC.  */
2127static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2128  {
2129    ARM_INSN(0xe59fc004),             /* ldr   ip, [pc, #4] */
2130    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
2131    ARM_INSN(0xe12fff1c),             /* bx    ip */
2132    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
2133  };
2134
2135/* V4T Thumb -> ARM long branch stub, PIC.  */
2136static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2137  {
2138    THUMB16_INSN(0x4778),             /* bx   pc */
2139    THUMB16_INSN(0x46c0),             /* nop  */
2140    ARM_INSN(0xe59fc000),             /* ldr  ip, [pc, #0] */
2141    ARM_INSN(0xe08cf00f),             /* add  pc, ip, pc */
2142    DATA_WORD(0, R_ARM_REL32, -4),     /* dcd  R_ARM_REL32(X) */
2143  };
2144
2145/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2146   architectures.  */
2147static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2148  {
2149    THUMB16_INSN(0xb401),             /* push {r0} */
2150    THUMB16_INSN(0x4802),             /* ldr  r0, [pc, #8] */
2151    THUMB16_INSN(0x46fc),             /* mov  ip, pc */
2152    THUMB16_INSN(0x4484),             /* add  ip, r0 */
2153    THUMB16_INSN(0xbc01),             /* pop  {r0} */
2154    THUMB16_INSN(0x4760),             /* bx   ip */
2155    DATA_WORD(0, R_ARM_REL32, 4),     /* dcd  R_ARM_REL32(X) */
2156  };
2157
2158/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2159   allowed.  */
2160static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2161  {
2162    THUMB16_INSN(0x4778),             /* bx   pc */
2163    THUMB16_INSN(0x46c0),             /* nop */
2164    ARM_INSN(0xe59fc004),             /* ldr  ip, [pc, #4] */
2165    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
2166    ARM_INSN(0xe12fff1c),             /* bx   ip */
2167    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd  R_ARM_REL32(X) */
2168  };
2169
2170/* Cortex-A8 erratum-workaround stubs.  */
2171
2172/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2173   can't use a conditional branch to reach this stub).  */
2174
2175static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2176  {
2177    THUMB16_BCOND_INSN(0xd001),         /* b<cond>.n true.  */
2178    THUMB32_B_INSN(0xf000b800, -4),     /* b.w insn_after_original_branch.  */
2179    THUMB32_B_INSN(0xf000b800, -4)      /* true: b.w original_branch_dest.  */
2180  };
2181
2182/* Stub used for b.w and bl.w instructions.  */
2183
2184static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2185  {
2186    THUMB32_B_INSN(0xf000b800, -4)	/* b.w original_branch_dest.  */
2187  };
2188
2189static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2190  {
2191    THUMB32_B_INSN(0xf000b800, -4)	/* b.w original_branch_dest.  */
2192  };
2193
2194/* Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
2195   instruction (which switches to ARM mode) to point to this stub.  Jump to the
2196   real destination using an ARM-mode branch.  */
2197
2198static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2199  {
2200    ARM_REL_INSN(0xea000000, -8)	/* b original_branch_dest.  */
2201  };
2202
2203/* Section name for stubs is the associated section name plus this
2204   string.  */
2205#define STUB_SUFFIX ".stub"
2206
2207/* One entry per long/short branch stub defined above.  */
2208#define DEF_STUBS \
2209  DEF_STUB(long_branch_any_any)	\
2210  DEF_STUB(long_branch_v4t_arm_thumb) \
2211  DEF_STUB(long_branch_thumb_only) \
2212  DEF_STUB(long_branch_v4t_thumb_thumb)	\
2213  DEF_STUB(long_branch_v4t_thumb_arm) \
2214  DEF_STUB(short_branch_v4t_thumb_arm) \
2215  DEF_STUB(long_branch_any_arm_pic) \
2216  DEF_STUB(long_branch_any_thumb_pic) \
2217  DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2218  DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2219  DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2220  DEF_STUB(long_branch_thumb_only_pic) \
2221  DEF_STUB(a8_veneer_b_cond) \
2222  DEF_STUB(a8_veneer_b) \
2223  DEF_STUB(a8_veneer_bl) \
2224  DEF_STUB(a8_veneer_blx)
2225
2226#define DEF_STUB(x) arm_stub_##x,
2227enum elf32_arm_stub_type {
2228  arm_stub_none,
2229  DEF_STUBS
2230  /* Note the first a8_veneer type */
2231  arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2232};
2233#undef DEF_STUB
2234
2235typedef struct
2236{
2237  const insn_sequence* template_sequence;
2238  int template_size;
2239} stub_def;
2240
2241#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2242static const stub_def stub_definitions[] = {
2243  {NULL, 0},
2244  DEF_STUBS
2245};
2246
2247struct elf32_arm_stub_hash_entry
2248{
2249  /* Base hash table entry structure.  */
2250  struct bfd_hash_entry root;
2251
2252  /* The stub section.  */
2253  asection *stub_sec;
2254
2255  /* Offset within stub_sec of the beginning of this stub.  */
2256  bfd_vma stub_offset;
2257
2258  /* Given the symbol's value and its section we can determine its final
2259     value when building the stubs (so the stub knows where to jump).  */
2260  bfd_vma target_value;
2261  asection *target_section;
2262
2263  /* Offset to apply to relocation referencing target_value.  */
2264  bfd_vma target_addend;
2265
2266  /* The instruction which caused this stub to be generated (only valid for
2267     Cortex-A8 erratum workaround stubs at present).  */
2268  unsigned long orig_insn;
2269
2270  /* The stub type.  */
2271  enum elf32_arm_stub_type stub_type;
2272  /* Its encoding size in bytes.  */
2273  int stub_size;
2274  /* Its template.  */
2275  const insn_sequence *stub_template;
2276  /* The size of the template (number of entries).  */
2277  int stub_template_size;
2278
2279  /* The symbol table entry, if any, that this was derived from.  */
2280  struct elf32_arm_link_hash_entry *h;
2281
2282  /* Destination symbol type (STT_ARM_TFUNC, ...) */
2283  unsigned char st_type;
2284
2285  /* Where this stub is being called from, or, in the case of combined
2286     stub sections, the first input section in the group.  */
2287  asection *id_sec;
2288
2289  /* The name for the local symbol at the start of this stub.  The
2290     stub name in the hash table has to be unique; this does not, so
2291     it can be friendlier.  */
2292  char *output_name;
2293};
2294
2295/* Used to build a map of a section.  This is required for mixed-endian
2296   code/data.  */
2297
2298typedef struct elf32_elf_section_map
2299{
2300  bfd_vma vma;
2301  char type;
2302}
2303elf32_arm_section_map;
2304
2305/* Information about a VFP11 erratum veneer, or a branch to such a veneer.  */
2306
2307typedef enum
2308{
2309  VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2310  VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2311  VFP11_ERRATUM_ARM_VENEER,
2312  VFP11_ERRATUM_THUMB_VENEER
2313}
2314elf32_vfp11_erratum_type;
2315
2316typedef struct elf32_vfp11_erratum_list
2317{
2318  struct elf32_vfp11_erratum_list *next;
2319  bfd_vma vma;
2320  union
2321  {
2322    struct
2323    {
2324      struct elf32_vfp11_erratum_list *veneer;
2325      unsigned int vfp_insn;
2326    } b;
2327    struct
2328    {
2329      struct elf32_vfp11_erratum_list *branch;
2330      unsigned int id;
2331    } v;
2332  } u;
2333  elf32_vfp11_erratum_type type;
2334}
2335elf32_vfp11_erratum_list;
2336
2337typedef enum
2338{
2339  DELETE_EXIDX_ENTRY,
2340  INSERT_EXIDX_CANTUNWIND_AT_END
2341}
2342arm_unwind_edit_type;
2343
2344/* A (sorted) list of edits to apply to an unwind table.  */
2345typedef struct arm_unwind_table_edit
2346{
2347  arm_unwind_edit_type type;
2348  /* Note: we sometimes want to insert an unwind entry corresponding to a
2349     section different from the one we're currently writing out, so record the
2350     (text) section this edit relates to here.  */
2351  asection *linked_section;
2352  unsigned int index;
2353  struct arm_unwind_table_edit *next;
2354}
2355arm_unwind_table_edit;
2356
2357typedef struct _arm_elf_section_data
2358{
2359  /* Information about mapping symbols.  */
2360  struct bfd_elf_section_data elf;
2361  unsigned int mapcount;
2362  unsigned int mapsize;
2363  elf32_arm_section_map *map;
2364  /* Information about CPU errata.  */
2365  unsigned int erratumcount;
2366  elf32_vfp11_erratum_list *erratumlist;
2367  /* Information about unwind tables.  */
2368  union
2369  {
2370    /* Unwind info attached to a text section.  */
2371    struct
2372    {
2373      asection *arm_exidx_sec;
2374    } text;
2375
2376    /* Unwind info attached to an .ARM.exidx section.  */
2377    struct
2378    {
2379      arm_unwind_table_edit *unwind_edit_list;
2380      arm_unwind_table_edit *unwind_edit_tail;
2381    } exidx;
2382  } u;
2383}
2384_arm_elf_section_data;
2385
2386#define elf32_arm_section_data(sec) \
2387  ((_arm_elf_section_data *) elf_section_data (sec))
2388
2389/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2390   These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2391   so may be created multiple times: we use an array of these entries whilst
2392   relaxing which we can refresh easily, then create stubs for each potentially
2393   erratum-triggering instruction once we've settled on a solution.  */
2394
2395struct a8_erratum_fix {
2396  bfd *input_bfd;
2397  asection *section;
2398  bfd_vma offset;
2399  bfd_vma addend;
2400  unsigned long orig_insn;
2401  char *stub_name;
2402  enum elf32_arm_stub_type stub_type;
2403  int st_type;
2404};
2405
2406/* A table of relocs applied to branches which might trigger Cortex-A8
2407   erratum.  */
2408
2409struct a8_erratum_reloc {
2410  bfd_vma from;
2411  bfd_vma destination;
2412  struct elf32_arm_link_hash_entry *hash;
2413  const char *sym_name;
2414  unsigned int r_type;
2415  unsigned char st_type;
2416  bfd_boolean non_a8_stub;
2417};
2418
2419/* The size of the thread control block.  */
2420#define TCB_SIZE	8
2421
2422struct elf_arm_obj_tdata
2423{
2424  struct elf_obj_tdata root;
2425
2426  /* tls_type for each local got entry.  */
2427  char *local_got_tls_type;
2428
2429  /* Zero to warn when linking objects with incompatible enum sizes.  */
2430  int no_enum_size_warning;
2431
2432  /* Zero to warn when linking objects with incompatible wchar_t sizes.  */
2433  int no_wchar_size_warning;
2434};
2435
2436#define elf_arm_tdata(bfd) \
2437  ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2438
2439#define elf32_arm_local_got_tls_type(bfd) \
2440  (elf_arm_tdata (bfd)->local_got_tls_type)
2441
2442#define is_arm_elf(bfd) \
2443  (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2444   && elf_tdata (bfd) != NULL \
2445   && elf_object_id (bfd) == ARM_ELF_DATA)
2446
2447static bfd_boolean
2448elf32_arm_mkobject (bfd *abfd)
2449{
2450  return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2451				  ARM_ELF_DATA);
2452}
2453
2454/* The ARM linker needs to keep track of the number of relocs that it
2455   decides to copy in check_relocs for each symbol.  This is so that
2456   it can discard PC relative relocs if it doesn't need them when
2457   linking with -Bsymbolic.  We store the information in a field
2458   extending the regular ELF linker hash table.  */
2459
2460/* This structure keeps track of the number of relocs we have copied
2461   for a given symbol.  */
2462struct elf32_arm_relocs_copied
2463  {
2464    /* Next section.  */
2465    struct elf32_arm_relocs_copied * next;
2466    /* A section in dynobj.  */
2467    asection * section;
2468    /* Number of relocs copied in this section.  */
2469    bfd_size_type count;
2470    /* Number of PC-relative relocs copied in this section.  */
2471    bfd_size_type pc_count;
2472  };
2473
2474#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2475
2476/* Arm ELF linker hash entry.  */
2477struct elf32_arm_link_hash_entry
2478  {
2479    struct elf_link_hash_entry root;
2480
2481    /* Number of PC relative relocs copied for this symbol.  */
2482    struct elf32_arm_relocs_copied * relocs_copied;
2483
2484    /* We reference count Thumb references to a PLT entry separately,
2485       so that we can emit the Thumb trampoline only if needed.  */
2486    bfd_signed_vma plt_thumb_refcount;
2487
2488    /* Some references from Thumb code may be eliminated by BL->BLX
2489       conversion, so record them separately.  */
2490    bfd_signed_vma plt_maybe_thumb_refcount;
2491
2492    /* Since PLT entries have variable size if the Thumb prologue is
2493       used, we need to record the index into .got.plt instead of
2494       recomputing it from the PLT offset.  */
2495    bfd_signed_vma plt_got_offset;
2496
2497#define GOT_UNKNOWN	0
2498#define GOT_NORMAL	1
2499#define GOT_TLS_GD	2
2500#define GOT_TLS_IE	4
2501    unsigned char tls_type;
2502
2503    /* The symbol marking the real symbol location for exported thumb
2504       symbols with Arm stubs.  */
2505    struct elf_link_hash_entry *export_glue;
2506
2507   /* A pointer to the most recently used stub hash entry against this
2508     symbol.  */
2509    struct elf32_arm_stub_hash_entry *stub_cache;
2510  };
2511
2512/* Traverse an arm ELF linker hash table.  */
2513#define elf32_arm_link_hash_traverse(table, func, info)			\
2514  (elf_link_hash_traverse						\
2515   (&(table)->root,							\
2516    (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),	\
2517    (info)))
2518
2519/* Get the ARM elf linker hash table from a link_info structure.  */
2520#define elf32_arm_hash_table(info) \
2521  (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2522  == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2523
2524#define arm_stub_hash_lookup(table, string, create, copy) \
2525  ((struct elf32_arm_stub_hash_entry *) \
2526   bfd_hash_lookup ((table), (string), (create), (copy)))
2527
2528/* Array to keep track of which stub sections have been created, and
2529   information on stub grouping.  */
2530struct map_stub
2531{
2532  /* This is the section to which stubs in the group will be
2533     attached.  */
2534  asection *link_sec;
2535  /* The stub section.  */
2536  asection *stub_sec;
2537};
2538
2539/* ARM ELF linker hash table.  */
2540struct elf32_arm_link_hash_table
2541{
2542  /* The main hash table.  */
2543  struct elf_link_hash_table root;
2544
2545  /* The size in bytes of the section containing the Thumb-to-ARM glue.  */
2546  bfd_size_type thumb_glue_size;
2547
2548  /* The size in bytes of the section containing the ARM-to-Thumb glue.  */
2549  bfd_size_type arm_glue_size;
2550
2551  /* The size in bytes of section containing the ARMv4 BX veneers.  */
2552  bfd_size_type bx_glue_size;
2553
2554  /* Offsets of ARMv4 BX veneers.  Bit1 set if present, and Bit0 set when
2555     veneer has been populated.  */
2556  bfd_vma bx_glue_offset[15];
2557
2558  /* The size in bytes of the section containing glue for VFP11 erratum
2559     veneers.  */
2560  bfd_size_type vfp11_erratum_glue_size;
2561
2562  /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum.  This
2563     holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2564     elf32_arm_write_section().  */
2565  struct a8_erratum_fix *a8_erratum_fixes;
2566  unsigned int num_a8_erratum_fixes;
2567
2568  /* An arbitrary input BFD chosen to hold the glue sections.  */
2569  bfd * bfd_of_glue_owner;
2570
2571  /* Nonzero to output a BE8 image.  */
2572  int byteswap_code;
2573
2574  /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2575     Nonzero if R_ARM_TARGET1 means R_ARM_REL32.  */
2576  int target1_is_rel;
2577
2578  /* The relocation to use for R_ARM_TARGET2 relocations.  */
2579  int target2_reloc;
2580
2581  /* 0 = Ignore R_ARM_V4BX.
2582     1 = Convert BX to MOV PC.
2583     2 = Generate v4 interworing stubs.  */
2584  int fix_v4bx;
2585
2586  /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum.  */
2587  int fix_cortex_a8;
2588
2589  /* Nonzero if the ARM/Thumb BLX instructions are available for use.  */
2590  int use_blx;
2591
2592  /* What sort of code sequences we should look for which may trigger the
2593     VFP11 denorm erratum.  */
2594  bfd_arm_vfp11_fix vfp11_fix;
2595
2596  /* Global counter for the number of fixes we have emitted.  */
2597  int num_vfp11_fixes;
2598
2599  /* Nonzero to force PIC branch veneers.  */
2600  int pic_veneer;
2601
2602  /* The number of bytes in the initial entry in the PLT.  */
2603  bfd_size_type plt_header_size;
2604
2605  /* The number of bytes in the subsequent PLT etries.  */
2606  bfd_size_type plt_entry_size;
2607
2608  /* True if the target system is VxWorks.  */
2609  int vxworks_p;
2610
2611  /* True if the target system is Symbian OS.  */
2612  int symbian_p;
2613
2614  /* True if the target uses REL relocations.  */
2615  int use_rel;
2616
2617  /* Short-cuts to get to dynamic linker sections.  */
2618  asection *sgot;
2619  asection *sgotplt;
2620  asection *srelgot;
2621  asection *splt;
2622  asection *srelplt;
2623  asection *sdynbss;
2624  asection *srelbss;
2625
2626  /* The (unloaded but important) VxWorks .rela.plt.unloaded section.  */
2627  asection *srelplt2;
2628
2629  /* Data for R_ARM_TLS_LDM32 relocations.  */
2630  union
2631  {
2632    bfd_signed_vma refcount;
2633    bfd_vma offset;
2634  } tls_ldm_got;
2635
2636  /* Small local sym cache.  */
2637  struct sym_cache sym_cache;
2638
2639  /* For convenience in allocate_dynrelocs.  */
2640  bfd * obfd;
2641
2642  /* The stub hash table.  */
2643  struct bfd_hash_table stub_hash_table;
2644
2645  /* Linker stub bfd.  */
2646  bfd *stub_bfd;
2647
2648  /* Linker call-backs.  */
2649  asection * (*add_stub_section) (const char *, asection *);
2650  void (*layout_sections_again) (void);
2651
2652  /* Array to keep track of which stub sections have been created, and
2653     information on stub grouping.  */
2654  struct map_stub *stub_group;
2655
2656  /* Number of elements in stub_group.  */
2657  int top_id;
2658
2659  /* Assorted information used by elf32_arm_size_stubs.  */
2660  unsigned int bfd_count;
2661  int top_index;
2662  asection **input_list;
2663};
2664
2665/* Create an entry in an ARM ELF linker hash table.  */
2666
2667static struct bfd_hash_entry *
2668elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2669                             struct bfd_hash_table * table,
2670                             const char * string)
2671{
2672  struct elf32_arm_link_hash_entry * ret =
2673    (struct elf32_arm_link_hash_entry *) entry;
2674
2675  /* Allocate the structure if it has not already been allocated by a
2676     subclass.  */
2677  if (ret == NULL)
2678    ret = (struct elf32_arm_link_hash_entry *)
2679        bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2680  if (ret == NULL)
2681    return (struct bfd_hash_entry *) ret;
2682
2683  /* Call the allocation method of the superclass.  */
2684  ret = ((struct elf32_arm_link_hash_entry *)
2685	 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2686				     table, string));
2687  if (ret != NULL)
2688    {
2689      ret->relocs_copied = NULL;
2690      ret->tls_type = GOT_UNKNOWN;
2691      ret->plt_thumb_refcount = 0;
2692      ret->plt_maybe_thumb_refcount = 0;
2693      ret->plt_got_offset = -1;
2694      ret->export_glue = NULL;
2695
2696      ret->stub_cache = NULL;
2697    }
2698
2699  return (struct bfd_hash_entry *) ret;
2700}
2701
2702/* Initialize an entry in the stub hash table.  */
2703
2704static struct bfd_hash_entry *
2705stub_hash_newfunc (struct bfd_hash_entry *entry,
2706		   struct bfd_hash_table *table,
2707		   const char *string)
2708{
2709  /* Allocate the structure if it has not already been allocated by a
2710     subclass.  */
2711  if (entry == NULL)
2712    {
2713      entry = (struct bfd_hash_entry *)
2714          bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
2715      if (entry == NULL)
2716	return entry;
2717    }
2718
2719  /* Call the allocation method of the superclass.  */
2720  entry = bfd_hash_newfunc (entry, table, string);
2721  if (entry != NULL)
2722    {
2723      struct elf32_arm_stub_hash_entry *eh;
2724
2725      /* Initialize the local fields.  */
2726      eh = (struct elf32_arm_stub_hash_entry *) entry;
2727      eh->stub_sec = NULL;
2728      eh->stub_offset = 0;
2729      eh->target_value = 0;
2730      eh->target_section = NULL;
2731      eh->target_addend = 0;
2732      eh->orig_insn = 0;
2733      eh->stub_type = arm_stub_none;
2734      eh->stub_size = 0;
2735      eh->stub_template = NULL;
2736      eh->stub_template_size = 0;
2737      eh->h = NULL;
2738      eh->id_sec = NULL;
2739      eh->output_name = NULL;
2740    }
2741
2742  return entry;
2743}
2744
2745/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2746   shortcuts to them in our hash table.  */
2747
2748static bfd_boolean
2749create_got_section (bfd *dynobj, struct bfd_link_info *info)
2750{
2751  struct elf32_arm_link_hash_table *htab;
2752
2753  htab = elf32_arm_hash_table (info);
2754  if (htab == NULL)
2755    return FALSE;
2756
2757  /* BPABI objects never have a GOT, or associated sections.  */
2758  if (htab->symbian_p)
2759    return TRUE;
2760
2761  if (! _bfd_elf_create_got_section (dynobj, info))
2762    return FALSE;
2763
2764  htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2765  htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2766  if (!htab->sgot || !htab->sgotplt)
2767    abort ();
2768
2769  htab->srelgot = bfd_get_section_by_name (dynobj,
2770					   RELOC_SECTION (htab, ".got"));
2771  if (htab->srelgot == NULL)
2772    return FALSE;
2773  return TRUE;
2774}
2775
2776/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2777   .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2778   hash table.  */
2779
2780static bfd_boolean
2781elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2782{
2783  struct elf32_arm_link_hash_table *htab;
2784
2785  htab = elf32_arm_hash_table (info);
2786  if (htab == NULL)
2787    return FALSE;
2788
2789  if (!htab->sgot && !create_got_section (dynobj, info))
2790    return FALSE;
2791
2792  if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2793    return FALSE;
2794
2795  htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2796  htab->srelplt = bfd_get_section_by_name (dynobj,
2797					   RELOC_SECTION (htab, ".plt"));
2798  htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2799  if (!info->shared)
2800    htab->srelbss = bfd_get_section_by_name (dynobj,
2801					     RELOC_SECTION (htab, ".bss"));
2802
2803  if (htab->vxworks_p)
2804    {
2805      if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2806	return FALSE;
2807
2808      if (info->shared)
2809	{
2810	  htab->plt_header_size = 0;
2811	  htab->plt_entry_size
2812	    = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2813	}
2814      else
2815	{
2816	  htab->plt_header_size
2817	    = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2818	  htab->plt_entry_size
2819	    = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2820	}
2821    }
2822
2823  if (!htab->splt
2824      || !htab->srelplt
2825      || !htab->sdynbss
2826      || (!info->shared && !htab->srelbss))
2827    abort ();
2828
2829  return TRUE;
2830}
2831
2832/* Copy the extra info we tack onto an elf_link_hash_entry.  */
2833
2834static void
2835elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2836				struct elf_link_hash_entry *dir,
2837				struct elf_link_hash_entry *ind)
2838{
2839  struct elf32_arm_link_hash_entry *edir, *eind;
2840
2841  edir = (struct elf32_arm_link_hash_entry *) dir;
2842  eind = (struct elf32_arm_link_hash_entry *) ind;
2843
2844  if (eind->relocs_copied != NULL)
2845    {
2846      if (edir->relocs_copied != NULL)
2847	{
2848	  struct elf32_arm_relocs_copied **pp;
2849	  struct elf32_arm_relocs_copied *p;
2850
2851	  /* Add reloc counts against the indirect sym to the direct sym
2852	     list.  Merge any entries against the same section.  */
2853	  for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2854	    {
2855	      struct elf32_arm_relocs_copied *q;
2856
2857	      for (q = edir->relocs_copied; q != NULL; q = q->next)
2858		if (q->section == p->section)
2859		  {
2860		    q->pc_count += p->pc_count;
2861		    q->count += p->count;
2862		    *pp = p->next;
2863		    break;
2864		  }
2865	      if (q == NULL)
2866		pp = &p->next;
2867	    }
2868	  *pp = edir->relocs_copied;
2869	}
2870
2871      edir->relocs_copied = eind->relocs_copied;
2872      eind->relocs_copied = NULL;
2873    }
2874
2875  if (ind->root.type == bfd_link_hash_indirect)
2876    {
2877      /* Copy over PLT info.  */
2878      edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2879      eind->plt_thumb_refcount = 0;
2880      edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2881      eind->plt_maybe_thumb_refcount = 0;
2882
2883      if (dir->got.refcount <= 0)
2884	{
2885	  edir->tls_type = eind->tls_type;
2886	  eind->tls_type = GOT_UNKNOWN;
2887	}
2888    }
2889
2890  _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2891}
2892
2893/* Create an ARM elf linker hash table.  */
2894
2895static struct bfd_link_hash_table *
2896elf32_arm_link_hash_table_create (bfd *abfd)
2897{
2898  struct elf32_arm_link_hash_table *ret;
2899  bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2900
2901  ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
2902  if (ret == NULL)
2903    return NULL;
2904
2905  if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2906				      elf32_arm_link_hash_newfunc,
2907				      sizeof (struct elf32_arm_link_hash_entry),
2908				      ARM_ELF_DATA))
2909    {
2910      free (ret);
2911      return NULL;
2912    }
2913
2914  ret->sgot = NULL;
2915  ret->sgotplt = NULL;
2916  ret->srelgot = NULL;
2917  ret->splt = NULL;
2918  ret->srelplt = NULL;
2919  ret->sdynbss = NULL;
2920  ret->srelbss = NULL;
2921  ret->srelplt2 = NULL;
2922  ret->thumb_glue_size = 0;
2923  ret->arm_glue_size = 0;
2924  ret->bx_glue_size = 0;
2925  memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2926  ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2927  ret->vfp11_erratum_glue_size = 0;
2928  ret->num_vfp11_fixes = 0;
2929  ret->fix_cortex_a8 = 0;
2930  ret->bfd_of_glue_owner = NULL;
2931  ret->byteswap_code = 0;
2932  ret->target1_is_rel = 0;
2933  ret->target2_reloc = R_ARM_NONE;
2934#ifdef FOUR_WORD_PLT
2935  ret->plt_header_size = 16;
2936  ret->plt_entry_size = 16;
2937#else
2938  ret->plt_header_size = 20;
2939  ret->plt_entry_size = 12;
2940#endif
2941  ret->fix_v4bx = 0;
2942  ret->use_blx = 0;
2943  ret->vxworks_p = 0;
2944  ret->symbian_p = 0;
2945  ret->use_rel = 1;
2946  ret->sym_cache.abfd = NULL;
2947  ret->obfd = abfd;
2948  ret->tls_ldm_got.refcount = 0;
2949  ret->stub_bfd = NULL;
2950  ret->add_stub_section = NULL;
2951  ret->layout_sections_again = NULL;
2952  ret->stub_group = NULL;
2953  ret->top_id = 0;
2954  ret->bfd_count = 0;
2955  ret->top_index = 0;
2956  ret->input_list = NULL;
2957
2958  if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2959			    sizeof (struct elf32_arm_stub_hash_entry)))
2960    {
2961      free (ret);
2962      return NULL;
2963    }
2964
2965  return &ret->root.root;
2966}
2967
2968/* Free the derived linker hash table.  */
2969
2970static void
2971elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2972{
2973  struct elf32_arm_link_hash_table *ret
2974    = (struct elf32_arm_link_hash_table *) hash;
2975
2976  bfd_hash_table_free (&ret->stub_hash_table);
2977  _bfd_generic_link_hash_table_free (hash);
2978}
2979
2980/* Determine if we're dealing with a Thumb only architecture.  */
2981
2982static bfd_boolean
2983using_thumb_only (struct elf32_arm_link_hash_table *globals)
2984{
2985  int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2986				       Tag_CPU_arch);
2987  int profile;
2988
2989  if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
2990    return TRUE;
2991
2992  if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
2993    return FALSE;
2994
2995  profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2996				      Tag_CPU_arch_profile);
2997
2998  return profile == 'M';
2999}
3000
3001/* Determine if we're dealing with a Thumb-2 object.  */
3002
3003static bfd_boolean
3004using_thumb2 (struct elf32_arm_link_hash_table *globals)
3005{
3006  int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3007				       Tag_CPU_arch);
3008  return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3009}
3010
3011/* Determine what kind of NOPs are available.  */
3012
3013static bfd_boolean
3014arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3015{
3016  const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3017					     Tag_CPU_arch);
3018  return arch == TAG_CPU_ARCH_V6T2
3019	 || arch == TAG_CPU_ARCH_V6K
3020	 || arch == TAG_CPU_ARCH_V7
3021	 || arch == TAG_CPU_ARCH_V7E_M;
3022}
3023
3024static bfd_boolean
3025arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3026{
3027  const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3028					     Tag_CPU_arch);
3029  return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3030	  || arch == TAG_CPU_ARCH_V7E_M);
3031}
3032
3033static bfd_boolean
3034arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3035{
3036  switch (stub_type)
3037    {
3038    case arm_stub_long_branch_thumb_only:
3039    case arm_stub_long_branch_v4t_thumb_arm:
3040    case arm_stub_short_branch_v4t_thumb_arm:
3041    case arm_stub_long_branch_v4t_thumb_arm_pic:
3042    case arm_stub_long_branch_thumb_only_pic:
3043      return TRUE;
3044    case arm_stub_none:
3045      BFD_FAIL ();
3046      return FALSE;
3047      break;
3048    default:
3049      return FALSE;
3050    }
3051}
3052
3053/* Determine the type of stub needed, if any, for a call.  */
3054
3055static enum elf32_arm_stub_type
3056arm_type_of_stub (struct bfd_link_info *info,
3057		  asection *input_sec,
3058		  const Elf_Internal_Rela *rel,
3059		  int *actual_st_type,
3060		  struct elf32_arm_link_hash_entry *hash,
3061		  bfd_vma destination,
3062		  asection *sym_sec,
3063		  bfd *input_bfd,
3064		  const char *name)
3065{
3066  bfd_vma location;
3067  bfd_signed_vma branch_offset;
3068  unsigned int r_type;
3069  struct elf32_arm_link_hash_table * globals;
3070  int thumb2;
3071  int thumb_only;
3072  enum elf32_arm_stub_type stub_type = arm_stub_none;
3073  int use_plt = 0;
3074  int st_type = *actual_st_type;
3075
3076  /* We don't know the actual type of destination in case it is of
3077     type STT_SECTION: give up.  */
3078  if (st_type == STT_SECTION)
3079    return stub_type;
3080
3081  globals = elf32_arm_hash_table (info);
3082  if (globals == NULL)
3083    return stub_type;
3084
3085  thumb_only = using_thumb_only (globals);
3086
3087  thumb2 = using_thumb2 (globals);
3088
3089  /* Determine where the call point is.  */
3090  location = (input_sec->output_offset
3091	      + input_sec->output_section->vma
3092	      + rel->r_offset);
3093
3094  r_type = ELF32_R_TYPE (rel->r_info);
3095
3096  /* Keep a simpler condition, for the sake of clarity.  */
3097  if (globals->splt != NULL
3098      && hash != NULL
3099      && hash->root.plt.offset != (bfd_vma) -1)
3100    {
3101      use_plt = 1;
3102
3103      /* Note when dealing with PLT entries: the main PLT stub is in
3104	 ARM mode, so if the branch is in Thumb mode, another
3105	 Thumb->ARM stub will be inserted later just before the ARM
3106	 PLT stub. We don't take this extra distance into account
3107	 here, because if a long branch stub is needed, we'll add a
3108	 Thumb->Arm one and branch directly to the ARM PLT entry
3109	 because it avoids spreading offset corrections in several
3110	 places.  */
3111
3112      destination = (globals->splt->output_section->vma
3113		     + globals->splt->output_offset
3114		     + hash->root.plt.offset);
3115      st_type = STT_FUNC;
3116    }
3117
3118  branch_offset = (bfd_signed_vma)(destination - location);
3119
3120  if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
3121    {
3122      /* Handle cases where:
3123	 - this call goes too far (different Thumb/Thumb2 max
3124           distance)
3125	 - it's a Thumb->Arm call and blx is not available, or it's a
3126           Thumb->Arm branch (not bl). A stub is needed in this case,
3127           but only if this call is not through a PLT entry. Indeed,
3128           PLT stubs handle mode switching already.
3129      */
3130      if ((!thumb2
3131	    && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3132		|| (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3133	  || (thumb2
3134	      && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3135		  || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3136	  || ((st_type != STT_ARM_TFUNC)
3137	      && (((r_type == R_ARM_THM_CALL) && !globals->use_blx)
3138		  || (r_type == R_ARM_THM_JUMP24))
3139	      && !use_plt))
3140	{
3141	  if (st_type == STT_ARM_TFUNC)
3142	    {
3143	      /* Thumb to thumb.  */
3144	      if (!thumb_only)
3145		{
3146		  stub_type = (info->shared | globals->pic_veneer)
3147		    /* PIC stubs.  */
3148		    ? ((globals->use_blx
3149			&& (r_type ==R_ARM_THM_CALL))
3150		       /* V5T and above. Stub starts with ARM code, so
3151			  we must be able to switch mode before
3152			  reaching it, which is only possible for 'bl'
3153			  (ie R_ARM_THM_CALL relocation).  */
3154		       ? arm_stub_long_branch_any_thumb_pic
3155		       /* On V4T, use Thumb code only.  */
3156		       : arm_stub_long_branch_v4t_thumb_thumb_pic)
3157
3158		    /* non-PIC stubs.  */
3159		    : ((globals->use_blx
3160			&& (r_type ==R_ARM_THM_CALL))
3161		       /* V5T and above.  */
3162		       ? arm_stub_long_branch_any_any
3163		       /* V4T.  */
3164		       : arm_stub_long_branch_v4t_thumb_thumb);
3165		}
3166	      else
3167		{
3168		  stub_type = (info->shared | globals->pic_veneer)
3169		    /* PIC stub.  */
3170		    ? arm_stub_long_branch_thumb_only_pic
3171		    /* non-PIC stub.  */
3172		    : arm_stub_long_branch_thumb_only;
3173		}
3174	    }
3175	  else
3176	    {
3177	      /* Thumb to arm.  */
3178	      if (sym_sec != NULL
3179		  && sym_sec->owner != NULL
3180		  && !INTERWORK_FLAG (sym_sec->owner))
3181		{
3182		  (*_bfd_error_handler)
3183		    (_("%B(%s): warning: interworking not enabled.\n"
3184		       "  first occurrence: %B: Thumb call to ARM"),
3185		     sym_sec->owner, input_bfd, name);
3186		}
3187
3188	      stub_type = (info->shared | globals->pic_veneer)
3189		/* PIC stubs.  */
3190		? ((globals->use_blx
3191		    && (r_type ==R_ARM_THM_CALL))
3192		   /* V5T and above.  */
3193		   ? arm_stub_long_branch_any_arm_pic
3194		   /* V4T PIC stub.  */
3195		   : arm_stub_long_branch_v4t_thumb_arm_pic)
3196
3197		/* non-PIC stubs.  */
3198		: ((globals->use_blx
3199		    && (r_type ==R_ARM_THM_CALL))
3200		   /* V5T and above.  */
3201		   ? arm_stub_long_branch_any_any
3202		   /* V4T.  */
3203		   : arm_stub_long_branch_v4t_thumb_arm);
3204
3205	      /* Handle v4t short branches.  */
3206	      if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3207		  && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3208		  && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3209		stub_type = arm_stub_short_branch_v4t_thumb_arm;
3210	    }
3211	}
3212    }
3213  else if (r_type == R_ARM_CALL
3214	   || r_type == R_ARM_JUMP24
3215	   || r_type == R_ARM_PLT32)
3216    {
3217      if (st_type == STT_ARM_TFUNC)
3218	{
3219	  /* Arm to thumb.  */
3220
3221	  if (sym_sec != NULL
3222	      && sym_sec->owner != NULL
3223	      && !INTERWORK_FLAG (sym_sec->owner))
3224	    {
3225	      (*_bfd_error_handler)
3226		(_("%B(%s): warning: interworking not enabled.\n"
3227		   "  first occurrence: %B: ARM call to Thumb"),
3228		 sym_sec->owner, input_bfd, name);
3229	    }
3230
3231	  /* We have an extra 2-bytes reach because of
3232	     the mode change (bit 24 (H) of BLX encoding).  */
3233	  if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3234	      || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3235	      || ((r_type == R_ARM_CALL) && !globals->use_blx)
3236	      || (r_type == R_ARM_JUMP24)
3237	      || (r_type == R_ARM_PLT32))
3238	    {
3239	      stub_type = (info->shared | globals->pic_veneer)
3240		/* PIC stubs.  */
3241		? ((globals->use_blx)
3242		   /* V5T and above.  */
3243		   ? arm_stub_long_branch_any_thumb_pic
3244		   /* V4T stub.  */
3245		   : arm_stub_long_branch_v4t_arm_thumb_pic)
3246
3247		/* non-PIC stubs.  */
3248		: ((globals->use_blx)
3249		   /* V5T and above.  */
3250		   ? arm_stub_long_branch_any_any
3251		   /* V4T.  */
3252		   : arm_stub_long_branch_v4t_arm_thumb);
3253	    }
3254	}
3255      else
3256	{
3257	  /* Arm to arm.  */
3258	  if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3259	      || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3260	    {
3261	      stub_type = (info->shared | globals->pic_veneer)
3262		/* PIC stubs.  */
3263		? arm_stub_long_branch_any_arm_pic
3264		/* non-PIC stubs.  */
3265		: arm_stub_long_branch_any_any;
3266	    }
3267	}
3268    }
3269
3270  /* If a stub is needed, record the actual destination type.  */
3271  if (stub_type != arm_stub_none)
3272    *actual_st_type = st_type;
3273
3274  return stub_type;
3275}
3276
3277/* Build a name for an entry in the stub hash table.  */
3278
3279static char *
3280elf32_arm_stub_name (const asection *input_section,
3281		     const asection *sym_sec,
3282		     const struct elf32_arm_link_hash_entry *hash,
3283		     const Elf_Internal_Rela *rel,
3284		     enum elf32_arm_stub_type stub_type)
3285{
3286  char *stub_name;
3287  bfd_size_type len;
3288
3289  if (hash)
3290    {
3291      len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
3292      stub_name = (char *) bfd_malloc (len);
3293      if (stub_name != NULL)
3294	sprintf (stub_name, "%08x_%s+%x_%d",
3295		 input_section->id & 0xffffffff,
3296		 hash->root.root.root.string,
3297		 (int) rel->r_addend & 0xffffffff,
3298		 (int) stub_type);
3299    }
3300  else
3301    {
3302      len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3303      stub_name = (char *) bfd_malloc (len);
3304      if (stub_name != NULL)
3305	sprintf (stub_name, "%08x_%x:%x+%x_%d",
3306		 input_section->id & 0xffffffff,
3307		 sym_sec->id & 0xffffffff,
3308		 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3309		 (int) rel->r_addend & 0xffffffff,
3310		 (int) stub_type);
3311    }
3312
3313  return stub_name;
3314}
3315
3316/* Look up an entry in the stub hash.  Stub entries are cached because
3317   creating the stub name takes a bit of time.  */
3318
3319static struct elf32_arm_stub_hash_entry *
3320elf32_arm_get_stub_entry (const asection *input_section,
3321			  const asection *sym_sec,
3322			  struct elf_link_hash_entry *hash,
3323			  const Elf_Internal_Rela *rel,
3324			  struct elf32_arm_link_hash_table *htab,
3325			  enum elf32_arm_stub_type stub_type)
3326{
3327  struct elf32_arm_stub_hash_entry *stub_entry;
3328  struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3329  const asection *id_sec;
3330
3331  if ((input_section->flags & SEC_CODE) == 0)
3332    return NULL;
3333
3334  /* If this input section is part of a group of sections sharing one
3335     stub section, then use the id of the first section in the group.
3336     Stub names need to include a section id, as there may well be
3337     more than one stub used to reach say, printf, and we need to
3338     distinguish between them.  */
3339  id_sec = htab->stub_group[input_section->id].link_sec;
3340
3341  if (h != NULL && h->stub_cache != NULL
3342      && h->stub_cache->h == h
3343      && h->stub_cache->id_sec == id_sec
3344      && h->stub_cache->stub_type == stub_type)
3345    {
3346      stub_entry = h->stub_cache;
3347    }
3348  else
3349    {
3350      char *stub_name;
3351
3352      stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
3353      if (stub_name == NULL)
3354	return NULL;
3355
3356      stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3357					stub_name, FALSE, FALSE);
3358      if (h != NULL)
3359	h->stub_cache = stub_entry;
3360
3361      free (stub_name);
3362    }
3363
3364  return stub_entry;
3365}
3366
3367/* Find or create a stub section.  Returns a pointer to the stub section, and
3368   the section to which the stub section will be attached (in *LINK_SEC_P).
3369   LINK_SEC_P may be NULL.  */
3370
3371static asection *
3372elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3373				   struct elf32_arm_link_hash_table *htab)
3374{
3375  asection *link_sec;
3376  asection *stub_sec;
3377
3378  link_sec = htab->stub_group[section->id].link_sec;
3379  stub_sec = htab->stub_group[section->id].stub_sec;
3380  if (stub_sec == NULL)
3381    {
3382      stub_sec = htab->stub_group[link_sec->id].stub_sec;
3383      if (stub_sec == NULL)
3384	{
3385	  size_t namelen;
3386	  bfd_size_type len;
3387	  char *s_name;
3388
3389	  namelen = strlen (link_sec->name);
3390	  len = namelen + sizeof (STUB_SUFFIX);
3391	  s_name = (char *) bfd_alloc (htab->stub_bfd, len);
3392	  if (s_name == NULL)
3393	    return NULL;
3394
3395	  memcpy (s_name, link_sec->name, namelen);
3396	  memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3397	  stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3398	  if (stub_sec == NULL)
3399	    return NULL;
3400	  htab->stub_group[link_sec->id].stub_sec = stub_sec;
3401	}
3402      htab->stub_group[section->id].stub_sec = stub_sec;
3403    }
3404
3405  if (link_sec_p)
3406    *link_sec_p = link_sec;
3407
3408  return stub_sec;
3409}
3410
3411/* Add a new stub entry to the stub hash.  Not all fields of the new
3412   stub entry are initialised.  */
3413
3414static struct elf32_arm_stub_hash_entry *
3415elf32_arm_add_stub (const char *stub_name,
3416		    asection *section,
3417		    struct elf32_arm_link_hash_table *htab)
3418{
3419  asection *link_sec;
3420  asection *stub_sec;
3421  struct elf32_arm_stub_hash_entry *stub_entry;
3422
3423  stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3424  if (stub_sec == NULL)
3425    return NULL;
3426
3427  /* Enter this entry into the linker stub hash table.  */
3428  stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3429				     TRUE, FALSE);
3430  if (stub_entry == NULL)
3431    {
3432      (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3433			     section->owner,
3434			     stub_name);
3435      return NULL;
3436    }
3437
3438  stub_entry->stub_sec = stub_sec;
3439  stub_entry->stub_offset = 0;
3440  stub_entry->id_sec = link_sec;
3441
3442  return stub_entry;
3443}
3444
3445/* Store an Arm insn into an output section not processed by
3446   elf32_arm_write_section.  */
3447
3448static void
3449put_arm_insn (struct elf32_arm_link_hash_table * htab,
3450	      bfd * output_bfd, bfd_vma val, void * ptr)
3451{
3452  if (htab->byteswap_code != bfd_little_endian (output_bfd))
3453    bfd_putl32 (val, ptr);
3454  else
3455    bfd_putb32 (val, ptr);
3456}
3457
3458/* Store a 16-bit Thumb insn into an output section not processed by
3459   elf32_arm_write_section.  */
3460
3461static void
3462put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3463		bfd * output_bfd, bfd_vma val, void * ptr)
3464{
3465  if (htab->byteswap_code != bfd_little_endian (output_bfd))
3466    bfd_putl16 (val, ptr);
3467  else
3468    bfd_putb16 (val, ptr);
3469}
3470
3471static bfd_reloc_status_type elf32_arm_final_link_relocate
3472  (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
3473   Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
3474   const char *, int, struct elf_link_hash_entry *, bfd_boolean *, char **);
3475
3476static unsigned int
3477arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
3478{
3479  switch (stub_type)
3480    {
3481    case arm_stub_a8_veneer_b_cond:
3482    case arm_stub_a8_veneer_b:
3483    case arm_stub_a8_veneer_bl:
3484      return 2;
3485
3486    case arm_stub_long_branch_any_any:
3487    case arm_stub_long_branch_v4t_arm_thumb:
3488    case arm_stub_long_branch_thumb_only:
3489    case arm_stub_long_branch_v4t_thumb_thumb:
3490    case arm_stub_long_branch_v4t_thumb_arm:
3491    case arm_stub_short_branch_v4t_thumb_arm:
3492    case arm_stub_long_branch_any_arm_pic:
3493    case arm_stub_long_branch_any_thumb_pic:
3494    case arm_stub_long_branch_v4t_thumb_thumb_pic:
3495    case arm_stub_long_branch_v4t_arm_thumb_pic:
3496    case arm_stub_long_branch_v4t_thumb_arm_pic:
3497    case arm_stub_long_branch_thumb_only_pic:
3498    case arm_stub_a8_veneer_blx:
3499      return 4;
3500
3501    default:
3502      abort ();  /* Should be unreachable.  */
3503    }
3504}
3505
3506static bfd_boolean
3507arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3508		    void * in_arg)
3509{
3510#define MAXRELOCS 2
3511  struct elf32_arm_stub_hash_entry *stub_entry;
3512  struct elf32_arm_link_hash_table *globals;
3513  struct bfd_link_info *info;
3514  asection *stub_sec;
3515  bfd *stub_bfd;
3516  bfd_byte *loc;
3517  bfd_vma sym_value;
3518  int template_size;
3519  int size;
3520  const insn_sequence *template_sequence;
3521  int i;
3522  int stub_reloc_idx[MAXRELOCS] = {-1, -1};
3523  int stub_reloc_offset[MAXRELOCS] = {0, 0};
3524  int nrelocs = 0;
3525
3526  /* Massage our args to the form they really have.  */
3527  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3528  info = (struct bfd_link_info *) in_arg;
3529
3530  globals = elf32_arm_hash_table (info);
3531  if (globals == NULL)
3532    return FALSE;
3533
3534  stub_sec = stub_entry->stub_sec;
3535
3536  if ((globals->fix_cortex_a8 < 0)
3537      != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
3538    /* We have to do less-strictly-aligned fixes last.  */
3539    return TRUE;
3540
3541  /* Make a note of the offset within the stubs for this entry.  */
3542  stub_entry->stub_offset = stub_sec->size;
3543  loc = stub_sec->contents + stub_entry->stub_offset;
3544
3545  stub_bfd = stub_sec->owner;
3546
3547  /* This is the address of the stub destination.  */
3548  sym_value = (stub_entry->target_value
3549	       + stub_entry->target_section->output_offset
3550	       + stub_entry->target_section->output_section->vma);
3551
3552  template_sequence = stub_entry->stub_template;
3553  template_size = stub_entry->stub_template_size;
3554
3555  size = 0;
3556  for (i = 0; i < template_size; i++)
3557    {
3558      switch (template_sequence[i].type)
3559	{
3560	case THUMB16_TYPE:
3561	  {
3562	    bfd_vma data = (bfd_vma) template_sequence[i].data;
3563	    if (template_sequence[i].reloc_addend != 0)
3564	      {
3565                /* We've borrowed the reloc_addend field to mean we should
3566                   insert a condition code into this (Thumb-1 branch)
3567                   instruction.  See THUMB16_BCOND_INSN.  */
3568                BFD_ASSERT ((data & 0xff00) == 0xd000);
3569                data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
3570	      }
3571	    bfd_put_16 (stub_bfd, data, loc + size);
3572	    size += 2;
3573	  }
3574	  break;
3575
3576	case THUMB32_TYPE:
3577	  bfd_put_16 (stub_bfd,
3578		      (template_sequence[i].data >> 16) & 0xffff,
3579		      loc + size);
3580	  bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
3581		      loc + size + 2);
3582          if (template_sequence[i].r_type != R_ARM_NONE)
3583            {
3584              stub_reloc_idx[nrelocs] = i;
3585              stub_reloc_offset[nrelocs++] = size;
3586            }
3587          size += 4;
3588          break;
3589
3590	case ARM_TYPE:
3591	  bfd_put_32 (stub_bfd, template_sequence[i].data,
3592		      loc + size);
3593	  /* Handle cases where the target is encoded within the
3594	     instruction.  */
3595	  if (template_sequence[i].r_type == R_ARM_JUMP24)
3596	    {
3597	      stub_reloc_idx[nrelocs] = i;
3598	      stub_reloc_offset[nrelocs++] = size;
3599	    }
3600	  size += 4;
3601	  break;
3602
3603	case DATA_TYPE:
3604	  bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
3605	  stub_reloc_idx[nrelocs] = i;
3606	  stub_reloc_offset[nrelocs++] = size;
3607	  size += 4;
3608	  break;
3609
3610	default:
3611	  BFD_FAIL ();
3612	  return FALSE;
3613	}
3614    }
3615
3616  stub_sec->size += size;
3617
3618  /* Stub size has already been computed in arm_size_one_stub. Check
3619     consistency.  */
3620  BFD_ASSERT (size == stub_entry->stub_size);
3621
3622  /* Destination is Thumb. Force bit 0 to 1 to reflect this.  */
3623  if (stub_entry->st_type == STT_ARM_TFUNC)
3624    sym_value |= 1;
3625
3626  /* Assume there is at least one and at most MAXRELOCS entries to relocate
3627     in each stub.  */
3628  BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
3629
3630  for (i = 0; i < nrelocs; i++)
3631    if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
3632	|| template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
3633	|| template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
3634	|| template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
3635      {
3636	Elf_Internal_Rela rel;
3637	bfd_boolean unresolved_reloc;
3638	char *error_message;
3639	int sym_flags
3640	  = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22)
3641	    ? STT_ARM_TFUNC : 0;
3642	bfd_vma points_to = sym_value + stub_entry->target_addend;
3643
3644	rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
3645	rel.r_info = ELF32_R_INFO (0,
3646                                   template_sequence[stub_reloc_idx[i]].r_type);
3647	rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
3648
3649	if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
3650	  /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
3651	     template should refer back to the instruction after the original
3652	     branch.  */
3653	  points_to = sym_value;
3654
3655	/* There may be unintended consequences if this is not true.  */
3656	BFD_ASSERT (stub_entry->h == NULL);
3657
3658	/* Note: _bfd_final_link_relocate doesn't handle these relocations
3659	   properly.  We should probably use this function unconditionally,
3660	   rather than only for certain relocations listed in the enclosing
3661	   conditional, for the sake of consistency.  */
3662	elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3663	    (template_sequence[stub_reloc_idx[i]].r_type),
3664	  stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
3665	  points_to, info, stub_entry->target_section, "", sym_flags,
3666	  (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
3667	  &error_message);
3668      }
3669    else
3670      {
3671	Elf_Internal_Rela rel;
3672	bfd_boolean unresolved_reloc;
3673	char *error_message;
3674	bfd_vma points_to = sym_value + stub_entry->target_addend
3675	  + template_sequence[stub_reloc_idx[i]].reloc_addend;
3676
3677	rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
3678	rel.r_info = ELF32_R_INFO (0,
3679                                   template_sequence[stub_reloc_idx[i]].r_type);
3680	rel.r_addend = 0;
3681
3682	elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3683	    (template_sequence[stub_reloc_idx[i]].r_type),
3684	  stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
3685	  points_to, info, stub_entry->target_section, "", stub_entry->st_type,
3686	  (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
3687	  &error_message);
3688      }
3689
3690  return TRUE;
3691#undef MAXRELOCS
3692}
3693
3694/* Calculate the template, template size and instruction size for a stub.
3695   Return value is the instruction size.  */
3696
3697static unsigned int
3698find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
3699			     const insn_sequence **stub_template,
3700			     int *stub_template_size)
3701{
3702  const insn_sequence *template_sequence = NULL;
3703  int template_size = 0, i;
3704  unsigned int size;
3705
3706  template_sequence = stub_definitions[stub_type].template_sequence;
3707  if (stub_template)
3708    *stub_template = template_sequence;
3709
3710  template_size = stub_definitions[stub_type].template_size;
3711  if (stub_template_size)
3712    *stub_template_size = template_size;
3713
3714  size = 0;
3715  for (i = 0; i < template_size; i++)
3716    {
3717      switch (template_sequence[i].type)
3718	{
3719	case THUMB16_TYPE:
3720	  size += 2;
3721	  break;
3722
3723	case ARM_TYPE:
3724	case THUMB32_TYPE:
3725	case DATA_TYPE:
3726	  size += 4;
3727	  break;
3728
3729	default:
3730	  BFD_FAIL ();
3731	  return 0;
3732	}
3733    }
3734
3735  return size;
3736}
3737
3738/* As above, but don't actually build the stub.  Just bump offset so
3739   we know stub section sizes.  */
3740
3741static bfd_boolean
3742arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3743		   void *in_arg ATTRIBUTE_UNUSED)
3744{
3745  struct elf32_arm_stub_hash_entry *stub_entry;
3746  const insn_sequence *template_sequence;
3747  int template_size, size;
3748
3749  /* Massage our args to the form they really have.  */
3750  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3751
3752  BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
3753	     && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
3754
3755  size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
3756				      &template_size);
3757
3758  stub_entry->stub_size = size;
3759  stub_entry->stub_template = template_sequence;
3760  stub_entry->stub_template_size = template_size;
3761
3762  size = (size + 7) & ~7;
3763  stub_entry->stub_sec->size += size;
3764
3765  return TRUE;
3766}
3767
3768/* External entry points for sizing and building linker stubs.  */
3769
3770/* Set up various things so that we can make a list of input sections
3771   for each output section included in the link.  Returns -1 on error,
3772   0 when no stubs will be needed, and 1 on success.  */
3773
3774int
3775elf32_arm_setup_section_lists (bfd *output_bfd,
3776			       struct bfd_link_info *info)
3777{
3778  bfd *input_bfd;
3779  unsigned int bfd_count;
3780  int top_id, top_index;
3781  asection *section;
3782  asection **input_list, **list;
3783  bfd_size_type amt;
3784  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3785
3786  if (htab == NULL)
3787    return 0;
3788  if (! is_elf_hash_table (htab))
3789    return 0;
3790
3791  /* Count the number of input BFDs and find the top input section id.  */
3792  for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3793       input_bfd != NULL;
3794       input_bfd = input_bfd->link_next)
3795    {
3796      bfd_count += 1;
3797      for (section = input_bfd->sections;
3798	   section != NULL;
3799	   section = section->next)
3800	{
3801	  if (top_id < section->id)
3802	    top_id = section->id;
3803	}
3804    }
3805  htab->bfd_count = bfd_count;
3806
3807  amt = sizeof (struct map_stub) * (top_id + 1);
3808  htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
3809  if (htab->stub_group == NULL)
3810    return -1;
3811  htab->top_id = top_id;
3812
3813  /* We can't use output_bfd->section_count here to find the top output
3814     section index as some sections may have been removed, and
3815     _bfd_strip_section_from_output doesn't renumber the indices.  */
3816  for (section = output_bfd->sections, top_index = 0;
3817       section != NULL;
3818       section = section->next)
3819    {
3820      if (top_index < section->index)
3821	top_index = section->index;
3822    }
3823
3824  htab->top_index = top_index;
3825  amt = sizeof (asection *) * (top_index + 1);
3826  input_list = (asection **) bfd_malloc (amt);
3827  htab->input_list = input_list;
3828  if (input_list == NULL)
3829    return -1;
3830
3831  /* For sections we aren't interested in, mark their entries with a
3832     value we can check later.  */
3833  list = input_list + top_index;
3834  do
3835    *list = bfd_abs_section_ptr;
3836  while (list-- != input_list);
3837
3838  for (section = output_bfd->sections;
3839       section != NULL;
3840       section = section->next)
3841    {
3842      if ((section->flags & SEC_CODE) != 0)
3843	input_list[section->index] = NULL;
3844    }
3845
3846  return 1;
3847}
3848
3849/* The linker repeatedly calls this function for each input section,
3850   in the order that input sections are linked into output sections.
3851   Build lists of input sections to determine groupings between which
3852   we may insert linker stubs.  */
3853
3854void
3855elf32_arm_next_input_section (struct bfd_link_info *info,
3856			      asection *isec)
3857{
3858  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3859
3860  if (htab == NULL)
3861    return;
3862
3863  if (isec->output_section->index <= htab->top_index)
3864    {
3865      asection **list = htab->input_list + isec->output_section->index;
3866
3867      if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
3868	{
3869	  /* Steal the link_sec pointer for our list.  */
3870#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3871	  /* This happens to make the list in reverse order,
3872	     which we reverse later.  */
3873	  PREV_SEC (isec) = *list;
3874	  *list = isec;
3875	}
3876    }
3877}
3878
3879/* See whether we can group stub sections together.  Grouping stub
3880   sections may result in fewer stubs.  More importantly, we need to
3881   put all .init* and .fini* stubs at the end of the .init or
3882   .fini output sections respectively, because glibc splits the
3883   _init and _fini functions into multiple parts.  Putting a stub in
3884   the middle of a function is not a good idea.  */
3885
3886static void
3887group_sections (struct elf32_arm_link_hash_table *htab,
3888		bfd_size_type stub_group_size,
3889		bfd_boolean stubs_always_after_branch)
3890{
3891  asection **list = htab->input_list;
3892
3893  do
3894    {
3895      asection *tail = *list;
3896      asection *head;
3897
3898      if (tail == bfd_abs_section_ptr)
3899	continue;
3900
3901      /* Reverse the list: we must avoid placing stubs at the
3902	 beginning of the section because the beginning of the text
3903	 section may be required for an interrupt vector in bare metal
3904	 code.  */
3905#define NEXT_SEC PREV_SEC
3906      head = NULL;
3907      while (tail != NULL)
3908        {
3909          /* Pop from tail.  */
3910          asection *item = tail;
3911          tail = PREV_SEC (item);
3912
3913          /* Push on head.  */
3914          NEXT_SEC (item) = head;
3915          head = item;
3916        }
3917
3918      while (head != NULL)
3919	{
3920	  asection *curr;
3921	  asection *next;
3922	  bfd_vma stub_group_start = head->output_offset;
3923	  bfd_vma end_of_next;
3924
3925	  curr = head;
3926	  while (NEXT_SEC (curr) != NULL)
3927	    {
3928	      next = NEXT_SEC (curr);
3929	      end_of_next = next->output_offset + next->size;
3930	      if (end_of_next - stub_group_start >= stub_group_size)
3931		/* End of NEXT is too far from start, so stop.  */
3932		break;
3933	      /* Add NEXT to the group.  */
3934	      curr = next;
3935	    }
3936
3937	  /* OK, the size from the start to the start of CURR is less
3938	     than stub_group_size and thus can be handled by one stub
3939	     section.  (Or the head section is itself larger than
3940	     stub_group_size, in which case we may be toast.)
3941	     We should really be keeping track of the total size of
3942	     stubs added here, as stubs contribute to the final output
3943	     section size.  */
3944	  do
3945	    {
3946	      next = NEXT_SEC (head);
3947	      /* Set up this stub group.  */
3948	      htab->stub_group[head->id].link_sec = curr;
3949	    }
3950	  while (head != curr && (head = next) != NULL);
3951
3952	  /* But wait, there's more!  Input sections up to stub_group_size
3953	     bytes after the stub section can be handled by it too.  */
3954	  if (!stubs_always_after_branch)
3955	    {
3956	      stub_group_start = curr->output_offset + curr->size;
3957
3958	      while (next != NULL)
3959		{
3960		  end_of_next = next->output_offset + next->size;
3961		  if (end_of_next - stub_group_start >= stub_group_size)
3962		    /* End of NEXT is too far from stubs, so stop.  */
3963		    break;
3964		  /* Add NEXT to the stub group.  */
3965		  head = next;
3966		  next = NEXT_SEC (head);
3967		  htab->stub_group[head->id].link_sec = curr;
3968		}
3969	    }
3970	  head = next;
3971	}
3972    }
3973  while (list++ != htab->input_list + htab->top_index);
3974
3975  free (htab->input_list);
3976#undef PREV_SEC
3977#undef NEXT_SEC
3978}
3979
3980/* Comparison function for sorting/searching relocations relating to Cortex-A8
3981   erratum fix.  */
3982
3983static int
3984a8_reloc_compare (const void *a, const void *b)
3985{
3986  const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
3987  const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
3988
3989  if (ra->from < rb->from)
3990    return -1;
3991  else if (ra->from > rb->from)
3992    return 1;
3993  else
3994    return 0;
3995}
3996
3997static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
3998						    const char *, char **);
3999
4000/* Helper function to scan code for sequences which might trigger the Cortex-A8
4001   branch/TLB erratum.  Fill in the table described by A8_FIXES_P,
4002   NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P.  Returns true if an error occurs, false
4003   otherwise.  */
4004
4005static bfd_boolean
4006cortex_a8_erratum_scan (bfd *input_bfd,
4007			struct bfd_link_info *info,
4008			struct a8_erratum_fix **a8_fixes_p,
4009			unsigned int *num_a8_fixes_p,
4010			unsigned int *a8_fix_table_size_p,
4011			struct a8_erratum_reloc *a8_relocs,
4012			unsigned int num_a8_relocs,
4013			unsigned prev_num_a8_fixes,
4014			bfd_boolean *stub_changed_p)
4015{
4016  asection *section;
4017  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4018  struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4019  unsigned int num_a8_fixes = *num_a8_fixes_p;
4020  unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4021
4022  if (htab == NULL)
4023    return FALSE;
4024
4025  for (section = input_bfd->sections;
4026       section != NULL;
4027       section = section->next)
4028    {
4029      bfd_byte *contents = NULL;
4030      struct _arm_elf_section_data *sec_data;
4031      unsigned int span;
4032      bfd_vma base_vma;
4033
4034      if (elf_section_type (section) != SHT_PROGBITS
4035          || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4036          || (section->flags & SEC_EXCLUDE) != 0
4037          || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
4038          || (section->output_section == bfd_abs_section_ptr))
4039        continue;
4040
4041      base_vma = section->output_section->vma + section->output_offset;
4042
4043      if (elf_section_data (section)->this_hdr.contents != NULL)
4044        contents = elf_section_data (section)->this_hdr.contents;
4045      else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4046        return TRUE;
4047
4048      sec_data = elf32_arm_section_data (section);
4049
4050      for (span = 0; span < sec_data->mapcount; span++)
4051        {
4052          unsigned int span_start = sec_data->map[span].vma;
4053          unsigned int span_end = (span == sec_data->mapcount - 1)
4054            ? section->size : sec_data->map[span + 1].vma;
4055          unsigned int i;
4056          char span_type = sec_data->map[span].type;
4057          bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4058
4059          if (span_type != 't')
4060            continue;
4061
4062          /* Span is entirely within a single 4KB region: skip scanning.  */
4063          if (((base_vma + span_start) & ~0xfff)
4064	      == ((base_vma + span_end) & ~0xfff))
4065            continue;
4066
4067          /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4068
4069               * The opcode is BLX.W, BL.W, B.W, Bcc.W
4070               * The branch target is in the same 4KB region as the
4071                 first half of the branch.
4072               * The instruction before the branch is a 32-bit
4073                 length non-branch instruction.  */
4074          for (i = span_start; i < span_end;)
4075            {
4076              unsigned int insn = bfd_getl16 (&contents[i]);
4077              bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4078	      bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4079
4080              if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4081                insn_32bit = TRUE;
4082
4083	      if (insn_32bit)
4084	        {
4085                  /* Load the rest of the insn (in manual-friendly order).  */
4086                  insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4087
4088        	  /* Encoding T4: B<c>.W.  */
4089        	  is_b = (insn & 0xf800d000) == 0xf0009000;
4090        	  /* Encoding T1: BL<c>.W.  */
4091        	  is_bl = (insn & 0xf800d000) == 0xf000d000;
4092        	  /* Encoding T2: BLX<c>.W.  */
4093        	  is_blx = (insn & 0xf800d000) == 0xf000c000;
4094		  /* Encoding T3: B<c>.W (not permitted in IT block).  */
4095		  is_bcc = (insn & 0xf800d000) == 0xf0008000
4096			   && (insn & 0x07f00000) != 0x03800000;
4097		}
4098
4099	      is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4100
4101              if (((base_vma + i) & 0xfff) == 0xffe
4102		  && insn_32bit
4103		  && is_32bit_branch
4104		  && last_was_32bit
4105		  && ! last_was_branch)
4106                {
4107                  bfd_signed_vma offset = 0;
4108                  bfd_boolean force_target_arm = FALSE;
4109		  bfd_boolean force_target_thumb = FALSE;
4110                  bfd_vma target;
4111                  enum elf32_arm_stub_type stub_type = arm_stub_none;
4112                  struct a8_erratum_reloc key, *found;
4113                  bfd_boolean use_plt = FALSE;
4114
4115                  key.from = base_vma + i;
4116                  found = (struct a8_erratum_reloc *)
4117                      bsearch (&key, a8_relocs, num_a8_relocs,
4118                               sizeof (struct a8_erratum_reloc),
4119                               &a8_reloc_compare);
4120
4121		  if (found)
4122		    {
4123		      char *error_message = NULL;
4124		      struct elf_link_hash_entry *entry;
4125
4126		      /* We don't care about the error returned from this
4127		         function, only if there is glue or not.  */
4128		      entry = find_thumb_glue (info, found->sym_name,
4129					       &error_message);
4130
4131		      if (entry)
4132			found->non_a8_stub = TRUE;
4133
4134		      /* Keep a simpler condition, for the sake of clarity.  */
4135		      if (htab->splt != NULL && found->hash != NULL
4136			  && found->hash->root.plt.offset != (bfd_vma) -1)
4137			use_plt = TRUE;
4138
4139		      if (found->r_type == R_ARM_THM_CALL)
4140			{
4141			  if (found->st_type != STT_ARM_TFUNC || use_plt)
4142			    force_target_arm = TRUE;
4143			  else
4144			    force_target_thumb = TRUE;
4145			}
4146		    }
4147
4148                  /* Check if we have an offending branch instruction.  */
4149
4150		  if (found && found->non_a8_stub)
4151		    /* We've already made a stub for this instruction, e.g.
4152		       it's a long branch or a Thumb->ARM stub.  Assume that
4153		       stub will suffice to work around the A8 erratum (see
4154		       setting of always_after_branch above).  */
4155		    ;
4156                  else if (is_bcc)
4157                    {
4158                      offset = (insn & 0x7ff) << 1;
4159                      offset |= (insn & 0x3f0000) >> 4;
4160                      offset |= (insn & 0x2000) ? 0x40000 : 0;
4161                      offset |= (insn & 0x800) ? 0x80000 : 0;
4162                      offset |= (insn & 0x4000000) ? 0x100000 : 0;
4163                      if (offset & 0x100000)
4164                        offset |= ~ ((bfd_signed_vma) 0xfffff);
4165                      stub_type = arm_stub_a8_veneer_b_cond;
4166                    }
4167                  else if (is_b || is_bl || is_blx)
4168                    {
4169                      int s = (insn & 0x4000000) != 0;
4170                      int j1 = (insn & 0x2000) != 0;
4171                      int j2 = (insn & 0x800) != 0;
4172                      int i1 = !(j1 ^ s);
4173                      int i2 = !(j2 ^ s);
4174
4175                      offset = (insn & 0x7ff) << 1;
4176                      offset |= (insn & 0x3ff0000) >> 4;
4177                      offset |= i2 << 22;
4178                      offset |= i1 << 23;
4179                      offset |= s << 24;
4180                      if (offset & 0x1000000)
4181                        offset |= ~ ((bfd_signed_vma) 0xffffff);
4182
4183                      if (is_blx)
4184                        offset &= ~ ((bfd_signed_vma) 3);
4185
4186                      stub_type = is_blx ? arm_stub_a8_veneer_blx :
4187                        is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4188                    }
4189
4190                  if (stub_type != arm_stub_none)
4191                    {
4192                      bfd_vma pc_for_insn = base_vma + i + 4;
4193
4194		      /* The original instruction is a BL, but the target is
4195		         an ARM instruction.  If we were not making a stub,
4196			 the BL would have been converted to a BLX.  Use the
4197			 BLX stub instead in that case.  */
4198		      if (htab->use_blx && force_target_arm
4199			  && stub_type == arm_stub_a8_veneer_bl)
4200			{
4201			  stub_type = arm_stub_a8_veneer_blx;
4202			  is_blx = TRUE;
4203			  is_bl = FALSE;
4204			}
4205		      /* Conversely, if the original instruction was
4206			 BLX but the target is Thumb mode, use the BL
4207			 stub.  */
4208		      else if (force_target_thumb
4209			       && stub_type == arm_stub_a8_veneer_blx)
4210			{
4211			  stub_type = arm_stub_a8_veneer_bl;
4212			  is_blx = FALSE;
4213			  is_bl = TRUE;
4214			}
4215
4216                      if (is_blx)
4217                        pc_for_insn &= ~ ((bfd_vma) 3);
4218
4219                      /* If we found a relocation, use the proper destination,
4220		         not the offset in the (unrelocated) instruction.
4221			 Note this is always done if we switched the stub type
4222			 above.  */
4223                      if (found)
4224                        offset =
4225			  (bfd_signed_vma) (found->destination - pc_for_insn);
4226
4227                      /* If the stub will use a Thumb-mode branch to a
4228                         PLT target, redirect it to the preceding Thumb
4229                         entry point.  */
4230                      if (stub_type != arm_stub_a8_veneer_blx && use_plt)
4231                        offset -= PLT_THUMB_STUB_SIZE;
4232
4233                      target = pc_for_insn + offset;
4234
4235                      /* The BLX stub is ARM-mode code.  Adjust the offset to
4236		         take the different PC value (+8 instead of +4) into
4237			 account.  */
4238                      if (stub_type == arm_stub_a8_veneer_blx)
4239                        offset += 4;
4240
4241                      if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4242                        {
4243                          char *stub_name = NULL;
4244
4245                          if (num_a8_fixes == a8_fix_table_size)
4246                            {
4247                              a8_fix_table_size *= 2;
4248                              a8_fixes = (struct a8_erratum_fix *)
4249                                  bfd_realloc (a8_fixes,
4250                                               sizeof (struct a8_erratum_fix)
4251                                               * a8_fix_table_size);
4252                            }
4253
4254			  if (num_a8_fixes < prev_num_a8_fixes)
4255			    {
4256			      /* If we're doing a subsequent scan,
4257				 check if we've found the same fix as
4258				 before, and try and reuse the stub
4259				 name.  */
4260			      stub_name = a8_fixes[num_a8_fixes].stub_name;
4261			      if ((a8_fixes[num_a8_fixes].section != section)
4262				  || (a8_fixes[num_a8_fixes].offset != i))
4263				{
4264				  free (stub_name);
4265				  stub_name = NULL;
4266				  *stub_changed_p = TRUE;
4267				}
4268			    }
4269
4270			  if (!stub_name)
4271			    {
4272			      stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4273			      if (stub_name != NULL)
4274				sprintf (stub_name, "%x:%x", section->id, i);
4275			    }
4276
4277                          a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4278                          a8_fixes[num_a8_fixes].section = section;
4279                          a8_fixes[num_a8_fixes].offset = i;
4280                          a8_fixes[num_a8_fixes].addend = offset;
4281                          a8_fixes[num_a8_fixes].orig_insn = insn;
4282                          a8_fixes[num_a8_fixes].stub_name = stub_name;
4283                          a8_fixes[num_a8_fixes].stub_type = stub_type;
4284                          a8_fixes[num_a8_fixes].st_type =
4285			    is_blx ? STT_FUNC : STT_ARM_TFUNC;
4286
4287                          num_a8_fixes++;
4288                        }
4289                    }
4290                }
4291
4292              i += insn_32bit ? 4 : 2;
4293              last_was_32bit = insn_32bit;
4294	      last_was_branch = is_32bit_branch;
4295            }
4296        }
4297
4298      if (elf_section_data (section)->this_hdr.contents == NULL)
4299        free (contents);
4300    }
4301
4302  *a8_fixes_p = a8_fixes;
4303  *num_a8_fixes_p = num_a8_fixes;
4304  *a8_fix_table_size_p = a8_fix_table_size;
4305
4306  return FALSE;
4307}
4308
4309/* Determine and set the size of the stub section for a final link.
4310
4311   The basic idea here is to examine all the relocations looking for
4312   PC-relative calls to a target that is unreachable with a "bl"
4313   instruction.  */
4314
4315bfd_boolean
4316elf32_arm_size_stubs (bfd *output_bfd,
4317		      bfd *stub_bfd,
4318		      struct bfd_link_info *info,
4319		      bfd_signed_vma group_size,
4320		      asection * (*add_stub_section) (const char *, asection *),
4321		      void (*layout_sections_again) (void))
4322{
4323  bfd_size_type stub_group_size;
4324  bfd_boolean stubs_always_after_branch;
4325  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4326  struct a8_erratum_fix *a8_fixes = NULL;
4327  unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4328  struct a8_erratum_reloc *a8_relocs = NULL;
4329  unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4330
4331  if (htab == NULL)
4332    return FALSE;
4333
4334  if (htab->fix_cortex_a8)
4335    {
4336      a8_fixes = (struct a8_erratum_fix *)
4337          bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4338      a8_relocs = (struct a8_erratum_reloc *)
4339          bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4340    }
4341
4342  /* Propagate mach to stub bfd, because it may not have been
4343     finalized when we created stub_bfd.  */
4344  bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4345		     bfd_get_mach (output_bfd));
4346
4347  /* Stash our params away.  */
4348  htab->stub_bfd = stub_bfd;
4349  htab->add_stub_section = add_stub_section;
4350  htab->layout_sections_again = layout_sections_again;
4351  stubs_always_after_branch = group_size < 0;
4352
4353  /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4354     as the first half of a 32-bit branch straddling two 4K pages.  This is a
4355     crude way of enforcing that.  */
4356  if (htab->fix_cortex_a8)
4357    stubs_always_after_branch = 1;
4358
4359  if (group_size < 0)
4360    stub_group_size = -group_size;
4361  else
4362    stub_group_size = group_size;
4363
4364  if (stub_group_size == 1)
4365    {
4366      /* Default values.  */
4367      /* Thumb branch range is +-4MB has to be used as the default
4368	 maximum size (a given section can contain both ARM and Thumb
4369	 code, so the worst case has to be taken into account).
4370
4371	 This value is 24K less than that, which allows for 2025
4372	 12-byte stubs.  If we exceed that, then we will fail to link.
4373	 The user will have to relink with an explicit group size
4374	 option.  */
4375      stub_group_size = 4170000;
4376    }
4377
4378  group_sections (htab, stub_group_size, stubs_always_after_branch);
4379
4380  /* If we're applying the cortex A8 fix, we need to determine the
4381     program header size now, because we cannot change it later --
4382     that could alter section placements.  Notice the A8 erratum fix
4383     ends up requiring the section addresses to remain unchanged
4384     modulo the page size.  That's something we cannot represent
4385     inside BFD, and we don't want to force the section alignment to
4386     be the page size.  */
4387  if (htab->fix_cortex_a8)
4388    (*htab->layout_sections_again) ();
4389
4390  while (1)
4391    {
4392      bfd *input_bfd;
4393      unsigned int bfd_indx;
4394      asection *stub_sec;
4395      bfd_boolean stub_changed = FALSE;
4396      unsigned prev_num_a8_fixes = num_a8_fixes;
4397
4398      num_a8_fixes = 0;
4399      for (input_bfd = info->input_bfds, bfd_indx = 0;
4400	   input_bfd != NULL;
4401	   input_bfd = input_bfd->link_next, bfd_indx++)
4402	{
4403	  Elf_Internal_Shdr *symtab_hdr;
4404	  asection *section;
4405	  Elf_Internal_Sym *local_syms = NULL;
4406
4407	  num_a8_relocs = 0;
4408
4409	  /* We'll need the symbol table in a second.  */
4410	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4411	  if (symtab_hdr->sh_info == 0)
4412	    continue;
4413
4414	  /* Walk over each section attached to the input bfd.  */
4415	  for (section = input_bfd->sections;
4416	       section != NULL;
4417	       section = section->next)
4418	    {
4419	      Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4420
4421	      /* If there aren't any relocs, then there's nothing more
4422		 to do.  */
4423	      if ((section->flags & SEC_RELOC) == 0
4424		  || section->reloc_count == 0
4425		  || (section->flags & SEC_CODE) == 0)
4426		continue;
4427
4428	      /* If this section is a link-once section that will be
4429		 discarded, then don't create any stubs.  */
4430	      if (section->output_section == NULL
4431		  || section->output_section->owner != output_bfd)
4432		continue;
4433
4434	      /* Get the relocs.  */
4435	      internal_relocs
4436		= _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4437					     NULL, info->keep_memory);
4438	      if (internal_relocs == NULL)
4439		goto error_ret_free_local;
4440
4441	      /* Now examine each relocation.  */
4442	      irela = internal_relocs;
4443	      irelaend = irela + section->reloc_count;
4444	      for (; irela < irelaend; irela++)
4445		{
4446		  unsigned int r_type, r_indx;
4447		  enum elf32_arm_stub_type stub_type;
4448		  struct elf32_arm_stub_hash_entry *stub_entry;
4449		  asection *sym_sec;
4450		  bfd_vma sym_value;
4451		  bfd_vma destination;
4452		  struct elf32_arm_link_hash_entry *hash;
4453		  const char *sym_name;
4454		  char *stub_name;
4455		  const asection *id_sec;
4456		  int st_type;
4457		  bfd_boolean created_stub = FALSE;
4458
4459		  r_type = ELF32_R_TYPE (irela->r_info);
4460		  r_indx = ELF32_R_SYM (irela->r_info);
4461
4462		  if (r_type >= (unsigned int) R_ARM_max)
4463		    {
4464		      bfd_set_error (bfd_error_bad_value);
4465		    error_ret_free_internal:
4466		      if (elf_section_data (section)->relocs == NULL)
4467			free (internal_relocs);
4468		      goto error_ret_free_local;
4469		    }
4470
4471		  /* Only look for stubs on branch instructions.  */
4472		  if ((r_type != (unsigned int) R_ARM_CALL)
4473		      && (r_type != (unsigned int) R_ARM_THM_CALL)
4474		      && (r_type != (unsigned int) R_ARM_JUMP24)
4475		      && (r_type != (unsigned int) R_ARM_THM_JUMP19)
4476		      && (r_type != (unsigned int) R_ARM_THM_XPC22)
4477		      && (r_type != (unsigned int) R_ARM_THM_JUMP24)
4478		      && (r_type != (unsigned int) R_ARM_PLT32))
4479		    continue;
4480
4481		  /* Now determine the call target, its name, value,
4482		     section.  */
4483		  sym_sec = NULL;
4484		  sym_value = 0;
4485		  destination = 0;
4486		  hash = NULL;
4487		  sym_name = NULL;
4488		  if (r_indx < symtab_hdr->sh_info)
4489		    {
4490		      /* It's a local symbol.  */
4491		      Elf_Internal_Sym *sym;
4492
4493		      if (local_syms == NULL)
4494			{
4495			  local_syms
4496			    = (Elf_Internal_Sym *) symtab_hdr->contents;
4497			  if (local_syms == NULL)
4498			    local_syms
4499			      = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4500						      symtab_hdr->sh_info, 0,
4501						      NULL, NULL, NULL);
4502			  if (local_syms == NULL)
4503			    goto error_ret_free_internal;
4504			}
4505
4506		      sym = local_syms + r_indx;
4507		      if (sym->st_shndx == SHN_UNDEF)
4508			sym_sec = bfd_und_section_ptr;
4509		      else if (sym->st_shndx == SHN_ABS)
4510			sym_sec = bfd_abs_section_ptr;
4511		      else if (sym->st_shndx == SHN_COMMON)
4512			sym_sec = bfd_com_section_ptr;
4513		      else
4514			sym_sec =
4515			  bfd_section_from_elf_index (input_bfd, sym->st_shndx);
4516
4517		      if (!sym_sec)
4518			/* This is an undefined symbol.  It can never
4519			   be resolved. */
4520			continue;
4521
4522		      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4523			sym_value = sym->st_value;
4524		      destination = (sym_value + irela->r_addend
4525				     + sym_sec->output_offset
4526				     + sym_sec->output_section->vma);
4527		      st_type = ELF_ST_TYPE (sym->st_info);
4528		      sym_name
4529			= bfd_elf_string_from_elf_section (input_bfd,
4530							   symtab_hdr->sh_link,
4531							   sym->st_name);
4532		    }
4533		  else
4534		    {
4535		      /* It's an external symbol.  */
4536		      int e_indx;
4537
4538		      e_indx = r_indx - symtab_hdr->sh_info;
4539		      hash = ((struct elf32_arm_link_hash_entry *)
4540			      elf_sym_hashes (input_bfd)[e_indx]);
4541
4542		      while (hash->root.root.type == bfd_link_hash_indirect
4543			     || hash->root.root.type == bfd_link_hash_warning)
4544			hash = ((struct elf32_arm_link_hash_entry *)
4545				hash->root.root.u.i.link);
4546
4547		      if (hash->root.root.type == bfd_link_hash_defined
4548			  || hash->root.root.type == bfd_link_hash_defweak)
4549			{
4550			  sym_sec = hash->root.root.u.def.section;
4551			  sym_value = hash->root.root.u.def.value;
4552
4553			  struct elf32_arm_link_hash_table *globals =
4554						  elf32_arm_hash_table (info);
4555
4556			  /* For a destination in a shared library,
4557			     use the PLT stub as target address to
4558			     decide whether a branch stub is
4559			     needed.  */
4560			  if (globals != NULL
4561			      && globals->splt != NULL
4562			      && hash != NULL
4563			      && hash->root.plt.offset != (bfd_vma) -1)
4564			    {
4565			      sym_sec = globals->splt;
4566			      sym_value = hash->root.plt.offset;
4567			      if (sym_sec->output_section != NULL)
4568				destination = (sym_value
4569					       + sym_sec->output_offset
4570					       + sym_sec->output_section->vma);
4571			    }
4572			  else if (sym_sec->output_section != NULL)
4573			    destination = (sym_value + irela->r_addend
4574					   + sym_sec->output_offset
4575					   + sym_sec->output_section->vma);
4576			}
4577		      else if ((hash->root.root.type == bfd_link_hash_undefined)
4578			       || (hash->root.root.type == bfd_link_hash_undefweak))
4579			{
4580			  /* For a shared library, use the PLT stub as
4581			     target address to decide whether a long
4582			     branch stub is needed.
4583			     For absolute code, they cannot be handled.  */
4584			  struct elf32_arm_link_hash_table *globals =
4585			    elf32_arm_hash_table (info);
4586
4587			  if (globals != NULL
4588			      && globals->splt != NULL
4589			      && hash != NULL
4590			      && hash->root.plt.offset != (bfd_vma) -1)
4591			    {
4592			      sym_sec = globals->splt;
4593			      sym_value = hash->root.plt.offset;
4594			      if (sym_sec->output_section != NULL)
4595				destination = (sym_value
4596					       + sym_sec->output_offset
4597					       + sym_sec->output_section->vma);
4598			    }
4599			  else
4600			    continue;
4601			}
4602		      else
4603			{
4604			  bfd_set_error (bfd_error_bad_value);
4605			  goto error_ret_free_internal;
4606			}
4607		      st_type = ELF_ST_TYPE (hash->root.type);
4608		      sym_name = hash->root.root.root.string;
4609		    }
4610
4611		  do
4612		    {
4613		      /* Determine what (if any) linker stub is needed.  */
4614		      stub_type = arm_type_of_stub (info, section, irela,
4615						    &st_type, hash,
4616						    destination, sym_sec,
4617						    input_bfd, sym_name);
4618		      if (stub_type == arm_stub_none)
4619			break;
4620
4621		      /* Support for grouping stub sections.  */
4622		      id_sec = htab->stub_group[section->id].link_sec;
4623
4624		      /* Get the name of this stub.  */
4625		      stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
4626						       irela, stub_type);
4627		      if (!stub_name)
4628			goto error_ret_free_internal;
4629
4630		      /* We've either created a stub for this reloc already,
4631			 or we are about to.  */
4632		      created_stub = TRUE;
4633
4634		      stub_entry = arm_stub_hash_lookup
4635				     (&htab->stub_hash_table, stub_name,
4636				      FALSE, FALSE);
4637		      if (stub_entry != NULL)
4638			{
4639			  /* The proper stub has already been created.  */
4640			  free (stub_name);
4641			  stub_entry->target_value = sym_value;
4642			  break;
4643			}
4644
4645		      stub_entry = elf32_arm_add_stub (stub_name, section,
4646						       htab);
4647		      if (stub_entry == NULL)
4648			{
4649			  free (stub_name);
4650			  goto error_ret_free_internal;
4651			}
4652
4653                      stub_entry->target_value = sym_value;
4654                      stub_entry->target_section = sym_sec;
4655                      stub_entry->stub_type = stub_type;
4656                      stub_entry->h = hash;
4657                      stub_entry->st_type = st_type;
4658
4659                      if (sym_name == NULL)
4660                	sym_name = "unnamed";
4661                      stub_entry->output_name = (char *)
4662                          bfd_alloc (htab->stub_bfd,
4663                                     sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
4664                                     + strlen (sym_name));
4665                      if (stub_entry->output_name == NULL)
4666                	{
4667                          free (stub_name);
4668                          goto error_ret_free_internal;
4669                	}
4670
4671                      /* For historical reasons, use the existing names for
4672                	 ARM-to-Thumb and Thumb-to-ARM stubs.  */
4673                      if ( ((r_type == (unsigned int) R_ARM_THM_CALL)
4674                            || (r_type == (unsigned int) R_ARM_THM_JUMP24))
4675                           && st_type != STT_ARM_TFUNC)
4676                	sprintf (stub_entry->output_name,
4677                        	 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
4678                      else if ( ((r_type == (unsigned int) R_ARM_CALL)
4679                        	 || (r_type == (unsigned int) R_ARM_JUMP24))
4680                               && st_type == STT_ARM_TFUNC)
4681                	sprintf (stub_entry->output_name,
4682                        	 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
4683                      else
4684                	sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
4685                        	 sym_name);
4686
4687                      stub_changed = TRUE;
4688                    }
4689                  while (0);
4690
4691                  /* Look for relocations which might trigger Cortex-A8
4692                     erratum.  */
4693                  if (htab->fix_cortex_a8
4694                      && (r_type == (unsigned int) R_ARM_THM_JUMP24
4695                          || r_type == (unsigned int) R_ARM_THM_JUMP19
4696                          || r_type == (unsigned int) R_ARM_THM_CALL
4697                          || r_type == (unsigned int) R_ARM_THM_XPC22))
4698                    {
4699                      bfd_vma from = section->output_section->vma
4700                                     + section->output_offset
4701                                     + irela->r_offset;
4702
4703                      if ((from & 0xfff) == 0xffe)
4704                        {
4705                          /* Found a candidate.  Note we haven't checked the
4706                             destination is within 4K here: if we do so (and
4707                             don't create an entry in a8_relocs) we can't tell
4708                             that a branch should have been relocated when
4709                             scanning later.  */
4710                          if (num_a8_relocs == a8_reloc_table_size)
4711                            {
4712                              a8_reloc_table_size *= 2;
4713                              a8_relocs = (struct a8_erratum_reloc *)
4714                                  bfd_realloc (a8_relocs,
4715                                               sizeof (struct a8_erratum_reloc)
4716                                               * a8_reloc_table_size);
4717                            }
4718
4719                          a8_relocs[num_a8_relocs].from = from;
4720                          a8_relocs[num_a8_relocs].destination = destination;
4721                          a8_relocs[num_a8_relocs].r_type = r_type;
4722                          a8_relocs[num_a8_relocs].st_type = st_type;
4723                          a8_relocs[num_a8_relocs].sym_name = sym_name;
4724                          a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
4725                          a8_relocs[num_a8_relocs].hash = hash;
4726
4727                          num_a8_relocs++;
4728                        }
4729                    }
4730		}
4731
4732              /* We're done with the internal relocs, free them.  */
4733              if (elf_section_data (section)->relocs == NULL)
4734                free (internal_relocs);
4735            }
4736
4737          if (htab->fix_cortex_a8)
4738	    {
4739              /* Sort relocs which might apply to Cortex-A8 erratum.  */
4740              qsort (a8_relocs, num_a8_relocs,
4741		     sizeof (struct a8_erratum_reloc),
4742                     &a8_reloc_compare);
4743
4744              /* Scan for branches which might trigger Cortex-A8 erratum.  */
4745              if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
4746					  &num_a8_fixes, &a8_fix_table_size,
4747					  a8_relocs, num_a8_relocs,
4748					  prev_num_a8_fixes, &stub_changed)
4749		  != 0)
4750		goto error_ret_free_local;
4751	    }
4752	}
4753
4754      if (prev_num_a8_fixes != num_a8_fixes)
4755        stub_changed = TRUE;
4756
4757      if (!stub_changed)
4758	break;
4759
4760      /* OK, we've added some stubs.  Find out the new size of the
4761	 stub sections.  */
4762      for (stub_sec = htab->stub_bfd->sections;
4763	   stub_sec != NULL;
4764	   stub_sec = stub_sec->next)
4765	{
4766	  /* Ignore non-stub sections.  */
4767	  if (!strstr (stub_sec->name, STUB_SUFFIX))
4768	    continue;
4769
4770	  stub_sec->size = 0;
4771	}
4772
4773      bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
4774
4775      /* Add Cortex-A8 erratum veneers to stub section sizes too.  */
4776      if (htab->fix_cortex_a8)
4777        for (i = 0; i < num_a8_fixes; i++)
4778          {
4779	    stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
4780			 a8_fixes[i].section, htab);
4781
4782	    if (stub_sec == NULL)
4783	      goto error_ret_free_local;
4784
4785            stub_sec->size
4786              += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
4787                                              NULL);
4788          }
4789
4790
4791      /* Ask the linker to do its stuff.  */
4792      (*htab->layout_sections_again) ();
4793    }
4794
4795  /* Add stubs for Cortex-A8 erratum fixes now.  */
4796  if (htab->fix_cortex_a8)
4797    {
4798      for (i = 0; i < num_a8_fixes; i++)
4799        {
4800          struct elf32_arm_stub_hash_entry *stub_entry;
4801          char *stub_name = a8_fixes[i].stub_name;
4802          asection *section = a8_fixes[i].section;
4803          unsigned int section_id = a8_fixes[i].section->id;
4804          asection *link_sec = htab->stub_group[section_id].link_sec;
4805          asection *stub_sec = htab->stub_group[section_id].stub_sec;
4806          const insn_sequence *template_sequence;
4807          int template_size, size = 0;
4808
4809          stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4810                                             TRUE, FALSE);
4811          if (stub_entry == NULL)
4812            {
4813              (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4814                                     section->owner,
4815                                     stub_name);
4816              return FALSE;
4817            }
4818
4819          stub_entry->stub_sec = stub_sec;
4820          stub_entry->stub_offset = 0;
4821          stub_entry->id_sec = link_sec;
4822          stub_entry->stub_type = a8_fixes[i].stub_type;
4823          stub_entry->target_section = a8_fixes[i].section;
4824          stub_entry->target_value = a8_fixes[i].offset;
4825          stub_entry->target_addend = a8_fixes[i].addend;
4826          stub_entry->orig_insn = a8_fixes[i].orig_insn;
4827	  stub_entry->st_type = a8_fixes[i].st_type;
4828
4829          size = find_stub_size_and_template (a8_fixes[i].stub_type,
4830                                              &template_sequence,
4831                                              &template_size);
4832
4833          stub_entry->stub_size = size;
4834          stub_entry->stub_template = template_sequence;
4835          stub_entry->stub_template_size = template_size;
4836        }
4837
4838      /* Stash the Cortex-A8 erratum fix array for use later in
4839         elf32_arm_write_section().  */
4840      htab->a8_erratum_fixes = a8_fixes;
4841      htab->num_a8_erratum_fixes = num_a8_fixes;
4842    }
4843  else
4844    {
4845      htab->a8_erratum_fixes = NULL;
4846      htab->num_a8_erratum_fixes = 0;
4847    }
4848  return TRUE;
4849
4850 error_ret_free_local:
4851  return FALSE;
4852}
4853
4854/* Build all the stubs associated with the current output file.  The
4855   stubs are kept in a hash table attached to the main linker hash
4856   table.  We also set up the .plt entries for statically linked PIC
4857   functions here.  This function is called via arm_elf_finish in the
4858   linker.  */
4859
4860bfd_boolean
4861elf32_arm_build_stubs (struct bfd_link_info *info)
4862{
4863  asection *stub_sec;
4864  struct bfd_hash_table *table;
4865  struct elf32_arm_link_hash_table *htab;
4866
4867  htab = elf32_arm_hash_table (info);
4868  if (htab == NULL)
4869    return FALSE;
4870
4871  for (stub_sec = htab->stub_bfd->sections;
4872       stub_sec != NULL;
4873       stub_sec = stub_sec->next)
4874    {
4875      bfd_size_type size;
4876
4877      /* Ignore non-stub sections.  */
4878      if (!strstr (stub_sec->name, STUB_SUFFIX))
4879	continue;
4880
4881      /* Allocate memory to hold the linker stubs.  */
4882      size = stub_sec->size;
4883      stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
4884      if (stub_sec->contents == NULL && size != 0)
4885	return FALSE;
4886      stub_sec->size = 0;
4887    }
4888
4889  /* Build the stubs as directed by the stub hash table.  */
4890  table = &htab->stub_hash_table;
4891  bfd_hash_traverse (table, arm_build_one_stub, info);
4892  if (htab->fix_cortex_a8)
4893    {
4894      /* Place the cortex a8 stubs last.  */
4895      htab->fix_cortex_a8 = -1;
4896      bfd_hash_traverse (table, arm_build_one_stub, info);
4897    }
4898
4899  return TRUE;
4900}
4901
4902/* Locate the Thumb encoded calling stub for NAME.  */
4903
4904static struct elf_link_hash_entry *
4905find_thumb_glue (struct bfd_link_info *link_info,
4906		 const char *name,
4907		 char **error_message)
4908{
4909  char *tmp_name;
4910  struct elf_link_hash_entry *hash;
4911  struct elf32_arm_link_hash_table *hash_table;
4912
4913  /* We need a pointer to the armelf specific hash table.  */
4914  hash_table = elf32_arm_hash_table (link_info);
4915  if (hash_table == NULL)
4916    return NULL;
4917
4918  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
4919                                  + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4920
4921  BFD_ASSERT (tmp_name);
4922
4923  sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4924
4925  hash = elf_link_hash_lookup
4926    (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4927
4928  if (hash == NULL
4929      && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
4930		   tmp_name, name) == -1)
4931    *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4932
4933  free (tmp_name);
4934
4935  return hash;
4936}
4937
4938/* Locate the ARM encoded calling stub for NAME.  */
4939
4940static struct elf_link_hash_entry *
4941find_arm_glue (struct bfd_link_info *link_info,
4942	       const char *name,
4943	       char **error_message)
4944{
4945  char *tmp_name;
4946  struct elf_link_hash_entry *myh;
4947  struct elf32_arm_link_hash_table *hash_table;
4948
4949  /* We need a pointer to the elfarm specific hash table.  */
4950  hash_table = elf32_arm_hash_table (link_info);
4951  if (hash_table == NULL)
4952    return NULL;
4953
4954  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
4955                                  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4956
4957  BFD_ASSERT (tmp_name);
4958
4959  sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4960
4961  myh = elf_link_hash_lookup
4962    (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4963
4964  if (myh == NULL
4965      && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
4966		   tmp_name, name) == -1)
4967    *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4968
4969  free (tmp_name);
4970
4971  return myh;
4972}
4973
4974/* ARM->Thumb glue (static images):
4975
4976   .arm
4977   __func_from_arm:
4978   ldr r12, __func_addr
4979   bx  r12
4980   __func_addr:
4981   .word func    @ behave as if you saw a ARM_32 reloc.
4982
4983   (v5t static images)
4984   .arm
4985   __func_from_arm:
4986   ldr pc, __func_addr
4987   __func_addr:
4988   .word func    @ behave as if you saw a ARM_32 reloc.
4989
4990   (relocatable images)
4991   .arm
4992   __func_from_arm:
4993   ldr r12, __func_offset
4994   add r12, r12, pc
4995   bx  r12
4996   __func_offset:
4997   .word func - .   */
4998
4999#define ARM2THUMB_STATIC_GLUE_SIZE 12
5000static const insn32 a2t1_ldr_insn = 0xe59fc000;
5001static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5002static const insn32 a2t3_func_addr_insn = 0x00000001;
5003
5004#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5005static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5006static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5007
5008#define ARM2THUMB_PIC_GLUE_SIZE 16
5009static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5010static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5011static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5012
5013/* Thumb->ARM:                          Thumb->(non-interworking aware) ARM
5014
5015     .thumb                             .thumb
5016     .align 2                           .align 2
5017 __func_from_thumb:                 __func_from_thumb:
5018     bx pc                              push {r6, lr}
5019     nop                                ldr  r6, __func_addr
5020     .arm                               mov  lr, pc
5021     b func                             bx   r6
5022                                        .arm
5023		 		    ;; back_to_thumb
5024                 		        ldmia r13! {r6, lr}
5025 				        bx    lr
5026                                    __func_addr:
5027                                        .word        func  */
5028
5029#define THUMB2ARM_GLUE_SIZE 8
5030static const insn16 t2a1_bx_pc_insn = 0x4778;
5031static const insn16 t2a2_noop_insn = 0x46c0;
5032static const insn32 t2a3_b_insn = 0xea000000;
5033
5034#define VFP11_ERRATUM_VENEER_SIZE 8
5035
5036#define ARM_BX_VENEER_SIZE 12
5037static const insn32 armbx1_tst_insn = 0xe3100001;
5038static const insn32 armbx2_moveq_insn = 0x01a0f000;
5039static const insn32 armbx3_bx_insn = 0xe12fff10;
5040
5041#ifndef ELFARM_NABI_C_INCLUDED
5042static void
5043arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5044{
5045  asection * s;
5046  bfd_byte * contents;
5047
5048  if (size == 0)
5049    {
5050      /* Do not include empty glue sections in the output.  */
5051      if (abfd != NULL)
5052	{
5053	  s = bfd_get_section_by_name (abfd, name);
5054	  if (s != NULL)
5055	    s->flags |= SEC_EXCLUDE;
5056	}
5057      return;
5058    }
5059
5060  BFD_ASSERT (abfd != NULL);
5061
5062  s = bfd_get_section_by_name (abfd, name);
5063  BFD_ASSERT (s != NULL);
5064
5065  contents = (bfd_byte *) bfd_alloc (abfd, size);
5066
5067  BFD_ASSERT (s->size == size);
5068  s->contents = contents;
5069}
5070
5071bfd_boolean
5072bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5073{
5074  struct elf32_arm_link_hash_table * globals;
5075
5076  globals = elf32_arm_hash_table (info);
5077  BFD_ASSERT (globals != NULL);
5078
5079  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5080				   globals->arm_glue_size,
5081				   ARM2THUMB_GLUE_SECTION_NAME);
5082
5083  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5084				   globals->thumb_glue_size,
5085				   THUMB2ARM_GLUE_SECTION_NAME);
5086
5087  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5088				   globals->vfp11_erratum_glue_size,
5089				   VFP11_ERRATUM_VENEER_SECTION_NAME);
5090
5091  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5092				   globals->bx_glue_size,
5093				   ARM_BX_GLUE_SECTION_NAME);
5094
5095  return TRUE;
5096}
5097
5098/* Allocate space and symbols for calling a Thumb function from Arm mode.
5099   returns the symbol identifying the stub.  */
5100
5101static struct elf_link_hash_entry *
5102record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5103			  struct elf_link_hash_entry * h)
5104{
5105  const char * name = h->root.root.string;
5106  asection * s;
5107  char * tmp_name;
5108  struct elf_link_hash_entry * myh;
5109  struct bfd_link_hash_entry * bh;
5110  struct elf32_arm_link_hash_table * globals;
5111  bfd_vma val;
5112  bfd_size_type size;
5113
5114  globals = elf32_arm_hash_table (link_info);
5115  BFD_ASSERT (globals != NULL);
5116  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5117
5118  s = bfd_get_section_by_name
5119    (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5120
5121  BFD_ASSERT (s != NULL);
5122
5123  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5124                                  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5125
5126  BFD_ASSERT (tmp_name);
5127
5128  sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5129
5130  myh = elf_link_hash_lookup
5131    (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5132
5133  if (myh != NULL)
5134    {
5135      /* We've already seen this guy.  */
5136      free (tmp_name);
5137      return myh;
5138    }
5139
5140  /* The only trick here is using hash_table->arm_glue_size as the value.
5141     Even though the section isn't allocated yet, this is where we will be
5142     putting it.  The +1 on the value marks that the stub has not been
5143     output yet - not that it is a Thumb function.  */
5144  bh = NULL;
5145  val = globals->arm_glue_size + 1;
5146  _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5147				    tmp_name, BSF_GLOBAL, s, val,
5148				    NULL, TRUE, FALSE, &bh);
5149
5150  myh = (struct elf_link_hash_entry *) bh;
5151  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5152  myh->forced_local = 1;
5153
5154  free (tmp_name);
5155
5156  if (link_info->shared || globals->root.is_relocatable_executable
5157      || globals->pic_veneer)
5158    size = ARM2THUMB_PIC_GLUE_SIZE;
5159  else if (globals->use_blx)
5160    size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5161  else
5162    size = ARM2THUMB_STATIC_GLUE_SIZE;
5163
5164  s->size += size;
5165  globals->arm_glue_size += size;
5166
5167  return myh;
5168}
5169
5170/* Allocate space for ARMv4 BX veneers.  */
5171
5172static void
5173record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5174{
5175  asection * s;
5176  struct elf32_arm_link_hash_table *globals;
5177  char *tmp_name;
5178  struct elf_link_hash_entry *myh;
5179  struct bfd_link_hash_entry *bh;
5180  bfd_vma val;
5181
5182  /* BX PC does not need a veneer.  */
5183  if (reg == 15)
5184    return;
5185
5186  globals = elf32_arm_hash_table (link_info);
5187  BFD_ASSERT (globals != NULL);
5188  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5189
5190  /* Check if this veneer has already been allocated.  */
5191  if (globals->bx_glue_offset[reg])
5192    return;
5193
5194  s = bfd_get_section_by_name
5195    (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5196
5197  BFD_ASSERT (s != NULL);
5198
5199  /* Add symbol for veneer.  */
5200  tmp_name = (char *)
5201      bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5202
5203  BFD_ASSERT (tmp_name);
5204
5205  sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5206
5207  myh = elf_link_hash_lookup
5208    (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5209
5210  BFD_ASSERT (myh == NULL);
5211
5212  bh = NULL;
5213  val = globals->bx_glue_size;
5214  _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5215                                    tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5216                                    NULL, TRUE, FALSE, &bh);
5217
5218  myh = (struct elf_link_hash_entry *) bh;
5219  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5220  myh->forced_local = 1;
5221
5222  s->size += ARM_BX_VENEER_SIZE;
5223  globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5224  globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5225}
5226
5227
5228/* Add an entry to the code/data map for section SEC.  */
5229
5230static void
5231elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5232{
5233  struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5234  unsigned int newidx;
5235
5236  if (sec_data->map == NULL)
5237    {
5238      sec_data->map = (elf32_arm_section_map *)
5239          bfd_malloc (sizeof (elf32_arm_section_map));
5240      sec_data->mapcount = 0;
5241      sec_data->mapsize = 1;
5242    }
5243
5244  newidx = sec_data->mapcount++;
5245
5246  if (sec_data->mapcount > sec_data->mapsize)
5247    {
5248      sec_data->mapsize *= 2;
5249      sec_data->map = (elf32_arm_section_map *)
5250          bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5251                               * sizeof (elf32_arm_section_map));
5252    }
5253
5254  if (sec_data->map)
5255    {
5256      sec_data->map[newidx].vma = vma;
5257      sec_data->map[newidx].type = type;
5258    }
5259}
5260
5261
5262/* Record information about a VFP11 denorm-erratum veneer.  Only ARM-mode
5263   veneers are handled for now.  */
5264
5265static bfd_vma
5266record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5267                             elf32_vfp11_erratum_list *branch,
5268                             bfd *branch_bfd,
5269                             asection *branch_sec,
5270                             unsigned int offset)
5271{
5272  asection *s;
5273  struct elf32_arm_link_hash_table *hash_table;
5274  char *tmp_name;
5275  struct elf_link_hash_entry *myh;
5276  struct bfd_link_hash_entry *bh;
5277  bfd_vma val;
5278  struct _arm_elf_section_data *sec_data;
5279  elf32_vfp11_erratum_list *newerr;
5280
5281  hash_table = elf32_arm_hash_table (link_info);
5282  BFD_ASSERT (hash_table != NULL);
5283  BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5284
5285  s = bfd_get_section_by_name
5286    (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5287
5288  sec_data = elf32_arm_section_data (s);
5289
5290  BFD_ASSERT (s != NULL);
5291
5292  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5293                                  (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5294
5295  BFD_ASSERT (tmp_name);
5296
5297  sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5298	   hash_table->num_vfp11_fixes);
5299
5300  myh = elf_link_hash_lookup
5301    (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5302
5303  BFD_ASSERT (myh == NULL);
5304
5305  bh = NULL;
5306  val = hash_table->vfp11_erratum_glue_size;
5307  _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5308                                    tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5309                                    NULL, TRUE, FALSE, &bh);
5310
5311  myh = (struct elf_link_hash_entry *) bh;
5312  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5313  myh->forced_local = 1;
5314
5315  /* Link veneer back to calling location.  */
5316  sec_data->erratumcount += 1;
5317  newerr = (elf32_vfp11_erratum_list *)
5318      bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5319
5320  newerr->type = VFP11_ERRATUM_ARM_VENEER;
5321  newerr->vma = -1;
5322  newerr->u.v.branch = branch;
5323  newerr->u.v.id = hash_table->num_vfp11_fixes;
5324  branch->u.b.veneer = newerr;
5325
5326  newerr->next = sec_data->erratumlist;
5327  sec_data->erratumlist = newerr;
5328
5329  /* A symbol for the return from the veneer.  */
5330  sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5331	   hash_table->num_vfp11_fixes);
5332
5333  myh = elf_link_hash_lookup
5334    (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5335
5336  if (myh != NULL)
5337    abort ();
5338
5339  bh = NULL;
5340  val = offset + 4;
5341  _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5342				    branch_sec, val, NULL, TRUE, FALSE, &bh);
5343
5344  myh = (struct elf_link_hash_entry *) bh;
5345  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5346  myh->forced_local = 1;
5347
5348  free (tmp_name);
5349
5350  /* Generate a mapping symbol for the veneer section, and explicitly add an
5351     entry for that symbol to the code/data map for the section.  */
5352  if (hash_table->vfp11_erratum_glue_size == 0)
5353    {
5354      bh = NULL;
5355      /* FIXME: Creates an ARM symbol.  Thumb mode will need attention if it
5356         ever requires this erratum fix.  */
5357      _bfd_generic_link_add_one_symbol (link_info,
5358					hash_table->bfd_of_glue_owner, "$a",
5359					BSF_LOCAL, s, 0, NULL,
5360                                        TRUE, FALSE, &bh);
5361
5362      myh = (struct elf_link_hash_entry *) bh;
5363      myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5364      myh->forced_local = 1;
5365
5366      /* The elf32_arm_init_maps function only cares about symbols from input
5367         BFDs.  We must make a note of this generated mapping symbol
5368         ourselves so that code byteswapping works properly in
5369         elf32_arm_write_section.  */
5370      elf32_arm_section_map_add (s, 'a', 0);
5371    }
5372
5373  s->size += VFP11_ERRATUM_VENEER_SIZE;
5374  hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5375  hash_table->num_vfp11_fixes++;
5376
5377  /* The offset of the veneer.  */
5378  return val;
5379}
5380
5381#define ARM_GLUE_SECTION_FLAGS \
5382  (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5383   | SEC_READONLY | SEC_LINKER_CREATED)
5384
5385/* Create a fake section for use by the ARM backend of the linker.  */
5386
5387static bfd_boolean
5388arm_make_glue_section (bfd * abfd, const char * name)
5389{
5390  asection * sec;
5391
5392  sec = bfd_get_section_by_name (abfd, name);
5393  if (sec != NULL)
5394    /* Already made.  */
5395    return TRUE;
5396
5397  sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5398
5399  if (sec == NULL
5400      || !bfd_set_section_alignment (abfd, sec, 2))
5401    return FALSE;
5402
5403  /* Set the gc mark to prevent the section from being removed by garbage
5404     collection, despite the fact that no relocs refer to this section.  */
5405  sec->gc_mark = 1;
5406
5407  return TRUE;
5408}
5409
5410/* Add the glue sections to ABFD.  This function is called from the
5411   linker scripts in ld/emultempl/{armelf}.em.  */
5412
5413bfd_boolean
5414bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5415					struct bfd_link_info *info)
5416{
5417  /* If we are only performing a partial
5418     link do not bother adding the glue.  */
5419  if (info->relocatable)
5420    return TRUE;
5421
5422  return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5423    && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
5424    && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
5425    && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
5426}
5427
5428/* Select a BFD to be used to hold the sections used by the glue code.
5429   This function is called from the linker scripts in ld/emultempl/
5430   {armelf/pe}.em.  */
5431
5432bfd_boolean
5433bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
5434{
5435  struct elf32_arm_link_hash_table *globals;
5436
5437  /* If we are only performing a partial link
5438     do not bother getting a bfd to hold the glue.  */
5439  if (info->relocatable)
5440    return TRUE;
5441
5442  /* Make sure we don't attach the glue sections to a dynamic object.  */
5443  BFD_ASSERT (!(abfd->flags & DYNAMIC));
5444
5445  globals = elf32_arm_hash_table (info);
5446  BFD_ASSERT (globals != NULL);
5447
5448  if (globals->bfd_of_glue_owner != NULL)
5449    return TRUE;
5450
5451  /* Save the bfd for later use.  */
5452  globals->bfd_of_glue_owner = abfd;
5453
5454  return TRUE;
5455}
5456
5457static void
5458check_use_blx (struct elf32_arm_link_hash_table *globals)
5459{
5460  if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
5461				Tag_CPU_arch) > 2)
5462    globals->use_blx = 1;
5463}
5464
5465bfd_boolean
5466bfd_elf32_arm_process_before_allocation (bfd *abfd,
5467					 struct bfd_link_info *link_info)
5468{
5469  Elf_Internal_Shdr *symtab_hdr;
5470  Elf_Internal_Rela *internal_relocs = NULL;
5471  Elf_Internal_Rela *irel, *irelend;
5472  bfd_byte *contents = NULL;
5473
5474  asection *sec;
5475  struct elf32_arm_link_hash_table *globals;
5476
5477  /* If we are only performing a partial link do not bother
5478     to construct any glue.  */
5479  if (link_info->relocatable)
5480    return TRUE;
5481
5482  /* Here we have a bfd that is to be included on the link.  We have a
5483     hook to do reloc rummaging, before section sizes are nailed down.  */
5484  globals = elf32_arm_hash_table (link_info);
5485  BFD_ASSERT (globals != NULL);
5486
5487  check_use_blx (globals);
5488
5489  if (globals->byteswap_code && !bfd_big_endian (abfd))
5490    {
5491      _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5492			  abfd);
5493      return FALSE;
5494    }
5495
5496  /* PR 5398: If we have not decided to include any loadable sections in
5497     the output then we will not have a glue owner bfd.  This is OK, it
5498     just means that there is nothing else for us to do here.  */
5499  if (globals->bfd_of_glue_owner == NULL)
5500    return TRUE;
5501
5502  /* Rummage around all the relocs and map the glue vectors.  */
5503  sec = abfd->sections;
5504
5505  if (sec == NULL)
5506    return TRUE;
5507
5508  for (; sec != NULL; sec = sec->next)
5509    {
5510      if (sec->reloc_count == 0)
5511	continue;
5512
5513      if ((sec->flags & SEC_EXCLUDE) != 0)
5514	continue;
5515
5516      symtab_hdr = & elf_symtab_hdr (abfd);
5517
5518      /* Load the relocs.  */
5519      internal_relocs
5520	= _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
5521
5522      if (internal_relocs == NULL)
5523	goto error_return;
5524
5525      irelend = internal_relocs + sec->reloc_count;
5526      for (irel = internal_relocs; irel < irelend; irel++)
5527	{
5528	  long r_type;
5529	  unsigned long r_index;
5530
5531	  struct elf_link_hash_entry *h;
5532
5533	  r_type = ELF32_R_TYPE (irel->r_info);
5534	  r_index = ELF32_R_SYM (irel->r_info);
5535
5536	  /* These are the only relocation types we care about.  */
5537	  if (   r_type != R_ARM_PC24
5538	      && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
5539	    continue;
5540
5541	  /* Get the section contents if we haven't done so already.  */
5542	  if (contents == NULL)
5543	    {
5544	      /* Get cached copy if it exists.  */
5545	      if (elf_section_data (sec)->this_hdr.contents != NULL)
5546		contents = elf_section_data (sec)->this_hdr.contents;
5547	      else
5548		{
5549		  /* Go get them off disk.  */
5550		  if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5551		    goto error_return;
5552		}
5553	    }
5554
5555	  if (r_type == R_ARM_V4BX)
5556	    {
5557	      int reg;
5558
5559	      reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
5560	      record_arm_bx_glue (link_info, reg);
5561	      continue;
5562	    }
5563
5564	  /* If the relocation is not against a symbol it cannot concern us.  */
5565	  h = NULL;
5566
5567	  /* We don't care about local symbols.  */
5568	  if (r_index < symtab_hdr->sh_info)
5569	    continue;
5570
5571	  /* This is an external symbol.  */
5572	  r_index -= symtab_hdr->sh_info;
5573	  h = (struct elf_link_hash_entry *)
5574	    elf_sym_hashes (abfd)[r_index];
5575
5576	  /* If the relocation is against a static symbol it must be within
5577	     the current section and so cannot be a cross ARM/Thumb relocation.  */
5578	  if (h == NULL)
5579	    continue;
5580
5581	  /* If the call will go through a PLT entry then we do not need
5582	     glue.  */
5583	  if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
5584	    continue;
5585
5586	  switch (r_type)
5587	    {
5588	    case R_ARM_PC24:
5589	      /* This one is a call from arm code.  We need to look up
5590	         the target of the call.  If it is a thumb target, we
5591	         insert glue.  */
5592	      if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
5593		record_arm_to_thumb_glue (link_info, h);
5594	      break;
5595
5596	    default:
5597	      abort ();
5598	    }
5599	}
5600
5601      if (contents != NULL
5602	  && elf_section_data (sec)->this_hdr.contents != contents)
5603	free (contents);
5604      contents = NULL;
5605
5606      if (internal_relocs != NULL
5607	  && elf_section_data (sec)->relocs != internal_relocs)
5608	free (internal_relocs);
5609      internal_relocs = NULL;
5610    }
5611
5612  return TRUE;
5613
5614error_return:
5615  if (contents != NULL
5616      && elf_section_data (sec)->this_hdr.contents != contents)
5617    free (contents);
5618  if (internal_relocs != NULL
5619      && elf_section_data (sec)->relocs != internal_relocs)
5620    free (internal_relocs);
5621
5622  return FALSE;
5623}
5624#endif
5625
5626
5627/* Initialise maps of ARM/Thumb/data for input BFDs.  */
5628
5629void
5630bfd_elf32_arm_init_maps (bfd *abfd)
5631{
5632  Elf_Internal_Sym *isymbuf;
5633  Elf_Internal_Shdr *hdr;
5634  unsigned int i, localsyms;
5635
5636  /* PR 7093: Make sure that we are dealing with an arm elf binary.  */
5637  if (! is_arm_elf (abfd))
5638    return;
5639
5640  if ((abfd->flags & DYNAMIC) != 0)
5641    return;
5642
5643  hdr = & elf_symtab_hdr (abfd);
5644  localsyms = hdr->sh_info;
5645
5646  /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
5647     should contain the number of local symbols, which should come before any
5648     global symbols.  Mapping symbols are always local.  */
5649  isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
5650				  NULL);
5651
5652  /* No internal symbols read?  Skip this BFD.  */
5653  if (isymbuf == NULL)
5654    return;
5655
5656  for (i = 0; i < localsyms; i++)
5657    {
5658      Elf_Internal_Sym *isym = &isymbuf[i];
5659      asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
5660      const char *name;
5661
5662      if (sec != NULL
5663          && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
5664        {
5665          name = bfd_elf_string_from_elf_section (abfd,
5666            hdr->sh_link, isym->st_name);
5667
5668          if (bfd_is_arm_special_symbol_name (name,
5669					      BFD_ARM_SPECIAL_SYM_TYPE_MAP))
5670            elf32_arm_section_map_add (sec, name[1], isym->st_value);
5671        }
5672    }
5673}
5674
5675
5676/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
5677   say what they wanted.  */
5678
5679void
5680bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
5681{
5682  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5683  obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
5684
5685  if (globals == NULL)
5686    return;
5687
5688  if (globals->fix_cortex_a8 == -1)
5689    {
5690      /* Turn on Cortex-A8 erratum workaround for ARMv7-A.  */
5691      if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
5692	  && (out_attr[Tag_CPU_arch_profile].i == 'A'
5693	      || out_attr[Tag_CPU_arch_profile].i == 0))
5694	globals->fix_cortex_a8 = 1;
5695      else
5696	globals->fix_cortex_a8 = 0;
5697    }
5698}
5699
5700
5701void
5702bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
5703{
5704  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5705  obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
5706
5707  if (globals == NULL)
5708    return;
5709  /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix.  */
5710  if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
5711    {
5712      switch (globals->vfp11_fix)
5713        {
5714        case BFD_ARM_VFP11_FIX_DEFAULT:
5715        case BFD_ARM_VFP11_FIX_NONE:
5716          globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5717          break;
5718
5719        default:
5720          /* Give a warning, but do as the user requests anyway.  */
5721          (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
5722            "workaround is not necessary for target architecture"), obfd);
5723        }
5724    }
5725  else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
5726    /* For earlier architectures, we might need the workaround, but do not
5727       enable it by default.  If users is running with broken hardware, they
5728       must enable the erratum fix explicitly.  */
5729    globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5730}
5731
5732
5733enum bfd_arm_vfp11_pipe
5734{
5735  VFP11_FMAC,
5736  VFP11_LS,
5737  VFP11_DS,
5738  VFP11_BAD
5739};
5740
5741/* Return a VFP register number.  This is encoded as RX:X for single-precision
5742   registers, or X:RX for double-precision registers, where RX is the group of
5743   four bits in the instruction encoding and X is the single extension bit.
5744   RX and X fields are specified using their lowest (starting) bit.  The return
5745   value is:
5746
5747     0...31: single-precision registers s0...s31
5748     32...63: double-precision registers d0...d31.
5749
5750   Although X should be zero for VFP11 (encoding d0...d15 only), we might
5751   encounter VFP3 instructions, so we allow the full range for DP registers.  */
5752
5753static unsigned int
5754bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
5755                     unsigned int x)
5756{
5757  if (is_double)
5758    return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
5759  else
5760    return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
5761}
5762
5763/* Set bits in *WMASK according to a register number REG as encoded by
5764   bfd_arm_vfp11_regno().  Ignore d16-d31.  */
5765
5766static void
5767bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
5768{
5769  if (reg < 32)
5770    *wmask |= 1 << reg;
5771  else if (reg < 48)
5772    *wmask |= 3 << ((reg - 32) * 2);
5773}
5774
5775/* Return TRUE if WMASK overwrites anything in REGS.  */
5776
5777static bfd_boolean
5778bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
5779{
5780  int i;
5781
5782  for (i = 0; i < numregs; i++)
5783    {
5784      unsigned int reg = regs[i];
5785
5786      if (reg < 32 && (wmask & (1 << reg)) != 0)
5787        return TRUE;
5788
5789      reg -= 32;
5790
5791      if (reg >= 16)
5792        continue;
5793
5794      if ((wmask & (3 << (reg * 2))) != 0)
5795        return TRUE;
5796    }
5797
5798  return FALSE;
5799}
5800
5801/* In this function, we're interested in two things: finding input registers
5802   for VFP data-processing instructions, and finding the set of registers which
5803   arbitrary VFP instructions may write to.  We use a 32-bit unsigned int to
5804   hold the written set, so FLDM etc. are easy to deal with (we're only
5805   interested in 32 SP registers or 16 dp registers, due to the VFP version
5806   implemented by the chip in question).  DP registers are marked by setting
5807   both SP registers in the write mask).  */
5808
5809static enum bfd_arm_vfp11_pipe
5810bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
5811                           int *numregs)
5812{
5813  enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
5814  bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
5815
5816  if ((insn & 0x0f000e10) == 0x0e000a00)  /* A data-processing insn.  */
5817    {
5818      unsigned int pqrs;
5819      unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5820      unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5821
5822      pqrs = ((insn & 0x00800000) >> 20)
5823           | ((insn & 0x00300000) >> 19)
5824           | ((insn & 0x00000040) >> 6);
5825
5826      switch (pqrs)
5827        {
5828        case 0: /* fmac[sd].  */
5829        case 1: /* fnmac[sd].  */
5830        case 2: /* fmsc[sd].  */
5831        case 3: /* fnmsc[sd].  */
5832          vpipe = VFP11_FMAC;
5833          bfd_arm_vfp11_write_mask (destmask, fd);
5834          regs[0] = fd;
5835          regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);  /* Fn.  */
5836          regs[2] = fm;
5837          *numregs = 3;
5838          break;
5839
5840        case 4: /* fmul[sd].  */
5841        case 5: /* fnmul[sd].  */
5842        case 6: /* fadd[sd].  */
5843        case 7: /* fsub[sd].  */
5844          vpipe = VFP11_FMAC;
5845          goto vfp_binop;
5846
5847        case 8: /* fdiv[sd].  */
5848          vpipe = VFP11_DS;
5849          vfp_binop:
5850          bfd_arm_vfp11_write_mask (destmask, fd);
5851          regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);   /* Fn.  */
5852          regs[1] = fm;
5853          *numregs = 2;
5854          break;
5855
5856        case 15: /* extended opcode.  */
5857          {
5858            unsigned int extn = ((insn >> 15) & 0x1e)
5859                              | ((insn >> 7) & 1);
5860
5861            switch (extn)
5862              {
5863              case 0: /* fcpy[sd].  */
5864              case 1: /* fabs[sd].  */
5865              case 2: /* fneg[sd].  */
5866              case 8: /* fcmp[sd].  */
5867              case 9: /* fcmpe[sd].  */
5868              case 10: /* fcmpz[sd].  */
5869              case 11: /* fcmpez[sd].  */
5870              case 16: /* fuito[sd].  */
5871              case 17: /* fsito[sd].  */
5872              case 24: /* ftoui[sd].  */
5873              case 25: /* ftouiz[sd].  */
5874              case 26: /* ftosi[sd].  */
5875              case 27: /* ftosiz[sd].  */
5876                /* These instructions will not bounce due to underflow.  */
5877                *numregs = 0;
5878                vpipe = VFP11_FMAC;
5879                break;
5880
5881              case 3: /* fsqrt[sd].  */
5882                /* fsqrt cannot underflow, but it can (perhaps) overwrite
5883                   registers to cause the erratum in previous instructions.  */
5884                bfd_arm_vfp11_write_mask (destmask, fd);
5885                vpipe = VFP11_DS;
5886                break;
5887
5888              case 15: /* fcvt{ds,sd}.  */
5889                {
5890                  int rnum = 0;
5891
5892                  bfd_arm_vfp11_write_mask (destmask, fd);
5893
5894		  /* Only FCVTSD can underflow.  */
5895                  if ((insn & 0x100) != 0)
5896                    regs[rnum++] = fm;
5897
5898                  *numregs = rnum;
5899
5900                  vpipe = VFP11_FMAC;
5901                }
5902                break;
5903
5904              default:
5905                return VFP11_BAD;
5906              }
5907          }
5908          break;
5909
5910        default:
5911          return VFP11_BAD;
5912        }
5913    }
5914  /* Two-register transfer.  */
5915  else if ((insn & 0x0fe00ed0) == 0x0c400a10)
5916    {
5917      unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5918
5919      if ((insn & 0x100000) == 0)
5920	{
5921          if (is_double)
5922            bfd_arm_vfp11_write_mask (destmask, fm);
5923          else
5924            {
5925              bfd_arm_vfp11_write_mask (destmask, fm);
5926              bfd_arm_vfp11_write_mask (destmask, fm + 1);
5927            }
5928	}
5929
5930      vpipe = VFP11_LS;
5931    }
5932  else if ((insn & 0x0e100e00) == 0x0c100a00)  /* A load insn.  */
5933    {
5934      int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5935      unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
5936
5937      switch (puw)
5938        {
5939        case 0: /* Two-reg transfer.  We should catch these above.  */
5940          abort ();
5941
5942        case 2: /* fldm[sdx].  */
5943        case 3:
5944        case 5:
5945          {
5946            unsigned int i, offset = insn & 0xff;
5947
5948            if (is_double)
5949              offset >>= 1;
5950
5951            for (i = fd; i < fd + offset; i++)
5952              bfd_arm_vfp11_write_mask (destmask, i);
5953          }
5954          break;
5955
5956        case 4: /* fld[sd].  */
5957        case 6:
5958          bfd_arm_vfp11_write_mask (destmask, fd);
5959          break;
5960
5961        default:
5962          return VFP11_BAD;
5963        }
5964
5965      vpipe = VFP11_LS;
5966    }
5967  /* Single-register transfer. Note L==0.  */
5968  else if ((insn & 0x0f100e10) == 0x0e000a10)
5969    {
5970      unsigned int opcode = (insn >> 21) & 7;
5971      unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
5972
5973      switch (opcode)
5974        {
5975        case 0: /* fmsr/fmdlr.  */
5976        case 1: /* fmdhr.  */
5977          /* Mark fmdhr and fmdlr as writing to the whole of the DP
5978             destination register.  I don't know if this is exactly right,
5979             but it is the conservative choice.  */
5980          bfd_arm_vfp11_write_mask (destmask, fn);
5981          break;
5982
5983        case 7: /* fmxr.  */
5984          break;
5985        }
5986
5987      vpipe = VFP11_LS;
5988    }
5989
5990  return vpipe;
5991}
5992
5993
5994static int elf32_arm_compare_mapping (const void * a, const void * b);
5995
5996
5997/* Look for potentially-troublesome code sequences which might trigger the
5998   VFP11 denormal/antidependency erratum.  See, e.g., the ARM1136 errata sheet
5999   (available from ARM) for details of the erratum.  A short version is
6000   described in ld.texinfo.  */
6001
6002bfd_boolean
6003bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6004{
6005  asection *sec;
6006  bfd_byte *contents = NULL;
6007  int state = 0;
6008  int regs[3], numregs = 0;
6009  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6010  int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
6011
6012  if (globals == NULL)
6013    return FALSE;
6014
6015  /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6016     The states transition as follows:
6017
6018       0 -> 1 (vector) or 0 -> 2 (scalar)
6019           A VFP FMAC-pipeline instruction has been seen. Fill
6020           regs[0]..regs[numregs-1] with its input operands. Remember this
6021           instruction in 'first_fmac'.
6022
6023       1 -> 2
6024           Any instruction, except for a VFP instruction which overwrites
6025           regs[*].
6026
6027       1 -> 3 [ -> 0 ]  or
6028       2 -> 3 [ -> 0 ]
6029           A VFP instruction has been seen which overwrites any of regs[*].
6030           We must make a veneer!  Reset state to 0 before examining next
6031           instruction.
6032
6033       2 -> 0
6034           If we fail to match anything in state 2, reset to state 0 and reset
6035           the instruction pointer to the instruction after 'first_fmac'.
6036
6037     If the VFP11 vector mode is in use, there must be at least two unrelated
6038     instructions between anti-dependent VFP11 instructions to properly avoid
6039     triggering the erratum, hence the use of the extra state 1.  */
6040
6041  /* If we are only performing a partial link do not bother
6042     to construct any glue.  */
6043  if (link_info->relocatable)
6044    return TRUE;
6045
6046  /* Skip if this bfd does not correspond to an ELF image.  */
6047  if (! is_arm_elf (abfd))
6048    return TRUE;
6049
6050  /* We should have chosen a fix type by the time we get here.  */
6051  BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6052
6053  if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6054    return TRUE;
6055
6056  /* Skip this BFD if it corresponds to an executable or dynamic object.  */
6057  if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6058    return TRUE;
6059
6060  for (sec = abfd->sections; sec != NULL; sec = sec->next)
6061    {
6062      unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6063      struct _arm_elf_section_data *sec_data;
6064
6065      /* If we don't have executable progbits, we're not interested in this
6066         section.  Also skip if section is to be excluded.  */
6067      if (elf_section_type (sec) != SHT_PROGBITS
6068          || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6069          || (sec->flags & SEC_EXCLUDE) != 0
6070	  || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6071	  || sec->output_section == bfd_abs_section_ptr
6072          || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6073        continue;
6074
6075      sec_data = elf32_arm_section_data (sec);
6076
6077      if (sec_data->mapcount == 0)
6078        continue;
6079
6080      if (elf_section_data (sec)->this_hdr.contents != NULL)
6081	contents = elf_section_data (sec)->this_hdr.contents;
6082      else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6083	goto error_return;
6084
6085      qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6086	     elf32_arm_compare_mapping);
6087
6088      for (span = 0; span < sec_data->mapcount; span++)
6089        {
6090          unsigned int span_start = sec_data->map[span].vma;
6091          unsigned int span_end = (span == sec_data->mapcount - 1)
6092				  ? sec->size : sec_data->map[span + 1].vma;
6093          char span_type = sec_data->map[span].type;
6094
6095          /* FIXME: Only ARM mode is supported at present.  We may need to
6096             support Thumb-2 mode also at some point.  */
6097          if (span_type != 'a')
6098            continue;
6099
6100          for (i = span_start; i < span_end;)
6101            {
6102              unsigned int next_i = i + 4;
6103              unsigned int insn = bfd_big_endian (abfd)
6104                ? (contents[i] << 24)
6105                  | (contents[i + 1] << 16)
6106                  | (contents[i + 2] << 8)
6107                  | contents[i + 3]
6108                : (contents[i + 3] << 24)
6109                  | (contents[i + 2] << 16)
6110                  | (contents[i + 1] << 8)
6111                  | contents[i];
6112              unsigned int writemask = 0;
6113              enum bfd_arm_vfp11_pipe vpipe;
6114
6115              switch (state)
6116                {
6117                case 0:
6118                  vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6119                                                    &numregs);
6120                  /* I'm assuming the VFP11 erratum can trigger with denorm
6121                     operands on either the FMAC or the DS pipeline. This might
6122                     lead to slightly overenthusiastic veneer insertion.  */
6123                  if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6124                    {
6125                      state = use_vector ? 1 : 2;
6126                      first_fmac = i;
6127                      veneer_of_insn = insn;
6128                    }
6129                  break;
6130
6131                case 1:
6132                  {
6133                    int other_regs[3], other_numregs;
6134                    vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6135						      other_regs,
6136                                                      &other_numregs);
6137                    if (vpipe != VFP11_BAD
6138                        && bfd_arm_vfp11_antidependency (writemask, regs,
6139							 numregs))
6140                      state = 3;
6141                    else
6142                      state = 2;
6143                  }
6144                  break;
6145
6146                case 2:
6147                  {
6148                    int other_regs[3], other_numregs;
6149                    vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6150						      other_regs,
6151                                                      &other_numregs);
6152                    if (vpipe != VFP11_BAD
6153                        && bfd_arm_vfp11_antidependency (writemask, regs,
6154							 numregs))
6155                      state = 3;
6156                    else
6157                      {
6158                        state = 0;
6159                        next_i = first_fmac + 4;
6160                      }
6161                  }
6162                  break;
6163
6164                case 3:
6165                  abort ();  /* Should be unreachable.  */
6166                }
6167
6168              if (state == 3)
6169                {
6170                  elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6171                      bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6172
6173                  elf32_arm_section_data (sec)->erratumcount += 1;
6174
6175                  newerr->u.b.vfp_insn = veneer_of_insn;
6176
6177                  switch (span_type)
6178                    {
6179                    case 'a':
6180                      newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6181                      break;
6182
6183                    default:
6184                      abort ();
6185                    }
6186
6187                  record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6188					       first_fmac);
6189
6190                  newerr->vma = -1;
6191
6192                  newerr->next = sec_data->erratumlist;
6193                  sec_data->erratumlist = newerr;
6194
6195                  state = 0;
6196                }
6197
6198              i = next_i;
6199            }
6200        }
6201
6202      if (contents != NULL
6203          && elf_section_data (sec)->this_hdr.contents != contents)
6204        free (contents);
6205      contents = NULL;
6206    }
6207
6208  return TRUE;
6209
6210error_return:
6211  if (contents != NULL
6212      && elf_section_data (sec)->this_hdr.contents != contents)
6213    free (contents);
6214
6215  return FALSE;
6216}
6217
6218/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6219   after sections have been laid out, using specially-named symbols.  */
6220
6221void
6222bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6223					  struct bfd_link_info *link_info)
6224{
6225  asection *sec;
6226  struct elf32_arm_link_hash_table *globals;
6227  char *tmp_name;
6228
6229  if (link_info->relocatable)
6230    return;
6231
6232  /* Skip if this bfd does not correspond to an ELF image.  */
6233  if (! is_arm_elf (abfd))
6234    return;
6235
6236  globals = elf32_arm_hash_table (link_info);
6237  if (globals == NULL)
6238    return;
6239
6240  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6241                                  (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6242
6243  for (sec = abfd->sections; sec != NULL; sec = sec->next)
6244    {
6245      struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6246      elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6247
6248      for (; errnode != NULL; errnode = errnode->next)
6249        {
6250          struct elf_link_hash_entry *myh;
6251          bfd_vma vma;
6252
6253          switch (errnode->type)
6254            {
6255            case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6256            case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6257              /* Find veneer symbol.  */
6258              sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6259		       errnode->u.b.veneer->u.v.id);
6260
6261              myh = elf_link_hash_lookup
6262                (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6263
6264              if (myh == NULL)
6265                (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6266                			 "`%s'"), abfd, tmp_name);
6267
6268              vma = myh->root.u.def.section->output_section->vma
6269                    + myh->root.u.def.section->output_offset
6270                    + myh->root.u.def.value;
6271
6272              errnode->u.b.veneer->vma = vma;
6273              break;
6274
6275	    case VFP11_ERRATUM_ARM_VENEER:
6276            case VFP11_ERRATUM_THUMB_VENEER:
6277              /* Find return location.  */
6278              sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6279                       errnode->u.v.id);
6280
6281              myh = elf_link_hash_lookup
6282                (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6283
6284              if (myh == NULL)
6285                (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6286					 "`%s'"), abfd, tmp_name);
6287
6288              vma = myh->root.u.def.section->output_section->vma
6289                    + myh->root.u.def.section->output_offset
6290                    + myh->root.u.def.value;
6291
6292              errnode->u.v.branch->vma = vma;
6293              break;
6294
6295            default:
6296              abort ();
6297            }
6298        }
6299    }
6300
6301  free (tmp_name);
6302}
6303
6304
6305/* Set target relocation values needed during linking.  */
6306
6307void
6308bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6309				 struct bfd_link_info *link_info,
6310				 int target1_is_rel,
6311				 char * target2_type,
6312                                 int fix_v4bx,
6313				 int use_blx,
6314                                 bfd_arm_vfp11_fix vfp11_fix,
6315				 int no_enum_warn, int no_wchar_warn,
6316				 int pic_veneer, int fix_cortex_a8)
6317{
6318  struct elf32_arm_link_hash_table *globals;
6319
6320  globals = elf32_arm_hash_table (link_info);
6321  if (globals == NULL)
6322    return;
6323
6324  globals->target1_is_rel = target1_is_rel;
6325  if (strcmp (target2_type, "rel") == 0)
6326    globals->target2_reloc = R_ARM_REL32;
6327  else if (strcmp (target2_type, "abs") == 0)
6328    globals->target2_reloc = R_ARM_ABS32;
6329  else if (strcmp (target2_type, "got-rel") == 0)
6330    globals->target2_reloc = R_ARM_GOT_PREL;
6331  else
6332    {
6333      _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6334			  target2_type);
6335    }
6336  globals->fix_v4bx = fix_v4bx;
6337  globals->use_blx |= use_blx;
6338  globals->vfp11_fix = vfp11_fix;
6339  globals->pic_veneer = pic_veneer;
6340  globals->fix_cortex_a8 = fix_cortex_a8;
6341
6342  BFD_ASSERT (is_arm_elf (output_bfd));
6343  elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
6344  elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
6345}
6346
6347/* Replace the target offset of a Thumb bl or b.w instruction.  */
6348
6349static void
6350insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6351{
6352  bfd_vma upper;
6353  bfd_vma lower;
6354  int reloc_sign;
6355
6356  BFD_ASSERT ((offset & 1) == 0);
6357
6358  upper = bfd_get_16 (abfd, insn);
6359  lower = bfd_get_16 (abfd, insn + 2);
6360  reloc_sign = (offset < 0) ? 1 : 0;
6361  upper = (upper & ~(bfd_vma) 0x7ff)
6362	  | ((offset >> 12) & 0x3ff)
6363	  | (reloc_sign << 10);
6364  lower = (lower & ~(bfd_vma) 0x2fff)
6365	  | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6366	  | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6367	  | ((offset >> 1) & 0x7ff);
6368  bfd_put_16 (abfd, upper, insn);
6369  bfd_put_16 (abfd, lower, insn + 2);
6370}
6371
6372/* Thumb code calling an ARM function.  */
6373
6374static int
6375elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6376			 const char *           name,
6377			 bfd *                  input_bfd,
6378			 bfd *                  output_bfd,
6379			 asection *             input_section,
6380			 bfd_byte *             hit_data,
6381			 asection *             sym_sec,
6382			 bfd_vma                offset,
6383			 bfd_signed_vma         addend,
6384			 bfd_vma                val,
6385			 char **error_message)
6386{
6387  asection * s = 0;
6388  bfd_vma my_offset;
6389  long int ret_offset;
6390  struct elf_link_hash_entry * myh;
6391  struct elf32_arm_link_hash_table * globals;
6392
6393  myh = find_thumb_glue (info, name, error_message);
6394  if (myh == NULL)
6395    return FALSE;
6396
6397  globals = elf32_arm_hash_table (info);
6398  BFD_ASSERT (globals != NULL);
6399  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6400
6401  my_offset = myh->root.u.def.value;
6402
6403  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6404			       THUMB2ARM_GLUE_SECTION_NAME);
6405
6406  BFD_ASSERT (s != NULL);
6407  BFD_ASSERT (s->contents != NULL);
6408  BFD_ASSERT (s->output_section != NULL);
6409
6410  if ((my_offset & 0x01) == 0x01)
6411    {
6412      if (sym_sec != NULL
6413	  && sym_sec->owner != NULL
6414	  && !INTERWORK_FLAG (sym_sec->owner))
6415	{
6416	  (*_bfd_error_handler)
6417	    (_("%B(%s): warning: interworking not enabled.\n"
6418	       "  first occurrence: %B: thumb call to arm"),
6419	     sym_sec->owner, input_bfd, name);
6420
6421	  return FALSE;
6422	}
6423
6424      --my_offset;
6425      myh->root.u.def.value = my_offset;
6426
6427      put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
6428		      s->contents + my_offset);
6429
6430      put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
6431		      s->contents + my_offset + 2);
6432
6433      ret_offset =
6434	/* Address of destination of the stub.  */
6435	((bfd_signed_vma) val)
6436	- ((bfd_signed_vma)
6437	   /* Offset from the start of the current section
6438	      to the start of the stubs.  */
6439	   (s->output_offset
6440	    /* Offset of the start of this stub from the start of the stubs.  */
6441	    + my_offset
6442	    /* Address of the start of the current section.  */
6443	    + s->output_section->vma)
6444	   /* The branch instruction is 4 bytes into the stub.  */
6445	   + 4
6446	   /* ARM branches work from the pc of the instruction + 8.  */
6447	   + 8);
6448
6449      put_arm_insn (globals, output_bfd,
6450		    (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
6451		    s->contents + my_offset + 4);
6452    }
6453
6454  BFD_ASSERT (my_offset <= globals->thumb_glue_size);
6455
6456  /* Now go back and fix up the original BL insn to point to here.  */
6457  ret_offset =
6458    /* Address of where the stub is located.  */
6459    (s->output_section->vma + s->output_offset + my_offset)
6460     /* Address of where the BL is located.  */
6461    - (input_section->output_section->vma + input_section->output_offset
6462       + offset)
6463    /* Addend in the relocation.  */
6464    - addend
6465    /* Biassing for PC-relative addressing.  */
6466    - 8;
6467
6468  insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
6469
6470  return TRUE;
6471}
6472
6473/* Populate an Arm to Thumb stub.  Returns the stub symbol.  */
6474
6475static struct elf_link_hash_entry *
6476elf32_arm_create_thumb_stub (struct bfd_link_info * info,
6477			     const char *           name,
6478			     bfd *                  input_bfd,
6479			     bfd *                  output_bfd,
6480			     asection *             sym_sec,
6481			     bfd_vma                val,
6482			     asection *             s,
6483			     char **                error_message)
6484{
6485  bfd_vma my_offset;
6486  long int ret_offset;
6487  struct elf_link_hash_entry * myh;
6488  struct elf32_arm_link_hash_table * globals;
6489
6490  myh = find_arm_glue (info, name, error_message);
6491  if (myh == NULL)
6492    return NULL;
6493
6494  globals = elf32_arm_hash_table (info);
6495  BFD_ASSERT (globals != NULL);
6496  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6497
6498  my_offset = myh->root.u.def.value;
6499
6500  if ((my_offset & 0x01) == 0x01)
6501    {
6502      if (sym_sec != NULL
6503	  && sym_sec->owner != NULL
6504	  && !INTERWORK_FLAG (sym_sec->owner))
6505	{
6506	  (*_bfd_error_handler)
6507	    (_("%B(%s): warning: interworking not enabled.\n"
6508	       "  first occurrence: %B: arm call to thumb"),
6509	     sym_sec->owner, input_bfd, name);
6510	}
6511
6512      --my_offset;
6513      myh->root.u.def.value = my_offset;
6514
6515      if (info->shared || globals->root.is_relocatable_executable
6516	  || globals->pic_veneer)
6517	{
6518	  /* For relocatable objects we can't use absolute addresses,
6519	     so construct the address from a relative offset.  */
6520	  /* TODO: If the offset is small it's probably worth
6521	     constructing the address with adds.  */
6522	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
6523			s->contents + my_offset);
6524	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
6525			s->contents + my_offset + 4);
6526	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
6527			s->contents + my_offset + 8);
6528	  /* Adjust the offset by 4 for the position of the add,
6529	     and 8 for the pipeline offset.  */
6530	  ret_offset = (val - (s->output_offset
6531			       + s->output_section->vma
6532			       + my_offset + 12))
6533		       | 1;
6534	  bfd_put_32 (output_bfd, ret_offset,
6535		      s->contents + my_offset + 12);
6536	}
6537      else if (globals->use_blx)
6538	{
6539	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
6540			s->contents + my_offset);
6541
6542	  /* It's a thumb address.  Add the low order bit.  */
6543	  bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
6544		      s->contents + my_offset + 4);
6545	}
6546      else
6547	{
6548	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
6549			s->contents + my_offset);
6550
6551	  put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
6552			s->contents + my_offset + 4);
6553
6554	  /* It's a thumb address.  Add the low order bit.  */
6555	  bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
6556		      s->contents + my_offset + 8);
6557
6558	  my_offset += 12;
6559	}
6560    }
6561
6562  BFD_ASSERT (my_offset <= globals->arm_glue_size);
6563
6564  return myh;
6565}
6566
6567/* Arm code calling a Thumb function.  */
6568
6569static int
6570elf32_arm_to_thumb_stub (struct bfd_link_info * info,
6571			 const char *           name,
6572			 bfd *                  input_bfd,
6573			 bfd *                  output_bfd,
6574			 asection *             input_section,
6575			 bfd_byte *             hit_data,
6576			 asection *             sym_sec,
6577			 bfd_vma                offset,
6578			 bfd_signed_vma         addend,
6579			 bfd_vma                val,
6580			 char **error_message)
6581{
6582  unsigned long int tmp;
6583  bfd_vma my_offset;
6584  asection * s;
6585  long int ret_offset;
6586  struct elf_link_hash_entry * myh;
6587  struct elf32_arm_link_hash_table * globals;
6588
6589  globals = elf32_arm_hash_table (info);
6590  BFD_ASSERT (globals != NULL);
6591  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6592
6593  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6594			       ARM2THUMB_GLUE_SECTION_NAME);
6595  BFD_ASSERT (s != NULL);
6596  BFD_ASSERT (s->contents != NULL);
6597  BFD_ASSERT (s->output_section != NULL);
6598
6599  myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
6600				     sym_sec, val, s, error_message);
6601  if (!myh)
6602    return FALSE;
6603
6604  my_offset = myh->root.u.def.value;
6605  tmp = bfd_get_32 (input_bfd, hit_data);
6606  tmp = tmp & 0xFF000000;
6607
6608  /* Somehow these are both 4 too far, so subtract 8.  */
6609  ret_offset = (s->output_offset
6610		+ my_offset
6611		+ s->output_section->vma
6612		- (input_section->output_offset
6613		   + input_section->output_section->vma
6614		   + offset + addend)
6615		- 8);
6616
6617  tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
6618
6619  bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
6620
6621  return TRUE;
6622}
6623
6624/* Populate Arm stub for an exported Thumb function.  */
6625
6626static bfd_boolean
6627elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
6628{
6629  struct bfd_link_info * info = (struct bfd_link_info *) inf;
6630  asection * s;
6631  struct elf_link_hash_entry * myh;
6632  struct elf32_arm_link_hash_entry *eh;
6633  struct elf32_arm_link_hash_table * globals;
6634  asection *sec;
6635  bfd_vma val;
6636  char *error_message;
6637
6638  eh = elf32_arm_hash_entry (h);
6639  /* Allocate stubs for exported Thumb functions on v4t.  */
6640  if (eh->export_glue == NULL)
6641    return TRUE;
6642
6643  globals = elf32_arm_hash_table (info);
6644  BFD_ASSERT (globals != NULL);
6645  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6646
6647  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6648			       ARM2THUMB_GLUE_SECTION_NAME);
6649  BFD_ASSERT (s != NULL);
6650  BFD_ASSERT (s->contents != NULL);
6651  BFD_ASSERT (s->output_section != NULL);
6652
6653  sec = eh->export_glue->root.u.def.section;
6654
6655  BFD_ASSERT (sec->output_section != NULL);
6656
6657  val = eh->export_glue->root.u.def.value + sec->output_offset
6658	+ sec->output_section->vma;
6659
6660  myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
6661				     h->root.u.def.section->owner,
6662				     globals->obfd, sec, val, s,
6663				     &error_message);
6664  BFD_ASSERT (myh);
6665  return TRUE;
6666}
6667
6668/* Populate ARMv4 BX veneers.  Returns the absolute adress of the veneer.  */
6669
6670static bfd_vma
6671elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
6672{
6673  bfd_byte *p;
6674  bfd_vma glue_addr;
6675  asection *s;
6676  struct elf32_arm_link_hash_table *globals;
6677
6678  globals = elf32_arm_hash_table (info);
6679  BFD_ASSERT (globals != NULL);
6680  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6681
6682  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6683			       ARM_BX_GLUE_SECTION_NAME);
6684  BFD_ASSERT (s != NULL);
6685  BFD_ASSERT (s->contents != NULL);
6686  BFD_ASSERT (s->output_section != NULL);
6687
6688  BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
6689
6690  glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
6691
6692  if ((globals->bx_glue_offset[reg] & 1) == 0)
6693    {
6694      p = s->contents + glue_addr;
6695      bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
6696      bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
6697      bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
6698      globals->bx_glue_offset[reg] |= 1;
6699    }
6700
6701  return glue_addr + s->output_section->vma + s->output_offset;
6702}
6703
6704/* Generate Arm stubs for exported Thumb symbols.  */
6705static void
6706elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
6707				  struct bfd_link_info *link_info)
6708{
6709  struct elf32_arm_link_hash_table * globals;
6710
6711  if (link_info == NULL)
6712    /* Ignore this if we are not called by the ELF backend linker.  */
6713    return;
6714
6715  globals = elf32_arm_hash_table (link_info);
6716  if (globals == NULL)
6717    return;
6718
6719  /* If blx is available then exported Thumb symbols are OK and there is
6720     nothing to do.  */
6721  if (globals->use_blx)
6722    return;
6723
6724  elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
6725			  link_info);
6726}
6727
6728/* Some relocations map to different relocations depending on the
6729   target.  Return the real relocation.  */
6730
6731static int
6732arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
6733		     int r_type)
6734{
6735  switch (r_type)
6736    {
6737    case R_ARM_TARGET1:
6738      if (globals->target1_is_rel)
6739	return R_ARM_REL32;
6740      else
6741	return R_ARM_ABS32;
6742
6743    case R_ARM_TARGET2:
6744      return globals->target2_reloc;
6745
6746    default:
6747      return r_type;
6748    }
6749}
6750
6751/* Return the base VMA address which should be subtracted from real addresses
6752   when resolving @dtpoff relocation.
6753   This is PT_TLS segment p_vaddr.  */
6754
6755static bfd_vma
6756dtpoff_base (struct bfd_link_info *info)
6757{
6758  /* If tls_sec is NULL, we should have signalled an error already.  */
6759  if (elf_hash_table (info)->tls_sec == NULL)
6760    return 0;
6761  return elf_hash_table (info)->tls_sec->vma;
6762}
6763
6764/* Return the relocation value for @tpoff relocation
6765   if STT_TLS virtual address is ADDRESS.  */
6766
6767static bfd_vma
6768tpoff (struct bfd_link_info *info, bfd_vma address)
6769{
6770  struct elf_link_hash_table *htab = elf_hash_table (info);
6771  bfd_vma base;
6772
6773  /* If tls_sec is NULL, we should have signalled an error already.  */
6774  if (htab->tls_sec == NULL)
6775    return 0;
6776  base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
6777  return address - htab->tls_sec->vma + base;
6778}
6779
6780/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
6781   VALUE is the relocation value.  */
6782
6783static bfd_reloc_status_type
6784elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
6785{
6786  if (value > 0xfff)
6787    return bfd_reloc_overflow;
6788
6789  value |= bfd_get_32 (abfd, data) & 0xfffff000;
6790  bfd_put_32 (abfd, value, data);
6791  return bfd_reloc_ok;
6792}
6793
6794/* For a given value of n, calculate the value of G_n as required to
6795   deal with group relocations.  We return it in the form of an
6796   encoded constant-and-rotation, together with the final residual.  If n is
6797   specified as less than zero, then final_residual is filled with the
6798   input value and no further action is performed.  */
6799
6800static bfd_vma
6801calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
6802{
6803  int current_n;
6804  bfd_vma g_n;
6805  bfd_vma encoded_g_n = 0;
6806  bfd_vma residual = value; /* Also known as Y_n.  */
6807
6808  for (current_n = 0; current_n <= n; current_n++)
6809    {
6810      int shift;
6811
6812      /* Calculate which part of the value to mask.  */
6813      if (residual == 0)
6814        shift = 0;
6815      else
6816        {
6817          int msb;
6818
6819          /* Determine the most significant bit in the residual and
6820             align the resulting value to a 2-bit boundary.  */
6821          for (msb = 30; msb >= 0; msb -= 2)
6822            if (residual & (3 << msb))
6823              break;
6824
6825          /* The desired shift is now (msb - 6), or zero, whichever
6826             is the greater.  */
6827          shift = msb - 6;
6828          if (shift < 0)
6829            shift = 0;
6830        }
6831
6832      /* Calculate g_n in 32-bit as well as encoded constant+rotation form.  */
6833      g_n = residual & (0xff << shift);
6834      encoded_g_n = (g_n >> shift)
6835                    | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
6836
6837      /* Calculate the residual for the next time around.  */
6838      residual &= ~g_n;
6839    }
6840
6841  *final_residual = residual;
6842
6843  return encoded_g_n;
6844}
6845
6846/* Given an ARM instruction, determine whether it is an ADD or a SUB.
6847   Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise.  */
6848
6849static int
6850identify_add_or_sub (bfd_vma insn)
6851{
6852  int opcode = insn & 0x1e00000;
6853
6854  if (opcode == 1 << 23) /* ADD */
6855    return 1;
6856
6857  if (opcode == 1 << 22) /* SUB */
6858    return -1;
6859
6860  return 0;
6861}
6862
6863/* Perform a relocation as part of a final link.  */
6864
6865static bfd_reloc_status_type
6866elf32_arm_final_link_relocate (reloc_howto_type *           howto,
6867			       bfd *                        input_bfd,
6868			       bfd *                        output_bfd,
6869			       asection *                   input_section,
6870			       bfd_byte *                   contents,
6871			       Elf_Internal_Rela *          rel,
6872			       bfd_vma                      value,
6873			       struct bfd_link_info *       info,
6874			       asection *                   sym_sec,
6875			       const char *                 sym_name,
6876			       int		            sym_flags,
6877			       struct elf_link_hash_entry * h,
6878			       bfd_boolean *                unresolved_reloc_p,
6879			       char **                      error_message)
6880{
6881  unsigned long                 r_type = howto->type;
6882  unsigned long                 r_symndx;
6883  bfd_byte *                    hit_data = contents + rel->r_offset;
6884  bfd *                         dynobj = NULL;
6885  bfd_vma *                     local_got_offsets;
6886  asection *                    sgot = NULL;
6887  asection *                    splt = NULL;
6888  asection *                    sreloc = NULL;
6889  bfd_vma                       addend;
6890  bfd_signed_vma                signed_addend;
6891  struct elf32_arm_link_hash_table * globals;
6892
6893  globals = elf32_arm_hash_table (info);
6894  if (globals == NULL)
6895    return bfd_reloc_notsupported;
6896
6897  BFD_ASSERT (is_arm_elf (input_bfd));
6898
6899  /* Some relocation types map to different relocations depending on the
6900     target.  We pick the right one here.  */
6901  r_type = arm_real_reloc_type (globals, r_type);
6902  if (r_type != howto->type)
6903    howto = elf32_arm_howto_from_type (r_type);
6904
6905  /* If the start address has been set, then set the EF_ARM_HASENTRY
6906     flag.  Setting this more than once is redundant, but the cost is
6907     not too high, and it keeps the code simple.
6908
6909     The test is done  here, rather than somewhere else, because the
6910     start address is only set just before the final link commences.
6911
6912     Note - if the user deliberately sets a start address of 0, the
6913     flag will not be set.  */
6914  if (bfd_get_start_address (output_bfd) != 0)
6915    elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
6916
6917  dynobj = elf_hash_table (info)->dynobj;
6918  if (dynobj)
6919    {
6920      sgot = bfd_get_section_by_name (dynobj, ".got");
6921      splt = bfd_get_section_by_name (dynobj, ".plt");
6922    }
6923  local_got_offsets = elf_local_got_offsets (input_bfd);
6924  r_symndx = ELF32_R_SYM (rel->r_info);
6925
6926  if (globals->use_rel)
6927    {
6928      addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
6929
6930      if (addend & ((howto->src_mask + 1) >> 1))
6931	{
6932	  signed_addend = -1;
6933	  signed_addend &= ~ howto->src_mask;
6934	  signed_addend |= addend;
6935	}
6936      else
6937	signed_addend = addend;
6938    }
6939  else
6940    addend = signed_addend = rel->r_addend;
6941
6942  switch (r_type)
6943    {
6944    case R_ARM_NONE:
6945      /* We don't need to find a value for this symbol.  It's just a
6946	 marker.  */
6947      *unresolved_reloc_p = FALSE;
6948      return bfd_reloc_ok;
6949
6950    case R_ARM_ABS12:
6951      if (!globals->vxworks_p)
6952	return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6953
6954    case R_ARM_PC24:
6955    case R_ARM_ABS32:
6956    case R_ARM_ABS32_NOI:
6957    case R_ARM_REL32:
6958    case R_ARM_REL32_NOI:
6959    case R_ARM_CALL:
6960    case R_ARM_JUMP24:
6961    case R_ARM_XPC25:
6962    case R_ARM_PREL31:
6963    case R_ARM_PLT32:
6964      /* Handle relocations which should use the PLT entry.  ABS32/REL32
6965	 will use the symbol's value, which may point to a PLT entry, but we
6966	 don't need to handle that here.  If we created a PLT entry, all
6967	 branches in this object should go to it, except if the PLT is too
6968	 far away, in which case a long branch stub should be inserted.  */
6969      if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
6970           && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
6971	   && r_type != R_ARM_CALL
6972	   && r_type != R_ARM_JUMP24
6973	   && r_type != R_ARM_PLT32)
6974	  && h != NULL
6975	  && splt != NULL
6976	  && h->plt.offset != (bfd_vma) -1)
6977	{
6978	  /* If we've created a .plt section, and assigned a PLT entry to
6979	     this function, it should not be known to bind locally.  If
6980	     it were, we would have cleared the PLT entry.  */
6981	  BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
6982
6983	  value = (splt->output_section->vma
6984		   + splt->output_offset
6985		   + h->plt.offset);
6986	  *unresolved_reloc_p = FALSE;
6987	  return _bfd_final_link_relocate (howto, input_bfd, input_section,
6988					   contents, rel->r_offset, value,
6989					   rel->r_addend);
6990	}
6991
6992      /* When generating a shared object or relocatable executable, these
6993	 relocations are copied into the output file to be resolved at
6994	 run time.  */
6995      if ((info->shared || globals->root.is_relocatable_executable)
6996	  && (input_section->flags & SEC_ALLOC)
6997	  && !(globals->vxworks_p
6998	       && strcmp (input_section->output_section->name,
6999			  ".tls_vars") == 0)
7000	  && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
7001	      || !SYMBOL_CALLS_LOCAL (info, h))
7002	  && (!strstr (input_section->name, STUB_SUFFIX))
7003	  && (h == NULL
7004	      || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7005	      || h->root.type != bfd_link_hash_undefweak)
7006	  && r_type != R_ARM_PC24
7007	  && r_type != R_ARM_CALL
7008	  && r_type != R_ARM_JUMP24
7009	  && r_type != R_ARM_PREL31
7010	  && r_type != R_ARM_PLT32)
7011	{
7012	  Elf_Internal_Rela outrel;
7013	  bfd_byte *loc;
7014	  bfd_boolean skip, relocate;
7015
7016	  *unresolved_reloc_p = FALSE;
7017
7018	  if (sreloc == NULL)
7019	    {
7020	      sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
7021							   ! globals->use_rel);
7022
7023	      if (sreloc == NULL)
7024		return bfd_reloc_notsupported;
7025	    }
7026
7027	  skip = FALSE;
7028	  relocate = FALSE;
7029
7030	  outrel.r_addend = addend;
7031	  outrel.r_offset =
7032	    _bfd_elf_section_offset (output_bfd, info, input_section,
7033				     rel->r_offset);
7034	  if (outrel.r_offset == (bfd_vma) -1)
7035	    skip = TRUE;
7036	  else if (outrel.r_offset == (bfd_vma) -2)
7037	    skip = TRUE, relocate = TRUE;
7038	  outrel.r_offset += (input_section->output_section->vma
7039			      + input_section->output_offset);
7040
7041	  if (skip)
7042	    memset (&outrel, 0, sizeof outrel);
7043	  else if (h != NULL
7044		   && h->dynindx != -1
7045		   && (!info->shared
7046		       || !info->symbolic
7047		       || !h->def_regular))
7048	    outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
7049	  else
7050	    {
7051	      int symbol;
7052
7053	      /* This symbol is local, or marked to become local.  */
7054	      if (sym_flags == STT_ARM_TFUNC)
7055		value |= 1;
7056	      if (globals->symbian_p)
7057		{
7058		  asection *osec;
7059
7060		  /* On Symbian OS, the data segment and text segement
7061		     can be relocated independently.  Therefore, we
7062		     must indicate the segment to which this
7063		     relocation is relative.  The BPABI allows us to
7064		     use any symbol in the right segment; we just use
7065		     the section symbol as it is convenient.  (We
7066		     cannot use the symbol given by "h" directly as it
7067		     will not appear in the dynamic symbol table.)
7068
7069		     Note that the dynamic linker ignores the section
7070		     symbol value, so we don't subtract osec->vma
7071		     from the emitted reloc addend.  */
7072		  if (sym_sec)
7073		    osec = sym_sec->output_section;
7074		  else
7075		    osec = input_section->output_section;
7076		  symbol = elf_section_data (osec)->dynindx;
7077		  if (symbol == 0)
7078		    {
7079		      struct elf_link_hash_table *htab = elf_hash_table (info);
7080
7081		      if ((osec->flags & SEC_READONLY) == 0
7082			  && htab->data_index_section != NULL)
7083			osec = htab->data_index_section;
7084		      else
7085			osec = htab->text_index_section;
7086		      symbol = elf_section_data (osec)->dynindx;
7087		    }
7088		  BFD_ASSERT (symbol != 0);
7089		}
7090	      else
7091		/* On SVR4-ish systems, the dynamic loader cannot
7092		   relocate the text and data segments independently,
7093		   so the symbol does not matter.  */
7094		symbol = 0;
7095	      outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
7096	      if (globals->use_rel)
7097		relocate = TRUE;
7098	      else
7099		outrel.r_addend += value;
7100	    }
7101
7102	  loc = sreloc->contents;
7103	  loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
7104	  SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7105
7106	  /* If this reloc is against an external symbol, we do not want to
7107	     fiddle with the addend.  Otherwise, we need to include the symbol
7108	     value so that it becomes an addend for the dynamic reloc.  */
7109	  if (! relocate)
7110	    return bfd_reloc_ok;
7111
7112	  return _bfd_final_link_relocate (howto, input_bfd, input_section,
7113					   contents, rel->r_offset, value,
7114					   (bfd_vma) 0);
7115	}
7116      else switch (r_type)
7117	{
7118	case R_ARM_ABS12:
7119	  return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
7120
7121	case R_ARM_XPC25:	  /* Arm BLX instruction.  */
7122	case R_ARM_CALL:
7123	case R_ARM_JUMP24:
7124	case R_ARM_PC24:	  /* Arm B/BL instruction.  */
7125	case R_ARM_PLT32:
7126	  {
7127	  struct elf32_arm_stub_hash_entry *stub_entry = NULL;
7128
7129	  if (r_type == R_ARM_XPC25)
7130	    {
7131	      /* Check for Arm calling Arm function.  */
7132	      /* FIXME: Should we translate the instruction into a BL
7133		 instruction instead ?  */
7134	      if (sym_flags != STT_ARM_TFUNC)
7135		(*_bfd_error_handler)
7136		  (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
7137		   input_bfd,
7138		   h ? h->root.root.string : "(local)");
7139	    }
7140	  else if (r_type == R_ARM_PC24)
7141	    {
7142	      /* Check for Arm calling Thumb function.  */
7143	      if (sym_flags == STT_ARM_TFUNC)
7144		{
7145		  if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
7146					       output_bfd, input_section,
7147					       hit_data, sym_sec, rel->r_offset,
7148					       signed_addend, value,
7149					       error_message))
7150		    return bfd_reloc_ok;
7151		  else
7152		    return bfd_reloc_dangerous;
7153		}
7154	    }
7155
7156	  /* Check if a stub has to be inserted because the
7157	     destination is too far or we are changing mode.  */
7158	  if (   r_type == R_ARM_CALL
7159	      || r_type == R_ARM_JUMP24
7160	      || r_type == R_ARM_PLT32)
7161	    {
7162	      enum elf32_arm_stub_type stub_type = arm_stub_none;
7163	      struct elf32_arm_link_hash_entry *hash;
7164
7165	      hash = (struct elf32_arm_link_hash_entry *) h;
7166	      stub_type = arm_type_of_stub (info, input_section, rel,
7167					    &sym_flags, hash,
7168					    value, sym_sec,
7169					    input_bfd, sym_name);
7170
7171	      if (stub_type != arm_stub_none)
7172		{
7173		  /* The target is out of reach, so redirect the
7174		     branch to the local stub for this function.  */
7175
7176		  stub_entry = elf32_arm_get_stub_entry (input_section,
7177							 sym_sec, h,
7178							 rel, globals,
7179							 stub_type);
7180		  if (stub_entry != NULL)
7181		    value = (stub_entry->stub_offset
7182			     + stub_entry->stub_sec->output_offset
7183			     + stub_entry->stub_sec->output_section->vma);
7184		}
7185	      else
7186		{
7187		  /* If the call goes through a PLT entry, make sure to
7188		     check distance to the right destination address.  */
7189		  if (h != NULL
7190		      && splt != NULL
7191		      && h->plt.offset != (bfd_vma) -1)
7192		    {
7193		      value = (splt->output_section->vma
7194			       + splt->output_offset
7195			       + h->plt.offset);
7196		      *unresolved_reloc_p = FALSE;
7197		      /* The PLT entry is in ARM mode, regardless of the
7198			 target function.  */
7199		      sym_flags = STT_FUNC;
7200		    }
7201		}
7202	    }
7203
7204	  /* The ARM ELF ABI says that this reloc is computed as: S - P + A
7205	     where:
7206	      S is the address of the symbol in the relocation.
7207	      P is address of the instruction being relocated.
7208	      A is the addend (extracted from the instruction) in bytes.
7209
7210	     S is held in 'value'.
7211	     P is the base address of the section containing the
7212	       instruction plus the offset of the reloc into that
7213	       section, ie:
7214		 (input_section->output_section->vma +
7215		  input_section->output_offset +
7216		  rel->r_offset).
7217	     A is the addend, converted into bytes, ie:
7218		 (signed_addend * 4)
7219
7220	     Note: None of these operations have knowledge of the pipeline
7221	     size of the processor, thus it is up to the assembler to
7222	     encode this information into the addend.  */
7223	  value -= (input_section->output_section->vma
7224		    + input_section->output_offset);
7225	  value -= rel->r_offset;
7226	  if (globals->use_rel)
7227	    value += (signed_addend << howto->size);
7228	  else
7229	    /* RELA addends do not have to be adjusted by howto->size.  */
7230	    value += signed_addend;
7231
7232	  signed_addend = value;
7233	  signed_addend >>= howto->rightshift;
7234
7235	  /* A branch to an undefined weak symbol is turned into a jump to
7236	     the next instruction unless a PLT entry will be created.
7237	     Do the same for local undefined symbols (but not for STN_UNDEF).
7238	     The jump to the next instruction is optimized as a NOP depending
7239	     on the architecture.  */
7240	  if (h ? (h->root.type == bfd_link_hash_undefweak
7241		   && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
7242	      : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
7243	    {
7244	      value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
7245
7246	      if (arch_has_arm_nop (globals))
7247		value |= 0x0320f000;
7248	      else
7249		value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0.  */
7250	    }
7251	  else
7252	    {
7253	      /* Perform a signed range check.  */
7254	      if (   signed_addend >   ((bfd_signed_vma)  (howto->dst_mask >> 1))
7255		  || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
7256		return bfd_reloc_overflow;
7257
7258	      addend = (value & 2);
7259
7260	      value = (signed_addend & howto->dst_mask)
7261		| (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
7262
7263	      if (r_type == R_ARM_CALL)
7264		{
7265		  /* Set the H bit in the BLX instruction.  */
7266		  if (sym_flags == STT_ARM_TFUNC)
7267		    {
7268		      if (addend)
7269			value |= (1 << 24);
7270		      else
7271			value &= ~(bfd_vma)(1 << 24);
7272		    }
7273
7274		  /* Select the correct instruction (BL or BLX).  */
7275		  /* Only if we are not handling a BL to a stub. In this
7276		     case, mode switching is performed by the stub.  */
7277		  if (sym_flags == STT_ARM_TFUNC && !stub_entry)
7278		    value |= (1 << 28);
7279		  else
7280		    {
7281		      value &= ~(bfd_vma)(1 << 28);
7282		      value |= (1 << 24);
7283		    }
7284		}
7285	    }
7286	  }
7287	  break;
7288
7289	case R_ARM_ABS32:
7290	  value += addend;
7291	  if (sym_flags == STT_ARM_TFUNC)
7292	    value |= 1;
7293	  break;
7294
7295	case R_ARM_ABS32_NOI:
7296	  value += addend;
7297	  break;
7298
7299	case R_ARM_REL32:
7300	  value += addend;
7301	  if (sym_flags == STT_ARM_TFUNC)
7302	    value |= 1;
7303	  value -= (input_section->output_section->vma
7304		    + input_section->output_offset + rel->r_offset);
7305	  break;
7306
7307	case R_ARM_REL32_NOI:
7308	  value += addend;
7309	  value -= (input_section->output_section->vma
7310		    + input_section->output_offset + rel->r_offset);
7311	  break;
7312
7313	case R_ARM_PREL31:
7314	  value -= (input_section->output_section->vma
7315		    + input_section->output_offset + rel->r_offset);
7316	  value += signed_addend;
7317	  if (! h || h->root.type != bfd_link_hash_undefweak)
7318	    {
7319	      /* Check for overflow.  */
7320	      if ((value ^ (value >> 1)) & (1 << 30))
7321		return bfd_reloc_overflow;
7322	    }
7323	  value &= 0x7fffffff;
7324	  value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
7325	  if (sym_flags == STT_ARM_TFUNC)
7326	    value |= 1;
7327	  break;
7328	}
7329
7330      bfd_put_32 (input_bfd, value, hit_data);
7331      return bfd_reloc_ok;
7332
7333    case R_ARM_ABS8:
7334      value += addend;
7335
7336      /* There is no way to tell whether the user intended to use a signed or
7337	 unsigned addend.  When checking for overflow we accept either,
7338	 as specified by the AAELF.  */
7339      if ((long) value > 0xff || (long) value < -0x80)
7340	return bfd_reloc_overflow;
7341
7342      bfd_put_8 (input_bfd, value, hit_data);
7343      return bfd_reloc_ok;
7344
7345    case R_ARM_ABS16:
7346      value += addend;
7347
7348      /* See comment for R_ARM_ABS8.  */
7349      if ((long) value > 0xffff || (long) value < -0x8000)
7350	return bfd_reloc_overflow;
7351
7352      bfd_put_16 (input_bfd, value, hit_data);
7353      return bfd_reloc_ok;
7354
7355    case R_ARM_THM_ABS5:
7356      /* Support ldr and str instructions for the thumb.  */
7357      if (globals->use_rel)
7358	{
7359	  /* Need to refetch addend.  */
7360	  addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7361	  /* ??? Need to determine shift amount from operand size.  */
7362	  addend >>= howto->rightshift;
7363	}
7364      value += addend;
7365
7366      /* ??? Isn't value unsigned?  */
7367      if ((long) value > 0x1f || (long) value < -0x10)
7368	return bfd_reloc_overflow;
7369
7370      /* ??? Value needs to be properly shifted into place first.  */
7371      value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
7372      bfd_put_16 (input_bfd, value, hit_data);
7373      return bfd_reloc_ok;
7374
7375    case R_ARM_THM_ALU_PREL_11_0:
7376      /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw).  */
7377      {
7378	bfd_vma insn;
7379	bfd_signed_vma relocation;
7380
7381	insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7382             | bfd_get_16 (input_bfd, hit_data + 2);
7383
7384        if (globals->use_rel)
7385          {
7386            signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
7387                          | ((insn & (1 << 26)) >> 15);
7388            if (insn & 0xf00000)
7389              signed_addend = -signed_addend;
7390          }
7391
7392	relocation = value + signed_addend;
7393	relocation -= (input_section->output_section->vma
7394		       + input_section->output_offset
7395		       + rel->r_offset);
7396
7397        value = abs (relocation);
7398
7399        if (value >= 0x1000)
7400          return bfd_reloc_overflow;
7401
7402	insn = (insn & 0xfb0f8f00) | (value & 0xff)
7403             | ((value & 0x700) << 4)
7404             | ((value & 0x800) << 15);
7405        if (relocation < 0)
7406          insn |= 0xa00000;
7407
7408	bfd_put_16 (input_bfd, insn >> 16, hit_data);
7409	bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7410
7411        return bfd_reloc_ok;
7412      }
7413
7414    case R_ARM_THM_PC8:
7415      /* PR 10073:  This reloc is not generated by the GNU toolchain,
7416	 but it is supported for compatibility with third party libraries
7417	 generated by other compilers, specifically the ARM/IAR.  */
7418      {
7419	bfd_vma insn;
7420	bfd_signed_vma relocation;
7421
7422	insn = bfd_get_16 (input_bfd, hit_data);
7423
7424        if (globals->use_rel)
7425	  addend = (insn & 0x00ff) << 2;
7426
7427	relocation = value + addend;
7428	relocation -= (input_section->output_section->vma
7429		       + input_section->output_offset
7430		       + rel->r_offset);
7431
7432        value = abs (relocation);
7433
7434	/* We do not check for overflow of this reloc.  Although strictly
7435	   speaking this is incorrect, it appears to be necessary in order
7436	   to work with IAR generated relocs.  Since GCC and GAS do not
7437	   generate R_ARM_THM_PC8 relocs, the lack of a check should not be
7438	   a problem for them.  */
7439	value &= 0x3fc;
7440
7441	insn = (insn & 0xff00) | (value >> 2);
7442
7443	bfd_put_16 (input_bfd, insn, hit_data);
7444
7445        return bfd_reloc_ok;
7446      }
7447
7448    case R_ARM_THM_PC12:
7449      /* Corresponds to: ldr.w reg, [pc, #offset].  */
7450      {
7451	bfd_vma insn;
7452	bfd_signed_vma relocation;
7453
7454	insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7455             | bfd_get_16 (input_bfd, hit_data + 2);
7456
7457        if (globals->use_rel)
7458          {
7459            signed_addend = insn & 0xfff;
7460            if (!(insn & (1 << 23)))
7461              signed_addend = -signed_addend;
7462          }
7463
7464	relocation = value + signed_addend;
7465	relocation -= (input_section->output_section->vma
7466		       + input_section->output_offset
7467		       + rel->r_offset);
7468
7469        value = abs (relocation);
7470
7471        if (value >= 0x1000)
7472          return bfd_reloc_overflow;
7473
7474	insn = (insn & 0xff7ff000) | value;
7475        if (relocation >= 0)
7476          insn |= (1 << 23);
7477
7478	bfd_put_16 (input_bfd, insn >> 16, hit_data);
7479	bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7480
7481        return bfd_reloc_ok;
7482      }
7483
7484    case R_ARM_THM_XPC22:
7485    case R_ARM_THM_CALL:
7486    case R_ARM_THM_JUMP24:
7487      /* Thumb BL (branch long instruction).  */
7488      {
7489	bfd_vma relocation;
7490        bfd_vma reloc_sign;
7491	bfd_boolean overflow = FALSE;
7492	bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7493	bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
7494	bfd_signed_vma reloc_signed_max;
7495	bfd_signed_vma reloc_signed_min;
7496	bfd_vma check;
7497	bfd_signed_vma signed_check;
7498	int bitsize;
7499	const int thumb2 = using_thumb2 (globals);
7500
7501	/* A branch to an undefined weak symbol is turned into a jump to
7502	   the next instruction unless a PLT entry will be created.
7503	   The jump to the next instruction is optimized as a NOP.W for
7504	   Thumb-2 enabled architectures.  */
7505	if (h && h->root.type == bfd_link_hash_undefweak
7506	    && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
7507	  {
7508	    if (arch_has_thumb2_nop (globals))
7509	      {
7510		bfd_put_16 (input_bfd, 0xf3af, hit_data);
7511		bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
7512	      }
7513	    else
7514	      {
7515		bfd_put_16 (input_bfd, 0xe000, hit_data);
7516		bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
7517	      }
7518	    return bfd_reloc_ok;
7519	  }
7520
7521	/* Fetch the addend.  We use the Thumb-2 encoding (backwards compatible
7522           with Thumb-1) involving the J1 and J2 bits.  */
7523	if (globals->use_rel)
7524	  {
7525            bfd_vma s = (upper_insn & (1 << 10)) >> 10;
7526            bfd_vma upper = upper_insn & 0x3ff;
7527            bfd_vma lower = lower_insn & 0x7ff;
7528	    bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
7529	    bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
7530            bfd_vma i1 = j1 ^ s ? 0 : 1;
7531            bfd_vma i2 = j2 ^ s ? 0 : 1;
7532
7533            addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
7534            /* Sign extend.  */
7535            addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
7536
7537	    signed_addend = addend;
7538	  }
7539
7540	if (r_type == R_ARM_THM_XPC22)
7541	  {
7542	    /* Check for Thumb to Thumb call.  */
7543	    /* FIXME: Should we translate the instruction into a BL
7544	       instruction instead ?  */
7545	    if (sym_flags == STT_ARM_TFUNC)
7546	      (*_bfd_error_handler)
7547		(_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
7548		 input_bfd,
7549		 h ? h->root.root.string : "(local)");
7550	  }
7551	else
7552	  {
7553	    /* If it is not a call to Thumb, assume call to Arm.
7554	       If it is a call relative to a section name, then it is not a
7555	       function call at all, but rather a long jump.  Calls through
7556	       the PLT do not require stubs.  */
7557	    if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
7558		&& (h == NULL || splt == NULL
7559		    || h->plt.offset == (bfd_vma) -1))
7560	      {
7561		if (globals->use_blx && r_type == R_ARM_THM_CALL)
7562		  {
7563		    /* Convert BL to BLX.  */
7564		    lower_insn = (lower_insn & ~0x1000) | 0x0800;
7565		  }
7566		else if ((   r_type != R_ARM_THM_CALL)
7567			 && (r_type != R_ARM_THM_JUMP24))
7568		  {
7569		    if (elf32_thumb_to_arm_stub
7570			(info, sym_name, input_bfd, output_bfd, input_section,
7571			 hit_data, sym_sec, rel->r_offset, signed_addend, value,
7572			 error_message))
7573		      return bfd_reloc_ok;
7574		    else
7575		      return bfd_reloc_dangerous;
7576		  }
7577	      }
7578	    else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
7579		     && r_type == R_ARM_THM_CALL)
7580	      {
7581		/* Make sure this is a BL.  */
7582		lower_insn |= 0x1800;
7583	      }
7584	  }
7585
7586	enum elf32_arm_stub_type stub_type = arm_stub_none;
7587	if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
7588	  {
7589	    /* Check if a stub has to be inserted because the destination
7590	       is too far.  */
7591	    struct elf32_arm_stub_hash_entry *stub_entry;
7592	    struct elf32_arm_link_hash_entry *hash;
7593
7594	    hash = (struct elf32_arm_link_hash_entry *) h;
7595
7596	    stub_type = arm_type_of_stub (info, input_section, rel,
7597					  &sym_flags, hash, value, sym_sec,
7598					  input_bfd, sym_name);
7599
7600	    if (stub_type != arm_stub_none)
7601	      {
7602		/* The target is out of reach or we are changing modes, so
7603		   redirect the branch to the local stub for this
7604		   function.  */
7605		stub_entry = elf32_arm_get_stub_entry (input_section,
7606						       sym_sec, h,
7607						       rel, globals,
7608						       stub_type);
7609		if (stub_entry != NULL)
7610		  value = (stub_entry->stub_offset
7611			   + stub_entry->stub_sec->output_offset
7612			   + stub_entry->stub_sec->output_section->vma);
7613
7614		/* If this call becomes a call to Arm, force BLX.  */
7615		if (globals->use_blx && (r_type == R_ARM_THM_CALL))
7616		  {
7617		    if ((stub_entry
7618			 && !arm_stub_is_thumb (stub_entry->stub_type))
7619			|| (sym_flags != STT_ARM_TFUNC))
7620		      lower_insn = (lower_insn & ~0x1000) | 0x0800;
7621		  }
7622	      }
7623	  }
7624
7625	/* Handle calls via the PLT.  */
7626	if (stub_type == arm_stub_none
7627	    && h != NULL
7628	    && splt != NULL
7629	    && h->plt.offset != (bfd_vma) -1)
7630	  {
7631	    value = (splt->output_section->vma
7632		     + splt->output_offset
7633		     + h->plt.offset);
7634
7635	    if (globals->use_blx && r_type == R_ARM_THM_CALL)
7636	      {
7637		/* If the Thumb BLX instruction is available, convert
7638		   the BL to a BLX instruction to call the ARM-mode
7639		   PLT entry.  */
7640		lower_insn = (lower_insn & ~0x1000) | 0x0800;
7641		sym_flags = STT_FUNC;
7642	      }
7643	    else
7644	      {
7645		/* Target the Thumb stub before the ARM PLT entry.  */
7646		value -= PLT_THUMB_STUB_SIZE;
7647		sym_flags = STT_ARM_TFUNC;
7648	      }
7649	    *unresolved_reloc_p = FALSE;
7650	  }
7651
7652	relocation = value + signed_addend;
7653
7654	relocation -= (input_section->output_section->vma
7655		       + input_section->output_offset
7656		       + rel->r_offset);
7657
7658	check = relocation >> howto->rightshift;
7659
7660	/* If this is a signed value, the rightshift just dropped
7661	   leading 1 bits (assuming twos complement).  */
7662	if ((bfd_signed_vma) relocation >= 0)
7663	  signed_check = check;
7664	else
7665	  signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
7666
7667	/* Calculate the permissable maximum and minimum values for
7668	   this relocation according to whether we're relocating for
7669	   Thumb-2 or not.  */
7670	bitsize = howto->bitsize;
7671	if (!thumb2)
7672	  bitsize -= 2;
7673	reloc_signed_max = (1 << (bitsize - 1)) - 1;
7674	reloc_signed_min = ~reloc_signed_max;
7675
7676	/* Assumes two's complement.  */
7677	if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7678	  overflow = TRUE;
7679
7680	if ((lower_insn & 0x5000) == 0x4000)
7681	  /* For a BLX instruction, make sure that the relocation is rounded up
7682	     to a word boundary.  This follows the semantics of the instruction
7683	     which specifies that bit 1 of the target address will come from bit
7684	     1 of the base address.  */
7685	  relocation = (relocation + 2) & ~ 3;
7686
7687	/* Put RELOCATION back into the insn.  Assumes two's complement.
7688	   We use the Thumb-2 encoding, which is safe even if dealing with
7689	   a Thumb-1 instruction by virtue of our overflow check above.  */
7690        reloc_sign = (signed_check < 0) ? 1 : 0;
7691	upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
7692                     | ((relocation >> 12) & 0x3ff)
7693                     | (reloc_sign << 10);
7694	lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
7695                     | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
7696                     | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
7697                     | ((relocation >> 1) & 0x7ff);
7698
7699	/* Put the relocated value back in the object file:  */
7700	bfd_put_16 (input_bfd, upper_insn, hit_data);
7701	bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7702
7703	return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7704      }
7705      break;
7706
7707    case R_ARM_THM_JUMP19:
7708      /* Thumb32 conditional branch instruction.  */
7709      {
7710	bfd_vma relocation;
7711	bfd_boolean overflow = FALSE;
7712	bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7713	bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
7714	bfd_signed_vma reloc_signed_max = 0xffffe;
7715	bfd_signed_vma reloc_signed_min = -0x100000;
7716	bfd_signed_vma signed_check;
7717
7718	/* Need to refetch the addend, reconstruct the top three bits,
7719	   and squish the two 11 bit pieces together.  */
7720	if (globals->use_rel)
7721	  {
7722	    bfd_vma S     = (upper_insn & 0x0400) >> 10;
7723	    bfd_vma upper = (upper_insn & 0x003f);
7724	    bfd_vma J1    = (lower_insn & 0x2000) >> 13;
7725	    bfd_vma J2    = (lower_insn & 0x0800) >> 11;
7726	    bfd_vma lower = (lower_insn & 0x07ff);
7727
7728	    upper |= J1 << 6;
7729	    upper |= J2 << 7;
7730	    upper |= (!S) << 8;
7731	    upper -= 0x0100; /* Sign extend.  */
7732
7733	    addend = (upper << 12) | (lower << 1);
7734	    signed_addend = addend;
7735	  }
7736
7737	/* Handle calls via the PLT.  */
7738	if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7739	  {
7740	    value = (splt->output_section->vma
7741		     + splt->output_offset
7742		     + h->plt.offset);
7743	    /* Target the Thumb stub before the ARM PLT entry.  */
7744	    value -= PLT_THUMB_STUB_SIZE;
7745	    *unresolved_reloc_p = FALSE;
7746	  }
7747
7748	/* ??? Should handle interworking?  GCC might someday try to
7749	   use this for tail calls.  */
7750
7751      	relocation = value + signed_addend;
7752	relocation -= (input_section->output_section->vma
7753		       + input_section->output_offset
7754		       + rel->r_offset);
7755	signed_check = (bfd_signed_vma) relocation;
7756
7757	if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7758	  overflow = TRUE;
7759
7760	/* Put RELOCATION back into the insn.  */
7761	{
7762	  bfd_vma S  = (relocation & 0x00100000) >> 20;
7763	  bfd_vma J2 = (relocation & 0x00080000) >> 19;
7764	  bfd_vma J1 = (relocation & 0x00040000) >> 18;
7765	  bfd_vma hi = (relocation & 0x0003f000) >> 12;
7766	  bfd_vma lo = (relocation & 0x00000ffe) >>  1;
7767
7768	  upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
7769	  lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
7770	}
7771
7772	/* Put the relocated value back in the object file:  */
7773	bfd_put_16 (input_bfd, upper_insn, hit_data);
7774	bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7775
7776	return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7777      }
7778
7779    case R_ARM_THM_JUMP11:
7780    case R_ARM_THM_JUMP8:
7781    case R_ARM_THM_JUMP6:
7782      /* Thumb B (branch) instruction).  */
7783      {
7784	bfd_signed_vma relocation;
7785	bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
7786	bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
7787	bfd_signed_vma signed_check;
7788
7789	/* CZB cannot jump backward.  */
7790	if (r_type == R_ARM_THM_JUMP6)
7791	  reloc_signed_min = 0;
7792
7793	if (globals->use_rel)
7794	  {
7795	    /* Need to refetch addend.  */
7796	    addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7797	    if (addend & ((howto->src_mask + 1) >> 1))
7798	      {
7799		signed_addend = -1;
7800		signed_addend &= ~ howto->src_mask;
7801		signed_addend |= addend;
7802	      }
7803	    else
7804	      signed_addend = addend;
7805	    /* The value in the insn has been right shifted.  We need to
7806	       undo this, so that we can perform the address calculation
7807	       in terms of bytes.  */
7808	    signed_addend <<= howto->rightshift;
7809	  }
7810	relocation = value + signed_addend;
7811
7812	relocation -= (input_section->output_section->vma
7813		       + input_section->output_offset
7814		       + rel->r_offset);
7815
7816	relocation >>= howto->rightshift;
7817	signed_check = relocation;
7818
7819	if (r_type == R_ARM_THM_JUMP6)
7820	  relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
7821	else
7822	  relocation &= howto->dst_mask;
7823	relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
7824
7825	bfd_put_16 (input_bfd, relocation, hit_data);
7826
7827	/* Assumes two's complement.  */
7828	if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7829	  return bfd_reloc_overflow;
7830
7831	return bfd_reloc_ok;
7832      }
7833
7834    case R_ARM_ALU_PCREL7_0:
7835    case R_ARM_ALU_PCREL15_8:
7836    case R_ARM_ALU_PCREL23_15:
7837      {
7838	bfd_vma insn;
7839	bfd_vma relocation;
7840
7841	insn = bfd_get_32 (input_bfd, hit_data);
7842	if (globals->use_rel)
7843	  {
7844	    /* Extract the addend.  */
7845	    addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
7846	    signed_addend = addend;
7847	  }
7848	relocation = value + signed_addend;
7849
7850	relocation -= (input_section->output_section->vma
7851		       + input_section->output_offset
7852		       + rel->r_offset);
7853	insn = (insn & ~0xfff)
7854	       | ((howto->bitpos << 7) & 0xf00)
7855	       | ((relocation >> howto->bitpos) & 0xff);
7856	bfd_put_32 (input_bfd, value, hit_data);
7857      }
7858      return bfd_reloc_ok;
7859
7860    case R_ARM_GNU_VTINHERIT:
7861    case R_ARM_GNU_VTENTRY:
7862      return bfd_reloc_ok;
7863
7864    case R_ARM_GOTOFF32:
7865      /* Relocation is relative to the start of the
7866         global offset table.  */
7867
7868      BFD_ASSERT (sgot != NULL);
7869      if (sgot == NULL)
7870        return bfd_reloc_notsupported;
7871
7872      /* If we are addressing a Thumb function, we need to adjust the
7873	 address by one, so that attempts to call the function pointer will
7874	 correctly interpret it as Thumb code.  */
7875      if (sym_flags == STT_ARM_TFUNC)
7876	value += 1;
7877
7878      /* Note that sgot->output_offset is not involved in this
7879         calculation.  We always want the start of .got.  If we
7880         define _GLOBAL_OFFSET_TABLE in a different way, as is
7881         permitted by the ABI, we might have to change this
7882         calculation.  */
7883      value -= sgot->output_section->vma;
7884      return _bfd_final_link_relocate (howto, input_bfd, input_section,
7885				       contents, rel->r_offset, value,
7886				       rel->r_addend);
7887
7888    case R_ARM_GOTPC:
7889      /* Use global offset table as symbol value.  */
7890      BFD_ASSERT (sgot != NULL);
7891
7892      if (sgot == NULL)
7893        return bfd_reloc_notsupported;
7894
7895      *unresolved_reloc_p = FALSE;
7896      value = sgot->output_section->vma;
7897      return _bfd_final_link_relocate (howto, input_bfd, input_section,
7898				       contents, rel->r_offset, value,
7899				       rel->r_addend);
7900
7901    case R_ARM_GOT32:
7902    case R_ARM_GOT_PREL:
7903      /* Relocation is to the entry for this symbol in the
7904         global offset table.  */
7905      if (sgot == NULL)
7906	return bfd_reloc_notsupported;
7907
7908      if (h != NULL)
7909	{
7910	  bfd_vma off;
7911	  bfd_boolean dyn;
7912
7913	  off = h->got.offset;
7914	  BFD_ASSERT (off != (bfd_vma) -1);
7915	  dyn = globals->root.dynamic_sections_created;
7916
7917	  if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7918	      || (info->shared
7919		  && SYMBOL_REFERENCES_LOCAL (info, h))
7920	      || (ELF_ST_VISIBILITY (h->other)
7921		  && h->root.type == bfd_link_hash_undefweak))
7922	    {
7923	      /* This is actually a static link, or it is a -Bsymbolic link
7924		 and the symbol is defined locally.  We must initialize this
7925		 entry in the global offset table.  Since the offset must
7926		 always be a multiple of 4, we use the least significant bit
7927		 to record whether we have initialized it already.
7928
7929		 When doing a dynamic link, we create a .rel(a).got relocation
7930		 entry to initialize the value.  This is done in the
7931		 finish_dynamic_symbol routine.  */
7932	      if ((off & 1) != 0)
7933		off &= ~1;
7934	      else
7935		{
7936		  /* If we are addressing a Thumb function, we need to
7937		     adjust the address by one, so that attempts to
7938		     call the function pointer will correctly
7939		     interpret it as Thumb code.  */
7940		  if (sym_flags == STT_ARM_TFUNC)
7941		    value |= 1;
7942
7943		  bfd_put_32 (output_bfd, value, sgot->contents + off);
7944		  h->got.offset |= 1;
7945		}
7946	    }
7947	  else
7948	    *unresolved_reloc_p = FALSE;
7949
7950	  value = sgot->output_offset + off;
7951	}
7952      else
7953	{
7954	  bfd_vma off;
7955
7956	  BFD_ASSERT (local_got_offsets != NULL &&
7957		      local_got_offsets[r_symndx] != (bfd_vma) -1);
7958
7959	  off = local_got_offsets[r_symndx];
7960
7961	  /* The offset must always be a multiple of 4.  We use the
7962	     least significant bit to record whether we have already
7963	     generated the necessary reloc.  */
7964	  if ((off & 1) != 0)
7965	    off &= ~1;
7966	  else
7967	    {
7968	      /* If we are addressing a Thumb function, we need to
7969		 adjust the address by one, so that attempts to
7970		 call the function pointer will correctly
7971		 interpret it as Thumb code.  */
7972	      if (sym_flags == STT_ARM_TFUNC)
7973		value |= 1;
7974
7975	      if (globals->use_rel)
7976		bfd_put_32 (output_bfd, value, sgot->contents + off);
7977
7978	      if (info->shared)
7979		{
7980		  asection * srelgot;
7981		  Elf_Internal_Rela outrel;
7982		  bfd_byte *loc;
7983
7984		  srelgot = (bfd_get_section_by_name
7985			     (dynobj, RELOC_SECTION (globals, ".got")));
7986		  BFD_ASSERT (srelgot != NULL);
7987
7988		  outrel.r_addend = addend + value;
7989		  outrel.r_offset = (sgot->output_section->vma
7990				     + sgot->output_offset
7991				     + off);
7992		  outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
7993		  loc = srelgot->contents;
7994		  loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
7995		  SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7996		}
7997
7998	      local_got_offsets[r_symndx] |= 1;
7999	    }
8000
8001	  value = sgot->output_offset + off;
8002	}
8003      if (r_type != R_ARM_GOT32)
8004	value += sgot->output_section->vma;
8005
8006      return _bfd_final_link_relocate (howto, input_bfd, input_section,
8007				       contents, rel->r_offset, value,
8008				       rel->r_addend);
8009
8010    case R_ARM_TLS_LDO32:
8011      value = value - dtpoff_base (info);
8012
8013      return _bfd_final_link_relocate (howto, input_bfd, input_section,
8014				       contents, rel->r_offset, value,
8015				       rel->r_addend);
8016
8017    case R_ARM_TLS_LDM32:
8018      {
8019	bfd_vma off;
8020
8021	if (globals->sgot == NULL)
8022	  abort ();
8023
8024	off = globals->tls_ldm_got.offset;
8025
8026	if ((off & 1) != 0)
8027	  off &= ~1;
8028	else
8029	  {
8030	    /* If we don't know the module number, create a relocation
8031	       for it.  */
8032	    if (info->shared)
8033	      {
8034		Elf_Internal_Rela outrel;
8035		bfd_byte *loc;
8036
8037		if (globals->srelgot == NULL)
8038		  abort ();
8039
8040		outrel.r_addend = 0;
8041		outrel.r_offset = (globals->sgot->output_section->vma
8042				   + globals->sgot->output_offset + off);
8043		outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
8044
8045		if (globals->use_rel)
8046		  bfd_put_32 (output_bfd, outrel.r_addend,
8047			      globals->sgot->contents + off);
8048
8049		loc = globals->srelgot->contents;
8050		loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
8051		SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8052	      }
8053	    else
8054	      bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
8055
8056	    globals->tls_ldm_got.offset |= 1;
8057	  }
8058
8059	value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
8060	  - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
8061
8062	return _bfd_final_link_relocate (howto, input_bfd, input_section,
8063					 contents, rel->r_offset, value,
8064					 rel->r_addend);
8065      }
8066
8067    case R_ARM_TLS_GD32:
8068    case R_ARM_TLS_IE32:
8069      {
8070	bfd_vma off;
8071	int indx;
8072	char tls_type;
8073
8074	if (globals->sgot == NULL)
8075	  abort ();
8076
8077	indx = 0;
8078	if (h != NULL)
8079	  {
8080	    bfd_boolean dyn;
8081	    dyn = globals->root.dynamic_sections_created;
8082	    if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
8083		&& (!info->shared
8084		    || !SYMBOL_REFERENCES_LOCAL (info, h)))
8085	      {
8086		*unresolved_reloc_p = FALSE;
8087		indx = h->dynindx;
8088	      }
8089	    off = h->got.offset;
8090	    tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
8091	  }
8092	else
8093	  {
8094	    if (local_got_offsets == NULL)
8095	      abort ();
8096	    off = local_got_offsets[r_symndx];
8097	    tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
8098	  }
8099
8100	if (tls_type == GOT_UNKNOWN)
8101	  abort ();
8102
8103	if ((off & 1) != 0)
8104	  off &= ~1;
8105	else
8106	  {
8107	    bfd_boolean need_relocs = FALSE;
8108	    Elf_Internal_Rela outrel;
8109	    bfd_byte *loc = NULL;
8110	    int cur_off = off;
8111
8112	    /* The GOT entries have not been initialized yet.  Do it
8113	       now, and emit any relocations.  If both an IE GOT and a
8114	       GD GOT are necessary, we emit the GD first.  */
8115
8116	    if ((info->shared || indx != 0)
8117		&& (h == NULL
8118		    || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8119		    || h->root.type != bfd_link_hash_undefweak))
8120	      {
8121		need_relocs = TRUE;
8122		if (globals->srelgot == NULL)
8123		  abort ();
8124		loc = globals->srelgot->contents;
8125		loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
8126	      }
8127
8128	    if (tls_type & GOT_TLS_GD)
8129	      {
8130		if (need_relocs)
8131		  {
8132		    outrel.r_addend = 0;
8133		    outrel.r_offset = (globals->sgot->output_section->vma
8134				       + globals->sgot->output_offset
8135				       + cur_off);
8136		    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
8137
8138		    if (globals->use_rel)
8139		      bfd_put_32 (output_bfd, outrel.r_addend,
8140				  globals->sgot->contents + cur_off);
8141
8142		    SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8143		    globals->srelgot->reloc_count++;
8144		    loc += RELOC_SIZE (globals);
8145
8146		    if (indx == 0)
8147		      bfd_put_32 (output_bfd, value - dtpoff_base (info),
8148				  globals->sgot->contents + cur_off + 4);
8149		    else
8150		      {
8151			outrel.r_addend = 0;
8152			outrel.r_info = ELF32_R_INFO (indx,
8153						      R_ARM_TLS_DTPOFF32);
8154			outrel.r_offset += 4;
8155
8156			if (globals->use_rel)
8157			  bfd_put_32 (output_bfd, outrel.r_addend,
8158				      globals->sgot->contents + cur_off + 4);
8159
8160
8161			SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8162			globals->srelgot->reloc_count++;
8163			loc += RELOC_SIZE (globals);
8164		      }
8165		  }
8166		else
8167		  {
8168		    /* If we are not emitting relocations for a
8169		       general dynamic reference, then we must be in a
8170		       static link or an executable link with the
8171		       symbol binding locally.  Mark it as belonging
8172		       to module 1, the executable.  */
8173		    bfd_put_32 (output_bfd, 1,
8174				globals->sgot->contents + cur_off);
8175		    bfd_put_32 (output_bfd, value - dtpoff_base (info),
8176				globals->sgot->contents + cur_off + 4);
8177		  }
8178
8179		cur_off += 8;
8180	      }
8181
8182	    if (tls_type & GOT_TLS_IE)
8183	      {
8184		if (need_relocs)
8185		  {
8186		    if (indx == 0)
8187		      outrel.r_addend = value - dtpoff_base (info);
8188		    else
8189		      outrel.r_addend = 0;
8190		    outrel.r_offset = (globals->sgot->output_section->vma
8191				       + globals->sgot->output_offset
8192				       + cur_off);
8193		    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
8194
8195		    if (globals->use_rel)
8196		      bfd_put_32 (output_bfd, outrel.r_addend,
8197				  globals->sgot->contents + cur_off);
8198
8199		    SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8200		    globals->srelgot->reloc_count++;
8201		    loc += RELOC_SIZE (globals);
8202		  }
8203		else
8204		  bfd_put_32 (output_bfd, tpoff (info, value),
8205			      globals->sgot->contents + cur_off);
8206		cur_off += 4;
8207	      }
8208
8209	    if (h != NULL)
8210	      h->got.offset |= 1;
8211	    else
8212	      local_got_offsets[r_symndx] |= 1;
8213	  }
8214
8215	if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
8216	  off += 8;
8217	value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
8218	  - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
8219
8220	return _bfd_final_link_relocate (howto, input_bfd, input_section,
8221					 contents, rel->r_offset, value,
8222					 rel->r_addend);
8223      }
8224
8225    case R_ARM_TLS_LE32:
8226      if (info->shared)
8227	{
8228	  (*_bfd_error_handler)
8229	    (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
8230	     input_bfd, input_section,
8231	     (long) rel->r_offset, howto->name);
8232	  return (bfd_reloc_status_type) FALSE;
8233	}
8234      else
8235	value = tpoff (info, value);
8236
8237      return _bfd_final_link_relocate (howto, input_bfd, input_section,
8238				       contents, rel->r_offset, value,
8239				       rel->r_addend);
8240
8241    case R_ARM_V4BX:
8242      if (globals->fix_v4bx)
8243	{
8244	  bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8245
8246	  /* Ensure that we have a BX instruction.  */
8247	  BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
8248
8249	  if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
8250	    {
8251	      /* Branch to veneer.  */
8252	      bfd_vma glue_addr;
8253	      glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
8254	      glue_addr -= input_section->output_section->vma
8255			   + input_section->output_offset
8256			   + rel->r_offset + 8;
8257	      insn = (insn & 0xf0000000) | 0x0a000000
8258		     | ((glue_addr >> 2) & 0x00ffffff);
8259	    }
8260	  else
8261	    {
8262	      /* Preserve Rm (lowest four bits) and the condition code
8263		 (highest four bits). Other bits encode MOV PC,Rm.  */
8264	      insn = (insn & 0xf000000f) | 0x01a0f000;
8265	    }
8266
8267	  bfd_put_32 (input_bfd, insn, hit_data);
8268	}
8269      return bfd_reloc_ok;
8270
8271    case R_ARM_MOVW_ABS_NC:
8272    case R_ARM_MOVT_ABS:
8273    case R_ARM_MOVW_PREL_NC:
8274    case R_ARM_MOVT_PREL:
8275    /* Until we properly support segment-base-relative addressing then
8276       we assume the segment base to be zero, as for the group relocations.
8277       Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
8278       and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS.  */
8279    case R_ARM_MOVW_BREL_NC:
8280    case R_ARM_MOVW_BREL:
8281    case R_ARM_MOVT_BREL:
8282      {
8283	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8284
8285	if (globals->use_rel)
8286	  {
8287	    addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
8288	    signed_addend = (addend ^ 0x8000) - 0x8000;
8289	  }
8290
8291	value += signed_addend;
8292
8293	if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
8294	  value -= (input_section->output_section->vma
8295		    + input_section->output_offset + rel->r_offset);
8296
8297	if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
8298          return bfd_reloc_overflow;
8299
8300	if (sym_flags == STT_ARM_TFUNC)
8301	  value |= 1;
8302
8303	if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
8304            || r_type == R_ARM_MOVT_BREL)
8305	  value >>= 16;
8306
8307	insn &= 0xfff0f000;
8308	insn |= value & 0xfff;
8309	insn |= (value & 0xf000) << 4;
8310	bfd_put_32 (input_bfd, insn, hit_data);
8311      }
8312      return bfd_reloc_ok;
8313
8314    case R_ARM_THM_MOVW_ABS_NC:
8315    case R_ARM_THM_MOVT_ABS:
8316    case R_ARM_THM_MOVW_PREL_NC:
8317    case R_ARM_THM_MOVT_PREL:
8318    /* Until we properly support segment-base-relative addressing then
8319       we assume the segment base to be zero, as for the above relocations.
8320       Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
8321       R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
8322       as R_ARM_THM_MOVT_ABS.  */
8323    case R_ARM_THM_MOVW_BREL_NC:
8324    case R_ARM_THM_MOVW_BREL:
8325    case R_ARM_THM_MOVT_BREL:
8326      {
8327	bfd_vma insn;
8328
8329	insn = bfd_get_16 (input_bfd, hit_data) << 16;
8330	insn |= bfd_get_16 (input_bfd, hit_data + 2);
8331
8332	if (globals->use_rel)
8333	  {
8334	    addend = ((insn >> 4)  & 0xf000)
8335		   | ((insn >> 15) & 0x0800)
8336		   | ((insn >> 4)  & 0x0700)
8337		   | (insn         & 0x00ff);
8338	    signed_addend = (addend ^ 0x8000) - 0x8000;
8339	  }
8340
8341	value += signed_addend;
8342
8343	if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
8344	  value -= (input_section->output_section->vma
8345		    + input_section->output_offset + rel->r_offset);
8346
8347	if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
8348          return bfd_reloc_overflow;
8349
8350	if (sym_flags == STT_ARM_TFUNC)
8351	  value |= 1;
8352
8353	if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
8354            || r_type == R_ARM_THM_MOVT_BREL)
8355	  value >>= 16;
8356
8357	insn &= 0xfbf08f00;
8358	insn |= (value & 0xf000) << 4;
8359	insn |= (value & 0x0800) << 15;
8360	insn |= (value & 0x0700) << 4;
8361	insn |= (value & 0x00ff);
8362
8363	bfd_put_16 (input_bfd, insn >> 16, hit_data);
8364	bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8365      }
8366      return bfd_reloc_ok;
8367
8368    case R_ARM_ALU_PC_G0_NC:
8369    case R_ARM_ALU_PC_G1_NC:
8370    case R_ARM_ALU_PC_G0:
8371    case R_ARM_ALU_PC_G1:
8372    case R_ARM_ALU_PC_G2:
8373    case R_ARM_ALU_SB_G0_NC:
8374    case R_ARM_ALU_SB_G1_NC:
8375    case R_ARM_ALU_SB_G0:
8376    case R_ARM_ALU_SB_G1:
8377    case R_ARM_ALU_SB_G2:
8378      {
8379	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8380        bfd_vma pc = input_section->output_section->vma
8381		     + input_section->output_offset + rel->r_offset;
8382        /* sb should be the origin of the *segment* containing the symbol.
8383           It is not clear how to obtain this OS-dependent value, so we
8384           make an arbitrary choice of zero.  */
8385        bfd_vma sb = 0;
8386        bfd_vma residual;
8387        bfd_vma g_n;
8388	bfd_signed_vma signed_value;
8389        int group = 0;
8390
8391        /* Determine which group of bits to select.  */
8392        switch (r_type)
8393          {
8394          case R_ARM_ALU_PC_G0_NC:
8395          case R_ARM_ALU_PC_G0:
8396          case R_ARM_ALU_SB_G0_NC:
8397          case R_ARM_ALU_SB_G0:
8398            group = 0;
8399            break;
8400
8401          case R_ARM_ALU_PC_G1_NC:
8402          case R_ARM_ALU_PC_G1:
8403          case R_ARM_ALU_SB_G1_NC:
8404          case R_ARM_ALU_SB_G1:
8405            group = 1;
8406            break;
8407
8408          case R_ARM_ALU_PC_G2:
8409          case R_ARM_ALU_SB_G2:
8410            group = 2;
8411            break;
8412
8413          default:
8414            abort ();
8415          }
8416
8417        /* If REL, extract the addend from the insn.  If RELA, it will
8418           have already been fetched for us.  */
8419	if (globals->use_rel)
8420          {
8421            int negative;
8422            bfd_vma constant = insn & 0xff;
8423            bfd_vma rotation = (insn & 0xf00) >> 8;
8424
8425            if (rotation == 0)
8426              signed_addend = constant;
8427            else
8428              {
8429                /* Compensate for the fact that in the instruction, the
8430                   rotation is stored in multiples of 2 bits.  */
8431                rotation *= 2;
8432
8433                /* Rotate "constant" right by "rotation" bits.  */
8434                signed_addend = (constant >> rotation) |
8435                                (constant << (8 * sizeof (bfd_vma) - rotation));
8436              }
8437
8438            /* Determine if the instruction is an ADD or a SUB.
8439               (For REL, this determines the sign of the addend.)  */
8440            negative = identify_add_or_sub (insn);
8441            if (negative == 0)
8442              {
8443                (*_bfd_error_handler)
8444                  (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
8445                  input_bfd, input_section,
8446                  (long) rel->r_offset, howto->name);
8447                return bfd_reloc_overflow;
8448    	      }
8449
8450            signed_addend *= negative;
8451          }
8452
8453	/* Compute the value (X) to go in the place.  */
8454        if (r_type == R_ARM_ALU_PC_G0_NC
8455            || r_type == R_ARM_ALU_PC_G1_NC
8456            || r_type == R_ARM_ALU_PC_G0
8457            || r_type == R_ARM_ALU_PC_G1
8458            || r_type == R_ARM_ALU_PC_G2)
8459          /* PC relative.  */
8460          signed_value = value - pc + signed_addend;
8461        else
8462          /* Section base relative.  */
8463          signed_value = value - sb + signed_addend;
8464
8465        /* If the target symbol is a Thumb function, then set the
8466           Thumb bit in the address.  */
8467	if (sym_flags == STT_ARM_TFUNC)
8468	  signed_value |= 1;
8469
8470        /* Calculate the value of the relevant G_n, in encoded
8471           constant-with-rotation format.  */
8472        g_n = calculate_group_reloc_mask (abs (signed_value), group,
8473                                          &residual);
8474
8475        /* Check for overflow if required.  */
8476        if ((r_type == R_ARM_ALU_PC_G0
8477             || r_type == R_ARM_ALU_PC_G1
8478             || r_type == R_ARM_ALU_PC_G2
8479             || r_type == R_ARM_ALU_SB_G0
8480             || r_type == R_ARM_ALU_SB_G1
8481             || r_type == R_ARM_ALU_SB_G2) && residual != 0)
8482          {
8483            (*_bfd_error_handler)
8484              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8485              input_bfd, input_section,
8486              (long) rel->r_offset, abs (signed_value), howto->name);
8487            return bfd_reloc_overflow;
8488          }
8489
8490        /* Mask out the value and the ADD/SUB part of the opcode; take care
8491           not to destroy the S bit.  */
8492        insn &= 0xff1ff000;
8493
8494        /* Set the opcode according to whether the value to go in the
8495           place is negative.  */
8496        if (signed_value < 0)
8497          insn |= 1 << 22;
8498        else
8499          insn |= 1 << 23;
8500
8501        /* Encode the offset.  */
8502        insn |= g_n;
8503
8504	bfd_put_32 (input_bfd, insn, hit_data);
8505      }
8506      return bfd_reloc_ok;
8507
8508    case R_ARM_LDR_PC_G0:
8509    case R_ARM_LDR_PC_G1:
8510    case R_ARM_LDR_PC_G2:
8511    case R_ARM_LDR_SB_G0:
8512    case R_ARM_LDR_SB_G1:
8513    case R_ARM_LDR_SB_G2:
8514      {
8515	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8516        bfd_vma pc = input_section->output_section->vma
8517		     + input_section->output_offset + rel->r_offset;
8518        bfd_vma sb = 0; /* See note above.  */
8519        bfd_vma residual;
8520	bfd_signed_vma signed_value;
8521        int group = 0;
8522
8523        /* Determine which groups of bits to calculate.  */
8524        switch (r_type)
8525          {
8526          case R_ARM_LDR_PC_G0:
8527          case R_ARM_LDR_SB_G0:
8528            group = 0;
8529            break;
8530
8531          case R_ARM_LDR_PC_G1:
8532          case R_ARM_LDR_SB_G1:
8533            group = 1;
8534            break;
8535
8536          case R_ARM_LDR_PC_G2:
8537          case R_ARM_LDR_SB_G2:
8538            group = 2;
8539            break;
8540
8541          default:
8542            abort ();
8543          }
8544
8545        /* If REL, extract the addend from the insn.  If RELA, it will
8546           have already been fetched for us.  */
8547	if (globals->use_rel)
8548          {
8549            int negative = (insn & (1 << 23)) ? 1 : -1;
8550            signed_addend = negative * (insn & 0xfff);
8551          }
8552
8553	/* Compute the value (X) to go in the place.  */
8554        if (r_type == R_ARM_LDR_PC_G0
8555            || r_type == R_ARM_LDR_PC_G1
8556            || r_type == R_ARM_LDR_PC_G2)
8557          /* PC relative.  */
8558          signed_value = value - pc + signed_addend;
8559        else
8560          /* Section base relative.  */
8561          signed_value = value - sb + signed_addend;
8562
8563        /* Calculate the value of the relevant G_{n-1} to obtain
8564           the residual at that stage.  */
8565        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8566
8567        /* Check for overflow.  */
8568        if (residual >= 0x1000)
8569          {
8570            (*_bfd_error_handler)
8571              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8572              input_bfd, input_section,
8573              (long) rel->r_offset, abs (signed_value), howto->name);
8574            return bfd_reloc_overflow;
8575          }
8576
8577        /* Mask out the value and U bit.  */
8578        insn &= 0xff7ff000;
8579
8580        /* Set the U bit if the value to go in the place is non-negative.  */
8581        if (signed_value >= 0)
8582          insn |= 1 << 23;
8583
8584        /* Encode the offset.  */
8585        insn |= residual;
8586
8587	bfd_put_32 (input_bfd, insn, hit_data);
8588      }
8589      return bfd_reloc_ok;
8590
8591    case R_ARM_LDRS_PC_G0:
8592    case R_ARM_LDRS_PC_G1:
8593    case R_ARM_LDRS_PC_G2:
8594    case R_ARM_LDRS_SB_G0:
8595    case R_ARM_LDRS_SB_G1:
8596    case R_ARM_LDRS_SB_G2:
8597      {
8598	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8599        bfd_vma pc = input_section->output_section->vma
8600		     + input_section->output_offset + rel->r_offset;
8601        bfd_vma sb = 0; /* See note above.  */
8602        bfd_vma residual;
8603	bfd_signed_vma signed_value;
8604        int group = 0;
8605
8606        /* Determine which groups of bits to calculate.  */
8607        switch (r_type)
8608          {
8609          case R_ARM_LDRS_PC_G0:
8610          case R_ARM_LDRS_SB_G0:
8611            group = 0;
8612            break;
8613
8614          case R_ARM_LDRS_PC_G1:
8615          case R_ARM_LDRS_SB_G1:
8616            group = 1;
8617            break;
8618
8619          case R_ARM_LDRS_PC_G2:
8620          case R_ARM_LDRS_SB_G2:
8621            group = 2;
8622            break;
8623
8624          default:
8625            abort ();
8626          }
8627
8628        /* If REL, extract the addend from the insn.  If RELA, it will
8629           have already been fetched for us.  */
8630	if (globals->use_rel)
8631          {
8632            int negative = (insn & (1 << 23)) ? 1 : -1;
8633            signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
8634          }
8635
8636	/* Compute the value (X) to go in the place.  */
8637        if (r_type == R_ARM_LDRS_PC_G0
8638            || r_type == R_ARM_LDRS_PC_G1
8639            || r_type == R_ARM_LDRS_PC_G2)
8640          /* PC relative.  */
8641          signed_value = value - pc + signed_addend;
8642        else
8643          /* Section base relative.  */
8644          signed_value = value - sb + signed_addend;
8645
8646        /* Calculate the value of the relevant G_{n-1} to obtain
8647           the residual at that stage.  */
8648        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8649
8650        /* Check for overflow.  */
8651        if (residual >= 0x100)
8652          {
8653            (*_bfd_error_handler)
8654              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8655              input_bfd, input_section,
8656              (long) rel->r_offset, abs (signed_value), howto->name);
8657            return bfd_reloc_overflow;
8658          }
8659
8660        /* Mask out the value and U bit.  */
8661        insn &= 0xff7ff0f0;
8662
8663        /* Set the U bit if the value to go in the place is non-negative.  */
8664        if (signed_value >= 0)
8665          insn |= 1 << 23;
8666
8667        /* Encode the offset.  */
8668        insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
8669
8670	bfd_put_32 (input_bfd, insn, hit_data);
8671      }
8672      return bfd_reloc_ok;
8673
8674    case R_ARM_LDC_PC_G0:
8675    case R_ARM_LDC_PC_G1:
8676    case R_ARM_LDC_PC_G2:
8677    case R_ARM_LDC_SB_G0:
8678    case R_ARM_LDC_SB_G1:
8679    case R_ARM_LDC_SB_G2:
8680      {
8681	bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8682        bfd_vma pc = input_section->output_section->vma
8683		     + input_section->output_offset + rel->r_offset;
8684        bfd_vma sb = 0; /* See note above.  */
8685        bfd_vma residual;
8686	bfd_signed_vma signed_value;
8687        int group = 0;
8688
8689        /* Determine which groups of bits to calculate.  */
8690        switch (r_type)
8691          {
8692          case R_ARM_LDC_PC_G0:
8693          case R_ARM_LDC_SB_G0:
8694            group = 0;
8695            break;
8696
8697          case R_ARM_LDC_PC_G1:
8698          case R_ARM_LDC_SB_G1:
8699            group = 1;
8700            break;
8701
8702          case R_ARM_LDC_PC_G2:
8703          case R_ARM_LDC_SB_G2:
8704            group = 2;
8705            break;
8706
8707          default:
8708            abort ();
8709          }
8710
8711        /* If REL, extract the addend from the insn.  If RELA, it will
8712           have already been fetched for us.  */
8713	if (globals->use_rel)
8714          {
8715            int negative = (insn & (1 << 23)) ? 1 : -1;
8716            signed_addend = negative * ((insn & 0xff) << 2);
8717          }
8718
8719	/* Compute the value (X) to go in the place.  */
8720        if (r_type == R_ARM_LDC_PC_G0
8721            || r_type == R_ARM_LDC_PC_G1
8722            || r_type == R_ARM_LDC_PC_G2)
8723          /* PC relative.  */
8724          signed_value = value - pc + signed_addend;
8725        else
8726          /* Section base relative.  */
8727          signed_value = value - sb + signed_addend;
8728
8729        /* Calculate the value of the relevant G_{n-1} to obtain
8730           the residual at that stage.  */
8731        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8732
8733        /* Check for overflow.  (The absolute value to go in the place must be
8734           divisible by four and, after having been divided by four, must
8735           fit in eight bits.)  */
8736        if ((residual & 0x3) != 0 || residual >= 0x400)
8737          {
8738            (*_bfd_error_handler)
8739              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8740              input_bfd, input_section,
8741              (long) rel->r_offset, abs (signed_value), howto->name);
8742            return bfd_reloc_overflow;
8743          }
8744
8745        /* Mask out the value and U bit.  */
8746        insn &= 0xff7fff00;
8747
8748        /* Set the U bit if the value to go in the place is non-negative.  */
8749        if (signed_value >= 0)
8750          insn |= 1 << 23;
8751
8752        /* Encode the offset.  */
8753        insn |= residual >> 2;
8754
8755	bfd_put_32 (input_bfd, insn, hit_data);
8756      }
8757      return bfd_reloc_ok;
8758
8759    default:
8760      return bfd_reloc_notsupported;
8761    }
8762}
8763
8764/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS.  */
8765static void
8766arm_add_to_rel (bfd *              abfd,
8767		bfd_byte *         address,
8768		reloc_howto_type * howto,
8769		bfd_signed_vma     increment)
8770{
8771  bfd_signed_vma addend;
8772
8773  if (howto->type == R_ARM_THM_CALL
8774      || howto->type == R_ARM_THM_JUMP24)
8775    {
8776      int upper_insn, lower_insn;
8777      int upper, lower;
8778
8779      upper_insn = bfd_get_16 (abfd, address);
8780      lower_insn = bfd_get_16 (abfd, address + 2);
8781      upper = upper_insn & 0x7ff;
8782      lower = lower_insn & 0x7ff;
8783
8784      addend = (upper << 12) | (lower << 1);
8785      addend += increment;
8786      addend >>= 1;
8787
8788      upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
8789      lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
8790
8791      bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
8792      bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
8793    }
8794  else
8795    {
8796      bfd_vma        contents;
8797
8798      contents = bfd_get_32 (abfd, address);
8799
8800      /* Get the (signed) value from the instruction.  */
8801      addend = contents & howto->src_mask;
8802      if (addend & ((howto->src_mask + 1) >> 1))
8803	{
8804	  bfd_signed_vma mask;
8805
8806	  mask = -1;
8807	  mask &= ~ howto->src_mask;
8808	  addend |= mask;
8809	}
8810
8811      /* Add in the increment, (which is a byte value).  */
8812      switch (howto->type)
8813	{
8814	default:
8815	  addend += increment;
8816	  break;
8817
8818	case R_ARM_PC24:
8819	case R_ARM_PLT32:
8820	case R_ARM_CALL:
8821	case R_ARM_JUMP24:
8822	  addend <<= howto->size;
8823	  addend += increment;
8824
8825	  /* Should we check for overflow here ?  */
8826
8827	  /* Drop any undesired bits.  */
8828	  addend >>= howto->rightshift;
8829	  break;
8830	}
8831
8832      contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
8833
8834      bfd_put_32 (abfd, contents, address);
8835    }
8836}
8837
8838#define IS_ARM_TLS_RELOC(R_TYPE)	\
8839  ((R_TYPE) == R_ARM_TLS_GD32		\
8840   || (R_TYPE) == R_ARM_TLS_LDO32	\
8841   || (R_TYPE) == R_ARM_TLS_LDM32	\
8842   || (R_TYPE) == R_ARM_TLS_DTPOFF32	\
8843   || (R_TYPE) == R_ARM_TLS_DTPMOD32	\
8844   || (R_TYPE) == R_ARM_TLS_TPOFF32	\
8845   || (R_TYPE) == R_ARM_TLS_LE32	\
8846   || (R_TYPE) == R_ARM_TLS_IE32)
8847
8848/* Relocate an ARM ELF section.  */
8849
8850static bfd_boolean
8851elf32_arm_relocate_section (bfd *                  output_bfd,
8852			    struct bfd_link_info * info,
8853			    bfd *                  input_bfd,
8854			    asection *             input_section,
8855			    bfd_byte *             contents,
8856			    Elf_Internal_Rela *    relocs,
8857			    Elf_Internal_Sym *     local_syms,
8858			    asection **            local_sections)
8859{
8860  Elf_Internal_Shdr *symtab_hdr;
8861  struct elf_link_hash_entry **sym_hashes;
8862  Elf_Internal_Rela *rel;
8863  Elf_Internal_Rela *relend;
8864  const char *name;
8865  struct elf32_arm_link_hash_table * globals;
8866
8867  globals = elf32_arm_hash_table (info);
8868  if (globals == NULL)
8869    return FALSE;
8870
8871  symtab_hdr = & elf_symtab_hdr (input_bfd);
8872  sym_hashes = elf_sym_hashes (input_bfd);
8873
8874  rel = relocs;
8875  relend = relocs + input_section->reloc_count;
8876  for (; rel < relend; rel++)
8877    {
8878      int                          r_type;
8879      reloc_howto_type *           howto;
8880      unsigned long                r_symndx;
8881      Elf_Internal_Sym *           sym;
8882      asection *                   sec;
8883      struct elf_link_hash_entry * h;
8884      bfd_vma                      relocation;
8885      bfd_reloc_status_type        r;
8886      arelent                      bfd_reloc;
8887      char                         sym_type;
8888      bfd_boolean                  unresolved_reloc = FALSE;
8889      char *error_message = NULL;
8890
8891      r_symndx = ELF32_R_SYM (rel->r_info);
8892      r_type   = ELF32_R_TYPE (rel->r_info);
8893      r_type   = arm_real_reloc_type (globals, r_type);
8894
8895      if (   r_type == R_ARM_GNU_VTENTRY
8896          || r_type == R_ARM_GNU_VTINHERIT)
8897        continue;
8898
8899      bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
8900      howto = bfd_reloc.howto;
8901
8902      h = NULL;
8903      sym = NULL;
8904      sec = NULL;
8905
8906      if (r_symndx < symtab_hdr->sh_info)
8907	{
8908	  sym = local_syms + r_symndx;
8909	  sym_type = ELF32_ST_TYPE (sym->st_info);
8910	  sec = local_sections[r_symndx];
8911
8912	  /* An object file might have a reference to a local
8913	     undefined symbol.  This is a daft object file, but we
8914	     should at least do something about it.  V4BX & NONE
8915	     relocations do not use the symbol and are explicitly
8916	     allowed to use the undefined symbol, so allow those.
8917	     Likewise for relocations against STN_UNDEF.  */
8918	  if (r_type != R_ARM_V4BX
8919	      && r_type != R_ARM_NONE
8920	      && r_symndx != STN_UNDEF
8921	      && bfd_is_und_section (sec)
8922	      && ELF_ST_BIND (sym->st_info) != STB_WEAK)
8923	    {
8924	      if (!info->callbacks->undefined_symbol
8925		  (info, bfd_elf_string_from_elf_section
8926		   (input_bfd, symtab_hdr->sh_link, sym->st_name),
8927		   input_bfd, input_section,
8928		   rel->r_offset, TRUE))
8929		return FALSE;
8930	    }
8931
8932	  if (globals->use_rel)
8933	    {
8934	      relocation = (sec->output_section->vma
8935			    + sec->output_offset
8936			    + sym->st_value);
8937	      if (!info->relocatable
8938		  && (sec->flags & SEC_MERGE)
8939		  && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8940		{
8941		  asection *msec;
8942		  bfd_vma addend, value;
8943
8944		  switch (r_type)
8945		    {
8946		    case R_ARM_MOVW_ABS_NC:
8947		    case R_ARM_MOVT_ABS:
8948		      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8949		      addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
8950		      addend = (addend ^ 0x8000) - 0x8000;
8951		      break;
8952
8953		    case R_ARM_THM_MOVW_ABS_NC:
8954		    case R_ARM_THM_MOVT_ABS:
8955		      value = bfd_get_16 (input_bfd, contents + rel->r_offset)
8956			      << 16;
8957		      value |= bfd_get_16 (input_bfd,
8958					   contents + rel->r_offset + 2);
8959		      addend = ((value & 0xf7000) >> 4) | (value & 0xff)
8960			       | ((value & 0x04000000) >> 15);
8961		      addend = (addend ^ 0x8000) - 0x8000;
8962		      break;
8963
8964		    default:
8965		      if (howto->rightshift
8966			  || (howto->src_mask & (howto->src_mask + 1)))
8967			{
8968			  (*_bfd_error_handler)
8969			    (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
8970			     input_bfd, input_section,
8971			     (long) rel->r_offset, howto->name);
8972			  return FALSE;
8973			}
8974
8975		      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8976
8977		      /* Get the (signed) value from the instruction.  */
8978		      addend = value & howto->src_mask;
8979		      if (addend & ((howto->src_mask + 1) >> 1))
8980			{
8981			  bfd_signed_vma mask;
8982
8983			  mask = -1;
8984			  mask &= ~ howto->src_mask;
8985			  addend |= mask;
8986			}
8987		      break;
8988		    }
8989
8990		  msec = sec;
8991		  addend =
8992		    _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
8993		    - relocation;
8994		  addend += msec->output_section->vma + msec->output_offset;
8995
8996		  /* Cases here must match those in the preceeding
8997		     switch statement.  */
8998		  switch (r_type)
8999		    {
9000		    case R_ARM_MOVW_ABS_NC:
9001		    case R_ARM_MOVT_ABS:
9002		      value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
9003			      | (addend & 0xfff);
9004		      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
9005		      break;
9006
9007		    case R_ARM_THM_MOVW_ABS_NC:
9008		    case R_ARM_THM_MOVT_ABS:
9009		      value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
9010			      | (addend & 0xff) | ((addend & 0x0800) << 15);
9011		      bfd_put_16 (input_bfd, value >> 16,
9012				  contents + rel->r_offset);
9013		      bfd_put_16 (input_bfd, value,
9014				  contents + rel->r_offset + 2);
9015		      break;
9016
9017		    default:
9018		      value = (value & ~ howto->dst_mask)
9019			      | (addend & howto->dst_mask);
9020		      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
9021		      break;
9022		    }
9023		}
9024	    }
9025	  else
9026	    relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9027	}
9028      else
9029	{
9030	  bfd_boolean warned;
9031
9032	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
9033				   r_symndx, symtab_hdr, sym_hashes,
9034				   h, sec, relocation,
9035				   unresolved_reloc, warned);
9036
9037	  sym_type = h->type;
9038	}
9039
9040      if (sec != NULL && elf_discarded_section (sec))
9041	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9042					 rel, relend, howto, contents);
9043
9044      if (info->relocatable)
9045	{
9046	  /* This is a relocatable link.  We don't have to change
9047	     anything, unless the reloc is against a section symbol,
9048	     in which case we have to adjust according to where the
9049	     section symbol winds up in the output section.  */
9050	  if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9051	    {
9052	      if (globals->use_rel)
9053		arm_add_to_rel (input_bfd, contents + rel->r_offset,
9054				howto, (bfd_signed_vma) sec->output_offset);
9055	      else
9056		rel->r_addend += sec->output_offset;
9057	    }
9058	  continue;
9059	}
9060
9061      if (h != NULL)
9062	name = h->root.root.string;
9063      else
9064	{
9065	  name = (bfd_elf_string_from_elf_section
9066		  (input_bfd, symtab_hdr->sh_link, sym->st_name));
9067	  if (name == NULL || *name == '\0')
9068	    name = bfd_section_name (input_bfd, sec);
9069	}
9070
9071      if (r_symndx != STN_UNDEF
9072	  && r_type != R_ARM_NONE
9073	  && (h == NULL
9074	      || h->root.type == bfd_link_hash_defined
9075	      || h->root.type == bfd_link_hash_defweak)
9076	  && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
9077	{
9078	  (*_bfd_error_handler)
9079	    ((sym_type == STT_TLS
9080	      ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
9081	      : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
9082	     input_bfd,
9083	     input_section,
9084	     (long) rel->r_offset,
9085	     howto->name,
9086	     name);
9087	}
9088
9089      r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
9090					 input_section, contents, rel,
9091					 relocation, info, sec, name,
9092					 (h ? ELF_ST_TYPE (h->type) :
9093					  ELF_ST_TYPE (sym->st_info)), h,
9094					 &unresolved_reloc, &error_message);
9095
9096      /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
9097	 because such sections are not SEC_ALLOC and thus ld.so will
9098	 not process them.  */
9099      if (unresolved_reloc
9100          && !((input_section->flags & SEC_DEBUGGING) != 0
9101               && h->def_dynamic))
9102	{
9103	  (*_bfd_error_handler)
9104	    (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
9105	     input_bfd,
9106	     input_section,
9107	     (long) rel->r_offset,
9108	     howto->name,
9109	     h->root.root.string);
9110	  return FALSE;
9111	}
9112
9113      if (r != bfd_reloc_ok)
9114	{
9115	  switch (r)
9116	    {
9117	    case bfd_reloc_overflow:
9118	      /* If the overflowing reloc was to an undefined symbol,
9119		 we have already printed one error message and there
9120		 is no point complaining again.  */
9121	      if ((! h ||
9122		   h->root.type != bfd_link_hash_undefined)
9123		  && (!((*info->callbacks->reloc_overflow)
9124			(info, (h ? &h->root : NULL), name, howto->name,
9125			 (bfd_vma) 0, input_bfd, input_section,
9126			 rel->r_offset))))
9127		  return FALSE;
9128	      break;
9129
9130	    case bfd_reloc_undefined:
9131	      if (!((*info->callbacks->undefined_symbol)
9132		    (info, name, input_bfd, input_section,
9133		     rel->r_offset, TRUE)))
9134		return FALSE;
9135	      break;
9136
9137	    case bfd_reloc_outofrange:
9138	      error_message = _("out of range");
9139	      goto common_error;
9140
9141	    case bfd_reloc_notsupported:
9142	      error_message = _("unsupported relocation");
9143	      goto common_error;
9144
9145	    case bfd_reloc_dangerous:
9146	      /* error_message should already be set.  */
9147	      goto common_error;
9148
9149	    default:
9150	      error_message = _("unknown error");
9151	      /* Fall through.  */
9152
9153	    common_error:
9154	      BFD_ASSERT (error_message != NULL);
9155	      if (!((*info->callbacks->reloc_dangerous)
9156		    (info, error_message, input_bfd, input_section,
9157		     rel->r_offset)))
9158		return FALSE;
9159	      break;
9160	    }
9161	}
9162    }
9163
9164  return TRUE;
9165}
9166
9167/* Add a new unwind edit to the list described by HEAD, TAIL.  If TINDEX is zero,
9168   adds the edit to the start of the list.  (The list must be built in order of
9169   ascending TINDEX: the function's callers are primarily responsible for
9170   maintaining that condition).  */
9171
9172static void
9173add_unwind_table_edit (arm_unwind_table_edit **head,
9174		       arm_unwind_table_edit **tail,
9175		       arm_unwind_edit_type type,
9176		       asection *linked_section,
9177		       unsigned int tindex)
9178{
9179  arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
9180      xmalloc (sizeof (arm_unwind_table_edit));
9181
9182  new_edit->type = type;
9183  new_edit->linked_section = linked_section;
9184  new_edit->index = tindex;
9185
9186  if (tindex > 0)
9187    {
9188      new_edit->next = NULL;
9189
9190      if (*tail)
9191	(*tail)->next = new_edit;
9192
9193      (*tail) = new_edit;
9194
9195      if (!*head)
9196	(*head) = new_edit;
9197    }
9198  else
9199    {
9200      new_edit->next = *head;
9201
9202      if (!*tail)
9203	*tail = new_edit;
9204
9205      *head = new_edit;
9206    }
9207}
9208
9209static _arm_elf_section_data *get_arm_elf_section_data (asection *);
9210
9211/* Increase the size of EXIDX_SEC by ADJUST bytes.  ADJUST mau be negative.  */
9212static void
9213adjust_exidx_size(asection *exidx_sec, int adjust)
9214{
9215  asection *out_sec;
9216
9217  if (!exidx_sec->rawsize)
9218    exidx_sec->rawsize = exidx_sec->size;
9219
9220  bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
9221  out_sec = exidx_sec->output_section;
9222  /* Adjust size of output section.  */
9223  bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
9224}
9225
9226/* Insert an EXIDX_CANTUNWIND marker at the end of a section.  */
9227static void
9228insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
9229{
9230  struct _arm_elf_section_data *exidx_arm_data;
9231
9232  exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9233  add_unwind_table_edit (
9234    &exidx_arm_data->u.exidx.unwind_edit_list,
9235    &exidx_arm_data->u.exidx.unwind_edit_tail,
9236    INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
9237
9238  adjust_exidx_size(exidx_sec, 8);
9239}
9240
9241/* Scan .ARM.exidx tables, and create a list describing edits which should be
9242   made to those tables, such that:
9243
9244     1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
9245     2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
9246        codes which have been inlined into the index).
9247
9248   If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
9249
9250   The edits are applied when the tables are written
9251   (in elf32_arm_write_section).
9252*/
9253
9254bfd_boolean
9255elf32_arm_fix_exidx_coverage (asection **text_section_order,
9256			      unsigned int num_text_sections,
9257			      struct bfd_link_info *info,
9258			      bfd_boolean merge_exidx_entries)
9259{
9260  bfd *inp;
9261  unsigned int last_second_word = 0, i;
9262  asection *last_exidx_sec = NULL;
9263  asection *last_text_sec = NULL;
9264  int last_unwind_type = -1;
9265
9266  /* Walk over all EXIDX sections, and create backlinks from the corrsponding
9267     text sections.  */
9268  for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
9269    {
9270      asection *sec;
9271
9272      for (sec = inp->sections; sec != NULL; sec = sec->next)
9273        {
9274	  struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
9275	  Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
9276
9277	  if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
9278	    continue;
9279
9280	  if (elf_sec->linked_to)
9281	    {
9282	      Elf_Internal_Shdr *linked_hdr
9283	        = &elf_section_data (elf_sec->linked_to)->this_hdr;
9284	      struct _arm_elf_section_data *linked_sec_arm_data
9285	        = get_arm_elf_section_data (linked_hdr->bfd_section);
9286
9287	      if (linked_sec_arm_data == NULL)
9288	        continue;
9289
9290	      /* Link this .ARM.exidx section back from the text section it
9291	         describes.  */
9292	      linked_sec_arm_data->u.text.arm_exidx_sec = sec;
9293	    }
9294	}
9295    }
9296
9297  /* Walk all text sections in order of increasing VMA.  Eilminate duplicate
9298     index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
9299     and add EXIDX_CANTUNWIND entries for sections with no unwind table data.  */
9300
9301  for (i = 0; i < num_text_sections; i++)
9302    {
9303      asection *sec = text_section_order[i];
9304      asection *exidx_sec;
9305      struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
9306      struct _arm_elf_section_data *exidx_arm_data;
9307      bfd_byte *contents = NULL;
9308      int deleted_exidx_bytes = 0;
9309      bfd_vma j;
9310      arm_unwind_table_edit *unwind_edit_head = NULL;
9311      arm_unwind_table_edit *unwind_edit_tail = NULL;
9312      Elf_Internal_Shdr *hdr;
9313      bfd *ibfd;
9314
9315      if (arm_data == NULL)
9316        continue;
9317
9318      exidx_sec = arm_data->u.text.arm_exidx_sec;
9319      if (exidx_sec == NULL)
9320	{
9321	  /* Section has no unwind data.  */
9322	  if (last_unwind_type == 0 || !last_exidx_sec)
9323	    continue;
9324
9325	  /* Ignore zero sized sections.  */
9326	  if (sec->size == 0)
9327	    continue;
9328
9329	  insert_cantunwind_after(last_text_sec, last_exidx_sec);
9330	  last_unwind_type = 0;
9331	  continue;
9332	}
9333
9334      /* Skip /DISCARD/ sections.  */
9335      if (bfd_is_abs_section (exidx_sec->output_section))
9336	continue;
9337
9338      hdr = &elf_section_data (exidx_sec)->this_hdr;
9339      if (hdr->sh_type != SHT_ARM_EXIDX)
9340        continue;
9341
9342      exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9343      if (exidx_arm_data == NULL)
9344        continue;
9345
9346      ibfd = exidx_sec->owner;
9347
9348      if (hdr->contents != NULL)
9349	contents = hdr->contents;
9350      else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
9351	/* An error?  */
9352	continue;
9353
9354      for (j = 0; j < hdr->sh_size; j += 8)
9355	{
9356	  unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
9357	  int unwind_type;
9358	  int elide = 0;
9359
9360	  /* An EXIDX_CANTUNWIND entry.  */
9361	  if (second_word == 1)
9362	    {
9363	      if (last_unwind_type == 0)
9364		elide = 1;
9365	      unwind_type = 0;
9366	    }
9367	  /* Inlined unwinding data.  Merge if equal to previous.  */
9368	  else if ((second_word & 0x80000000) != 0)
9369	    {
9370	      if (merge_exidx_entries
9371		   && last_second_word == second_word && last_unwind_type == 1)
9372		elide = 1;
9373	      unwind_type = 1;
9374	      last_second_word = second_word;
9375	    }
9376	  /* Normal table entry.  In theory we could merge these too,
9377	     but duplicate entries are likely to be much less common.  */
9378	  else
9379	    unwind_type = 2;
9380
9381	  if (elide)
9382	    {
9383	      add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
9384				     DELETE_EXIDX_ENTRY, NULL, j / 8);
9385
9386	      deleted_exidx_bytes += 8;
9387	    }
9388
9389	  last_unwind_type = unwind_type;
9390	}
9391
9392      /* Free contents if we allocated it ourselves.  */
9393      if (contents != hdr->contents)
9394        free (contents);
9395
9396      /* Record edits to be applied later (in elf32_arm_write_section).  */
9397      exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
9398      exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
9399
9400      if (deleted_exidx_bytes > 0)
9401	adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
9402
9403      last_exidx_sec = exidx_sec;
9404      last_text_sec = sec;
9405    }
9406
9407  /* Add terminating CANTUNWIND entry.  */
9408  if (last_exidx_sec && last_unwind_type != 0)
9409    insert_cantunwind_after(last_text_sec, last_exidx_sec);
9410
9411  return TRUE;
9412}
9413
9414static bfd_boolean
9415elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
9416			       bfd *ibfd, const char *name)
9417{
9418  asection *sec, *osec;
9419
9420  sec = bfd_get_section_by_name (ibfd, name);
9421  if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
9422    return TRUE;
9423
9424  osec = sec->output_section;
9425  if (elf32_arm_write_section (obfd, info, sec, sec->contents))
9426    return TRUE;
9427
9428  if (! bfd_set_section_contents (obfd, osec, sec->contents,
9429				  sec->output_offset, sec->size))
9430    return FALSE;
9431
9432  return TRUE;
9433}
9434
9435static bfd_boolean
9436elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
9437{
9438  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
9439  asection *sec, *osec;
9440
9441  if (globals == NULL)
9442    return FALSE;
9443
9444  /* Invoke the regular ELF backend linker to do all the work.  */
9445  if (!bfd_elf_final_link (abfd, info))
9446    return FALSE;
9447
9448  /* Process stub sections (eg BE8 encoding, ...).  */
9449  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
9450  int i;
9451  for (i=0; i<htab->top_id; i++)
9452    {
9453      sec = htab->stub_group[i].stub_sec;
9454      /* Only process it once, in its link_sec slot.  */
9455      if (sec && i == htab->stub_group[i].link_sec->id)
9456	{
9457	  osec = sec->output_section;
9458	  elf32_arm_write_section (abfd, info, sec, sec->contents);
9459	  if (! bfd_set_section_contents (abfd, osec, sec->contents,
9460					  sec->output_offset, sec->size))
9461	    return FALSE;
9462	}
9463    }
9464
9465  /* Write out any glue sections now that we have created all the
9466     stubs.  */
9467  if (globals->bfd_of_glue_owner != NULL)
9468    {
9469      if (! elf32_arm_output_glue_section (info, abfd,
9470					   globals->bfd_of_glue_owner,
9471					   ARM2THUMB_GLUE_SECTION_NAME))
9472	return FALSE;
9473
9474      if (! elf32_arm_output_glue_section (info, abfd,
9475					   globals->bfd_of_glue_owner,
9476					   THUMB2ARM_GLUE_SECTION_NAME))
9477	return FALSE;
9478
9479      if (! elf32_arm_output_glue_section (info, abfd,
9480					   globals->bfd_of_glue_owner,
9481					   VFP11_ERRATUM_VENEER_SECTION_NAME))
9482	return FALSE;
9483
9484      if (! elf32_arm_output_glue_section (info, abfd,
9485					   globals->bfd_of_glue_owner,
9486					   ARM_BX_GLUE_SECTION_NAME))
9487	return FALSE;
9488    }
9489
9490  return TRUE;
9491}
9492
9493/* Set the right machine number.  */
9494
9495static bfd_boolean
9496elf32_arm_object_p (bfd *abfd)
9497{
9498  unsigned int mach;
9499
9500  mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
9501
9502  if (mach != bfd_mach_arm_unknown)
9503    bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
9504
9505  else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
9506    bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
9507
9508  else
9509    bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
9510
9511  return TRUE;
9512}
9513
9514/* Function to keep ARM specific flags in the ELF header.  */
9515
9516static bfd_boolean
9517elf32_arm_set_private_flags (bfd *abfd, flagword flags)
9518{
9519  if (elf_flags_init (abfd)
9520      && elf_elfheader (abfd)->e_flags != flags)
9521    {
9522      if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
9523	{
9524	  if (flags & EF_ARM_INTERWORK)
9525	    (*_bfd_error_handler)
9526	      (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
9527	       abfd);
9528	  else
9529	    _bfd_error_handler
9530	      (_("Warning: Clearing the interworking flag of %B due to outside request"),
9531	       abfd);
9532	}
9533    }
9534  else
9535    {
9536      elf_elfheader (abfd)->e_flags = flags;
9537      elf_flags_init (abfd) = TRUE;
9538    }
9539
9540  return TRUE;
9541}
9542
9543/* Copy backend specific data from one object module to another.  */
9544
9545static bfd_boolean
9546elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
9547{
9548  flagword in_flags;
9549  flagword out_flags;
9550
9551  if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
9552    return TRUE;
9553
9554  in_flags  = elf_elfheader (ibfd)->e_flags;
9555  out_flags = elf_elfheader (obfd)->e_flags;
9556
9557  if (elf_flags_init (obfd)
9558      && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
9559      && in_flags != out_flags)
9560    {
9561      /* Cannot mix APCS26 and APCS32 code.  */
9562      if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
9563	return FALSE;
9564
9565      /* Cannot mix float APCS and non-float APCS code.  */
9566      if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
9567	return FALSE;
9568
9569      /* If the src and dest have different interworking flags
9570         then turn off the interworking bit.  */
9571      if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
9572	{
9573	  if (out_flags & EF_ARM_INTERWORK)
9574	    _bfd_error_handler
9575	      (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
9576	       obfd, ibfd);
9577
9578	  in_flags &= ~EF_ARM_INTERWORK;
9579	}
9580
9581      /* Likewise for PIC, though don't warn for this case.  */
9582      if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
9583	in_flags &= ~EF_ARM_PIC;
9584    }
9585
9586  elf_elfheader (obfd)->e_flags = in_flags;
9587  elf_flags_init (obfd) = TRUE;
9588
9589  /* Also copy the EI_OSABI field.  */
9590  elf_elfheader (obfd)->e_ident[EI_OSABI] =
9591    elf_elfheader (ibfd)->e_ident[EI_OSABI];
9592
9593  /* Copy object attributes.  */
9594  _bfd_elf_copy_obj_attributes (ibfd, obfd);
9595
9596  return TRUE;
9597}
9598
9599/* Values for Tag_ABI_PCS_R9_use.  */
9600enum
9601{
9602  AEABI_R9_V6,
9603  AEABI_R9_SB,
9604  AEABI_R9_TLS,
9605  AEABI_R9_unused
9606};
9607
9608/* Values for Tag_ABI_PCS_RW_data.  */
9609enum
9610{
9611  AEABI_PCS_RW_data_absolute,
9612  AEABI_PCS_RW_data_PCrel,
9613  AEABI_PCS_RW_data_SBrel,
9614  AEABI_PCS_RW_data_unused
9615};
9616
9617/* Values for Tag_ABI_enum_size.  */
9618enum
9619{
9620  AEABI_enum_unused,
9621  AEABI_enum_short,
9622  AEABI_enum_wide,
9623  AEABI_enum_forced_wide
9624};
9625
9626/* Determine whether an object attribute tag takes an integer, a
9627   string or both.  */
9628
9629static int
9630elf32_arm_obj_attrs_arg_type (int tag)
9631{
9632  if (tag == Tag_compatibility)
9633    return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
9634  else if (tag == Tag_nodefaults)
9635    return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
9636  else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
9637    return ATTR_TYPE_FLAG_STR_VAL;
9638  else if (tag < 32)
9639    return ATTR_TYPE_FLAG_INT_VAL;
9640  else
9641    return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
9642}
9643
9644/* The ABI defines that Tag_conformance should be emitted first, and that
9645   Tag_nodefaults should be second (if either is defined).  This sets those
9646   two positions, and bumps up the position of all the remaining tags to
9647   compensate.  */
9648static int
9649elf32_arm_obj_attrs_order (int num)
9650{
9651  if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
9652    return Tag_conformance;
9653  if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
9654    return Tag_nodefaults;
9655  if ((num - 2) < Tag_nodefaults)
9656    return num - 2;
9657  if ((num - 1) < Tag_conformance)
9658    return num - 1;
9659  return num;
9660}
9661
9662/* Attribute numbers >=64 (mod 128) can be safely ignored.  */
9663static bfd_boolean
9664elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
9665{
9666  if ((tag & 127) < 64)
9667    {
9668      _bfd_error_handler
9669	(_("%B: Unknown mandatory EABI object attribute %d"),
9670	 abfd, tag);
9671      bfd_set_error (bfd_error_bad_value);
9672      return FALSE;
9673    }
9674  else
9675    {
9676      _bfd_error_handler
9677	(_("Warning: %B: Unknown EABI object attribute %d"),
9678	 abfd, tag);
9679      return TRUE;
9680    }
9681}
9682
9683/* Read the architecture from the Tag_also_compatible_with attribute, if any.
9684   Returns -1 if no architecture could be read.  */
9685
9686static int
9687get_secondary_compatible_arch (bfd *abfd)
9688{
9689  obj_attribute *attr =
9690    &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
9691
9692  /* Note: the tag and its argument below are uleb128 values, though
9693     currently-defined values fit in one byte for each.  */
9694  if (attr->s
9695      && attr->s[0] == Tag_CPU_arch
9696      && (attr->s[1] & 128) != 128
9697      && attr->s[2] == 0)
9698   return attr->s[1];
9699
9700  /* This tag is "safely ignorable", so don't complain if it looks funny.  */
9701  return -1;
9702}
9703
9704/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9705   The tag is removed if ARCH is -1.  */
9706
9707static void
9708set_secondary_compatible_arch (bfd *abfd, int arch)
9709{
9710  obj_attribute *attr =
9711    &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
9712
9713  if (arch == -1)
9714    {
9715      attr->s = NULL;
9716      return;
9717    }
9718
9719  /* Note: the tag and its argument below are uleb128 values, though
9720     currently-defined values fit in one byte for each.  */
9721  if (!attr->s)
9722    attr->s = (char *) bfd_alloc (abfd, 3);
9723  attr->s[0] = Tag_CPU_arch;
9724  attr->s[1] = arch;
9725  attr->s[2] = '\0';
9726}
9727
9728/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9729   into account.  */
9730
9731static int
9732tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
9733		      int newtag, int secondary_compat)
9734{
9735#define T(X) TAG_CPU_ARCH_##X
9736  int tagl, tagh, result;
9737  const int v6t2[] =
9738    {
9739      T(V6T2),   /* PRE_V4.  */
9740      T(V6T2),   /* V4.  */
9741      T(V6T2),   /* V4T.  */
9742      T(V6T2),   /* V5T.  */
9743      T(V6T2),   /* V5TE.  */
9744      T(V6T2),   /* V5TEJ.  */
9745      T(V6T2),   /* V6.  */
9746      T(V7),     /* V6KZ.  */
9747      T(V6T2)    /* V6T2.  */
9748    };
9749  const int v6k[] =
9750    {
9751      T(V6K),    /* PRE_V4.  */
9752      T(V6K),    /* V4.  */
9753      T(V6K),    /* V4T.  */
9754      T(V6K),    /* V5T.  */
9755      T(V6K),    /* V5TE.  */
9756      T(V6K),    /* V5TEJ.  */
9757      T(V6K),    /* V6.  */
9758      T(V6KZ),   /* V6KZ.  */
9759      T(V7),     /* V6T2.  */
9760      T(V6K)     /* V6K.  */
9761    };
9762  const int v7[] =
9763    {
9764      T(V7),     /* PRE_V4.  */
9765      T(V7),     /* V4.  */
9766      T(V7),     /* V4T.  */
9767      T(V7),     /* V5T.  */
9768      T(V7),     /* V5TE.  */
9769      T(V7),     /* V5TEJ.  */
9770      T(V7),     /* V6.  */
9771      T(V7),     /* V6KZ.  */
9772      T(V7),     /* V6T2.  */
9773      T(V7),     /* V6K.  */
9774      T(V7)      /* V7.  */
9775    };
9776  const int v6_m[] =
9777    {
9778      -1,        /* PRE_V4.  */
9779      -1,        /* V4.  */
9780      T(V6K),    /* V4T.  */
9781      T(V6K),    /* V5T.  */
9782      T(V6K),    /* V5TE.  */
9783      T(V6K),    /* V5TEJ.  */
9784      T(V6K),    /* V6.  */
9785      T(V6KZ),   /* V6KZ.  */
9786      T(V7),     /* V6T2.  */
9787      T(V6K),    /* V6K.  */
9788      T(V7),     /* V7.  */
9789      T(V6_M)    /* V6_M.  */
9790    };
9791  const int v6s_m[] =
9792    {
9793      -1,        /* PRE_V4.  */
9794      -1,        /* V4.  */
9795      T(V6K),    /* V4T.  */
9796      T(V6K),    /* V5T.  */
9797      T(V6K),    /* V5TE.  */
9798      T(V6K),    /* V5TEJ.  */
9799      T(V6K),    /* V6.  */
9800      T(V6KZ),   /* V6KZ.  */
9801      T(V7),     /* V6T2.  */
9802      T(V6K),    /* V6K.  */
9803      T(V7),     /* V7.  */
9804      T(V6S_M),  /* V6_M.  */
9805      T(V6S_M)   /* V6S_M.  */
9806    };
9807  const int v7e_m[] =
9808    {
9809      -1,        /* PRE_V4.  */
9810      -1,        /* V4.  */
9811      T(V7E_M),  /* V4T.  */
9812      T(V7E_M),  /* V5T.  */
9813      T(V7E_M),  /* V5TE.  */
9814      T(V7E_M),  /* V5TEJ.  */
9815      T(V7E_M),  /* V6.  */
9816      T(V7E_M),  /* V6KZ.  */
9817      T(V7E_M),  /* V6T2.  */
9818      T(V7E_M),  /* V6K.  */
9819      T(V7E_M),  /* V7.  */
9820      T(V7E_M),  /* V6_M.  */
9821      T(V7E_M),  /* V6S_M.  */
9822      T(V7E_M)   /* V7E_M.  */
9823    };
9824  const int v4t_plus_v6_m[] =
9825    {
9826      -1,		/* PRE_V4.  */
9827      -1,		/* V4.  */
9828      T(V4T),		/* V4T.  */
9829      T(V5T),		/* V5T.  */
9830      T(V5TE),		/* V5TE.  */
9831      T(V5TEJ),		/* V5TEJ.  */
9832      T(V6),		/* V6.  */
9833      T(V6KZ),		/* V6KZ.  */
9834      T(V6T2),		/* V6T2.  */
9835      T(V6K),		/* V6K.  */
9836      T(V7),		/* V7.  */
9837      T(V6_M),		/* V6_M.  */
9838      T(V6S_M),		/* V6S_M.  */
9839      T(V7E_M),		/* V7E_M.  */
9840      T(V4T_PLUS_V6_M)	/* V4T plus V6_M.  */
9841    };
9842  const int *comb[] =
9843    {
9844      v6t2,
9845      v6k,
9846      v7,
9847      v6_m,
9848      v6s_m,
9849      v7e_m,
9850      /* Pseudo-architecture.  */
9851      v4t_plus_v6_m
9852    };
9853
9854  /* Check we've not got a higher architecture than we know about.  */
9855
9856  if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
9857    {
9858      _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
9859      return -1;
9860    }
9861
9862  /* Override old tag if we have a Tag_also_compatible_with on the output.  */
9863
9864  if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9865      || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9866    oldtag = T(V4T_PLUS_V6_M);
9867
9868  /* And override the new tag if we have a Tag_also_compatible_with on the
9869     input.  */
9870
9871  if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9872      || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9873    newtag = T(V4T_PLUS_V6_M);
9874
9875  tagl = (oldtag < newtag) ? oldtag : newtag;
9876  result = tagh = (oldtag > newtag) ? oldtag : newtag;
9877
9878  /* Architectures before V6KZ add features monotonically.  */
9879  if (tagh <= TAG_CPU_ARCH_V6KZ)
9880    return result;
9881
9882  result = comb[tagh - T(V6T2)][tagl];
9883
9884  /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9885     as the canonical version.  */
9886  if (result == T(V4T_PLUS_V6_M))
9887    {
9888      result = T(V4T);
9889      *secondary_compat_out = T(V6_M);
9890    }
9891  else
9892    *secondary_compat_out = -1;
9893
9894  if (result == -1)
9895    {
9896      _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
9897			  ibfd, oldtag, newtag);
9898      return -1;
9899    }
9900
9901  return result;
9902#undef T
9903}
9904
9905/* Merge EABI object attributes from IBFD into OBFD.  Raise an error if there
9906   are conflicting attributes.  */
9907
9908static bfd_boolean
9909elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
9910{
9911  obj_attribute *in_attr;
9912  obj_attribute *out_attr;
9913  /* Some tags have 0 = don't care, 1 = strong requirement,
9914     2 = weak requirement.  */
9915  static const int order_021[3] = {0, 2, 1};
9916  int i;
9917  bfd_boolean result = TRUE;
9918
9919  /* Skip the linker stubs file.  This preserves previous behavior
9920     of accepting unknown attributes in the first input file - but
9921     is that a bug?  */
9922  if (ibfd->flags & BFD_LINKER_CREATED)
9923    return TRUE;
9924
9925  if (!elf_known_obj_attributes_proc (obfd)[0].i)
9926    {
9927      /* This is the first object.  Copy the attributes.  */
9928      _bfd_elf_copy_obj_attributes (ibfd, obfd);
9929
9930      out_attr = elf_known_obj_attributes_proc (obfd);
9931
9932      /* Use the Tag_null value to indicate the attributes have been
9933	 initialized.  */
9934      out_attr[0].i = 1;
9935
9936      /* We do not output objects with Tag_MPextension_use_legacy - we move
9937	 the attribute's value to Tag_MPextension_use.  */
9938      if (out_attr[Tag_MPextension_use_legacy].i != 0)
9939	{
9940	  if (out_attr[Tag_MPextension_use].i != 0
9941	      && out_attr[Tag_MPextension_use_legacy].i
9942	        != out_attr[Tag_MPextension_use].i)
9943	    {
9944	      _bfd_error_handler
9945		(_("Error: %B has both the current and legacy "
9946		   "Tag_MPextension_use attributes"), ibfd);
9947	      result = FALSE;
9948	    }
9949
9950	  out_attr[Tag_MPextension_use] =
9951	    out_attr[Tag_MPextension_use_legacy];
9952	  out_attr[Tag_MPextension_use_legacy].type = 0;
9953	  out_attr[Tag_MPextension_use_legacy].i = 0;
9954	}
9955
9956      return result;
9957    }
9958
9959  in_attr = elf_known_obj_attributes_proc (ibfd);
9960  out_attr = elf_known_obj_attributes_proc (obfd);
9961  /* This needs to happen before Tag_ABI_FP_number_model is merged.  */
9962  if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
9963    {
9964      /* Ignore mismatches if the object doesn't use floating point.  */
9965      if (out_attr[Tag_ABI_FP_number_model].i == 0)
9966	out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
9967      else if (in_attr[Tag_ABI_FP_number_model].i != 0)
9968	{
9969	  _bfd_error_handler
9970	    (_("error: %B uses VFP register arguments, %B does not"),
9971	     in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
9972	     in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
9973	  result = FALSE;
9974	}
9975    }
9976
9977  for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
9978    {
9979      /* Merge this attribute with existing attributes.  */
9980      switch (i)
9981	{
9982	case Tag_CPU_raw_name:
9983	case Tag_CPU_name:
9984	  /* These are merged after Tag_CPU_arch. */
9985	  break;
9986
9987	case Tag_ABI_optimization_goals:
9988	case Tag_ABI_FP_optimization_goals:
9989	  /* Use the first value seen.  */
9990	  break;
9991
9992	case Tag_CPU_arch:
9993	  {
9994	    int secondary_compat = -1, secondary_compat_out = -1;
9995	    unsigned int saved_out_attr = out_attr[i].i;
9996	    static const char *name_table[] = {
9997		/* These aren't real CPU names, but we can't guess
9998		   that from the architecture version alone.  */
9999		"Pre v4",
10000		"ARM v4",
10001		"ARM v4T",
10002		"ARM v5T",
10003		"ARM v5TE",
10004		"ARM v5TEJ",
10005		"ARM v6",
10006		"ARM v6KZ",
10007		"ARM v6T2",
10008		"ARM v6K",
10009		"ARM v7",
10010		"ARM v6-M",
10011		"ARM v6S-M"
10012	    };
10013
10014	    /* Merge Tag_CPU_arch and Tag_also_compatible_with.  */
10015	    secondary_compat = get_secondary_compatible_arch (ibfd);
10016	    secondary_compat_out = get_secondary_compatible_arch (obfd);
10017	    out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
10018						  &secondary_compat_out,
10019						  in_attr[i].i,
10020						  secondary_compat);
10021	    set_secondary_compatible_arch (obfd, secondary_compat_out);
10022
10023	    /* Merge Tag_CPU_name and Tag_CPU_raw_name.  */
10024	    if (out_attr[i].i == saved_out_attr)
10025	      ; /* Leave the names alone.  */
10026	    else if (out_attr[i].i == in_attr[i].i)
10027	      {
10028		/* The output architecture has been changed to match the
10029		   input architecture.  Use the input names.  */
10030		out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
10031		  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
10032		  : NULL;
10033		out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
10034		  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
10035		  : NULL;
10036	      }
10037	    else
10038	      {
10039		out_attr[Tag_CPU_name].s = NULL;
10040		out_attr[Tag_CPU_raw_name].s = NULL;
10041	      }
10042
10043	    /* If we still don't have a value for Tag_CPU_name,
10044	       make one up now.  Tag_CPU_raw_name remains blank.  */
10045	    if (out_attr[Tag_CPU_name].s == NULL
10046		&& out_attr[i].i < ARRAY_SIZE (name_table))
10047	      out_attr[Tag_CPU_name].s =
10048		_bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
10049	  }
10050	  break;
10051
10052	case Tag_ARM_ISA_use:
10053	case Tag_THUMB_ISA_use:
10054	case Tag_WMMX_arch:
10055	case Tag_Advanced_SIMD_arch:
10056	  /* ??? Do Advanced_SIMD (NEON) and WMMX conflict?  */
10057	case Tag_ABI_FP_rounding:
10058	case Tag_ABI_FP_exceptions:
10059	case Tag_ABI_FP_user_exceptions:
10060	case Tag_ABI_FP_number_model:
10061	case Tag_FP_HP_extension:
10062	case Tag_CPU_unaligned_access:
10063	case Tag_T2EE_use:
10064	case Tag_MPextension_use:
10065	  /* Use the largest value specified.  */
10066	  if (in_attr[i].i > out_attr[i].i)
10067	    out_attr[i].i = in_attr[i].i;
10068	  break;
10069
10070	case Tag_ABI_align_preserved:
10071	case Tag_ABI_PCS_RO_data:
10072	  /* Use the smallest value specified.  */
10073	  if (in_attr[i].i < out_attr[i].i)
10074	    out_attr[i].i = in_attr[i].i;
10075	  break;
10076
10077	case Tag_ABI_align_needed:
10078	  if ((in_attr[i].i > 0 || out_attr[i].i > 0)
10079	      && (in_attr[Tag_ABI_align_preserved].i == 0
10080		  || out_attr[Tag_ABI_align_preserved].i == 0))
10081	    {
10082	      /* This error message should be enabled once all non-conformant
10083		 binaries in the toolchain have had the attributes set
10084		 properly.
10085	      _bfd_error_handler
10086		(_("error: %B: 8-byte data alignment conflicts with %B"),
10087		 obfd, ibfd);
10088	      result = FALSE; */
10089	    }
10090	  /* Fall through.  */
10091	case Tag_ABI_FP_denormal:
10092	case Tag_ABI_PCS_GOT_use:
10093	  /* Use the "greatest" from the sequence 0, 2, 1, or the largest
10094	     value if greater than 2 (for future-proofing).  */
10095	  if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
10096	      || (in_attr[i].i <= 2 && out_attr[i].i <= 2
10097		  && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
10098	    out_attr[i].i = in_attr[i].i;
10099	  break;
10100
10101	case Tag_Virtualization_use:
10102	  /* The virtualization tag effectively stores two bits of
10103	     information: the intended use of TrustZone (in bit 0), and the
10104	     intended use of Virtualization (in bit 1).  */
10105	  if (out_attr[i].i == 0)
10106	    out_attr[i].i = in_attr[i].i;
10107	  else if (in_attr[i].i != 0
10108		   && in_attr[i].i != out_attr[i].i)
10109	    {
10110	      if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
10111		out_attr[i].i = 3;
10112	      else
10113		{
10114		  _bfd_error_handler
10115		    (_("error: %B: unable to merge virtualization attributes "
10116		       "with %B"),
10117		     obfd, ibfd);
10118		  result = FALSE;
10119		}
10120	    }
10121	  break;
10122
10123	case Tag_CPU_arch_profile:
10124	  if (out_attr[i].i != in_attr[i].i)
10125	    {
10126	      /* 0 will merge with anything.
10127		 'A' and 'S' merge to 'A'.
10128		 'R' and 'S' merge to 'R'.
10129	         'M' and 'A|R|S' is an error.  */
10130	      if (out_attr[i].i == 0
10131		  || (out_attr[i].i == 'S'
10132		      && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
10133		out_attr[i].i = in_attr[i].i;
10134	      else if (in_attr[i].i == 0
10135		       || (in_attr[i].i == 'S'
10136			   && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
10137		; /* Do nothing. */
10138	      else
10139		{
10140		  _bfd_error_handler
10141		    (_("error: %B: Conflicting architecture profiles %c/%c"),
10142		     ibfd,
10143		     in_attr[i].i ? in_attr[i].i : '0',
10144		     out_attr[i].i ? out_attr[i].i : '0');
10145		  result = FALSE;
10146		}
10147	    }
10148	  break;
10149	case Tag_FP_arch:
10150	    {
10151	      /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
10152		 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
10153		 when it's 0.  It might mean absence of FP hardware if
10154		 Tag_FP_arch is zero, otherwise it is effectively SP + DP.  */
10155
10156	      static const struct
10157	      {
10158		  int ver;
10159		  int regs;
10160	      } vfp_versions[7] =
10161		{
10162		  {0, 0},
10163		  {1, 16},
10164		  {2, 16},
10165		  {3, 32},
10166		  {3, 16},
10167		  {4, 32},
10168		  {4, 16}
10169		};
10170	      int ver;
10171	      int regs;
10172	      int newval;
10173
10174	      /* If the output has no requirement about FP hardware,
10175		 follow the requirement of the input.  */
10176	      if (out_attr[i].i == 0)
10177		{
10178		  BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
10179		  out_attr[i].i = in_attr[i].i;
10180		  out_attr[Tag_ABI_HardFP_use].i
10181		    = in_attr[Tag_ABI_HardFP_use].i;
10182		  break;
10183		}
10184	      /* If the input has no requirement about FP hardware, do
10185		 nothing.  */
10186	      else if (in_attr[i].i == 0)
10187		{
10188		  BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
10189		  break;
10190		}
10191
10192	      /* Both the input and the output have nonzero Tag_FP_arch.
10193		 So Tag_ABI_HardFP_use is (SP & DP) when it's zero.  */
10194
10195	      /* If both the input and the output have zero Tag_ABI_HardFP_use,
10196		 do nothing.  */
10197	      if (in_attr[Tag_ABI_HardFP_use].i == 0
10198		  && out_attr[Tag_ABI_HardFP_use].i == 0)
10199		;
10200	      /* If the input and the output have different Tag_ABI_HardFP_use,
10201		 the combination of them is 3 (SP & DP).  */
10202	      else if (in_attr[Tag_ABI_HardFP_use].i
10203		       != out_attr[Tag_ABI_HardFP_use].i)
10204		out_attr[Tag_ABI_HardFP_use].i = 3;
10205
10206	      /* Now we can handle Tag_FP_arch.  */
10207
10208	      /* Values greater than 6 aren't defined, so just pick the
10209	         biggest */
10210	      if (in_attr[i].i > 6 && in_attr[i].i > out_attr[i].i)
10211		{
10212		  out_attr[i] = in_attr[i];
10213		  break;
10214		}
10215	      /* The output uses the superset of input features
10216		 (ISA version) and registers.  */
10217	      ver = vfp_versions[in_attr[i].i].ver;
10218	      if (ver < vfp_versions[out_attr[i].i].ver)
10219		ver = vfp_versions[out_attr[i].i].ver;
10220	      regs = vfp_versions[in_attr[i].i].regs;
10221	      if (regs < vfp_versions[out_attr[i].i].regs)
10222		regs = vfp_versions[out_attr[i].i].regs;
10223	      /* This assumes all possible supersets are also a valid
10224	         options.  */
10225	      for (newval = 6; newval > 0; newval--)
10226		{
10227		  if (regs == vfp_versions[newval].regs
10228		      && ver == vfp_versions[newval].ver)
10229		    break;
10230		}
10231	      out_attr[i].i = newval;
10232	    }
10233	  break;
10234	case Tag_PCS_config:
10235	  if (out_attr[i].i == 0)
10236	    out_attr[i].i = in_attr[i].i;
10237	  else if (in_attr[i].i != 0 && out_attr[i].i != 0)
10238	    {
10239	      /* It's sometimes ok to mix different configs, so this is only
10240	         a warning.  */
10241	      _bfd_error_handler
10242		(_("Warning: %B: Conflicting platform configuration"), ibfd);
10243	    }
10244	  break;
10245	case Tag_ABI_PCS_R9_use:
10246	  if (in_attr[i].i != out_attr[i].i
10247	      && out_attr[i].i != AEABI_R9_unused
10248	      && in_attr[i].i != AEABI_R9_unused)
10249	    {
10250	      _bfd_error_handler
10251		(_("error: %B: Conflicting use of R9"), ibfd);
10252	      result = FALSE;
10253	    }
10254	  if (out_attr[i].i == AEABI_R9_unused)
10255	    out_attr[i].i = in_attr[i].i;
10256	  break;
10257	case Tag_ABI_PCS_RW_data:
10258	  if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
10259	      && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
10260	      && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
10261	    {
10262	      _bfd_error_handler
10263		(_("error: %B: SB relative addressing conflicts with use of R9"),
10264		 ibfd);
10265	      result = FALSE;
10266	    }
10267	  /* Use the smallest value specified.  */
10268	  if (in_attr[i].i < out_attr[i].i)
10269	    out_attr[i].i = in_attr[i].i;
10270	  break;
10271	case Tag_ABI_PCS_wchar_t:
10272	  if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
10273	      && !elf_arm_tdata (obfd)->no_wchar_size_warning)
10274	    {
10275	      _bfd_error_handler
10276		(_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
10277		 ibfd, in_attr[i].i, out_attr[i].i);
10278	    }
10279	  else if (in_attr[i].i && !out_attr[i].i)
10280	    out_attr[i].i = in_attr[i].i;
10281	  break;
10282	case Tag_ABI_enum_size:
10283	  if (in_attr[i].i != AEABI_enum_unused)
10284	    {
10285	      if (out_attr[i].i == AEABI_enum_unused
10286		  || out_attr[i].i == AEABI_enum_forced_wide)
10287		{
10288		  /* The existing object is compatible with anything.
10289		     Use whatever requirements the new object has.  */
10290		  out_attr[i].i = in_attr[i].i;
10291		}
10292	      else if (in_attr[i].i != AEABI_enum_forced_wide
10293		       && out_attr[i].i != in_attr[i].i
10294		       && !elf_arm_tdata (obfd)->no_enum_size_warning)
10295		{
10296		  static const char *aeabi_enum_names[] =
10297		    { "", "variable-size", "32-bit", "" };
10298		  const char *in_name =
10299		    in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
10300		    ? aeabi_enum_names[in_attr[i].i]
10301		    : "<unknown>";
10302		  const char *out_name =
10303		    out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
10304		    ? aeabi_enum_names[out_attr[i].i]
10305		    : "<unknown>";
10306		  _bfd_error_handler
10307		    (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
10308		     ibfd, in_name, out_name);
10309		}
10310	    }
10311	  break;
10312	case Tag_ABI_VFP_args:
10313	  /* Aready done.  */
10314	  break;
10315	case Tag_ABI_WMMX_args:
10316	  if (in_attr[i].i != out_attr[i].i)
10317	    {
10318	      _bfd_error_handler
10319		(_("error: %B uses iWMMXt register arguments, %B does not"),
10320		 ibfd, obfd);
10321	      result = FALSE;
10322	    }
10323	  break;
10324	case Tag_compatibility:
10325	  /* Merged in target-independent code.  */
10326	  break;
10327	case Tag_ABI_HardFP_use:
10328	  /* This is handled along with Tag_FP_arch.  */
10329	  break;
10330	case Tag_ABI_FP_16bit_format:
10331	  if (in_attr[i].i != 0 && out_attr[i].i != 0)
10332	    {
10333	      if (in_attr[i].i != out_attr[i].i)
10334		{
10335		  _bfd_error_handler
10336		    (_("error: fp16 format mismatch between %B and %B"),
10337		     ibfd, obfd);
10338		  result = FALSE;
10339		}
10340	    }
10341	  if (in_attr[i].i != 0)
10342	    out_attr[i].i = in_attr[i].i;
10343	  break;
10344
10345	case Tag_DIV_use:
10346	  /* This tag is set to zero if we can use UDIV and SDIV in Thumb
10347	     mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10348	     SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10349	     CPU.  We will merge as follows: If the input attribute's value
10350	     is one then the output attribute's value remains unchanged.  If
10351	     the input attribute's value is zero or two then if the output
10352	     attribute's value is one the output value is set to the input
10353	     value, otherwise the output value must be the same as the
10354	     inputs.  */
10355	  if (in_attr[i].i != 1 && out_attr[i].i != 1)
10356	    {
10357	      if (in_attr[i].i != out_attr[i].i)
10358		{
10359		  _bfd_error_handler
10360		    (_("DIV usage mismatch between %B and %B"),
10361		     ibfd, obfd);
10362		  result = FALSE;
10363		}
10364	    }
10365
10366	  if (in_attr[i].i != 1)
10367	    out_attr[i].i = in_attr[i].i;
10368
10369	  break;
10370
10371	case Tag_MPextension_use_legacy:
10372	  /* We don't output objects with Tag_MPextension_use_legacy - we
10373	     move the value to Tag_MPextension_use.  */
10374	  if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
10375	    {
10376	      if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
10377		{
10378		  _bfd_error_handler
10379		    (_("%B has has both the current and legacy "
10380		       "Tag_MPextension_use attributes"),
10381		     ibfd);
10382		  result = FALSE;
10383		}
10384	    }
10385
10386	  if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
10387	    out_attr[Tag_MPextension_use] = in_attr[i];
10388
10389	  break;
10390
10391	case Tag_nodefaults:
10392	  /* This tag is set if it exists, but the value is unused (and is
10393	     typically zero).  We don't actually need to do anything here -
10394	     the merge happens automatically when the type flags are merged
10395	     below.  */
10396	  break;
10397	case Tag_also_compatible_with:
10398	  /* Already done in Tag_CPU_arch.  */
10399	  break;
10400	case Tag_conformance:
10401	  /* Keep the attribute if it matches.  Throw it away otherwise.
10402	     No attribute means no claim to conform.  */
10403	  if (!in_attr[i].s || !out_attr[i].s
10404	      || strcmp (in_attr[i].s, out_attr[i].s) != 0)
10405	    out_attr[i].s = NULL;
10406	  break;
10407
10408	default:
10409	  result
10410	    = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
10411	}
10412
10413      /* If out_attr was copied from in_attr then it won't have a type yet.  */
10414      if (in_attr[i].type && !out_attr[i].type)
10415	out_attr[i].type = in_attr[i].type;
10416    }
10417
10418  /* Merge Tag_compatibility attributes and any common GNU ones.  */
10419  if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
10420    return FALSE;
10421
10422  /* Check for any attributes not known on ARM.  */
10423  result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
10424
10425  return result;
10426}
10427
10428
10429/* Return TRUE if the two EABI versions are incompatible.  */
10430
10431static bfd_boolean
10432elf32_arm_versions_compatible (unsigned iver, unsigned over)
10433{
10434  /* v4 and v5 are the same spec before and after it was released,
10435     so allow mixing them.  */
10436  if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
10437      || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
10438    return TRUE;
10439
10440  return (iver == over);
10441}
10442
10443/* Merge backend specific data from an object file to the output
10444   object file when linking.  */
10445
10446static bfd_boolean
10447elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
10448
10449/* Display the flags field.  */
10450
10451static bfd_boolean
10452elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
10453{
10454  FILE * file = (FILE *) ptr;
10455  unsigned long flags;
10456
10457  BFD_ASSERT (abfd != NULL && ptr != NULL);
10458
10459  /* Print normal ELF private data.  */
10460  _bfd_elf_print_private_bfd_data (abfd, ptr);
10461
10462  flags = elf_elfheader (abfd)->e_flags;
10463  /* Ignore init flag - it may not be set, despite the flags field
10464     containing valid data.  */
10465
10466  /* xgettext:c-format */
10467  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
10468
10469  switch (EF_ARM_EABI_VERSION (flags))
10470    {
10471    case EF_ARM_EABI_UNKNOWN:
10472      /* The following flag bits are GNU extensions and not part of the
10473	 official ARM ELF extended ABI.  Hence they are only decoded if
10474	 the EABI version is not set.  */
10475      if (flags & EF_ARM_INTERWORK)
10476	fprintf (file, _(" [interworking enabled]"));
10477
10478      if (flags & EF_ARM_APCS_26)
10479	fprintf (file, " [APCS-26]");
10480      else
10481	fprintf (file, " [APCS-32]");
10482
10483      if (flags & EF_ARM_VFP_FLOAT)
10484	fprintf (file, _(" [VFP float format]"));
10485      else if (flags & EF_ARM_MAVERICK_FLOAT)
10486	fprintf (file, _(" [Maverick float format]"));
10487      else
10488	fprintf (file, _(" [FPA float format]"));
10489
10490      if (flags & EF_ARM_APCS_FLOAT)
10491	fprintf (file, _(" [floats passed in float registers]"));
10492
10493      if (flags & EF_ARM_PIC)
10494	fprintf (file, _(" [position independent]"));
10495
10496      if (flags & EF_ARM_NEW_ABI)
10497	fprintf (file, _(" [new ABI]"));
10498
10499      if (flags & EF_ARM_OLD_ABI)
10500	fprintf (file, _(" [old ABI]"));
10501
10502      if (flags & EF_ARM_SOFT_FLOAT)
10503	fprintf (file, _(" [software FP]"));
10504
10505      flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
10506		 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
10507		 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
10508		 | EF_ARM_MAVERICK_FLOAT);
10509      break;
10510
10511    case EF_ARM_EABI_VER1:
10512      fprintf (file, _(" [Version1 EABI]"));
10513
10514      if (flags & EF_ARM_SYMSARESORTED)
10515	fprintf (file, _(" [sorted symbol table]"));
10516      else
10517	fprintf (file, _(" [unsorted symbol table]"));
10518
10519      flags &= ~ EF_ARM_SYMSARESORTED;
10520      break;
10521
10522    case EF_ARM_EABI_VER2:
10523      fprintf (file, _(" [Version2 EABI]"));
10524
10525      if (flags & EF_ARM_SYMSARESORTED)
10526	fprintf (file, _(" [sorted symbol table]"));
10527      else
10528	fprintf (file, _(" [unsorted symbol table]"));
10529
10530      if (flags & EF_ARM_DYNSYMSUSESEGIDX)
10531	fprintf (file, _(" [dynamic symbols use segment index]"));
10532
10533      if (flags & EF_ARM_MAPSYMSFIRST)
10534	fprintf (file, _(" [mapping symbols precede others]"));
10535
10536      flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
10537		 | EF_ARM_MAPSYMSFIRST);
10538      break;
10539
10540    case EF_ARM_EABI_VER3:
10541      fprintf (file, _(" [Version3 EABI]"));
10542      break;
10543
10544    case EF_ARM_EABI_VER4:
10545      fprintf (file, _(" [Version4 EABI]"));
10546      goto eabi;
10547
10548    case EF_ARM_EABI_VER5:
10549      fprintf (file, _(" [Version5 EABI]"));
10550    eabi:
10551      if (flags & EF_ARM_BE8)
10552	fprintf (file, _(" [BE8]"));
10553
10554      if (flags & EF_ARM_LE8)
10555	fprintf (file, _(" [LE8]"));
10556
10557      flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
10558      break;
10559
10560    default:
10561      fprintf (file, _(" <EABI version unrecognised>"));
10562      break;
10563    }
10564
10565  flags &= ~ EF_ARM_EABIMASK;
10566
10567  if (flags & EF_ARM_RELEXEC)
10568    fprintf (file, _(" [relocatable executable]"));
10569
10570  if (flags & EF_ARM_HASENTRY)
10571    fprintf (file, _(" [has entry point]"));
10572
10573  flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
10574
10575  if (flags)
10576    fprintf (file, _("<Unrecognised flag bits set>"));
10577
10578  fputc ('\n', file);
10579
10580  return TRUE;
10581}
10582
10583static int
10584elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
10585{
10586  switch (ELF_ST_TYPE (elf_sym->st_info))
10587    {
10588    case STT_ARM_TFUNC:
10589      return ELF_ST_TYPE (elf_sym->st_info);
10590
10591    case STT_ARM_16BIT:
10592      /* If the symbol is not an object, return the STT_ARM_16BIT flag.
10593	 This allows us to distinguish between data used by Thumb instructions
10594	 and non-data (which is probably code) inside Thumb regions of an
10595	 executable.  */
10596      if (type != STT_OBJECT && type != STT_TLS)
10597	return ELF_ST_TYPE (elf_sym->st_info);
10598      break;
10599
10600    default:
10601      break;
10602    }
10603
10604  return type;
10605}
10606
10607static asection *
10608elf32_arm_gc_mark_hook (asection *sec,
10609			struct bfd_link_info *info,
10610			Elf_Internal_Rela *rel,
10611			struct elf_link_hash_entry *h,
10612			Elf_Internal_Sym *sym)
10613{
10614  if (h != NULL)
10615    switch (ELF32_R_TYPE (rel->r_info))
10616      {
10617      case R_ARM_GNU_VTINHERIT:
10618      case R_ARM_GNU_VTENTRY:
10619	return NULL;
10620      }
10621
10622  return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10623}
10624
10625/* Update the got entry reference counts for the section being removed.  */
10626
10627static bfd_boolean
10628elf32_arm_gc_sweep_hook (bfd *                     abfd,
10629			 struct bfd_link_info *    info,
10630			 asection *                sec,
10631			 const Elf_Internal_Rela * relocs)
10632{
10633  Elf_Internal_Shdr *symtab_hdr;
10634  struct elf_link_hash_entry **sym_hashes;
10635  bfd_signed_vma *local_got_refcounts;
10636  const Elf_Internal_Rela *rel, *relend;
10637  struct elf32_arm_link_hash_table * globals;
10638
10639  if (info->relocatable)
10640    return TRUE;
10641
10642  globals = elf32_arm_hash_table (info);
10643  if (globals == NULL)
10644    return FALSE;
10645
10646  elf_section_data (sec)->local_dynrel = NULL;
10647
10648  symtab_hdr = & elf_symtab_hdr (abfd);
10649  sym_hashes = elf_sym_hashes (abfd);
10650  local_got_refcounts = elf_local_got_refcounts (abfd);
10651
10652  check_use_blx (globals);
10653
10654  relend = relocs + sec->reloc_count;
10655  for (rel = relocs; rel < relend; rel++)
10656    {
10657      unsigned long r_symndx;
10658      struct elf_link_hash_entry *h = NULL;
10659      int r_type;
10660
10661      r_symndx = ELF32_R_SYM (rel->r_info);
10662      if (r_symndx >= symtab_hdr->sh_info)
10663	{
10664	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10665	  while (h->root.type == bfd_link_hash_indirect
10666		 || h->root.type == bfd_link_hash_warning)
10667	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
10668	}
10669
10670      r_type = ELF32_R_TYPE (rel->r_info);
10671      r_type = arm_real_reloc_type (globals, r_type);
10672      switch (r_type)
10673	{
10674	case R_ARM_GOT32:
10675	case R_ARM_GOT_PREL:
10676	case R_ARM_TLS_GD32:
10677	case R_ARM_TLS_IE32:
10678	  if (h != NULL)
10679	    {
10680	      if (h->got.refcount > 0)
10681		h->got.refcount -= 1;
10682	    }
10683	  else if (local_got_refcounts != NULL)
10684	    {
10685	      if (local_got_refcounts[r_symndx] > 0)
10686		local_got_refcounts[r_symndx] -= 1;
10687	    }
10688	  break;
10689
10690	case R_ARM_TLS_LDM32:
10691	  globals->tls_ldm_got.refcount -= 1;
10692	  break;
10693
10694	case R_ARM_ABS32:
10695	case R_ARM_ABS32_NOI:
10696	case R_ARM_REL32:
10697	case R_ARM_REL32_NOI:
10698	case R_ARM_PC24:
10699	case R_ARM_PLT32:
10700	case R_ARM_CALL:
10701	case R_ARM_JUMP24:
10702	case R_ARM_PREL31:
10703	case R_ARM_THM_CALL:
10704	case R_ARM_THM_JUMP24:
10705	case R_ARM_THM_JUMP19:
10706	case R_ARM_MOVW_ABS_NC:
10707	case R_ARM_MOVT_ABS:
10708	case R_ARM_MOVW_PREL_NC:
10709	case R_ARM_MOVT_PREL:
10710	case R_ARM_THM_MOVW_ABS_NC:
10711	case R_ARM_THM_MOVT_ABS:
10712	case R_ARM_THM_MOVW_PREL_NC:
10713	case R_ARM_THM_MOVT_PREL:
10714	  /* Should the interworking branches be here also?  */
10715
10716	  if (h != NULL)
10717	    {
10718	      struct elf32_arm_link_hash_entry *eh;
10719	      struct elf32_arm_relocs_copied **pp;
10720	      struct elf32_arm_relocs_copied *p;
10721
10722	      eh = (struct elf32_arm_link_hash_entry *) h;
10723
10724	      if (h->plt.refcount > 0)
10725		{
10726		  h->plt.refcount -= 1;
10727		  if (r_type == R_ARM_THM_CALL)
10728		    eh->plt_maybe_thumb_refcount--;
10729
10730		  if (r_type == R_ARM_THM_JUMP24
10731		      || r_type == R_ARM_THM_JUMP19)
10732		    eh->plt_thumb_refcount--;
10733		}
10734
10735	      if (r_type == R_ARM_ABS32
10736		  || r_type == R_ARM_REL32
10737                  || r_type == R_ARM_ABS32_NOI
10738                  || r_type == R_ARM_REL32_NOI)
10739		{
10740		  for (pp = &eh->relocs_copied; (p = *pp) != NULL;
10741		       pp = &p->next)
10742		  if (p->section == sec)
10743		    {
10744		      p->count -= 1;
10745		      if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
10746                          || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
10747			p->pc_count -= 1;
10748		      if (p->count == 0)
10749			*pp = p->next;
10750		      break;
10751		    }
10752		}
10753	    }
10754	  break;
10755
10756	default:
10757	  break;
10758	}
10759    }
10760
10761  return TRUE;
10762}
10763
10764/* Look through the relocs for a section during the first phase.  */
10765
10766static bfd_boolean
10767elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
10768			asection *sec, const Elf_Internal_Rela *relocs)
10769{
10770  Elf_Internal_Shdr *symtab_hdr;
10771  struct elf_link_hash_entry **sym_hashes;
10772  const Elf_Internal_Rela *rel;
10773  const Elf_Internal_Rela *rel_end;
10774  bfd *dynobj;
10775  asection *sreloc;
10776  struct elf32_arm_link_hash_table *htab;
10777  bfd_boolean needs_plt;
10778  unsigned long nsyms;
10779
10780  if (info->relocatable)
10781    return TRUE;
10782
10783  BFD_ASSERT (is_arm_elf (abfd));
10784
10785  htab = elf32_arm_hash_table (info);
10786  if (htab == NULL)
10787    return FALSE;
10788
10789  sreloc = NULL;
10790
10791  /* Create dynamic sections for relocatable executables so that we can
10792     copy relocations.  */
10793  if (htab->root.is_relocatable_executable
10794      && ! htab->root.dynamic_sections_created)
10795    {
10796      if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
10797	return FALSE;
10798    }
10799
10800  dynobj = elf_hash_table (info)->dynobj;
10801  symtab_hdr = & elf_symtab_hdr (abfd);
10802  sym_hashes = elf_sym_hashes (abfd);
10803  nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
10804
10805  rel_end = relocs + sec->reloc_count;
10806  for (rel = relocs; rel < rel_end; rel++)
10807    {
10808      struct elf_link_hash_entry *h;
10809      struct elf32_arm_link_hash_entry *eh;
10810      unsigned long r_symndx;
10811      int r_type;
10812
10813      r_symndx = ELF32_R_SYM (rel->r_info);
10814      r_type = ELF32_R_TYPE (rel->r_info);
10815      r_type = arm_real_reloc_type (htab, r_type);
10816
10817      if (r_symndx >= nsyms
10818	  /* PR 9934: It is possible to have relocations that do not
10819	     refer to symbols, thus it is also possible to have an
10820	     object file containing relocations but no symbol table.  */
10821	  && (r_symndx > STN_UNDEF || nsyms > 0))
10822	{
10823	  (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
10824				   r_symndx);
10825	  return FALSE;
10826	}
10827
10828      if (nsyms == 0 || r_symndx < symtab_hdr->sh_info)
10829        h = NULL;
10830      else
10831	{
10832	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10833	  while (h->root.type == bfd_link_hash_indirect
10834		 || h->root.type == bfd_link_hash_warning)
10835	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
10836	}
10837
10838      eh = (struct elf32_arm_link_hash_entry *) h;
10839
10840      switch (r_type)
10841        {
10842	  case R_ARM_GOT32:
10843	  case R_ARM_GOT_PREL:
10844	  case R_ARM_TLS_GD32:
10845	  case R_ARM_TLS_IE32:
10846	    /* This symbol requires a global offset table entry.  */
10847	    {
10848	      int tls_type, old_tls_type;
10849
10850	      switch (r_type)
10851		{
10852		case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
10853		case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
10854		default: tls_type = GOT_NORMAL; break;
10855		}
10856
10857	      if (h != NULL)
10858		{
10859		  h->got.refcount++;
10860		  old_tls_type = elf32_arm_hash_entry (h)->tls_type;
10861		}
10862	      else
10863		{
10864		  bfd_signed_vma *local_got_refcounts;
10865
10866		  /* This is a global offset table entry for a local symbol.  */
10867		  local_got_refcounts = elf_local_got_refcounts (abfd);
10868		  if (local_got_refcounts == NULL)
10869		    {
10870		      bfd_size_type size;
10871
10872		      size = symtab_hdr->sh_info;
10873		      size *= (sizeof (bfd_signed_vma) + sizeof (char));
10874		      local_got_refcounts = (bfd_signed_vma *)
10875                          bfd_zalloc (abfd, size);
10876		      if (local_got_refcounts == NULL)
10877			return FALSE;
10878		      elf_local_got_refcounts (abfd) = local_got_refcounts;
10879		      elf32_arm_local_got_tls_type (abfd)
10880			= (char *) (local_got_refcounts + symtab_hdr->sh_info);
10881		    }
10882		  local_got_refcounts[r_symndx] += 1;
10883		  old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
10884		}
10885
10886	      /* We will already have issued an error message if there is a
10887		 TLS / non-TLS mismatch, based on the symbol type.  We don't
10888		 support any linker relaxations.  So just combine any TLS
10889		 types needed.  */
10890	      if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
10891		  && tls_type != GOT_NORMAL)
10892		tls_type |= old_tls_type;
10893
10894	      if (old_tls_type != tls_type)
10895		{
10896		  if (h != NULL)
10897		    elf32_arm_hash_entry (h)->tls_type = tls_type;
10898		  else
10899		    elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
10900		}
10901	    }
10902	    /* Fall through.  */
10903
10904	  case R_ARM_TLS_LDM32:
10905	    if (r_type == R_ARM_TLS_LDM32)
10906		htab->tls_ldm_got.refcount++;
10907	    /* Fall through.  */
10908
10909	  case R_ARM_GOTOFF32:
10910	  case R_ARM_GOTPC:
10911	    if (htab->sgot == NULL)
10912	      {
10913		if (htab->root.dynobj == NULL)
10914		  htab->root.dynobj = abfd;
10915		if (!create_got_section (htab->root.dynobj, info))
10916		  return FALSE;
10917	      }
10918	    break;
10919
10920	  case R_ARM_ABS12:
10921	    /* VxWorks uses dynamic R_ARM_ABS12 relocations for
10922	       ldr __GOTT_INDEX__ offsets.  */
10923	    if (!htab->vxworks_p)
10924	      break;
10925	    /* Fall through.  */
10926
10927	  case R_ARM_PC24:
10928	  case R_ARM_PLT32:
10929	  case R_ARM_CALL:
10930	  case R_ARM_JUMP24:
10931	  case R_ARM_PREL31:
10932	  case R_ARM_THM_CALL:
10933	  case R_ARM_THM_JUMP24:
10934	  case R_ARM_THM_JUMP19:
10935	    needs_plt = 1;
10936	    goto normal_reloc;
10937
10938	  case R_ARM_MOVW_ABS_NC:
10939	  case R_ARM_MOVT_ABS:
10940	  case R_ARM_THM_MOVW_ABS_NC:
10941	  case R_ARM_THM_MOVT_ABS:
10942	    if (info->shared)
10943	      {
10944		(*_bfd_error_handler)
10945		  (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
10946		   abfd, elf32_arm_howto_table_1[r_type].name,
10947		   (h) ? h->root.root.string : "a local symbol");
10948		bfd_set_error (bfd_error_bad_value);
10949		return FALSE;
10950	      }
10951
10952	    /* Fall through.  */
10953	  case R_ARM_ABS32:
10954	  case R_ARM_ABS32_NOI:
10955	  case R_ARM_REL32:
10956	  case R_ARM_REL32_NOI:
10957	  case R_ARM_MOVW_PREL_NC:
10958	  case R_ARM_MOVT_PREL:
10959	  case R_ARM_THM_MOVW_PREL_NC:
10960	  case R_ARM_THM_MOVT_PREL:
10961	    needs_plt = 0;
10962	  normal_reloc:
10963
10964	    /* Should the interworking branches be listed here?  */
10965	    if (h != NULL)
10966	      {
10967		/* If this reloc is in a read-only section, we might
10968		   need a copy reloc.  We can't check reliably at this
10969		   stage whether the section is read-only, as input
10970		   sections have not yet been mapped to output sections.
10971		   Tentatively set the flag for now, and correct in
10972		   adjust_dynamic_symbol.  */
10973		if (!info->shared)
10974		  h->non_got_ref = 1;
10975
10976		/* We may need a .plt entry if the function this reloc
10977		   refers to is in a different object.  We can't tell for
10978		   sure yet, because something later might force the
10979		   symbol local.  */
10980		if (needs_plt)
10981		  h->needs_plt = 1;
10982
10983		/* If we create a PLT entry, this relocation will reference
10984		   it, even if it's an ABS32 relocation.  */
10985		h->plt.refcount += 1;
10986
10987		/* It's too early to use htab->use_blx here, so we have to
10988		   record possible blx references separately from
10989		   relocs that definitely need a thumb stub.  */
10990
10991		if (r_type == R_ARM_THM_CALL)
10992		  eh->plt_maybe_thumb_refcount += 1;
10993
10994		if (r_type == R_ARM_THM_JUMP24
10995		    || r_type == R_ARM_THM_JUMP19)
10996		  eh->plt_thumb_refcount += 1;
10997	      }
10998
10999	    /* If we are creating a shared library or relocatable executable,
11000	       and this is a reloc against a global symbol, or a non PC
11001	       relative reloc against a local symbol, then we need to copy
11002	       the reloc into the shared library.  However, if we are linking
11003	       with -Bsymbolic, we do not need to copy a reloc against a
11004               global symbol which is defined in an object we are
11005               including in the link (i.e., DEF_REGULAR is set).  At
11006               this point we have not seen all the input files, so it is
11007               possible that DEF_REGULAR is not set now but will be set
11008               later (it is never cleared).  We account for that
11009               possibility below by storing information in the
11010               relocs_copied field of the hash table entry.  */
11011	    if ((info->shared || htab->root.is_relocatable_executable)
11012		&& (sec->flags & SEC_ALLOC) != 0
11013		&& ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
11014		    || (h != NULL && ! h->needs_plt
11015			&& (! info->symbolic || ! h->def_regular))))
11016	      {
11017		struct elf32_arm_relocs_copied *p, **head;
11018
11019	        /* When creating a shared object, we must copy these
11020                   reloc types into the output file.  We create a reloc
11021                   section in dynobj and make room for this reloc.  */
11022  	        if (sreloc == NULL)
11023		  {
11024		    sreloc = _bfd_elf_make_dynamic_reloc_section
11025		      (sec, dynobj, 2, abfd, ! htab->use_rel);
11026
11027		    if (sreloc == NULL)
11028		      return FALSE;
11029
11030		    /* BPABI objects never have dynamic relocations mapped.  */
11031		    if (htab->symbian_p)
11032		      {
11033			flagword flags;
11034
11035			flags = bfd_get_section_flags (dynobj, sreloc);
11036			flags &= ~(SEC_LOAD | SEC_ALLOC);
11037			bfd_set_section_flags (dynobj, sreloc, flags);
11038		      }
11039		  }
11040
11041		/* If this is a global symbol, we count the number of
11042		   relocations we need for this symbol.  */
11043		if (h != NULL)
11044		  {
11045		    head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
11046		  }
11047		else
11048		  {
11049		    /* Track dynamic relocs needed for local syms too.
11050		       We really need local syms available to do this
11051		       easily.  Oh well.  */
11052		    asection *s;
11053		    void *vpp;
11054		    Elf_Internal_Sym *isym;
11055
11056		    isym = bfd_sym_from_r_symndx (&htab->sym_cache,
11057						  abfd, r_symndx);
11058		    if (isym == NULL)
11059		      return FALSE;
11060
11061		    s = bfd_section_from_elf_index (abfd, isym->st_shndx);
11062		    if (s == NULL)
11063		      s = sec;
11064
11065		    vpp = &elf_section_data (s)->local_dynrel;
11066		    head = (struct elf32_arm_relocs_copied **) vpp;
11067		  }
11068
11069		p = *head;
11070		if (p == NULL || p->section != sec)
11071		  {
11072		    bfd_size_type amt = sizeof *p;
11073
11074		    p = (struct elf32_arm_relocs_copied *)
11075                        bfd_alloc (htab->root.dynobj, amt);
11076		    if (p == NULL)
11077		      return FALSE;
11078		    p->next = *head;
11079		    *head = p;
11080		    p->section = sec;
11081		    p->count = 0;
11082		    p->pc_count = 0;
11083		  }
11084
11085		if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
11086		  p->pc_count += 1;
11087		p->count += 1;
11088	      }
11089	    break;
11090
11091        /* This relocation describes the C++ object vtable hierarchy.
11092           Reconstruct it for later use during GC.  */
11093        case R_ARM_GNU_VTINHERIT:
11094          if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
11095            return FALSE;
11096          break;
11097
11098        /* This relocation describes which C++ vtable entries are actually
11099           used.  Record for later use during GC.  */
11100        case R_ARM_GNU_VTENTRY:
11101          BFD_ASSERT (h != NULL);
11102          if (h != NULL
11103              && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
11104            return FALSE;
11105          break;
11106        }
11107    }
11108
11109  return TRUE;
11110}
11111
11112/* Unwinding tables are not referenced directly.  This pass marks them as
11113   required if the corresponding code section is marked.  */
11114
11115static bfd_boolean
11116elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
11117				  elf_gc_mark_hook_fn gc_mark_hook)
11118{
11119  bfd *sub;
11120  Elf_Internal_Shdr **elf_shdrp;
11121  bfd_boolean again;
11122
11123  /* Marking EH data may cause additional code sections to be marked,
11124     requiring multiple passes.  */
11125  again = TRUE;
11126  while (again)
11127    {
11128      again = FALSE;
11129      for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11130	{
11131	  asection *o;
11132
11133	  if (! is_arm_elf (sub))
11134	    continue;
11135
11136	  elf_shdrp = elf_elfsections (sub);
11137	  for (o = sub->sections; o != NULL; o = o->next)
11138	    {
11139	      Elf_Internal_Shdr *hdr;
11140
11141	      hdr = &elf_section_data (o)->this_hdr;
11142	      if (hdr->sh_type == SHT_ARM_EXIDX
11143		  && hdr->sh_link
11144		  && hdr->sh_link < elf_numsections (sub)
11145		  && !o->gc_mark
11146		  && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
11147		{
11148		  again = TRUE;
11149		  if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11150		    return FALSE;
11151		}
11152	    }
11153	}
11154    }
11155
11156  return TRUE;
11157}
11158
11159/* Treat mapping symbols as special target symbols.  */
11160
11161static bfd_boolean
11162elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
11163{
11164  return bfd_is_arm_special_symbol_name (sym->name,
11165					 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
11166}
11167
11168/* This is a copy of elf_find_function() from elf.c except that
11169   ARM mapping symbols are ignored when looking for function names
11170   and STT_ARM_TFUNC is considered to a function type.  */
11171
11172static bfd_boolean
11173arm_elf_find_function (bfd *         abfd ATTRIBUTE_UNUSED,
11174		       asection *    section,
11175		       asymbol **    symbols,
11176		       bfd_vma       offset,
11177		       const char ** filename_ptr,
11178		       const char ** functionname_ptr)
11179{
11180  const char * filename = NULL;
11181  asymbol * func = NULL;
11182  bfd_vma low_func = 0;
11183  asymbol ** p;
11184
11185  for (p = symbols; *p != NULL; p++)
11186    {
11187      elf_symbol_type *q;
11188
11189      q = (elf_symbol_type *) *p;
11190
11191      switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
11192	{
11193	default:
11194	  break;
11195	case STT_FILE:
11196	  filename = bfd_asymbol_name (&q->symbol);
11197	  break;
11198	case STT_FUNC:
11199	case STT_ARM_TFUNC:
11200	case STT_NOTYPE:
11201	  /* Skip mapping symbols.  */
11202	  if ((q->symbol.flags & BSF_LOCAL)
11203	      && bfd_is_arm_special_symbol_name (q->symbol.name,
11204		    BFD_ARM_SPECIAL_SYM_TYPE_ANY))
11205	    continue;
11206	  /* Fall through.  */
11207	  if (bfd_get_section (&q->symbol) == section
11208	      && q->symbol.value >= low_func
11209	      && q->symbol.value <= offset)
11210	    {
11211	      func = (asymbol *) q;
11212	      low_func = q->symbol.value;
11213	    }
11214	  break;
11215	}
11216    }
11217
11218  if (func == NULL)
11219    return FALSE;
11220
11221  if (filename_ptr)
11222    *filename_ptr = filename;
11223  if (functionname_ptr)
11224    *functionname_ptr = bfd_asymbol_name (func);
11225
11226  return TRUE;
11227}
11228
11229
11230/* Find the nearest line to a particular section and offset, for error
11231   reporting.   This code is a duplicate of the code in elf.c, except
11232   that it uses arm_elf_find_function.  */
11233
11234static bfd_boolean
11235elf32_arm_find_nearest_line (bfd *          abfd,
11236			     asection *     section,
11237			     asymbol **     symbols,
11238			     bfd_vma        offset,
11239			     const char **  filename_ptr,
11240			     const char **  functionname_ptr,
11241			     unsigned int * line_ptr)
11242{
11243  bfd_boolean found = FALSE;
11244
11245  /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it.  */
11246
11247  if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11248				     filename_ptr, functionname_ptr,
11249				     line_ptr, 0,
11250				     & elf_tdata (abfd)->dwarf2_find_line_info))
11251    {
11252      if (!*functionname_ptr)
11253	arm_elf_find_function (abfd, section, symbols, offset,
11254			       *filename_ptr ? NULL : filename_ptr,
11255			       functionname_ptr);
11256
11257      return TRUE;
11258    }
11259
11260  if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
11261					     & found, filename_ptr,
11262					     functionname_ptr, line_ptr,
11263					     & elf_tdata (abfd)->line_info))
11264    return FALSE;
11265
11266  if (found && (*functionname_ptr || *line_ptr))
11267    return TRUE;
11268
11269  if (symbols == NULL)
11270    return FALSE;
11271
11272  if (! arm_elf_find_function (abfd, section, symbols, offset,
11273			       filename_ptr, functionname_ptr))
11274    return FALSE;
11275
11276  *line_ptr = 0;
11277  return TRUE;
11278}
11279
11280static bfd_boolean
11281elf32_arm_find_inliner_info (bfd *          abfd,
11282			     const char **  filename_ptr,
11283			     const char **  functionname_ptr,
11284			     unsigned int * line_ptr)
11285{
11286  bfd_boolean found;
11287  found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11288					 functionname_ptr, line_ptr,
11289					 & elf_tdata (abfd)->dwarf2_find_line_info);
11290  return found;
11291}
11292
11293/* Adjust a symbol defined by a dynamic object and referenced by a
11294   regular object.  The current definition is in some section of the
11295   dynamic object, but we're not including those sections.  We have to
11296   change the definition to something the rest of the link can
11297   understand.  */
11298
11299static bfd_boolean
11300elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
11301				 struct elf_link_hash_entry * h)
11302{
11303  bfd * dynobj;
11304  asection * s;
11305  struct elf32_arm_link_hash_entry * eh;
11306  struct elf32_arm_link_hash_table *globals;
11307
11308  globals = elf32_arm_hash_table (info);
11309  if (globals == NULL)
11310    return FALSE;
11311
11312  dynobj = elf_hash_table (info)->dynobj;
11313
11314  /* Make sure we know what is going on here.  */
11315  BFD_ASSERT (dynobj != NULL
11316	      && (h->needs_plt
11317		  || h->u.weakdef != NULL
11318		  || (h->def_dynamic
11319		      && h->ref_regular
11320		      && !h->def_regular)));
11321
11322  eh = (struct elf32_arm_link_hash_entry *) h;
11323
11324  /* If this is a function, put it in the procedure linkage table.  We
11325     will fill in the contents of the procedure linkage table later,
11326     when we know the address of the .got section.  */
11327  if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
11328      || h->needs_plt)
11329    {
11330      if (h->plt.refcount <= 0
11331	  || SYMBOL_CALLS_LOCAL (info, h)
11332	  || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
11333	      && h->root.type == bfd_link_hash_undefweak))
11334	{
11335	  /* This case can occur if we saw a PLT32 reloc in an input
11336	     file, but the symbol was never referred to by a dynamic
11337	     object, or if all references were garbage collected.  In
11338	     such a case, we don't actually need to build a procedure
11339	     linkage table, and we can just do a PC24 reloc instead.  */
11340	  h->plt.offset = (bfd_vma) -1;
11341	  eh->plt_thumb_refcount = 0;
11342	  eh->plt_maybe_thumb_refcount = 0;
11343	  h->needs_plt = 0;
11344	}
11345
11346      return TRUE;
11347    }
11348  else
11349    {
11350      /* It's possible that we incorrectly decided a .plt reloc was
11351	 needed for an R_ARM_PC24 or similar reloc to a non-function sym
11352	 in check_relocs.  We can't decide accurately between function
11353	 and non-function syms in check-relocs; Objects loaded later in
11354	 the link may change h->type.  So fix it now.  */
11355      h->plt.offset = (bfd_vma) -1;
11356      eh->plt_thumb_refcount = 0;
11357      eh->plt_maybe_thumb_refcount = 0;
11358    }
11359
11360  /* If this is a weak symbol, and there is a real definition, the
11361     processor independent code will have arranged for us to see the
11362     real definition first, and we can just use the same value.  */
11363  if (h->u.weakdef != NULL)
11364    {
11365      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
11366		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
11367      h->root.u.def.section = h->u.weakdef->root.u.def.section;
11368      h->root.u.def.value = h->u.weakdef->root.u.def.value;
11369      return TRUE;
11370    }
11371
11372  /* If there are no non-GOT references, we do not need a copy
11373     relocation.  */
11374  if (!h->non_got_ref)
11375    return TRUE;
11376
11377  /* This is a reference to a symbol defined by a dynamic object which
11378     is not a function.  */
11379
11380  /* If we are creating a shared library, we must presume that the
11381     only references to the symbol are via the global offset table.
11382     For such cases we need not do anything here; the relocations will
11383     be handled correctly by relocate_section.  Relocatable executables
11384     can reference data in shared objects directly, so we don't need to
11385     do anything here.  */
11386  if (info->shared || globals->root.is_relocatable_executable)
11387    return TRUE;
11388
11389  if (h->size == 0)
11390    {
11391      (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
11392			     h->root.root.string);
11393      return TRUE;
11394    }
11395
11396  /* We must allocate the symbol in our .dynbss section, which will
11397     become part of the .bss section of the executable.  There will be
11398     an entry for this symbol in the .dynsym section.  The dynamic
11399     object will contain position independent code, so all references
11400     from the dynamic object to this symbol will go through the global
11401     offset table.  The dynamic linker will use the .dynsym entry to
11402     determine the address it must put in the global offset table, so
11403     both the dynamic object and the regular object will refer to the
11404     same memory location for the variable.  */
11405  s = bfd_get_section_by_name (dynobj, ".dynbss");
11406  BFD_ASSERT (s != NULL);
11407
11408  /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
11409     copy the initial value out of the dynamic object and into the
11410     runtime process image.  We need to remember the offset into the
11411     .rel(a).bss section we are going to use.  */
11412  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
11413    {
11414      asection *srel;
11415
11416      srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
11417      BFD_ASSERT (srel != NULL);
11418      srel->size += RELOC_SIZE (globals);
11419      h->needs_copy = 1;
11420    }
11421
11422  return _bfd_elf_adjust_dynamic_copy (h, s);
11423}
11424
11425/* Allocate space in .plt, .got and associated reloc sections for
11426   dynamic relocs.  */
11427
11428static bfd_boolean
11429allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
11430{
11431  struct bfd_link_info *info;
11432  struct elf32_arm_link_hash_table *htab;
11433  struct elf32_arm_link_hash_entry *eh;
11434  struct elf32_arm_relocs_copied *p;
11435  bfd_signed_vma thumb_refs;
11436
11437  eh = (struct elf32_arm_link_hash_entry *) h;
11438
11439  if (h->root.type == bfd_link_hash_indirect)
11440    return TRUE;
11441
11442  if (h->root.type == bfd_link_hash_warning)
11443    /* When warning symbols are created, they **replace** the "real"
11444       entry in the hash table, thus we never get to see the real
11445       symbol in a hash traversal.  So look at it now.  */
11446    h = (struct elf_link_hash_entry *) h->root.u.i.link;
11447
11448  info = (struct bfd_link_info *) inf;
11449  htab = elf32_arm_hash_table (info);
11450  if (htab == NULL)
11451    return FALSE;
11452
11453  if (htab->root.dynamic_sections_created
11454      && h->plt.refcount > 0)
11455    {
11456      /* Make sure this symbol is output as a dynamic symbol.
11457	 Undefined weak syms won't yet be marked as dynamic.  */
11458      if (h->dynindx == -1
11459	  && !h->forced_local)
11460	{
11461	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
11462	    return FALSE;
11463	}
11464
11465      if (info->shared
11466	  || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
11467	{
11468	  asection *s = htab->splt;
11469
11470	  /* If this is the first .plt entry, make room for the special
11471	     first entry.  */
11472	  if (s->size == 0)
11473	    s->size += htab->plt_header_size;
11474
11475	  h->plt.offset = s->size;
11476
11477	  /* If we will insert a Thumb trampoline before this PLT, leave room
11478	     for it.  */
11479	  thumb_refs = eh->plt_thumb_refcount;
11480	  if (!htab->use_blx)
11481	    thumb_refs += eh->plt_maybe_thumb_refcount;
11482
11483	  if (thumb_refs > 0)
11484	    {
11485	      h->plt.offset += PLT_THUMB_STUB_SIZE;
11486	      s->size += PLT_THUMB_STUB_SIZE;
11487	    }
11488
11489	  /* If this symbol is not defined in a regular file, and we are
11490	     not generating a shared library, then set the symbol to this
11491	     location in the .plt.  This is required to make function
11492	     pointers compare as equal between the normal executable and
11493	     the shared library.  */
11494	  if (! info->shared
11495	      && !h->def_regular)
11496	    {
11497	      h->root.u.def.section = s;
11498	      h->root.u.def.value = h->plt.offset;
11499
11500	      /* Make sure the function is not marked as Thumb, in case
11501		 it is the target of an ABS32 relocation, which will
11502		 point to the PLT entry.  */
11503	      if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
11504		h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11505	    }
11506
11507	  /* Make room for this entry.  */
11508	  s->size += htab->plt_entry_size;
11509
11510	  if (!htab->symbian_p)
11511	    {
11512	      /* We also need to make an entry in the .got.plt section, which
11513		 will be placed in the .got section by the linker script.  */
11514	      eh->plt_got_offset = htab->sgotplt->size;
11515	      htab->sgotplt->size += 4;
11516	    }
11517
11518	  /* We also need to make an entry in the .rel(a).plt section.  */
11519	  htab->srelplt->size += RELOC_SIZE (htab);
11520
11521	  /* VxWorks executables have a second set of relocations for
11522	     each PLT entry.  They go in a separate relocation section,
11523	     which is processed by the kernel loader.  */
11524	  if (htab->vxworks_p && !info->shared)
11525	    {
11526	      /* There is a relocation for the initial PLT entry:
11527		 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_.  */
11528	      if (h->plt.offset == htab->plt_header_size)
11529		htab->srelplt2->size += RELOC_SIZE (htab);
11530
11531	      /* There are two extra relocations for each subsequent
11532		 PLT entry: an R_ARM_32 relocation for the GOT entry,
11533		 and an R_ARM_32 relocation for the PLT entry.  */
11534	      htab->srelplt2->size += RELOC_SIZE (htab) * 2;
11535	    }
11536	}
11537      else
11538	{
11539	  h->plt.offset = (bfd_vma) -1;
11540	  h->needs_plt = 0;
11541	}
11542    }
11543  else
11544    {
11545      h->plt.offset = (bfd_vma) -1;
11546      h->needs_plt = 0;
11547    }
11548
11549  if (h->got.refcount > 0)
11550    {
11551      asection *s;
11552      bfd_boolean dyn;
11553      int tls_type = elf32_arm_hash_entry (h)->tls_type;
11554      int indx;
11555
11556      /* Make sure this symbol is output as a dynamic symbol.
11557	 Undefined weak syms won't yet be marked as dynamic.  */
11558      if (h->dynindx == -1
11559	  && !h->forced_local)
11560	{
11561	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
11562	    return FALSE;
11563	}
11564
11565      if (!htab->symbian_p)
11566	{
11567	  s = htab->sgot;
11568	  h->got.offset = s->size;
11569
11570	  if (tls_type == GOT_UNKNOWN)
11571	    abort ();
11572
11573	  if (tls_type == GOT_NORMAL)
11574	    /* Non-TLS symbols need one GOT slot.  */
11575	    s->size += 4;
11576	  else
11577	    {
11578	      if (tls_type & GOT_TLS_GD)
11579		/* R_ARM_TLS_GD32 needs 2 consecutive GOT slots.  */
11580		s->size += 8;
11581	      if (tls_type & GOT_TLS_IE)
11582		/* R_ARM_TLS_IE32 needs one GOT slot.  */
11583		s->size += 4;
11584	    }
11585
11586	  dyn = htab->root.dynamic_sections_created;
11587
11588	  indx = 0;
11589	  if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
11590	      && (!info->shared
11591		  || !SYMBOL_REFERENCES_LOCAL (info, h)))
11592	    indx = h->dynindx;
11593
11594	  if (tls_type != GOT_NORMAL
11595	      && (info->shared || indx != 0)
11596	      && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11597		  || h->root.type != bfd_link_hash_undefweak))
11598	    {
11599	      if (tls_type & GOT_TLS_IE)
11600		htab->srelgot->size += RELOC_SIZE (htab);
11601
11602	      if (tls_type & GOT_TLS_GD)
11603		htab->srelgot->size += RELOC_SIZE (htab);
11604
11605	      if ((tls_type & GOT_TLS_GD) && indx != 0)
11606		htab->srelgot->size += RELOC_SIZE (htab);
11607	    }
11608	  else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11609		    || h->root.type != bfd_link_hash_undefweak)
11610		   && (info->shared
11611	    	   || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
11612	    htab->srelgot->size += RELOC_SIZE (htab);
11613	}
11614    }
11615  else
11616    h->got.offset = (bfd_vma) -1;
11617
11618  /* Allocate stubs for exported Thumb functions on v4t.  */
11619  if (!htab->use_blx && h->dynindx != -1
11620      && h->def_regular
11621      && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
11622      && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
11623    {
11624      struct elf_link_hash_entry * th;
11625      struct bfd_link_hash_entry * bh;
11626      struct elf_link_hash_entry * myh;
11627      char name[1024];
11628      asection *s;
11629      bh = NULL;
11630      /* Create a new symbol to regist the real location of the function.  */
11631      s = h->root.u.def.section;
11632      sprintf (name, "__real_%s", h->root.root.string);
11633      _bfd_generic_link_add_one_symbol (info, s->owner,
11634					name, BSF_GLOBAL, s,
11635					h->root.u.def.value,
11636					NULL, TRUE, FALSE, &bh);
11637
11638      myh = (struct elf_link_hash_entry *) bh;
11639      myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
11640      myh->forced_local = 1;
11641      eh->export_glue = myh;
11642      th = record_arm_to_thumb_glue (info, h);
11643      /* Point the symbol at the stub.  */
11644      h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11645      h->root.u.def.section = th->root.u.def.section;
11646      h->root.u.def.value = th->root.u.def.value & ~1;
11647    }
11648
11649  if (eh->relocs_copied == NULL)
11650    return TRUE;
11651
11652  /* In the shared -Bsymbolic case, discard space allocated for
11653     dynamic pc-relative relocs against symbols which turn out to be
11654     defined in regular objects.  For the normal shared case, discard
11655     space for pc-relative relocs that have become local due to symbol
11656     visibility changes.  */
11657
11658  if (info->shared || htab->root.is_relocatable_executable)
11659    {
11660      /* The only relocs that use pc_count are R_ARM_REL32 and
11661         R_ARM_REL32_NOI, which will appear on something like
11662         ".long foo - .".  We want calls to protected symbols to resolve
11663         directly to the function rather than going via the plt.  If people
11664         want function pointer comparisons to work as expected then they
11665         should avoid writing assembly like ".long foo - .".  */
11666      if (SYMBOL_CALLS_LOCAL (info, h))
11667	{
11668	  struct elf32_arm_relocs_copied **pp;
11669
11670	  for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11671	    {
11672	      p->count -= p->pc_count;
11673	      p->pc_count = 0;
11674	      if (p->count == 0)
11675		*pp = p->next;
11676	      else
11677		pp = &p->next;
11678	    }
11679	}
11680
11681      if (htab->vxworks_p)
11682	{
11683	  struct elf32_arm_relocs_copied **pp;
11684
11685	  for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11686	    {
11687	      if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
11688		*pp = p->next;
11689	      else
11690		pp = &p->next;
11691	    }
11692	}
11693
11694      /* Also discard relocs on undefined weak syms with non-default
11695         visibility.  */
11696      if (eh->relocs_copied != NULL
11697	  && h->root.type == bfd_link_hash_undefweak)
11698	{
11699	  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
11700	    eh->relocs_copied = NULL;
11701
11702	  /* Make sure undefined weak symbols are output as a dynamic
11703	     symbol in PIEs.  */
11704	  else if (h->dynindx == -1
11705		   && !h->forced_local)
11706	    {
11707	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
11708		return FALSE;
11709	    }
11710	}
11711
11712      else if (htab->root.is_relocatable_executable && h->dynindx == -1
11713	       && h->root.type == bfd_link_hash_new)
11714	{
11715	  /* Output absolute symbols so that we can create relocations
11716	     against them.  For normal symbols we output a relocation
11717	     against the section that contains them.  */
11718	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
11719	    return FALSE;
11720	}
11721
11722    }
11723  else
11724    {
11725      /* For the non-shared case, discard space for relocs against
11726	 symbols which turn out to need copy relocs or are not
11727	 dynamic.  */
11728
11729      if (!h->non_got_ref
11730	  && ((h->def_dynamic
11731	       && !h->def_regular)
11732	      || (htab->root.dynamic_sections_created
11733		  && (h->root.type == bfd_link_hash_undefweak
11734		      || h->root.type == bfd_link_hash_undefined))))
11735	{
11736	  /* Make sure this symbol is output as a dynamic symbol.
11737	     Undefined weak syms won't yet be marked as dynamic.  */
11738	  if (h->dynindx == -1
11739	      && !h->forced_local)
11740	    {
11741	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
11742		return FALSE;
11743	    }
11744
11745	  /* If that succeeded, we know we'll be keeping all the
11746	     relocs.  */
11747	  if (h->dynindx != -1)
11748	    goto keep;
11749	}
11750
11751      eh->relocs_copied = NULL;
11752
11753    keep: ;
11754    }
11755
11756  /* Finally, allocate space.  */
11757  for (p = eh->relocs_copied; p != NULL; p = p->next)
11758    {
11759      asection *sreloc = elf_section_data (p->section)->sreloc;
11760      sreloc->size += p->count * RELOC_SIZE (htab);
11761    }
11762
11763  return TRUE;
11764}
11765
11766/* Find any dynamic relocs that apply to read-only sections.  */
11767
11768static bfd_boolean
11769elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
11770{
11771  struct elf32_arm_link_hash_entry * eh;
11772  struct elf32_arm_relocs_copied * p;
11773
11774  if (h->root.type == bfd_link_hash_warning)
11775    h = (struct elf_link_hash_entry *) h->root.u.i.link;
11776
11777  eh = (struct elf32_arm_link_hash_entry *) h;
11778  for (p = eh->relocs_copied; p != NULL; p = p->next)
11779    {
11780      asection *s = p->section;
11781
11782      if (s != NULL && (s->flags & SEC_READONLY) != 0)
11783	{
11784	  struct bfd_link_info *info = (struct bfd_link_info *) inf;
11785
11786          if (info->warn_shared_textrel)
11787            (*_bfd_error_handler)
11788              (_("warning: dynamic relocation in readonly section `%s'"),
11789              h->root.root.string);
11790	  info->flags |= DF_TEXTREL;
11791
11792	  /* Not an error, just cut short the traversal.  */
11793	  return FALSE;
11794	}
11795    }
11796  return TRUE;
11797}
11798
11799void
11800bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
11801				 int byteswap_code)
11802{
11803  struct elf32_arm_link_hash_table *globals;
11804
11805  globals = elf32_arm_hash_table (info);
11806  if (globals == NULL)
11807    return;
11808
11809  globals->byteswap_code = byteswap_code;
11810}
11811
11812/* Set the sizes of the dynamic sections.  */
11813
11814static bfd_boolean
11815elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
11816				 struct bfd_link_info * info)
11817{
11818  bfd * dynobj;
11819  asection * s;
11820  bfd_boolean plt;
11821  bfd_boolean relocs;
11822  bfd *ibfd;
11823  struct elf32_arm_link_hash_table *htab;
11824
11825  htab = elf32_arm_hash_table (info);
11826  if (htab == NULL)
11827    return FALSE;
11828
11829  dynobj = elf_hash_table (info)->dynobj;
11830  BFD_ASSERT (dynobj != NULL);
11831  check_use_blx (htab);
11832
11833  if (elf_hash_table (info)->dynamic_sections_created)
11834    {
11835      /* Set the contents of the .interp section to the interpreter.  */
11836      if (info->executable)
11837	{
11838	  s = bfd_get_section_by_name (dynobj, ".interp");
11839	  BFD_ASSERT (s != NULL);
11840	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
11841	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
11842	}
11843    }
11844
11845  /* Set up .got offsets for local syms, and space for local dynamic
11846     relocs.  */
11847  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11848    {
11849      bfd_signed_vma *local_got;
11850      bfd_signed_vma *end_local_got;
11851      char *local_tls_type;
11852      bfd_size_type locsymcount;
11853      Elf_Internal_Shdr *symtab_hdr;
11854      asection *srel;
11855      bfd_boolean is_vxworks = htab->vxworks_p;
11856
11857      if (! is_arm_elf (ibfd))
11858	continue;
11859
11860      for (s = ibfd->sections; s != NULL; s = s->next)
11861	{
11862	  struct elf32_arm_relocs_copied *p;
11863
11864	  for (p = (struct elf32_arm_relocs_copied *)
11865                   elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
11866	    {
11867	      if (!bfd_is_abs_section (p->section)
11868		  && bfd_is_abs_section (p->section->output_section))
11869		{
11870		  /* Input section has been discarded, either because
11871		     it is a copy of a linkonce section or due to
11872		     linker script /DISCARD/, so we'll be discarding
11873		     the relocs too.  */
11874		}
11875	      else if (is_vxworks
11876		       && strcmp (p->section->output_section->name,
11877				  ".tls_vars") == 0)
11878		{
11879		  /* Relocations in vxworks .tls_vars sections are
11880		     handled specially by the loader.  */
11881		}
11882	      else if (p->count != 0)
11883		{
11884		  srel = elf_section_data (p->section)->sreloc;
11885		  srel->size += p->count * RELOC_SIZE (htab);
11886		  if ((p->section->output_section->flags & SEC_READONLY) != 0)
11887		    info->flags |= DF_TEXTREL;
11888		}
11889	    }
11890	}
11891
11892      local_got = elf_local_got_refcounts (ibfd);
11893      if (!local_got)
11894	continue;
11895
11896      symtab_hdr = & elf_symtab_hdr (ibfd);
11897      locsymcount = symtab_hdr->sh_info;
11898      end_local_got = local_got + locsymcount;
11899      local_tls_type = elf32_arm_local_got_tls_type (ibfd);
11900      s = htab->sgot;
11901      srel = htab->srelgot;
11902      for (; local_got < end_local_got; ++local_got, ++local_tls_type)
11903	{
11904	  if (*local_got > 0)
11905	    {
11906	      *local_got = s->size;
11907	      if (*local_tls_type & GOT_TLS_GD)
11908		/* TLS_GD relocs need an 8-byte structure in the GOT.  */
11909		s->size += 8;
11910	      if (*local_tls_type & GOT_TLS_IE)
11911		s->size += 4;
11912	      if (*local_tls_type == GOT_NORMAL)
11913		s->size += 4;
11914
11915	      if (info->shared || *local_tls_type == GOT_TLS_GD)
11916		srel->size += RELOC_SIZE (htab);
11917	    }
11918	  else
11919	    *local_got = (bfd_vma) -1;
11920	}
11921    }
11922
11923  if (htab->tls_ldm_got.refcount > 0)
11924    {
11925      /* Allocate two GOT entries and one dynamic relocation (if necessary)
11926	 for R_ARM_TLS_LDM32 relocations.  */
11927      htab->tls_ldm_got.offset = htab->sgot->size;
11928      htab->sgot->size += 8;
11929      if (info->shared)
11930	htab->srelgot->size += RELOC_SIZE (htab);
11931    }
11932  else
11933    htab->tls_ldm_got.offset = -1;
11934
11935  /* Allocate global sym .plt and .got entries, and space for global
11936     sym dynamic relocs.  */
11937  elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
11938
11939  /* Here we rummage through the found bfds to collect glue information.  */
11940  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11941    {
11942      if (! is_arm_elf (ibfd))
11943	continue;
11944
11945      /* Initialise mapping tables for code/data.  */
11946      bfd_elf32_arm_init_maps (ibfd);
11947
11948      if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
11949	  || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
11950        /* xgettext:c-format */
11951        _bfd_error_handler (_("Errors encountered processing file %s"),
11952			    ibfd->filename);
11953    }
11954
11955  /* Allocate space for the glue sections now that we've sized them.  */
11956  bfd_elf32_arm_allocate_interworking_sections (info);
11957
11958  /* The check_relocs and adjust_dynamic_symbol entry points have
11959     determined the sizes of the various dynamic sections.  Allocate
11960     memory for them.  */
11961  plt = FALSE;
11962  relocs = FALSE;
11963  for (s = dynobj->sections; s != NULL; s = s->next)
11964    {
11965      const char * name;
11966
11967      if ((s->flags & SEC_LINKER_CREATED) == 0)
11968	continue;
11969
11970      /* It's OK to base decisions on the section name, because none
11971	 of the dynobj section names depend upon the input files.  */
11972      name = bfd_get_section_name (dynobj, s);
11973
11974      if (strcmp (name, ".plt") == 0)
11975	{
11976	  /* Remember whether there is a PLT.  */
11977	  plt = s->size != 0;
11978	}
11979      else if (CONST_STRNEQ (name, ".rel"))
11980	{
11981	  if (s->size != 0)
11982	    {
11983	      /* Remember whether there are any reloc sections other
11984		 than .rel(a).plt and .rela.plt.unloaded.  */
11985	      if (s != htab->srelplt && s != htab->srelplt2)
11986		relocs = TRUE;
11987
11988	      /* We use the reloc_count field as a counter if we need
11989		 to copy relocs into the output file.  */
11990	      s->reloc_count = 0;
11991	    }
11992	}
11993      else if (! CONST_STRNEQ (name, ".got")
11994	       && strcmp (name, ".dynbss") != 0)
11995	{
11996	  /* It's not one of our sections, so don't allocate space.  */
11997	  continue;
11998	}
11999
12000      if (s->size == 0)
12001	{
12002	  /* If we don't need this section, strip it from the
12003	     output file.  This is mostly to handle .rel(a).bss and
12004	     .rel(a).plt.  We must create both sections in
12005	     create_dynamic_sections, because they must be created
12006	     before the linker maps input sections to output
12007	     sections.  The linker does that before
12008	     adjust_dynamic_symbol is called, and it is that
12009	     function which decides whether anything needs to go
12010	     into these sections.  */
12011	  s->flags |= SEC_EXCLUDE;
12012	  continue;
12013	}
12014
12015      if ((s->flags & SEC_HAS_CONTENTS) == 0)
12016	continue;
12017
12018      /* Allocate memory for the section contents.  */
12019      s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
12020      if (s->contents == NULL)
12021	return FALSE;
12022    }
12023
12024  if (elf_hash_table (info)->dynamic_sections_created)
12025    {
12026      /* Add some entries to the .dynamic section.  We fill in the
12027	 values later, in elf32_arm_finish_dynamic_sections, but we
12028	 must add the entries now so that we get the correct size for
12029	 the .dynamic section.  The DT_DEBUG entry is filled in by the
12030	 dynamic linker and used by the debugger.  */
12031#define add_dynamic_entry(TAG, VAL) \
12032  _bfd_elf_add_dynamic_entry (info, TAG, VAL)
12033
12034     if (info->executable)
12035	{
12036	  if (!add_dynamic_entry (DT_DEBUG, 0))
12037	    return FALSE;
12038	}
12039
12040      if (plt)
12041	{
12042	  if (   !add_dynamic_entry (DT_PLTGOT, 0)
12043	      || !add_dynamic_entry (DT_PLTRELSZ, 0)
12044	      || !add_dynamic_entry (DT_PLTREL,
12045				     htab->use_rel ? DT_REL : DT_RELA)
12046	      || !add_dynamic_entry (DT_JMPREL, 0))
12047	    return FALSE;
12048	}
12049
12050      if (relocs)
12051	{
12052	  if (htab->use_rel)
12053	    {
12054	      if (!add_dynamic_entry (DT_REL, 0)
12055		  || !add_dynamic_entry (DT_RELSZ, 0)
12056		  || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
12057		return FALSE;
12058	    }
12059	  else
12060	    {
12061	      if (!add_dynamic_entry (DT_RELA, 0)
12062		  || !add_dynamic_entry (DT_RELASZ, 0)
12063		  || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
12064		return FALSE;
12065	    }
12066	}
12067
12068      /* If any dynamic relocs apply to a read-only section,
12069	 then we need a DT_TEXTREL entry.  */
12070      if ((info->flags & DF_TEXTREL) == 0)
12071	elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
12072				info);
12073
12074      if ((info->flags & DF_TEXTREL) != 0)
12075	{
12076	  if (!add_dynamic_entry (DT_TEXTREL, 0))
12077	    return FALSE;
12078	}
12079      if (htab->vxworks_p
12080	  && !elf_vxworks_add_dynamic_entries (output_bfd, info))
12081	return FALSE;
12082    }
12083#undef add_dynamic_entry
12084
12085  return TRUE;
12086}
12087
12088/* Finish up dynamic symbol handling.  We set the contents of various
12089   dynamic sections here.  */
12090
12091static bfd_boolean
12092elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
12093				 struct bfd_link_info * info,
12094				 struct elf_link_hash_entry * h,
12095				 Elf_Internal_Sym * sym)
12096{
12097  bfd * dynobj;
12098  struct elf32_arm_link_hash_table *htab;
12099  struct elf32_arm_link_hash_entry *eh;
12100
12101  dynobj = elf_hash_table (info)->dynobj;
12102  htab = elf32_arm_hash_table (info);
12103  if (htab == NULL)
12104    return FALSE;
12105
12106  eh = (struct elf32_arm_link_hash_entry *) h;
12107
12108  if (h->plt.offset != (bfd_vma) -1)
12109    {
12110      asection * splt;
12111      asection * srel;
12112      bfd_byte *loc;
12113      bfd_vma plt_index;
12114      Elf_Internal_Rela rel;
12115
12116      /* This symbol has an entry in the procedure linkage table.  Set
12117	 it up.  */
12118
12119      BFD_ASSERT (h->dynindx != -1);
12120
12121      splt = bfd_get_section_by_name (dynobj, ".plt");
12122      srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
12123      BFD_ASSERT (splt != NULL && srel != NULL);
12124
12125      /* Fill in the entry in the procedure linkage table.  */
12126      if (htab->symbian_p)
12127	{
12128	  put_arm_insn (htab, output_bfd,
12129		      elf32_arm_symbian_plt_entry[0],
12130		      splt->contents + h->plt.offset);
12131	  bfd_put_32 (output_bfd,
12132		      elf32_arm_symbian_plt_entry[1],
12133		      splt->contents + h->plt.offset + 4);
12134
12135	  /* Fill in the entry in the .rel.plt section.  */
12136	  rel.r_offset = (splt->output_section->vma
12137			  + splt->output_offset
12138			  + h->plt.offset + 4);
12139	  rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
12140
12141	  /* Get the index in the procedure linkage table which
12142	     corresponds to this symbol.  This is the index of this symbol
12143	     in all the symbols for which we are making plt entries.  The
12144	     first entry in the procedure linkage table is reserved.  */
12145	  plt_index = ((h->plt.offset - htab->plt_header_size)
12146		       / htab->plt_entry_size);
12147	}
12148      else
12149	{
12150	  bfd_vma got_offset, got_address, plt_address;
12151	  bfd_vma got_displacement;
12152	  asection * sgot;
12153	  bfd_byte * ptr;
12154
12155	  sgot = bfd_get_section_by_name (dynobj, ".got.plt");
12156	  BFD_ASSERT (sgot != NULL);
12157
12158	  /* Get the offset into the .got.plt table of the entry that
12159	     corresponds to this function.  */
12160	  got_offset = eh->plt_got_offset;
12161
12162	  /* Get the index in the procedure linkage table which
12163	     corresponds to this symbol.  This is the index of this symbol
12164	     in all the symbols for which we are making plt entries.  The
12165	     first three entries in .got.plt are reserved; after that
12166	     symbols appear in the same order as in .plt.  */
12167	  plt_index = (got_offset - 12) / 4;
12168
12169	  /* Calculate the address of the GOT entry.  */
12170	  got_address = (sgot->output_section->vma
12171			 + sgot->output_offset
12172			 + got_offset);
12173
12174	  /* ...and the address of the PLT entry.  */
12175	  plt_address = (splt->output_section->vma
12176			 + splt->output_offset
12177			 + h->plt.offset);
12178
12179	  ptr = htab->splt->contents + h->plt.offset;
12180	  if (htab->vxworks_p && info->shared)
12181	    {
12182	      unsigned int i;
12183	      bfd_vma val;
12184
12185	      for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
12186		{
12187		  val = elf32_arm_vxworks_shared_plt_entry[i];
12188		  if (i == 2)
12189		    val |= got_address - sgot->output_section->vma;
12190		  if (i == 5)
12191		    val |= plt_index * RELOC_SIZE (htab);
12192		  if (i == 2 || i == 5)
12193		    bfd_put_32 (output_bfd, val, ptr);
12194		  else
12195		    put_arm_insn (htab, output_bfd, val, ptr);
12196		}
12197	    }
12198	  else if (htab->vxworks_p)
12199	    {
12200	      unsigned int i;
12201	      bfd_vma val;
12202
12203	      for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
12204		{
12205		  val = elf32_arm_vxworks_exec_plt_entry[i];
12206		  if (i == 2)
12207		    val |= got_address;
12208		  if (i == 4)
12209		    val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
12210		  if (i == 5)
12211		    val |= plt_index * RELOC_SIZE (htab);
12212		  if (i == 2 || i == 5)
12213		    bfd_put_32 (output_bfd, val, ptr);
12214		  else
12215		    put_arm_insn (htab, output_bfd, val, ptr);
12216		}
12217
12218	      loc = (htab->srelplt2->contents
12219		     + (plt_index * 2 + 1) * RELOC_SIZE (htab));
12220
12221	      /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
12222		 referencing the GOT for this PLT entry.  */
12223	      rel.r_offset = plt_address + 8;
12224	      rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12225	      rel.r_addend = got_offset;
12226	      SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12227	      loc += RELOC_SIZE (htab);
12228
12229	      /* Create the R_ARM_ABS32 relocation referencing the
12230		 beginning of the PLT for this GOT entry.  */
12231	      rel.r_offset = got_address;
12232	      rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12233	      rel.r_addend = 0;
12234	      SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12235	    }
12236	  else
12237	    {
12238	      bfd_signed_vma thumb_refs;
12239	      /* Calculate the displacement between the PLT slot and the
12240		 entry in the GOT.  The eight-byte offset accounts for the
12241		 value produced by adding to pc in the first instruction
12242		 of the PLT stub.  */
12243	      got_displacement = got_address - (plt_address + 8);
12244
12245	      BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
12246
12247	      thumb_refs = eh->plt_thumb_refcount;
12248	      if (!htab->use_blx)
12249		thumb_refs += eh->plt_maybe_thumb_refcount;
12250
12251	      if (thumb_refs > 0)
12252		{
12253		  put_thumb_insn (htab, output_bfd,
12254				  elf32_arm_plt_thumb_stub[0], ptr - 4);
12255		  put_thumb_insn (htab, output_bfd,
12256				  elf32_arm_plt_thumb_stub[1], ptr - 2);
12257		}
12258
12259	      put_arm_insn (htab, output_bfd,
12260			    elf32_arm_plt_entry[0]
12261			    | ((got_displacement & 0x0ff00000) >> 20),
12262			    ptr + 0);
12263	      put_arm_insn (htab, output_bfd,
12264			    elf32_arm_plt_entry[1]
12265			    | ((got_displacement & 0x000ff000) >> 12),
12266			    ptr+ 4);
12267	      put_arm_insn (htab, output_bfd,
12268			    elf32_arm_plt_entry[2]
12269			    | (got_displacement & 0x00000fff),
12270			    ptr + 8);
12271#ifdef FOUR_WORD_PLT
12272	      bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
12273#endif
12274	    }
12275
12276	  /* Fill in the entry in the global offset table.  */
12277	  bfd_put_32 (output_bfd,
12278		      (splt->output_section->vma
12279		       + splt->output_offset),
12280		      sgot->contents + got_offset);
12281
12282	  /* Fill in the entry in the .rel(a).plt section.  */
12283	  rel.r_addend = 0;
12284	  rel.r_offset = got_address;
12285	  rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
12286	}
12287
12288      loc = srel->contents + plt_index * RELOC_SIZE (htab);
12289      SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12290
12291      if (!h->def_regular)
12292	{
12293	  /* Mark the symbol as undefined, rather than as defined in
12294	     the .plt section.  Leave the value alone.  */
12295	  sym->st_shndx = SHN_UNDEF;
12296	  /* If the symbol is weak, we do need to clear the value.
12297	     Otherwise, the PLT entry would provide a definition for
12298	     the symbol even if the symbol wasn't defined anywhere,
12299	     and so the symbol would never be NULL.  */
12300	  if (!h->ref_regular_nonweak)
12301	    sym->st_value = 0;
12302	}
12303    }
12304
12305  if (h->got.offset != (bfd_vma) -1
12306      && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
12307      && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
12308    {
12309      asection * sgot;
12310      asection * srel;
12311      Elf_Internal_Rela rel;
12312      bfd_byte *loc;
12313      bfd_vma offset;
12314
12315      /* This symbol has an entry in the global offset table.  Set it
12316	 up.  */
12317      sgot = bfd_get_section_by_name (dynobj, ".got");
12318      srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
12319      BFD_ASSERT (sgot != NULL && srel != NULL);
12320
12321      offset = (h->got.offset & ~(bfd_vma) 1);
12322      rel.r_addend = 0;
12323      rel.r_offset = (sgot->output_section->vma
12324		      + sgot->output_offset
12325		      + offset);
12326
12327      /* If this is a static link, or it is a -Bsymbolic link and the
12328	 symbol is defined locally or was forced to be local because
12329	 of a version file, we just want to emit a RELATIVE reloc.
12330	 The entry in the global offset table will already have been
12331	 initialized in the relocate_section function.  */
12332      if (info->shared
12333	  && SYMBOL_REFERENCES_LOCAL (info, h))
12334	{
12335	  BFD_ASSERT ((h->got.offset & 1) != 0);
12336	  rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12337	  if (!htab->use_rel)
12338	    {
12339	      rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
12340	      bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
12341	    }
12342	}
12343      else
12344	{
12345	  BFD_ASSERT ((h->got.offset & 1) == 0);
12346	  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
12347	  rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
12348	}
12349
12350      loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
12351      SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12352    }
12353
12354  if (h->needs_copy)
12355    {
12356      asection * s;
12357      Elf_Internal_Rela rel;
12358      bfd_byte *loc;
12359
12360      /* This symbol needs a copy reloc.  Set it up.  */
12361      BFD_ASSERT (h->dynindx != -1
12362		  && (h->root.type == bfd_link_hash_defined
12363		      || h->root.type == bfd_link_hash_defweak));
12364
12365      s = bfd_get_section_by_name (h->root.u.def.section->owner,
12366				   RELOC_SECTION (htab, ".bss"));
12367      BFD_ASSERT (s != NULL);
12368
12369      rel.r_addend = 0;
12370      rel.r_offset = (h->root.u.def.value
12371		      + h->root.u.def.section->output_section->vma
12372		      + h->root.u.def.section->output_offset);
12373      rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
12374      loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
12375      SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12376    }
12377
12378  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  On VxWorks,
12379     the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
12380     to the ".got" section.  */
12381  if (strcmp (h->root.root.string, "_DYNAMIC") == 0
12382      || (!htab->vxworks_p && h == htab->root.hgot))
12383    sym->st_shndx = SHN_ABS;
12384
12385  return TRUE;
12386}
12387
12388/* Finish up the dynamic sections.  */
12389
12390static bfd_boolean
12391elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
12392{
12393  bfd * dynobj;
12394  asection * sgot;
12395  asection * sdyn;
12396  struct elf32_arm_link_hash_table *htab;
12397
12398  htab = elf32_arm_hash_table (info);
12399  if (htab == NULL)
12400    return FALSE;
12401
12402  dynobj = elf_hash_table (info)->dynobj;
12403
12404  sgot = bfd_get_section_by_name (dynobj, ".got.plt");
12405  BFD_ASSERT (htab->symbian_p || sgot != NULL);
12406  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
12407
12408  if (elf_hash_table (info)->dynamic_sections_created)
12409    {
12410      asection *splt;
12411      Elf32_External_Dyn *dyncon, *dynconend;
12412
12413      splt = bfd_get_section_by_name (dynobj, ".plt");
12414      BFD_ASSERT (splt != NULL && sdyn != NULL);
12415
12416      dyncon = (Elf32_External_Dyn *) sdyn->contents;
12417      dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
12418
12419      for (; dyncon < dynconend; dyncon++)
12420	{
12421	  Elf_Internal_Dyn dyn;
12422	  const char * name;
12423	  asection * s;
12424
12425	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
12426
12427	  switch (dyn.d_tag)
12428	    {
12429	      unsigned int type;
12430
12431	    default:
12432	      if (htab->vxworks_p
12433		  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12434		bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12435	      break;
12436
12437	    case DT_HASH:
12438	      name = ".hash";
12439	      goto get_vma_if_bpabi;
12440	    case DT_STRTAB:
12441	      name = ".dynstr";
12442	      goto get_vma_if_bpabi;
12443	    case DT_SYMTAB:
12444	      name = ".dynsym";
12445	      goto get_vma_if_bpabi;
12446	    case DT_VERSYM:
12447	      name = ".gnu.version";
12448	      goto get_vma_if_bpabi;
12449	    case DT_VERDEF:
12450	      name = ".gnu.version_d";
12451	      goto get_vma_if_bpabi;
12452	    case DT_VERNEED:
12453	      name = ".gnu.version_r";
12454	      goto get_vma_if_bpabi;
12455
12456	    case DT_PLTGOT:
12457	      name = ".got";
12458	      goto get_vma;
12459	    case DT_JMPREL:
12460	      name = RELOC_SECTION (htab, ".plt");
12461	    get_vma:
12462	      s = bfd_get_section_by_name (output_bfd, name);
12463	      BFD_ASSERT (s != NULL);
12464	      if (!htab->symbian_p)
12465		dyn.d_un.d_ptr = s->vma;
12466	      else
12467		/* In the BPABI, tags in the PT_DYNAMIC section point
12468		   at the file offset, not the memory address, for the
12469		   convenience of the post linker.  */
12470		dyn.d_un.d_ptr = s->filepos;
12471	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12472	      break;
12473
12474	    get_vma_if_bpabi:
12475	      if (htab->symbian_p)
12476		goto get_vma;
12477	      break;
12478
12479	    case DT_PLTRELSZ:
12480	      s = bfd_get_section_by_name (output_bfd,
12481					   RELOC_SECTION (htab, ".plt"));
12482	      BFD_ASSERT (s != NULL);
12483	      dyn.d_un.d_val = s->size;
12484	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12485	      break;
12486
12487	    case DT_RELSZ:
12488	    case DT_RELASZ:
12489	      if (!htab->symbian_p)
12490		{
12491		  /* My reading of the SVR4 ABI indicates that the
12492		     procedure linkage table relocs (DT_JMPREL) should be
12493		     included in the overall relocs (DT_REL).  This is
12494		     what Solaris does.  However, UnixWare can not handle
12495		     that case.  Therefore, we override the DT_RELSZ entry
12496		     here to make it not include the JMPREL relocs.  Since
12497		     the linker script arranges for .rel(a).plt to follow all
12498		     other relocation sections, we don't have to worry
12499		     about changing the DT_REL entry.  */
12500		  s = bfd_get_section_by_name (output_bfd,
12501					       RELOC_SECTION (htab, ".plt"));
12502		  if (s != NULL)
12503		    dyn.d_un.d_val -= s->size;
12504		  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12505		  break;
12506		}
12507	      /* Fall through.  */
12508
12509	    case DT_REL:
12510	    case DT_RELA:
12511	      /* In the BPABI, the DT_REL tag must point at the file
12512		 offset, not the VMA, of the first relocation
12513		 section.  So, we use code similar to that in
12514		 elflink.c, but do not check for SHF_ALLOC on the
12515		 relcoation section, since relocations sections are
12516		 never allocated under the BPABI.  The comments above
12517		 about Unixware notwithstanding, we include all of the
12518		 relocations here.  */
12519	      if (htab->symbian_p)
12520		{
12521		  unsigned int i;
12522		  type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12523			  ? SHT_REL : SHT_RELA);
12524		  dyn.d_un.d_val = 0;
12525		  for (i = 1; i < elf_numsections (output_bfd); i++)
12526		    {
12527		      Elf_Internal_Shdr *hdr
12528			= elf_elfsections (output_bfd)[i];
12529		      if (hdr->sh_type == type)
12530			{
12531			  if (dyn.d_tag == DT_RELSZ
12532			      || dyn.d_tag == DT_RELASZ)
12533			    dyn.d_un.d_val += hdr->sh_size;
12534			  else if ((ufile_ptr) hdr->sh_offset
12535				   <= dyn.d_un.d_val - 1)
12536			    dyn.d_un.d_val = hdr->sh_offset;
12537			}
12538		    }
12539		  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12540		}
12541	      break;
12542
12543	      /* Set the bottom bit of DT_INIT/FINI if the
12544		 corresponding function is Thumb.  */
12545	    case DT_INIT:
12546	      name = info->init_function;
12547	      goto get_sym;
12548	    case DT_FINI:
12549	      name = info->fini_function;
12550	    get_sym:
12551	      /* If it wasn't set by elf_bfd_final_link
12552		 then there is nothing to adjust.  */
12553	      if (dyn.d_un.d_val != 0)
12554		{
12555		  struct elf_link_hash_entry * eh;
12556
12557		  eh = elf_link_hash_lookup (elf_hash_table (info), name,
12558					     FALSE, FALSE, TRUE);
12559		  if (eh != NULL
12560		      && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
12561		    {
12562		      dyn.d_un.d_val |= 1;
12563		      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12564		    }
12565		}
12566	      break;
12567	    }
12568	}
12569
12570      /* Fill in the first entry in the procedure linkage table.  */
12571      if (splt->size > 0 && htab->plt_header_size)
12572	{
12573	  const bfd_vma *plt0_entry;
12574	  bfd_vma got_address, plt_address, got_displacement;
12575
12576	  /* Calculate the addresses of the GOT and PLT.  */
12577	  got_address = sgot->output_section->vma + sgot->output_offset;
12578	  plt_address = splt->output_section->vma + splt->output_offset;
12579
12580	  if (htab->vxworks_p)
12581	    {
12582	      /* The VxWorks GOT is relocated by the dynamic linker.
12583		 Therefore, we must emit relocations rather than simply
12584		 computing the values now.  */
12585	      Elf_Internal_Rela rel;
12586
12587	      plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
12588	      put_arm_insn (htab, output_bfd, plt0_entry[0],
12589			    splt->contents + 0);
12590	      put_arm_insn (htab, output_bfd, plt0_entry[1],
12591			    splt->contents + 4);
12592	      put_arm_insn (htab, output_bfd, plt0_entry[2],
12593			    splt->contents + 8);
12594	      bfd_put_32 (output_bfd, got_address, splt->contents + 12);
12595
12596	      /* Generate a relocation for _GLOBAL_OFFSET_TABLE_.  */
12597	      rel.r_offset = plt_address + 12;
12598	      rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12599	      rel.r_addend = 0;
12600	      SWAP_RELOC_OUT (htab) (output_bfd, &rel,
12601				     htab->srelplt2->contents);
12602	    }
12603	  else
12604	    {
12605	      got_displacement = got_address - (plt_address + 16);
12606
12607	      plt0_entry = elf32_arm_plt0_entry;
12608	      put_arm_insn (htab, output_bfd, plt0_entry[0],
12609			    splt->contents + 0);
12610	      put_arm_insn (htab, output_bfd, plt0_entry[1],
12611			    splt->contents + 4);
12612	      put_arm_insn (htab, output_bfd, plt0_entry[2],
12613			    splt->contents + 8);
12614	      put_arm_insn (htab, output_bfd, plt0_entry[3],
12615			    splt->contents + 12);
12616
12617#ifdef FOUR_WORD_PLT
12618	      /* The displacement value goes in the otherwise-unused
12619		 last word of the second entry.  */
12620	      bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
12621#else
12622	      bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
12623#endif
12624	    }
12625	}
12626
12627      /* UnixWare sets the entsize of .plt to 4, although that doesn't
12628	 really seem like the right value.  */
12629      if (splt->output_section->owner == output_bfd)
12630	elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
12631
12632      if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
12633	{
12634	  /* Correct the .rel(a).plt.unloaded relocations.  They will have
12635	     incorrect symbol indexes.  */
12636	  int num_plts;
12637	  unsigned char *p;
12638
12639	  num_plts = ((htab->splt->size - htab->plt_header_size)
12640		      / htab->plt_entry_size);
12641	  p = htab->srelplt2->contents + RELOC_SIZE (htab);
12642
12643	  for (; num_plts; num_plts--)
12644	    {
12645	      Elf_Internal_Rela rel;
12646
12647	      SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12648	      rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12649	      SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12650	      p += RELOC_SIZE (htab);
12651
12652	      SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12653	      rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12654	      SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12655	      p += RELOC_SIZE (htab);
12656	    }
12657	}
12658    }
12659
12660  /* Fill in the first three entries in the global offset table.  */
12661  if (sgot)
12662    {
12663      if (sgot->size > 0)
12664	{
12665	  if (sdyn == NULL)
12666	    bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
12667	  else
12668	    bfd_put_32 (output_bfd,
12669			sdyn->output_section->vma + sdyn->output_offset,
12670			sgot->contents);
12671	  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
12672	  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
12673	}
12674
12675      elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
12676    }
12677
12678  return TRUE;
12679}
12680
12681static void
12682elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
12683{
12684  Elf_Internal_Ehdr * i_ehdrp;	/* ELF file header, internal form.  */
12685  struct elf32_arm_link_hash_table *globals;
12686
12687  i_ehdrp = elf_elfheader (abfd);
12688
12689  if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
12690    i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
12691  else
12692    i_ehdrp->e_ident[EI_OSABI] = 0;
12693  i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
12694
12695  if (link_info)
12696    {
12697      globals = elf32_arm_hash_table (link_info);
12698      if (globals != NULL && globals->byteswap_code)
12699	i_ehdrp->e_flags |= EF_ARM_BE8;
12700    }
12701}
12702
12703static enum elf_reloc_type_class
12704elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
12705{
12706  switch ((int) ELF32_R_TYPE (rela->r_info))
12707    {
12708    case R_ARM_RELATIVE:
12709      return reloc_class_relative;
12710    case R_ARM_JUMP_SLOT:
12711      return reloc_class_plt;
12712    case R_ARM_COPY:
12713      return reloc_class_copy;
12714    default:
12715      return reloc_class_normal;
12716    }
12717}
12718
12719/* Set the right machine number for an Arm ELF file.  */
12720
12721static bfd_boolean
12722elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
12723{
12724  if (hdr->sh_type == SHT_NOTE)
12725    *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
12726
12727  return TRUE;
12728}
12729
12730static void
12731elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
12732{
12733  bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
12734}
12735
12736/* Return TRUE if this is an unwinding table entry.  */
12737
12738static bfd_boolean
12739is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
12740{
12741  return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
12742	  || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
12743}
12744
12745
12746/* Set the type and flags for an ARM section.  We do this by
12747   the section name, which is a hack, but ought to work.  */
12748
12749static bfd_boolean
12750elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
12751{
12752  const char * name;
12753
12754  name = bfd_get_section_name (abfd, sec);
12755
12756  if (is_arm_elf_unwind_section_name (abfd, name))
12757    {
12758      hdr->sh_type = SHT_ARM_EXIDX;
12759      hdr->sh_flags |= SHF_LINK_ORDER;
12760    }
12761  return TRUE;
12762}
12763
12764/* Handle an ARM specific section when reading an object file.  This is
12765   called when bfd_section_from_shdr finds a section with an unknown
12766   type.  */
12767
12768static bfd_boolean
12769elf32_arm_section_from_shdr (bfd *abfd,
12770			     Elf_Internal_Shdr * hdr,
12771			     const char *name,
12772			     int shindex)
12773{
12774  /* There ought to be a place to keep ELF backend specific flags, but
12775     at the moment there isn't one.  We just keep track of the
12776     sections by their name, instead.  Fortunately, the ABI gives
12777     names for all the ARM specific sections, so we will probably get
12778     away with this.  */
12779  switch (hdr->sh_type)
12780    {
12781    case SHT_ARM_EXIDX:
12782    case SHT_ARM_PREEMPTMAP:
12783    case SHT_ARM_ATTRIBUTES:
12784      break;
12785
12786    default:
12787      return FALSE;
12788    }
12789
12790  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
12791    return FALSE;
12792
12793  return TRUE;
12794}
12795
12796static _arm_elf_section_data *
12797get_arm_elf_section_data (asection * sec)
12798{
12799  if (sec && sec->owner && is_arm_elf (sec->owner))
12800    return elf32_arm_section_data (sec);
12801  else
12802    return NULL;
12803}
12804
12805typedef struct
12806{
12807  void *finfo;
12808  struct bfd_link_info *info;
12809  asection *sec;
12810  int sec_shndx;
12811  int (*func) (void *, const char *, Elf_Internal_Sym *,
12812	       asection *, struct elf_link_hash_entry *);
12813} output_arch_syminfo;
12814
12815enum map_symbol_type
12816{
12817  ARM_MAP_ARM,
12818  ARM_MAP_THUMB,
12819  ARM_MAP_DATA
12820};
12821
12822
12823/* Output a single mapping symbol.  */
12824
12825static bfd_boolean
12826elf32_arm_output_map_sym (output_arch_syminfo *osi,
12827			  enum map_symbol_type type,
12828			  bfd_vma offset)
12829{
12830  static const char *names[3] = {"$a", "$t", "$d"};
12831  Elf_Internal_Sym sym;
12832
12833  sym.st_value = osi->sec->output_section->vma
12834		 + osi->sec->output_offset
12835		 + offset;
12836  sym.st_size = 0;
12837  sym.st_other = 0;
12838  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
12839  sym.st_shndx = osi->sec_shndx;
12840  elf32_arm_section_map_add (osi->sec, names[type][1], offset);
12841  return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
12842}
12843
12844
12845/* Output mapping symbols for PLT entries associated with H.  */
12846
12847static bfd_boolean
12848elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
12849{
12850  output_arch_syminfo *osi = (output_arch_syminfo *) inf;
12851  struct elf32_arm_link_hash_table *htab;
12852  struct elf32_arm_link_hash_entry *eh;
12853  bfd_vma addr;
12854
12855  if (h->root.type == bfd_link_hash_indirect)
12856    return TRUE;
12857
12858  if (h->root.type == bfd_link_hash_warning)
12859    /* When warning symbols are created, they **replace** the "real"
12860       entry in the hash table, thus we never get to see the real
12861       symbol in a hash traversal.  So look at it now.  */
12862    h = (struct elf_link_hash_entry *) h->root.u.i.link;
12863
12864  if (h->plt.offset == (bfd_vma) -1)
12865    return TRUE;
12866
12867  htab = elf32_arm_hash_table (osi->info);
12868  if (htab == NULL)
12869    return FALSE;
12870
12871  eh = (struct elf32_arm_link_hash_entry *) h;
12872  addr = h->plt.offset;
12873  if (htab->symbian_p)
12874    {
12875      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12876	return FALSE;
12877      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
12878	return FALSE;
12879    }
12880  else if (htab->vxworks_p)
12881    {
12882      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12883	return FALSE;
12884      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
12885	return FALSE;
12886      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
12887	return FALSE;
12888      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
12889	return FALSE;
12890    }
12891  else
12892    {
12893      bfd_signed_vma thumb_refs;
12894
12895      thumb_refs = eh->plt_thumb_refcount;
12896      if (!htab->use_blx)
12897	thumb_refs += eh->plt_maybe_thumb_refcount;
12898
12899      if (thumb_refs > 0)
12900	{
12901	  if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
12902	    return FALSE;
12903	}
12904#ifdef FOUR_WORD_PLT
12905      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12906	return FALSE;
12907      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
12908	return FALSE;
12909#else
12910      /* A three-word PLT with no Thumb thunk contains only Arm code,
12911	 so only need to output a mapping symbol for the first PLT entry and
12912	 entries with thumb thunks.  */
12913      if (thumb_refs > 0 || addr == 20)
12914	{
12915	  if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12916	    return FALSE;
12917	}
12918#endif
12919    }
12920
12921  return TRUE;
12922}
12923
12924/* Output a single local symbol for a generated stub.  */
12925
12926static bfd_boolean
12927elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
12928			   bfd_vma offset, bfd_vma size)
12929{
12930  Elf_Internal_Sym sym;
12931
12932  sym.st_value = osi->sec->output_section->vma
12933		 + osi->sec->output_offset
12934		 + offset;
12935  sym.st_size = size;
12936  sym.st_other = 0;
12937  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
12938  sym.st_shndx = osi->sec_shndx;
12939  return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
12940}
12941
12942static bfd_boolean
12943arm_map_one_stub (struct bfd_hash_entry * gen_entry,
12944		  void * in_arg)
12945{
12946  struct elf32_arm_stub_hash_entry *stub_entry;
12947  asection *stub_sec;
12948  bfd_vma addr;
12949  char *stub_name;
12950  output_arch_syminfo *osi;
12951  const insn_sequence *template_sequence;
12952  enum stub_insn_type prev_type;
12953  int size;
12954  int i;
12955  enum map_symbol_type sym_type;
12956
12957  /* Massage our args to the form they really have.  */
12958  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
12959  osi = (output_arch_syminfo *) in_arg;
12960
12961  stub_sec = stub_entry->stub_sec;
12962
12963  /* Ensure this stub is attached to the current section being
12964     processed.  */
12965  if (stub_sec != osi->sec)
12966    return TRUE;
12967
12968  addr = (bfd_vma) stub_entry->stub_offset;
12969  stub_name = stub_entry->output_name;
12970
12971  template_sequence = stub_entry->stub_template;
12972  switch (template_sequence[0].type)
12973    {
12974    case ARM_TYPE:
12975      if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
12976	return FALSE;
12977      break;
12978    case THUMB16_TYPE:
12979    case THUMB32_TYPE:
12980      if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
12981				      stub_entry->stub_size))
12982	return FALSE;
12983      break;
12984    default:
12985      BFD_FAIL ();
12986      return 0;
12987    }
12988
12989  prev_type = DATA_TYPE;
12990  size = 0;
12991  for (i = 0; i < stub_entry->stub_template_size; i++)
12992    {
12993      switch (template_sequence[i].type)
12994	{
12995	case ARM_TYPE:
12996	  sym_type = ARM_MAP_ARM;
12997	  break;
12998
12999	case THUMB16_TYPE:
13000	case THUMB32_TYPE:
13001	  sym_type = ARM_MAP_THUMB;
13002	  break;
13003
13004	case DATA_TYPE:
13005	  sym_type = ARM_MAP_DATA;
13006	  break;
13007
13008	default:
13009	  BFD_FAIL ();
13010	  return FALSE;
13011	}
13012
13013      if (template_sequence[i].type != prev_type)
13014	{
13015	  prev_type = template_sequence[i].type;
13016	  if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
13017	    return FALSE;
13018	}
13019
13020      switch (template_sequence[i].type)
13021	{
13022	case ARM_TYPE:
13023	case THUMB32_TYPE:
13024	  size += 4;
13025	  break;
13026
13027	case THUMB16_TYPE:
13028	  size += 2;
13029	  break;
13030
13031	case DATA_TYPE:
13032	  size += 4;
13033	  break;
13034
13035	default:
13036	  BFD_FAIL ();
13037	  return FALSE;
13038	}
13039    }
13040
13041  return TRUE;
13042}
13043
13044/* Output mapping symbols for linker generated sections,
13045   and for those data-only sections that do not have a
13046   $d.  */
13047
13048static bfd_boolean
13049elf32_arm_output_arch_local_syms (bfd *output_bfd,
13050				  struct bfd_link_info *info,
13051				  void *finfo,
13052				  int (*func) (void *, const char *,
13053					       Elf_Internal_Sym *,
13054					       asection *,
13055					       struct elf_link_hash_entry *))
13056{
13057  output_arch_syminfo osi;
13058  struct elf32_arm_link_hash_table *htab;
13059  bfd_vma offset;
13060  bfd_size_type size;
13061  bfd *input_bfd;
13062
13063  htab = elf32_arm_hash_table (info);
13064  if (htab == NULL)
13065    return FALSE;
13066
13067  check_use_blx (htab);
13068
13069  osi.finfo = finfo;
13070  osi.info = info;
13071  osi.func = func;
13072
13073  /* Add a $d mapping symbol to data-only sections that
13074     don't have any mapping symbol.  This may result in (harmless) redundant
13075     mapping symbols.  */
13076  for (input_bfd = info->input_bfds;
13077       input_bfd != NULL;
13078       input_bfd = input_bfd->link_next)
13079    {
13080      if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
13081	for (osi.sec = input_bfd->sections;
13082	     osi.sec != NULL;
13083	     osi.sec = osi.sec->next)
13084	  {
13085	    if (osi.sec->output_section != NULL
13086		&& ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
13087		    != 0)
13088		&& (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
13089		   == SEC_HAS_CONTENTS
13090		&& get_arm_elf_section_data (osi.sec) != NULL
13091		&& get_arm_elf_section_data (osi.sec)->mapcount == 0
13092		&& osi.sec->size > 0)
13093	      {
13094		osi.sec_shndx = _bfd_elf_section_from_bfd_section
13095		  (output_bfd, osi.sec->output_section);
13096		if (osi.sec_shndx != (int)SHN_BAD)
13097		  elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
13098	      }
13099	  }
13100    }
13101
13102  /* ARM->Thumb glue.  */
13103  if (htab->arm_glue_size > 0)
13104    {
13105      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13106					 ARM2THUMB_GLUE_SECTION_NAME);
13107
13108      osi.sec_shndx = _bfd_elf_section_from_bfd_section
13109	  (output_bfd, osi.sec->output_section);
13110      if (info->shared || htab->root.is_relocatable_executable
13111	  || htab->pic_veneer)
13112	size = ARM2THUMB_PIC_GLUE_SIZE;
13113      else if (htab->use_blx)
13114	size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
13115      else
13116	size = ARM2THUMB_STATIC_GLUE_SIZE;
13117
13118      for (offset = 0; offset < htab->arm_glue_size; offset += size)
13119	{
13120	  elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
13121	  elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
13122	}
13123    }
13124
13125  /* Thumb->ARM glue.  */
13126  if (htab->thumb_glue_size > 0)
13127    {
13128      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13129					 THUMB2ARM_GLUE_SECTION_NAME);
13130
13131      osi.sec_shndx = _bfd_elf_section_from_bfd_section
13132	  (output_bfd, osi.sec->output_section);
13133      size = THUMB2ARM_GLUE_SIZE;
13134
13135      for (offset = 0; offset < htab->thumb_glue_size; offset += size)
13136	{
13137	  elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
13138	  elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
13139	}
13140    }
13141
13142  /* ARMv4 BX veneers.  */
13143  if (htab->bx_glue_size > 0)
13144    {
13145      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13146					 ARM_BX_GLUE_SECTION_NAME);
13147
13148      osi.sec_shndx = _bfd_elf_section_from_bfd_section
13149	  (output_bfd, osi.sec->output_section);
13150
13151      elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
13152    }
13153
13154  /* Long calls stubs.  */
13155  if (htab->stub_bfd && htab->stub_bfd->sections)
13156    {
13157      asection* stub_sec;
13158
13159      for (stub_sec = htab->stub_bfd->sections;
13160	   stub_sec != NULL;
13161	   stub_sec = stub_sec->next)
13162	{
13163	  /* Ignore non-stub sections.  */
13164	  if (!strstr (stub_sec->name, STUB_SUFFIX))
13165	    continue;
13166
13167	  osi.sec = stub_sec;
13168
13169	  osi.sec_shndx = _bfd_elf_section_from_bfd_section
13170	    (output_bfd, osi.sec->output_section);
13171
13172	  bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
13173	}
13174    }
13175
13176  /* Finally, output mapping symbols for the PLT.  */
13177  if (!htab->splt || htab->splt->size == 0)
13178    return TRUE;
13179
13180  osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
13181						     htab->splt->output_section);
13182  osi.sec = htab->splt;
13183  /* Output mapping symbols for the plt header.  SymbianOS does not have a
13184     plt header.  */
13185  if (htab->vxworks_p)
13186    {
13187      /* VxWorks shared libraries have no PLT header.  */
13188      if (!info->shared)
13189	{
13190	  if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
13191	    return FALSE;
13192	  if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
13193	    return FALSE;
13194	}
13195    }
13196  else if (!htab->symbian_p)
13197    {
13198      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
13199	return FALSE;
13200#ifndef FOUR_WORD_PLT
13201      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
13202	return FALSE;
13203#endif
13204    }
13205
13206  elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
13207  return TRUE;
13208}
13209
13210/* Allocate target specific section data.  */
13211
13212static bfd_boolean
13213elf32_arm_new_section_hook (bfd *abfd, asection *sec)
13214{
13215  if (!sec->used_by_bfd)
13216    {
13217      _arm_elf_section_data *sdata;
13218      bfd_size_type amt = sizeof (*sdata);
13219
13220      sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
13221      if (sdata == NULL)
13222	return FALSE;
13223      sec->used_by_bfd = sdata;
13224    }
13225
13226  return _bfd_elf_new_section_hook (abfd, sec);
13227}
13228
13229
13230/* Used to order a list of mapping symbols by address.  */
13231
13232static int
13233elf32_arm_compare_mapping (const void * a, const void * b)
13234{
13235  const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
13236  const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
13237
13238  if (amap->vma > bmap->vma)
13239    return 1;
13240  else if (amap->vma < bmap->vma)
13241    return -1;
13242  else if (amap->type > bmap->type)
13243    /* Ensure results do not depend on the host qsort for objects with
13244       multiple mapping symbols at the same address by sorting on type
13245       after vma.  */
13246    return 1;
13247  else if (amap->type < bmap->type)
13248    return -1;
13249  else
13250    return 0;
13251}
13252
13253/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified.  */
13254
13255static unsigned long
13256offset_prel31 (unsigned long addr, bfd_vma offset)
13257{
13258  return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
13259}
13260
13261/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
13262   relocations.  */
13263
13264static void
13265copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
13266{
13267  unsigned long first_word = bfd_get_32 (output_bfd, from);
13268  unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
13269
13270  /* High bit of first word is supposed to be zero.  */
13271  if ((first_word & 0x80000000ul) == 0)
13272    first_word = offset_prel31 (first_word, offset);
13273
13274  /* If the high bit of the first word is clear, and the bit pattern is not 0x1
13275     (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry.  */
13276  if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
13277    second_word = offset_prel31 (second_word, offset);
13278
13279  bfd_put_32 (output_bfd, first_word, to);
13280  bfd_put_32 (output_bfd, second_word, to + 4);
13281}
13282
13283/* Data for make_branch_to_a8_stub().  */
13284
13285struct a8_branch_to_stub_data {
13286  asection *writing_section;
13287  bfd_byte *contents;
13288};
13289
13290
13291/* Helper to insert branches to Cortex-A8 erratum stubs in the right
13292   places for a particular section.  */
13293
13294static bfd_boolean
13295make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
13296                       void *in_arg)
13297{
13298  struct elf32_arm_stub_hash_entry *stub_entry;
13299  struct a8_branch_to_stub_data *data;
13300  bfd_byte *contents;
13301  unsigned long branch_insn;
13302  bfd_vma veneered_insn_loc, veneer_entry_loc;
13303  bfd_signed_vma branch_offset;
13304  bfd *abfd;
13305  unsigned int target;
13306
13307  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
13308  data = (struct a8_branch_to_stub_data *) in_arg;
13309
13310  if (stub_entry->target_section != data->writing_section
13311      || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
13312    return TRUE;
13313
13314  contents = data->contents;
13315
13316  veneered_insn_loc = stub_entry->target_section->output_section->vma
13317		      + stub_entry->target_section->output_offset
13318		      + stub_entry->target_value;
13319
13320  veneer_entry_loc = stub_entry->stub_sec->output_section->vma
13321		     + stub_entry->stub_sec->output_offset
13322		     + stub_entry->stub_offset;
13323
13324  if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
13325    veneered_insn_loc &= ~3u;
13326
13327  branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
13328
13329  abfd = stub_entry->target_section->owner;
13330  target = stub_entry->target_value;
13331
13332  /* We attempt to avoid this condition by setting stubs_always_after_branch
13333     in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
13334     This check is just to be on the safe side...  */
13335  if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
13336    {
13337      (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
13338			       "allocated in unsafe location"), abfd);
13339      return FALSE;
13340    }
13341
13342  switch (stub_entry->stub_type)
13343    {
13344    case arm_stub_a8_veneer_b:
13345    case arm_stub_a8_veneer_b_cond:
13346      branch_insn = 0xf0009000;
13347      goto jump24;
13348
13349    case arm_stub_a8_veneer_blx:
13350      branch_insn = 0xf000e800;
13351      goto jump24;
13352
13353    case arm_stub_a8_veneer_bl:
13354      {
13355	unsigned int i1, j1, i2, j2, s;
13356
13357	branch_insn = 0xf000d000;
13358
13359      jump24:
13360	if (branch_offset < -16777216 || branch_offset > 16777214)
13361	  {
13362	    /* There's not much we can do apart from complain if this
13363	       happens.  */
13364	    (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
13365				     "of range (input file too large)"), abfd);
13366	    return FALSE;
13367	  }
13368
13369	/* i1 = not(j1 eor s), so:
13370	   not i1 = j1 eor s
13371	   j1 = (not i1) eor s.  */
13372
13373	branch_insn |= (branch_offset >> 1) & 0x7ff;
13374	branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
13375	i2 = (branch_offset >> 22) & 1;
13376	i1 = (branch_offset >> 23) & 1;
13377	s = (branch_offset >> 24) & 1;
13378	j1 = (!i1) ^ s;
13379	j2 = (!i2) ^ s;
13380	branch_insn |= j2 << 11;
13381	branch_insn |= j1 << 13;
13382	branch_insn |= s << 26;
13383      }
13384      break;
13385
13386    default:
13387      BFD_FAIL ();
13388      return FALSE;
13389    }
13390
13391  bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
13392  bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
13393
13394  return TRUE;
13395}
13396
13397/* Do code byteswapping.  Return FALSE afterwards so that the section is
13398   written out as normal.  */
13399
13400static bfd_boolean
13401elf32_arm_write_section (bfd *output_bfd,
13402			 struct bfd_link_info *link_info,
13403			 asection *sec,
13404			 bfd_byte *contents)
13405{
13406  unsigned int mapcount, errcount;
13407  _arm_elf_section_data *arm_data;
13408  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
13409  elf32_arm_section_map *map;
13410  elf32_vfp11_erratum_list *errnode;
13411  bfd_vma ptr;
13412  bfd_vma end;
13413  bfd_vma offset = sec->output_section->vma + sec->output_offset;
13414  bfd_byte tmp;
13415  unsigned int i;
13416
13417  if (globals == NULL)
13418    return FALSE;
13419
13420  /* If this section has not been allocated an _arm_elf_section_data
13421     structure then we cannot record anything.  */
13422  arm_data = get_arm_elf_section_data (sec);
13423  if (arm_data == NULL)
13424    return FALSE;
13425
13426  mapcount = arm_data->mapcount;
13427  map = arm_data->map;
13428  errcount = arm_data->erratumcount;
13429
13430  if (errcount != 0)
13431    {
13432      unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
13433
13434      for (errnode = arm_data->erratumlist; errnode != 0;
13435           errnode = errnode->next)
13436        {
13437          bfd_vma target = errnode->vma - offset;
13438
13439          switch (errnode->type)
13440            {
13441            case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
13442              {
13443                bfd_vma branch_to_veneer;
13444                /* Original condition code of instruction, plus bit mask for
13445                   ARM B instruction.  */
13446                unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
13447                                  | 0x0a000000;
13448
13449		/* The instruction is before the label.  */
13450		target -= 4;
13451
13452		/* Above offset included in -4 below.  */
13453		branch_to_veneer = errnode->u.b.veneer->vma
13454                                   - errnode->vma - 4;
13455
13456		if ((signed) branch_to_veneer < -(1 << 25)
13457		    || (signed) branch_to_veneer >= (1 << 25))
13458		  (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13459					   "range"), output_bfd);
13460
13461                insn |= (branch_to_veneer >> 2) & 0xffffff;
13462                contents[endianflip ^ target] = insn & 0xff;
13463                contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
13464                contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
13465                contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
13466              }
13467              break;
13468
13469	    case VFP11_ERRATUM_ARM_VENEER:
13470              {
13471                bfd_vma branch_from_veneer;
13472                unsigned int insn;
13473
13474                /* Take size of veneer into account.  */
13475                branch_from_veneer = errnode->u.v.branch->vma
13476                                     - errnode->vma - 12;
13477
13478		if ((signed) branch_from_veneer < -(1 << 25)
13479		    || (signed) branch_from_veneer >= (1 << 25))
13480		  (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13481					   "range"), output_bfd);
13482
13483                /* Original instruction.  */
13484                insn = errnode->u.v.branch->u.b.vfp_insn;
13485                contents[endianflip ^ target] = insn & 0xff;
13486                contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
13487                contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
13488                contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
13489
13490                /* Branch back to insn after original insn.  */
13491                insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
13492                contents[endianflip ^ (target + 4)] = insn & 0xff;
13493                contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
13494                contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
13495                contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
13496              }
13497              break;
13498
13499            default:
13500              abort ();
13501            }
13502        }
13503    }
13504
13505  if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
13506    {
13507      arm_unwind_table_edit *edit_node
13508        = arm_data->u.exidx.unwind_edit_list;
13509      /* Now, sec->size is the size of the section we will write.  The original
13510         size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
13511	 markers) was sec->rawsize.  (This isn't the case if we perform no
13512	 edits, then rawsize will be zero and we should use size).  */
13513      bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
13514      unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
13515      unsigned int in_index, out_index;
13516      bfd_vma add_to_offsets = 0;
13517
13518      for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
13519        {
13520	  if (edit_node)
13521	    {
13522	      unsigned int edit_index = edit_node->index;
13523
13524	      if (in_index < edit_index && in_index * 8 < input_size)
13525	        {
13526		  copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13527				    contents + in_index * 8, add_to_offsets);
13528		  out_index++;
13529		  in_index++;
13530		}
13531	      else if (in_index == edit_index
13532		       || (in_index * 8 >= input_size
13533			   && edit_index == UINT_MAX))
13534	        {
13535		  switch (edit_node->type)
13536		    {
13537		    case DELETE_EXIDX_ENTRY:
13538		      in_index++;
13539		      add_to_offsets += 8;
13540		      break;
13541
13542		    case INSERT_EXIDX_CANTUNWIND_AT_END:
13543		      {
13544		        asection *text_sec = edit_node->linked_section;
13545			bfd_vma text_offset = text_sec->output_section->vma
13546					      + text_sec->output_offset
13547					      + text_sec->size;
13548			bfd_vma exidx_offset = offset + out_index * 8;
13549		        unsigned long prel31_offset;
13550
13551			/* Note: this is meant to be equivalent to an
13552			   R_ARM_PREL31 relocation.  These synthetic
13553			   EXIDX_CANTUNWIND markers are not relocated by the
13554			   usual BFD method.  */
13555			prel31_offset = (text_offset - exidx_offset)
13556					& 0x7ffffffful;
13557
13558			/* First address we can't unwind.  */
13559			bfd_put_32 (output_bfd, prel31_offset,
13560				    &edited_contents[out_index * 8]);
13561
13562			/* Code for EXIDX_CANTUNWIND.  */
13563			bfd_put_32 (output_bfd, 0x1,
13564				    &edited_contents[out_index * 8 + 4]);
13565
13566			out_index++;
13567			add_to_offsets -= 8;
13568		      }
13569		      break;
13570		    }
13571
13572		  edit_node = edit_node->next;
13573		}
13574	    }
13575	  else
13576	    {
13577	      /* No more edits, copy remaining entries verbatim.  */
13578	      copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13579				contents + in_index * 8, add_to_offsets);
13580	      out_index++;
13581	      in_index++;
13582	    }
13583	}
13584
13585      if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
13586	bfd_set_section_contents (output_bfd, sec->output_section,
13587				  edited_contents,
13588				  (file_ptr) sec->output_offset, sec->size);
13589
13590      return TRUE;
13591    }
13592
13593  /* Fix code to point to Cortex-A8 erratum stubs.  */
13594  if (globals->fix_cortex_a8)
13595    {
13596      struct a8_branch_to_stub_data data;
13597
13598      data.writing_section = sec;
13599      data.contents = contents;
13600
13601      bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
13602			 &data);
13603    }
13604
13605  if (mapcount == 0)
13606    return FALSE;
13607
13608  if (globals->byteswap_code)
13609    {
13610      qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
13611
13612      ptr = map[0].vma;
13613      for (i = 0; i < mapcount; i++)
13614        {
13615          if (i == mapcount - 1)
13616	    end = sec->size;
13617          else
13618            end = map[i + 1].vma;
13619
13620          switch (map[i].type)
13621	    {
13622	    case 'a':
13623	      /* Byte swap code words.  */
13624	      while (ptr + 3 < end)
13625	        {
13626	          tmp = contents[ptr];
13627	          contents[ptr] = contents[ptr + 3];
13628	          contents[ptr + 3] = tmp;
13629	          tmp = contents[ptr + 1];
13630	          contents[ptr + 1] = contents[ptr + 2];
13631	          contents[ptr + 2] = tmp;
13632	          ptr += 4;
13633	        }
13634	      break;
13635
13636	    case 't':
13637	      /* Byte swap code halfwords.  */
13638	      while (ptr + 1 < end)
13639	        {
13640	          tmp = contents[ptr];
13641	          contents[ptr] = contents[ptr + 1];
13642	          contents[ptr + 1] = tmp;
13643	          ptr += 2;
13644	        }
13645	      break;
13646
13647	    case 'd':
13648	      /* Leave data alone.  */
13649	      break;
13650	    }
13651          ptr = end;
13652        }
13653    }
13654
13655  free (map);
13656  arm_data->mapcount = -1;
13657  arm_data->mapsize = 0;
13658  arm_data->map = NULL;
13659
13660  return FALSE;
13661}
13662
13663/* Display STT_ARM_TFUNC symbols as functions.  */
13664
13665static void
13666elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
13667			     asymbol *asym)
13668{
13669  elf_symbol_type *elfsym = (elf_symbol_type *) asym;
13670
13671  if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
13672    elfsym->symbol.flags |= BSF_FUNCTION;
13673}
13674
13675
13676/* Mangle thumb function symbols as we read them in.  */
13677
13678static bfd_boolean
13679elf32_arm_swap_symbol_in (bfd * abfd,
13680			  const void *psrc,
13681			  const void *pshn,
13682			  Elf_Internal_Sym *dst)
13683{
13684  if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
13685    return FALSE;
13686
13687  /* New EABI objects mark thumb function symbols by setting the low bit of
13688     the address.  Turn these into STT_ARM_TFUNC.  */
13689  if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
13690      && (dst->st_value & 1))
13691    {
13692      dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
13693      dst->st_value &= ~(bfd_vma) 1;
13694    }
13695  return TRUE;
13696}
13697
13698
13699/* Mangle thumb function symbols as we write them out.  */
13700
13701static void
13702elf32_arm_swap_symbol_out (bfd *abfd,
13703			   const Elf_Internal_Sym *src,
13704			   void *cdst,
13705			   void *shndx)
13706{
13707  Elf_Internal_Sym newsym;
13708
13709  /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
13710     of the address set, as per the new EABI.  We do this unconditionally
13711     because objcopy does not set the elf header flags until after
13712     it writes out the symbol table.  */
13713  if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
13714    {
13715      newsym = *src;
13716      newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
13717      if (newsym.st_shndx != SHN_UNDEF)
13718        {
13719          /* Do this only for defined symbols. At link type, the static
13720             linker will simulate the work of dynamic linker of resolving
13721             symbols and will carry over the thumbness of found symbols to
13722             the output symbol table. It's not clear how it happens, but
13723             the thumbness of undefined symbols can well be different at
13724             runtime, and writing '1' for them will be confusing for users
13725             and possibly for dynamic linker itself.
13726          */
13727          newsym.st_value |= 1;
13728        }
13729
13730      src = &newsym;
13731    }
13732  bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
13733}
13734
13735/* Add the PT_ARM_EXIDX program header.  */
13736
13737static bfd_boolean
13738elf32_arm_modify_segment_map (bfd *abfd,
13739			      struct bfd_link_info *info ATTRIBUTE_UNUSED)
13740{
13741  struct elf_segment_map *m;
13742  asection *sec;
13743
13744  sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13745  if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13746    {
13747      /* If there is already a PT_ARM_EXIDX header, then we do not
13748	 want to add another one.  This situation arises when running
13749	 "strip"; the input binary already has the header.  */
13750      m = elf_tdata (abfd)->segment_map;
13751      while (m && m->p_type != PT_ARM_EXIDX)
13752	m = m->next;
13753      if (!m)
13754	{
13755	  m = (struct elf_segment_map *)
13756              bfd_zalloc (abfd, sizeof (struct elf_segment_map));
13757	  if (m == NULL)
13758	    return FALSE;
13759	  m->p_type = PT_ARM_EXIDX;
13760	  m->count = 1;
13761	  m->sections[0] = sec;
13762
13763	  m->next = elf_tdata (abfd)->segment_map;
13764	  elf_tdata (abfd)->segment_map = m;
13765	}
13766    }
13767
13768  return TRUE;
13769}
13770
13771/* We may add a PT_ARM_EXIDX program header.  */
13772
13773static int
13774elf32_arm_additional_program_headers (bfd *abfd,
13775				      struct bfd_link_info *info ATTRIBUTE_UNUSED)
13776{
13777  asection *sec;
13778
13779  sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13780  if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13781    return 1;
13782  else
13783    return 0;
13784}
13785
13786/* We have two function types: STT_FUNC and STT_ARM_TFUNC.  */
13787
13788static bfd_boolean
13789elf32_arm_is_function_type (unsigned int type)
13790{
13791  return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
13792}
13793
13794/* We use this to override swap_symbol_in and swap_symbol_out.  */
13795const struct elf_size_info elf32_arm_size_info =
13796{
13797  sizeof (Elf32_External_Ehdr),
13798  sizeof (Elf32_External_Phdr),
13799  sizeof (Elf32_External_Shdr),
13800  sizeof (Elf32_External_Rel),
13801  sizeof (Elf32_External_Rela),
13802  sizeof (Elf32_External_Sym),
13803  sizeof (Elf32_External_Dyn),
13804  sizeof (Elf_External_Note),
13805  4,
13806  1,
13807  32, 2,
13808  ELFCLASS32, EV_CURRENT,
13809  bfd_elf32_write_out_phdrs,
13810  bfd_elf32_write_shdrs_and_ehdr,
13811  bfd_elf32_checksum_contents,
13812  bfd_elf32_write_relocs,
13813  elf32_arm_swap_symbol_in,
13814  elf32_arm_swap_symbol_out,
13815  bfd_elf32_slurp_reloc_table,
13816  bfd_elf32_slurp_symbol_table,
13817  bfd_elf32_swap_dyn_in,
13818  bfd_elf32_swap_dyn_out,
13819  bfd_elf32_swap_reloc_in,
13820  bfd_elf32_swap_reloc_out,
13821  bfd_elf32_swap_reloca_in,
13822  bfd_elf32_swap_reloca_out
13823};
13824
13825#define ELF_ARCH			bfd_arch_arm
13826#define ELF_TARGET_ID			ARM_ELF_DATA
13827#define ELF_MACHINE_CODE		EM_ARM
13828#ifdef __QNXTARGET__
13829#define ELF_MAXPAGESIZE			0x1000
13830#else
13831#define ELF_MAXPAGESIZE			0x8000
13832#endif
13833#define ELF_MINPAGESIZE			0x1000
13834#define ELF_COMMONPAGESIZE		0x1000
13835
13836#define bfd_elf32_mkobject		        elf32_arm_mkobject
13837
13838#define bfd_elf32_bfd_copy_private_bfd_data	elf32_arm_copy_private_bfd_data
13839#define bfd_elf32_bfd_merge_private_bfd_data	elf32_arm_merge_private_bfd_data
13840#define bfd_elf32_bfd_set_private_flags		elf32_arm_set_private_flags
13841#define bfd_elf32_bfd_print_private_bfd_data	elf32_arm_print_private_bfd_data
13842#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_link_hash_table_create
13843#define bfd_elf32_bfd_link_hash_table_free      elf32_arm_hash_table_free
13844#define bfd_elf32_bfd_reloc_type_lookup		elf32_arm_reloc_type_lookup
13845#define bfd_elf32_bfd_reloc_name_lookup	elf32_arm_reloc_name_lookup
13846#define bfd_elf32_find_nearest_line	        elf32_arm_find_nearest_line
13847#define bfd_elf32_find_inliner_info	        elf32_arm_find_inliner_info
13848#define bfd_elf32_new_section_hook		elf32_arm_new_section_hook
13849#define bfd_elf32_bfd_is_target_special_symbol	elf32_arm_is_target_special_symbol
13850#define bfd_elf32_bfd_final_link		elf32_arm_final_link
13851
13852#define elf_backend_get_symbol_type             elf32_arm_get_symbol_type
13853#define elf_backend_gc_mark_hook                elf32_arm_gc_mark_hook
13854#define elf_backend_gc_mark_extra_sections	elf32_arm_gc_mark_extra_sections
13855#define elf_backend_gc_sweep_hook               elf32_arm_gc_sweep_hook
13856#define elf_backend_check_relocs                elf32_arm_check_relocs
13857#define elf_backend_relocate_section		elf32_arm_relocate_section
13858#define elf_backend_write_section		elf32_arm_write_section
13859#define elf_backend_adjust_dynamic_symbol	elf32_arm_adjust_dynamic_symbol
13860#define elf_backend_create_dynamic_sections     elf32_arm_create_dynamic_sections
13861#define elf_backend_finish_dynamic_symbol	elf32_arm_finish_dynamic_symbol
13862#define elf_backend_finish_dynamic_sections	elf32_arm_finish_dynamic_sections
13863#define elf_backend_size_dynamic_sections	elf32_arm_size_dynamic_sections
13864#define elf_backend_init_index_section		_bfd_elf_init_2_index_sections
13865#define elf_backend_post_process_headers	elf32_arm_post_process_headers
13866#define elf_backend_reloc_type_class		elf32_arm_reloc_type_class
13867#define elf_backend_object_p			elf32_arm_object_p
13868#define elf_backend_section_flags		elf32_arm_section_flags
13869#define elf_backend_fake_sections  		elf32_arm_fake_sections
13870#define elf_backend_section_from_shdr  		elf32_arm_section_from_shdr
13871#define elf_backend_final_write_processing      elf32_arm_final_write_processing
13872#define elf_backend_copy_indirect_symbol        elf32_arm_copy_indirect_symbol
13873#define elf_backend_symbol_processing		elf32_arm_symbol_processing
13874#define elf_backend_size_info			elf32_arm_size_info
13875#define elf_backend_modify_segment_map		elf32_arm_modify_segment_map
13876#define elf_backend_additional_program_headers  elf32_arm_additional_program_headers
13877#define elf_backend_output_arch_local_syms      elf32_arm_output_arch_local_syms
13878#define elf_backend_begin_write_processing      elf32_arm_begin_write_processing
13879#define elf_backend_is_function_type		elf32_arm_is_function_type
13880
13881#define elf_backend_can_refcount       1
13882#define elf_backend_can_gc_sections    1
13883#define elf_backend_plt_readonly       1
13884#define elf_backend_want_got_plt       1
13885#define elf_backend_want_plt_sym       0
13886#define elf_backend_may_use_rel_p      1
13887#define elf_backend_may_use_rela_p     0
13888#define elf_backend_default_use_rela_p 0
13889
13890#define elf_backend_got_header_size	12
13891
13892#undef  elf_backend_obj_attrs_vendor
13893#define elf_backend_obj_attrs_vendor		"aeabi"
13894#undef  elf_backend_obj_attrs_section
13895#define elf_backend_obj_attrs_section		".ARM.attributes"
13896#undef  elf_backend_obj_attrs_arg_type
13897#define elf_backend_obj_attrs_arg_type		elf32_arm_obj_attrs_arg_type
13898#undef  elf_backend_obj_attrs_section_type
13899#define elf_backend_obj_attrs_section_type	SHT_ARM_ATTRIBUTES
13900#define elf_backend_obj_attrs_order	elf32_arm_obj_attrs_order
13901#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
13902
13903#include "elf32-target.h"
13904
13905/* VxWorks Targets.  */
13906
13907#undef  TARGET_LITTLE_SYM
13908#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_vxworks_vec
13909#undef  TARGET_LITTLE_NAME
13910#define TARGET_LITTLE_NAME              "elf32-littlearm-vxworks"
13911#undef  TARGET_BIG_SYM
13912#define TARGET_BIG_SYM                  bfd_elf32_bigarm_vxworks_vec
13913#undef  TARGET_BIG_NAME
13914#define TARGET_BIG_NAME                 "elf32-bigarm-vxworks"
13915
13916/* Like elf32_arm_link_hash_table_create -- but overrides
13917   appropriately for VxWorks.  */
13918
13919static struct bfd_link_hash_table *
13920elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
13921{
13922  struct bfd_link_hash_table *ret;
13923
13924  ret = elf32_arm_link_hash_table_create (abfd);
13925  if (ret)
13926    {
13927      struct elf32_arm_link_hash_table *htab
13928	= (struct elf32_arm_link_hash_table *) ret;
13929      htab->use_rel = 0;
13930      htab->vxworks_p = 1;
13931    }
13932  return ret;
13933}
13934
13935static void
13936elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
13937{
13938  elf32_arm_final_write_processing (abfd, linker);
13939  elf_vxworks_final_write_processing (abfd, linker);
13940}
13941
13942#undef  elf32_bed
13943#define elf32_bed elf32_arm_vxworks_bed
13944
13945#undef  bfd_elf32_bfd_link_hash_table_create
13946#define bfd_elf32_bfd_link_hash_table_create	elf32_arm_vxworks_link_hash_table_create
13947#undef  elf_backend_add_symbol_hook
13948#define elf_backend_add_symbol_hook		elf_vxworks_add_symbol_hook
13949#undef  elf_backend_final_write_processing
13950#define elf_backend_final_write_processing	elf32_arm_vxworks_final_write_processing
13951#undef  elf_backend_emit_relocs
13952#define elf_backend_emit_relocs			elf_vxworks_emit_relocs
13953
13954#undef  elf_backend_may_use_rel_p
13955#define elf_backend_may_use_rel_p	0
13956#undef  elf_backend_may_use_rela_p
13957#define elf_backend_may_use_rela_p	1
13958#undef  elf_backend_default_use_rela_p
13959#define elf_backend_default_use_rela_p	1
13960#undef  elf_backend_want_plt_sym
13961#define elf_backend_want_plt_sym	1
13962#undef  ELF_MAXPAGESIZE
13963#define ELF_MAXPAGESIZE			0x1000
13964
13965#include "elf32-target.h"
13966
13967
13968/* Merge backend specific data from an object file to the output
13969   object file when linking.  */
13970
13971static bfd_boolean
13972elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
13973{
13974  flagword out_flags;
13975  flagword in_flags;
13976  bfd_boolean flags_compatible = TRUE;
13977  asection *sec;
13978
13979  /* Check if we have the same endianess.  */
13980  if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13981    return FALSE;
13982
13983  if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13984    return TRUE;
13985
13986  if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
13987    return FALSE;
13988
13989  /* The input BFD must have had its flags initialised.  */
13990  /* The following seems bogus to me -- The flags are initialized in
13991     the assembler but I don't think an elf_flags_init field is
13992     written into the object.  */
13993  /* BFD_ASSERT (elf_flags_init (ibfd)); */
13994
13995  in_flags  = elf_elfheader (ibfd)->e_flags;
13996  out_flags = elf_elfheader (obfd)->e_flags;
13997
13998  /* In theory there is no reason why we couldn't handle this.  However
13999     in practice it isn't even close to working and there is no real
14000     reason to want it.  */
14001  if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
14002      && !(ibfd->flags & DYNAMIC)
14003      && (in_flags & EF_ARM_BE8))
14004    {
14005      _bfd_error_handler (_("error: %B is already in final BE8 format"),
14006			  ibfd);
14007      return FALSE;
14008    }
14009
14010  if (!elf_flags_init (obfd))
14011    {
14012      /* If the input is the default architecture and had the default
14013	 flags then do not bother setting the flags for the output
14014	 architecture, instead allow future merges to do this.  If no
14015	 future merges ever set these flags then they will retain their
14016         uninitialised values, which surprise surprise, correspond
14017         to the default values.  */
14018      if (bfd_get_arch_info (ibfd)->the_default
14019	  && elf_elfheader (ibfd)->e_flags == 0)
14020	return TRUE;
14021
14022      elf_flags_init (obfd) = TRUE;
14023      elf_elfheader (obfd)->e_flags = in_flags;
14024
14025      if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
14026	  && bfd_get_arch_info (obfd)->the_default)
14027	return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
14028
14029      return TRUE;
14030    }
14031
14032  /* Determine what should happen if the input ARM architecture
14033     does not match the output ARM architecture.  */
14034  if (! bfd_arm_merge_machines (ibfd, obfd))
14035    return FALSE;
14036
14037  /* Identical flags must be compatible.  */
14038  if (in_flags == out_flags)
14039    return TRUE;
14040
14041  /* Check to see if the input BFD actually contains any sections.  If
14042     not, its flags may not have been initialised either, but it
14043     cannot actually cause any incompatiblity.  Do not short-circuit
14044     dynamic objects; their section list may be emptied by
14045    elf_link_add_object_symbols.
14046
14047    Also check to see if there are no code sections in the input.
14048    In this case there is no need to check for code specific flags.
14049    XXX - do we need to worry about floating-point format compatability
14050    in data sections ?  */
14051  if (!(ibfd->flags & DYNAMIC))
14052    {
14053      bfd_boolean null_input_bfd = TRUE;
14054      bfd_boolean only_data_sections = TRUE;
14055
14056      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
14057	{
14058	  /* Ignore synthetic glue sections.  */
14059	  if (strcmp (sec->name, ".glue_7")
14060	      && strcmp (sec->name, ".glue_7t"))
14061	    {
14062	      if ((bfd_get_section_flags (ibfd, sec)
14063		   & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
14064		  == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
14065	    	only_data_sections = FALSE;
14066
14067	      null_input_bfd = FALSE;
14068	      break;
14069	    }
14070	}
14071
14072      if (null_input_bfd || only_data_sections)
14073	return TRUE;
14074    }
14075
14076  /* Complain about various flag mismatches.  */
14077  if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
14078				      EF_ARM_EABI_VERSION (out_flags)))
14079    {
14080      _bfd_error_handler
14081	(_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
14082	 ibfd, obfd,
14083	 (in_flags & EF_ARM_EABIMASK) >> 24,
14084	 (out_flags & EF_ARM_EABIMASK) >> 24);
14085      return FALSE;
14086    }
14087
14088  /* Not sure what needs to be checked for EABI versions >= 1.  */
14089  /* VxWorks libraries do not use these flags.  */
14090  if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
14091      && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
14092      && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
14093    {
14094      if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
14095	{
14096	  _bfd_error_handler
14097	    (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
14098	     ibfd, obfd,
14099	     in_flags & EF_ARM_APCS_26 ? 26 : 32,
14100	     out_flags & EF_ARM_APCS_26 ? 26 : 32);
14101	  flags_compatible = FALSE;
14102	}
14103
14104      if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
14105	{
14106	  if (in_flags & EF_ARM_APCS_FLOAT)
14107	    _bfd_error_handler
14108	      (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
14109	       ibfd, obfd);
14110	  else
14111	    _bfd_error_handler
14112	      (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
14113	       ibfd, obfd);
14114
14115	  flags_compatible = FALSE;
14116	}
14117
14118      if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
14119	{
14120	  if (in_flags & EF_ARM_VFP_FLOAT)
14121	    _bfd_error_handler
14122	      (_("error: %B uses VFP instructions, whereas %B does not"),
14123	       ibfd, obfd);
14124	  else
14125	    _bfd_error_handler
14126	      (_("error: %B uses FPA instructions, whereas %B does not"),
14127	       ibfd, obfd);
14128
14129	  flags_compatible = FALSE;
14130	}
14131
14132      if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
14133	{
14134	  if (in_flags & EF_ARM_MAVERICK_FLOAT)
14135	    _bfd_error_handler
14136	      (_("error: %B uses Maverick instructions, whereas %B does not"),
14137	       ibfd, obfd);
14138	  else
14139	    _bfd_error_handler
14140	      (_("error: %B does not use Maverick instructions, whereas %B does"),
14141	       ibfd, obfd);
14142
14143	  flags_compatible = FALSE;
14144	}
14145
14146#ifdef EF_ARM_SOFT_FLOAT
14147      if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
14148	{
14149	  /* We can allow interworking between code that is VFP format
14150	     layout, and uses either soft float or integer regs for
14151	     passing floating point arguments and results.  We already
14152	     know that the APCS_FLOAT flags match; similarly for VFP
14153	     flags.  */
14154	  if ((in_flags & EF_ARM_APCS_FLOAT) != 0
14155	      || (in_flags & EF_ARM_VFP_FLOAT) == 0)
14156	    {
14157	      if (in_flags & EF_ARM_SOFT_FLOAT)
14158		_bfd_error_handler
14159		  (_("error: %B uses software FP, whereas %B uses hardware FP"),
14160		   ibfd, obfd);
14161	      else
14162		_bfd_error_handler
14163		  (_("error: %B uses hardware FP, whereas %B uses software FP"),
14164		   ibfd, obfd);
14165
14166	      flags_compatible = FALSE;
14167	    }
14168	}
14169#endif
14170
14171      /* Interworking mismatch is only a warning.  */
14172      if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
14173	{
14174	  if (in_flags & EF_ARM_INTERWORK)
14175	    {
14176	      _bfd_error_handler
14177		(_("Warning: %B supports interworking, whereas %B does not"),
14178		 ibfd, obfd);
14179	    }
14180	  else
14181	    {
14182	      _bfd_error_handler
14183		(_("Warning: %B does not support interworking, whereas %B does"),
14184		 ibfd, obfd);
14185	    }
14186	}
14187    }
14188
14189  return flags_compatible;
14190}
14191
14192
14193/* Symbian OS Targets.  */
14194
14195#undef  TARGET_LITTLE_SYM
14196#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_symbian_vec
14197#undef  TARGET_LITTLE_NAME
14198#define TARGET_LITTLE_NAME              "elf32-littlearm-symbian"
14199#undef  TARGET_BIG_SYM
14200#define TARGET_BIG_SYM                  bfd_elf32_bigarm_symbian_vec
14201#undef  TARGET_BIG_NAME
14202#define TARGET_BIG_NAME                 "elf32-bigarm-symbian"
14203
14204/* Like elf32_arm_link_hash_table_create -- but overrides
14205   appropriately for Symbian OS.  */
14206
14207static struct bfd_link_hash_table *
14208elf32_arm_symbian_link_hash_table_create (bfd *abfd)
14209{
14210  struct bfd_link_hash_table *ret;
14211
14212  ret = elf32_arm_link_hash_table_create (abfd);
14213  if (ret)
14214    {
14215      struct elf32_arm_link_hash_table *htab
14216	= (struct elf32_arm_link_hash_table *)ret;
14217      /* There is no PLT header for Symbian OS.  */
14218      htab->plt_header_size = 0;
14219      /* The PLT entries are each one instruction and one word.  */
14220      htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
14221      htab->symbian_p = 1;
14222      /* Symbian uses armv5t or above, so use_blx is always true.  */
14223      htab->use_blx = 1;
14224      htab->root.is_relocatable_executable = 1;
14225    }
14226  return ret;
14227}
14228
14229static const struct bfd_elf_special_section
14230elf32_arm_symbian_special_sections[] =
14231{
14232  /* In a BPABI executable, the dynamic linking sections do not go in
14233     the loadable read-only segment.  The post-linker may wish to
14234     refer to these sections, but they are not part of the final
14235     program image.  */
14236  { STRING_COMMA_LEN (".dynamic"),       0, SHT_DYNAMIC,  0 },
14237  { STRING_COMMA_LEN (".dynstr"),        0, SHT_STRTAB,   0 },
14238  { STRING_COMMA_LEN (".dynsym"),        0, SHT_DYNSYM,   0 },
14239  { STRING_COMMA_LEN (".got"),           0, SHT_PROGBITS, 0 },
14240  { STRING_COMMA_LEN (".hash"),          0, SHT_HASH,     0 },
14241  /* These sections do not need to be writable as the SymbianOS
14242     postlinker will arrange things so that no dynamic relocation is
14243     required.  */
14244  { STRING_COMMA_LEN (".init_array"),    0, SHT_INIT_ARRAY,    SHF_ALLOC },
14245  { STRING_COMMA_LEN (".fini_array"),    0, SHT_FINI_ARRAY,    SHF_ALLOC },
14246  { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
14247  { NULL,                             0, 0, 0,                 0 }
14248};
14249
14250static void
14251elf32_arm_symbian_begin_write_processing (bfd *abfd,
14252					  struct bfd_link_info *link_info)
14253{
14254  /* BPABI objects are never loaded directly by an OS kernel; they are
14255     processed by a postlinker first, into an OS-specific format.  If
14256     the D_PAGED bit is set on the file, BFD will align segments on
14257     page boundaries, so that an OS can directly map the file.  With
14258     BPABI objects, that just results in wasted space.  In addition,
14259     because we clear the D_PAGED bit, map_sections_to_segments will
14260     recognize that the program headers should not be mapped into any
14261     loadable segment.  */
14262  abfd->flags &= ~D_PAGED;
14263  elf32_arm_begin_write_processing (abfd, link_info);
14264}
14265
14266static bfd_boolean
14267elf32_arm_symbian_modify_segment_map (bfd *abfd,
14268				      struct bfd_link_info *info)
14269{
14270  struct elf_segment_map *m;
14271  asection *dynsec;
14272
14273  /* BPABI shared libraries and executables should have a PT_DYNAMIC
14274     segment.  However, because the .dynamic section is not marked
14275     with SEC_LOAD, the generic ELF code will not create such a
14276     segment.  */
14277  dynsec = bfd_get_section_by_name (abfd, ".dynamic");
14278  if (dynsec)
14279    {
14280      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
14281	if (m->p_type == PT_DYNAMIC)
14282	  break;
14283
14284      if (m == NULL)
14285	{
14286	  m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
14287	  m->next = elf_tdata (abfd)->segment_map;
14288	  elf_tdata (abfd)->segment_map = m;
14289	}
14290    }
14291
14292  /* Also call the generic arm routine.  */
14293  return elf32_arm_modify_segment_map (abfd, info);
14294}
14295
14296/* Return address for Ith PLT stub in section PLT, for relocation REL
14297   or (bfd_vma) -1 if it should not be included.  */
14298
14299static bfd_vma
14300elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
14301			       const arelent *rel ATTRIBUTE_UNUSED)
14302{
14303  return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
14304}
14305
14306
14307#undef  elf32_bed
14308#define elf32_bed elf32_arm_symbian_bed
14309
14310/* The dynamic sections are not allocated on SymbianOS; the postlinker
14311   will process them and then discard them.  */
14312#undef  ELF_DYNAMIC_SEC_FLAGS
14313#define ELF_DYNAMIC_SEC_FLAGS \
14314  (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
14315
14316#undef elf_backend_add_symbol_hook
14317#undef elf_backend_emit_relocs
14318
14319#undef  bfd_elf32_bfd_link_hash_table_create
14320#define bfd_elf32_bfd_link_hash_table_create	elf32_arm_symbian_link_hash_table_create
14321#undef  elf_backend_special_sections
14322#define elf_backend_special_sections 		elf32_arm_symbian_special_sections
14323#undef  elf_backend_begin_write_processing
14324#define elf_backend_begin_write_processing	elf32_arm_symbian_begin_write_processing
14325#undef  elf_backend_final_write_processing
14326#define elf_backend_final_write_processing	elf32_arm_final_write_processing
14327
14328#undef  elf_backend_modify_segment_map
14329#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
14330
14331/* There is no .got section for BPABI objects, and hence no header.  */
14332#undef  elf_backend_got_header_size
14333#define elf_backend_got_header_size 0
14334
14335/* Similarly, there is no .got.plt section.  */
14336#undef  elf_backend_want_got_plt
14337#define elf_backend_want_got_plt 0
14338
14339#undef  elf_backend_plt_sym_val
14340#define elf_backend_plt_sym_val		elf32_arm_symbian_plt_sym_val
14341
14342#undef  elf_backend_may_use_rel_p
14343#define elf_backend_may_use_rel_p	1
14344#undef  elf_backend_may_use_rela_p
14345#define elf_backend_may_use_rela_p	0
14346#undef  elf_backend_default_use_rela_p
14347#define elf_backend_default_use_rela_p	0
14348#undef  elf_backend_want_plt_sym
14349#define elf_backend_want_plt_sym	0
14350#undef  ELF_MAXPAGESIZE
14351#define ELF_MAXPAGESIZE			0x8000
14352
14353#include "elf32-target.h"
14354