1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Pool import support functions.
28 *
29 * To import a pool, we rely on reading the configuration information from the
30 * ZFS label of each device.  If we successfully read the label, then we
31 * organize the configuration information in the following hierarchy:
32 *
33 * 	pool guid -> toplevel vdev guid -> label txg
34 *
35 * Duplicate entries matching this same tuple will be discarded.  Once we have
36 * examined every device, we pick the best label txg config for each toplevel
37 * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
38 * update any paths that have changed.  Finally, we attempt to import the pool
39 * using our derived config, and record the results.
40 */
41
42#include <devid.h>
43#include <dirent.h>
44#include <errno.h>
45#include <libintl.h>
46#include <stdlib.h>
47#include <string.h>
48#include <sys/stat.h>
49#include <unistd.h>
50#include <fcntl.h>
51
52#include <sys/vdev_impl.h>
53
54#include "libzfs.h"
55#include "libzfs_impl.h"
56
57/*
58 * Intermediate structures used to gather configuration information.
59 */
60typedef struct config_entry {
61	uint64_t		ce_txg;
62	nvlist_t		*ce_config;
63	struct config_entry	*ce_next;
64} config_entry_t;
65
66typedef struct vdev_entry {
67	uint64_t		ve_guid;
68	config_entry_t		*ve_configs;
69	struct vdev_entry	*ve_next;
70} vdev_entry_t;
71
72typedef struct pool_entry {
73	uint64_t		pe_guid;
74	vdev_entry_t		*pe_vdevs;
75	struct pool_entry	*pe_next;
76} pool_entry_t;
77
78typedef struct name_entry {
79	char			*ne_name;
80	uint64_t		ne_guid;
81	struct name_entry	*ne_next;
82} name_entry_t;
83
84typedef struct pool_list {
85	pool_entry_t		*pools;
86	name_entry_t		*names;
87} pool_list_t;
88
89static char *
90get_devid(const char *path)
91{
92	int fd;
93	ddi_devid_t devid;
94	char *minor, *ret;
95
96	if ((fd = open(path, O_RDONLY)) < 0)
97		return (NULL);
98
99	minor = NULL;
100	ret = NULL;
101	if (devid_get(fd, &devid) == 0) {
102		if (devid_get_minor_name(fd, &minor) == 0)
103			ret = devid_str_encode(devid, minor);
104		if (minor != NULL)
105			devid_str_free(minor);
106		devid_free(devid);
107	}
108	(void) close(fd);
109
110	return (ret);
111}
112
113
114/*
115 * Go through and fix up any path and/or devid information for the given vdev
116 * configuration.
117 */
118static int
119fix_paths(nvlist_t *nv, name_entry_t *names)
120{
121	nvlist_t **child;
122	uint_t c, children;
123	uint64_t guid;
124	name_entry_t *ne, *best;
125	char *path, *devid;
126	int matched;
127
128	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
129	    &child, &children) == 0) {
130		for (c = 0; c < children; c++)
131			if (fix_paths(child[c], names) != 0)
132				return (-1);
133		return (0);
134	}
135
136	/*
137	 * This is a leaf (file or disk) vdev.  In either case, go through
138	 * the name list and see if we find a matching guid.  If so, replace
139	 * the path and see if we can calculate a new devid.
140	 *
141	 * There may be multiple names associated with a particular guid, in
142	 * which case we have overlapping slices or multiple paths to the same
143	 * disk.  If this is the case, then we want to pick the path that is
144	 * the most similar to the original, where "most similar" is the number
145	 * of matching characters starting from the end of the path.  This will
146	 * preserve slice numbers even if the disks have been reorganized, and
147	 * will also catch preferred disk names if multiple paths exist.
148	 */
149	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
150	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
151		path = NULL;
152
153	matched = 0;
154	best = NULL;
155	for (ne = names; ne != NULL; ne = ne->ne_next) {
156		if (ne->ne_guid == guid) {
157			const char *src, *dst;
158			int count;
159
160			if (path == NULL) {
161				best = ne;
162				break;
163			}
164
165			src = ne->ne_name + strlen(ne->ne_name) - 1;
166			dst = path + strlen(path) - 1;
167			for (count = 0; src >= ne->ne_name && dst >= path;
168			    src--, dst--, count++)
169				if (*src != *dst)
170					break;
171
172			/*
173			 * At this point, 'count' is the number of characters
174			 * matched from the end.
175			 */
176			if (count > matched || best == NULL) {
177				best = ne;
178				matched = count;
179			}
180		}
181	}
182
183	if (best == NULL)
184		return (0);
185
186	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
187		return (-1);
188
189	if ((devid = get_devid(best->ne_name)) == NULL) {
190		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
191	} else {
192		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
193			return (-1);
194		devid_str_free(devid);
195	}
196
197	return (0);
198}
199
200/*
201 * Add the given configuration to the list of known devices.
202 */
203static int
204add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
205    nvlist_t *config)
206{
207	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
208	pool_entry_t *pe;
209	vdev_entry_t *ve;
210	config_entry_t *ce;
211	name_entry_t *ne;
212
213	/*
214	 * If this is a hot spare not currently in use or level 2 cache
215	 * device, add it to the list of names to translate, but don't do
216	 * anything else.
217	 */
218	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
219	    &state) == 0 &&
220	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
221	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
222		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
223			return (-1);
224
225		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
226			free(ne);
227			return (-1);
228		}
229		ne->ne_guid = vdev_guid;
230		ne->ne_next = pl->names;
231		pl->names = ne;
232		return (0);
233	}
234
235	/*
236	 * If we have a valid config but cannot read any of these fields, then
237	 * it means we have a half-initialized label.  In vdev_label_init()
238	 * we write a label with txg == 0 so that we can identify the device
239	 * in case the user refers to the same disk later on.  If we fail to
240	 * create the pool, we'll be left with a label in this state
241	 * which should not be considered part of a valid pool.
242	 */
243	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
244	    &pool_guid) != 0 ||
245	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
246	    &vdev_guid) != 0 ||
247	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
248	    &top_guid) != 0 ||
249	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
250	    &txg) != 0 || txg == 0) {
251		nvlist_free(config);
252		return (0);
253	}
254
255	/*
256	 * First, see if we know about this pool.  If not, then add it to the
257	 * list of known pools.
258	 */
259	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
260		if (pe->pe_guid == pool_guid)
261			break;
262	}
263
264	if (pe == NULL) {
265		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
266			nvlist_free(config);
267			return (-1);
268		}
269		pe->pe_guid = pool_guid;
270		pe->pe_next = pl->pools;
271		pl->pools = pe;
272	}
273
274	/*
275	 * Second, see if we know about this toplevel vdev.  Add it if its
276	 * missing.
277	 */
278	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
279		if (ve->ve_guid == top_guid)
280			break;
281	}
282
283	if (ve == NULL) {
284		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
285			nvlist_free(config);
286			return (-1);
287		}
288		ve->ve_guid = top_guid;
289		ve->ve_next = pe->pe_vdevs;
290		pe->pe_vdevs = ve;
291	}
292
293	/*
294	 * Third, see if we have a config with a matching transaction group.  If
295	 * so, then we do nothing.  Otherwise, add it to the list of known
296	 * configs.
297	 */
298	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
299		if (ce->ce_txg == txg)
300			break;
301	}
302
303	if (ce == NULL) {
304		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
305			nvlist_free(config);
306			return (-1);
307		}
308		ce->ce_txg = txg;
309		ce->ce_config = config;
310		ce->ce_next = ve->ve_configs;
311		ve->ve_configs = ce;
312	} else {
313		nvlist_free(config);
314	}
315
316	/*
317	 * At this point we've successfully added our config to the list of
318	 * known configs.  The last thing to do is add the vdev guid -> path
319	 * mappings so that we can fix up the configuration as necessary before
320	 * doing the import.
321	 */
322	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
323		return (-1);
324
325	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
326		free(ne);
327		return (-1);
328	}
329
330	ne->ne_guid = vdev_guid;
331	ne->ne_next = pl->names;
332	pl->names = ne;
333
334	return (0);
335}
336
337/*
338 * Returns true if the named pool matches the given GUID.
339 */
340static int
341pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
342    boolean_t *isactive)
343{
344	zpool_handle_t *zhp;
345	uint64_t theguid;
346
347	if (zpool_open_silent(hdl, name, &zhp) != 0)
348		return (-1);
349
350	if (zhp == NULL) {
351		*isactive = B_FALSE;
352		return (0);
353	}
354
355	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
356	    &theguid) == 0);
357
358	zpool_close(zhp);
359
360	*isactive = (theguid == guid);
361	return (0);
362}
363
364static nvlist_t *
365refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
366{
367	nvlist_t *nvl;
368	zfs_cmd_t zc = { 0 };
369	int err;
370
371	if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
372		return (NULL);
373
374	if (zcmd_alloc_dst_nvlist(hdl, &zc,
375	    zc.zc_nvlist_conf_size * 2) != 0) {
376		zcmd_free_nvlists(&zc);
377		return (NULL);
378	}
379
380	while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
381	    &zc)) != 0 && errno == ENOMEM) {
382		if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
383			zcmd_free_nvlists(&zc);
384			return (NULL);
385		}
386	}
387
388	if (err) {
389		zcmd_free_nvlists(&zc);
390		return (NULL);
391	}
392
393	if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
394		zcmd_free_nvlists(&zc);
395		return (NULL);
396	}
397
398	zcmd_free_nvlists(&zc);
399	return (nvl);
400}
401
402/*
403 * Determine if the vdev id is a hole in the namespace.
404 */
405boolean_t
406vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
407{
408	for (int c = 0; c < holes; c++) {
409
410		/* Top-level is a hole */
411		if (hole_array[c] == id)
412			return (B_TRUE);
413	}
414	return (B_FALSE);
415}
416
417/*
418 * Convert our list of pools into the definitive set of configurations.  We
419 * start by picking the best config for each toplevel vdev.  Once that's done,
420 * we assemble the toplevel vdevs into a full config for the pool.  We make a
421 * pass to fix up any incorrect paths, and then add it to the main list to
422 * return to the user.
423 */
424static nvlist_t *
425get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
426{
427	pool_entry_t *pe;
428	vdev_entry_t *ve;
429	config_entry_t *ce;
430	nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
431	nvlist_t **spares, **l2cache;
432	uint_t i, nspares, nl2cache;
433	boolean_t config_seen;
434	uint64_t best_txg;
435	char *name, *hostname;
436	uint64_t version, guid;
437	uint_t children = 0;
438	nvlist_t **child = NULL;
439	uint_t holes;
440	uint64_t *hole_array, max_id;
441	uint_t c;
442	boolean_t isactive;
443	uint64_t hostid;
444	nvlist_t *nvl;
445	boolean_t found_one = B_FALSE;
446	boolean_t valid_top_config = B_FALSE;
447
448	if (nvlist_alloc(&ret, 0, 0) != 0)
449		goto nomem;
450
451	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
452		uint64_t id, max_txg = 0;
453
454		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
455			goto nomem;
456		config_seen = B_FALSE;
457
458		/*
459		 * Iterate over all toplevel vdevs.  Grab the pool configuration
460		 * from the first one we find, and then go through the rest and
461		 * add them as necessary to the 'vdevs' member of the config.
462		 */
463		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
464
465			/*
466			 * Determine the best configuration for this vdev by
467			 * selecting the config with the latest transaction
468			 * group.
469			 */
470			best_txg = 0;
471			for (ce = ve->ve_configs; ce != NULL;
472			    ce = ce->ce_next) {
473
474				if (ce->ce_txg > best_txg) {
475					tmp = ce->ce_config;
476					best_txg = ce->ce_txg;
477				}
478			}
479
480			/*
481			 * We rely on the fact that the max txg for the
482			 * pool will contain the most up-to-date information
483			 * about the valid top-levels in the vdev namespace.
484			 */
485			if (best_txg > max_txg) {
486				(void) nvlist_remove(config,
487				    ZPOOL_CONFIG_VDEV_CHILDREN,
488				    DATA_TYPE_UINT64);
489				(void) nvlist_remove(config,
490				    ZPOOL_CONFIG_HOLE_ARRAY,
491				    DATA_TYPE_UINT64_ARRAY);
492
493				max_txg = best_txg;
494				hole_array = NULL;
495				holes = 0;
496				max_id = 0;
497				valid_top_config = B_FALSE;
498
499				if (nvlist_lookup_uint64(tmp,
500				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
501					verify(nvlist_add_uint64(config,
502					    ZPOOL_CONFIG_VDEV_CHILDREN,
503					    max_id) == 0);
504					valid_top_config = B_TRUE;
505				}
506
507				if (nvlist_lookup_uint64_array(tmp,
508				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
509				    &holes) == 0) {
510					verify(nvlist_add_uint64_array(config,
511					    ZPOOL_CONFIG_HOLE_ARRAY,
512					    hole_array, holes) == 0);
513				}
514			}
515
516			if (!config_seen) {
517				/*
518				 * Copy the relevant pieces of data to the pool
519				 * configuration:
520				 *
521				 *	version
522				 * 	pool guid
523				 * 	name
524				 * 	pool state
525				 *	hostid (if available)
526				 *	hostname (if available)
527				 */
528				uint64_t state;
529
530				verify(nvlist_lookup_uint64(tmp,
531				    ZPOOL_CONFIG_VERSION, &version) == 0);
532				if (nvlist_add_uint64(config,
533				    ZPOOL_CONFIG_VERSION, version) != 0)
534					goto nomem;
535				verify(nvlist_lookup_uint64(tmp,
536				    ZPOOL_CONFIG_POOL_GUID, &guid) == 0);
537				if (nvlist_add_uint64(config,
538				    ZPOOL_CONFIG_POOL_GUID, guid) != 0)
539					goto nomem;
540				verify(nvlist_lookup_string(tmp,
541				    ZPOOL_CONFIG_POOL_NAME, &name) == 0);
542				if (nvlist_add_string(config,
543				    ZPOOL_CONFIG_POOL_NAME, name) != 0)
544					goto nomem;
545				verify(nvlist_lookup_uint64(tmp,
546				    ZPOOL_CONFIG_POOL_STATE, &state) == 0);
547				if (nvlist_add_uint64(config,
548				    ZPOOL_CONFIG_POOL_STATE, state) != 0)
549					goto nomem;
550				hostid = 0;
551				if (nvlist_lookup_uint64(tmp,
552				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
553					if (nvlist_add_uint64(config,
554					    ZPOOL_CONFIG_HOSTID, hostid) != 0)
555						goto nomem;
556					verify(nvlist_lookup_string(tmp,
557					    ZPOOL_CONFIG_HOSTNAME,
558					    &hostname) == 0);
559					if (nvlist_add_string(config,
560					    ZPOOL_CONFIG_HOSTNAME,
561					    hostname) != 0)
562						goto nomem;
563				}
564
565				config_seen = B_TRUE;
566			}
567
568			/*
569			 * Add this top-level vdev to the child array.
570			 */
571			verify(nvlist_lookup_nvlist(tmp,
572			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
573			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
574			    &id) == 0);
575
576			if (id >= children) {
577				nvlist_t **newchild;
578
579				newchild = zfs_alloc(hdl, (id + 1) *
580				    sizeof (nvlist_t *));
581				if (newchild == NULL)
582					goto nomem;
583
584				for (c = 0; c < children; c++)
585					newchild[c] = child[c];
586
587				free(child);
588				child = newchild;
589				children = id + 1;
590			}
591			if (nvlist_dup(nvtop, &child[id], 0) != 0)
592				goto nomem;
593
594		}
595
596		/*
597		 * If we have information about all the top-levels then
598		 * clean up the nvlist which we've constructed. This
599		 * means removing any extraneous devices that are
600		 * beyond the valid range or adding devices to the end
601		 * of our array which appear to be missing.
602		 */
603		if (valid_top_config) {
604			if (max_id < children) {
605				for (c = max_id; c < children; c++)
606					nvlist_free(child[c]);
607				children = max_id;
608			} else if (max_id > children) {
609				nvlist_t **newchild;
610
611				newchild = zfs_alloc(hdl, (max_id) *
612				    sizeof (nvlist_t *));
613				if (newchild == NULL)
614					goto nomem;
615
616				for (c = 0; c < children; c++)
617					newchild[c] = child[c];
618
619				free(child);
620				child = newchild;
621				children = max_id;
622			}
623		}
624
625		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
626		    &guid) == 0);
627
628		/*
629		 * The vdev namespace may contain holes as a result of
630		 * device removal. We must add them back into the vdev
631		 * tree before we process any missing devices.
632		 */
633		if (holes > 0) {
634			ASSERT(valid_top_config);
635
636			for (c = 0; c < children; c++) {
637				nvlist_t *holey;
638
639				if (child[c] != NULL ||
640				    !vdev_is_hole(hole_array, holes, c))
641					continue;
642
643				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
644				    0) != 0)
645					goto nomem;
646
647				/*
648				 * Holes in the namespace are treated as
649				 * "hole" top-level vdevs and have a
650				 * special flag set on them.
651				 */
652				if (nvlist_add_string(holey,
653				    ZPOOL_CONFIG_TYPE,
654				    VDEV_TYPE_HOLE) != 0 ||
655				    nvlist_add_uint64(holey,
656				    ZPOOL_CONFIG_ID, c) != 0 ||
657				    nvlist_add_uint64(holey,
658				    ZPOOL_CONFIG_GUID, 0ULL) != 0)
659					goto nomem;
660				child[c] = holey;
661			}
662		}
663
664		/*
665		 * Look for any missing top-level vdevs.  If this is the case,
666		 * create a faked up 'missing' vdev as a placeholder.  We cannot
667		 * simply compress the child array, because the kernel performs
668		 * certain checks to make sure the vdev IDs match their location
669		 * in the configuration.
670		 */
671		for (c = 0; c < children; c++) {
672			if (child[c] == NULL) {
673				nvlist_t *missing;
674				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
675				    0) != 0)
676					goto nomem;
677				if (nvlist_add_string(missing,
678				    ZPOOL_CONFIG_TYPE,
679				    VDEV_TYPE_MISSING) != 0 ||
680				    nvlist_add_uint64(missing,
681				    ZPOOL_CONFIG_ID, c) != 0 ||
682				    nvlist_add_uint64(missing,
683				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
684					nvlist_free(missing);
685					goto nomem;
686				}
687				child[c] = missing;
688			}
689		}
690
691		/*
692		 * Put all of this pool's top-level vdevs into a root vdev.
693		 */
694		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
695			goto nomem;
696		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
697		    VDEV_TYPE_ROOT) != 0 ||
698		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
699		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
700		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
701		    child, children) != 0) {
702			nvlist_free(nvroot);
703			goto nomem;
704		}
705
706		for (c = 0; c < children; c++)
707			nvlist_free(child[c]);
708		free(child);
709		children = 0;
710		child = NULL;
711
712		/*
713		 * Go through and fix up any paths and/or devids based on our
714		 * known list of vdev GUID -> path mappings.
715		 */
716		if (fix_paths(nvroot, pl->names) != 0) {
717			nvlist_free(nvroot);
718			goto nomem;
719		}
720
721		/*
722		 * Add the root vdev to this pool's configuration.
723		 */
724		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
725		    nvroot) != 0) {
726			nvlist_free(nvroot);
727			goto nomem;
728		}
729		nvlist_free(nvroot);
730
731		/*
732		 * zdb uses this path to report on active pools that were
733		 * imported or created using -R.
734		 */
735		if (active_ok)
736			goto add_pool;
737
738		/*
739		 * Determine if this pool is currently active, in which case we
740		 * can't actually import it.
741		 */
742		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
743		    &name) == 0);
744		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
745		    &guid) == 0);
746
747		if (pool_active(hdl, name, guid, &isactive) != 0)
748			goto error;
749
750		if (isactive) {
751			nvlist_free(config);
752			config = NULL;
753			continue;
754		}
755
756		if ((nvl = refresh_config(hdl, config)) == NULL) {
757			nvlist_free(config);
758			config = NULL;
759			continue;
760		}
761
762		nvlist_free(config);
763		config = nvl;
764
765		/*
766		 * Go through and update the paths for spares, now that we have
767		 * them.
768		 */
769		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
770		    &nvroot) == 0);
771		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
772		    &spares, &nspares) == 0) {
773			for (i = 0; i < nspares; i++) {
774				if (fix_paths(spares[i], pl->names) != 0)
775					goto nomem;
776			}
777		}
778
779		/*
780		 * Update the paths for l2cache devices.
781		 */
782		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
783		    &l2cache, &nl2cache) == 0) {
784			for (i = 0; i < nl2cache; i++) {
785				if (fix_paths(l2cache[i], pl->names) != 0)
786					goto nomem;
787			}
788		}
789
790		/*
791		 * Restore the original information read from the actual label.
792		 */
793		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
794		    DATA_TYPE_UINT64);
795		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
796		    DATA_TYPE_STRING);
797		if (hostid != 0) {
798			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
799			    hostid) == 0);
800			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
801			    hostname) == 0);
802		}
803
804add_pool:
805		/*
806		 * Add this pool to the list of configs.
807		 */
808		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
809		    &name) == 0);
810		if (nvlist_add_nvlist(ret, name, config) != 0)
811			goto nomem;
812
813		found_one = B_TRUE;
814		nvlist_free(config);
815		config = NULL;
816	}
817
818	if (!found_one) {
819		nvlist_free(ret);
820		ret = NULL;
821	}
822
823	return (ret);
824
825nomem:
826	(void) no_memory(hdl);
827error:
828	nvlist_free(config);
829	nvlist_free(ret);
830	for (c = 0; c < children; c++)
831		nvlist_free(child[c]);
832	free(child);
833
834	return (NULL);
835}
836
837/*
838 * Return the offset of the given label.
839 */
840static uint64_t
841label_offset(uint64_t size, int l)
842{
843	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
844	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
845	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
846}
847
848/*
849 * Given a file descriptor, read the label information and return an nvlist
850 * describing the configuration, if there is one.
851 */
852int
853zpool_read_label(int fd, nvlist_t **config)
854{
855	struct stat64 statbuf;
856	int l;
857	vdev_label_t *label;
858	uint64_t state, txg, size;
859
860	*config = NULL;
861
862	if (fstat64(fd, &statbuf) == -1)
863		return (0);
864	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
865
866	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
867		return (-1);
868
869	for (l = 0; l < VDEV_LABELS; l++) {
870		if (pread64(fd, label, sizeof (vdev_label_t),
871		    label_offset(size, l)) != sizeof (vdev_label_t))
872			continue;
873
874		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
875		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
876			continue;
877
878		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
879		    &state) != 0 || state > POOL_STATE_L2CACHE) {
880			nvlist_free(*config);
881			continue;
882		}
883
884		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
885		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
886		    &txg) != 0 || txg == 0)) {
887			nvlist_free(*config);
888			continue;
889		}
890
891		free(label);
892		return (0);
893	}
894
895	free(label);
896	*config = NULL;
897	return (0);
898}
899
900/*
901 * Given a file descriptor, clear (zero) the label information.  This function
902 * is currently only used in the appliance stack as part of the ZFS sysevent
903 * module.
904 */
905int
906zpool_clear_label(int fd)
907{
908	struct stat64 statbuf;
909	int l;
910	vdev_label_t *label;
911	uint64_t size;
912
913	if (fstat64(fd, &statbuf) == -1)
914		return (0);
915	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
916
917	if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
918		return (-1);
919
920	for (l = 0; l < VDEV_LABELS; l++) {
921		if (pwrite64(fd, label, sizeof (vdev_label_t),
922		    label_offset(size, l)) != sizeof (vdev_label_t))
923			return (-1);
924	}
925
926	free(label);
927	return (0);
928}
929
930/*
931 * Given a list of directories to search, find all pools stored on disk.  This
932 * includes partial pools which are not available to import.  If no args are
933 * given (argc is 0), then the default directory (/dev/dsk) is searched.
934 * poolname or guid (but not both) are provided by the caller when trying
935 * to import a specific pool.
936 */
937static nvlist_t *
938zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
939{
940	int i, dirs = iarg->paths;
941	DIR *dirp = NULL;
942	struct dirent64 *dp;
943	char path[MAXPATHLEN];
944	char *end, **dir = iarg->path;
945	size_t pathleft;
946	struct stat64 statbuf;
947	nvlist_t *ret = NULL, *config;
948	static char *default_dir = "/dev/dsk";
949	int fd;
950	pool_list_t pools = { 0 };
951	pool_entry_t *pe, *penext;
952	vdev_entry_t *ve, *venext;
953	config_entry_t *ce, *cenext;
954	name_entry_t *ne, *nenext;
955
956	if (dirs == 0) {
957		dirs = 1;
958		dir = &default_dir;
959	}
960
961	/*
962	 * Go through and read the label configuration information from every
963	 * possible device, organizing the information according to pool GUID
964	 * and toplevel GUID.
965	 */
966	for (i = 0; i < dirs; i++) {
967		char *rdsk;
968		int dfd;
969
970		/* use realpath to normalize the path */
971		if (realpath(dir[i], path) == 0) {
972			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
973			    dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
974			goto error;
975		}
976		end = &path[strlen(path)];
977		*end++ = '/';
978		*end = 0;
979		pathleft = &path[sizeof (path)] - end;
980
981		/*
982		 * Using raw devices instead of block devices when we're
983		 * reading the labels skips a bunch of slow operations during
984		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
985		 */
986		if (strcmp(path, "/dev/dsk/") == 0)
987			rdsk = "/dev/rdsk/";
988		else
989			rdsk = path;
990
991		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
992		    (dirp = fdopendir(dfd)) == NULL) {
993			zfs_error_aux(hdl, strerror(errno));
994			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
995			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
996			    rdsk);
997			goto error;
998		}
999
1000		/*
1001		 * This is not MT-safe, but we have no MT consumers of libzfs
1002		 */
1003		while ((dp = readdir64(dirp)) != NULL) {
1004			const char *name = dp->d_name;
1005			if (name[0] == '.' &&
1006			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1007				continue;
1008
1009			(void)snprintf(path, sizeof (path), "%s/%s",
1010			    rdsk, dp->d_name);
1011
1012			if ((fd = open(path, O_RDONLY)) < 0)
1013				continue;
1014
1015			/*
1016			 * Ignore failed stats.  We only want regular
1017			 * files, character devs and block devs.
1018			 */
1019			if (fstat64(fd, &statbuf) != 0 ||
1020			    (!S_ISREG(statbuf.st_mode) &&
1021			    !S_ISCHR(statbuf.st_mode) &&
1022			    !S_ISBLK(statbuf.st_mode))) {
1023				(void) close(fd);
1024				continue;
1025			}
1026
1027			if ((zpool_read_label(fd, &config)) != 0) {
1028				(void) close(fd);
1029				(void) no_memory(hdl);
1030				goto error;
1031			}
1032
1033			(void) close(fd);
1034
1035			if (config != NULL) {
1036				boolean_t matched = B_TRUE;
1037
1038				if (iarg->poolname != NULL) {
1039					char *pname;
1040
1041					matched = nvlist_lookup_string(config,
1042					    ZPOOL_CONFIG_POOL_NAME,
1043					    &pname) == 0 &&
1044					    strcmp(iarg->poolname, pname) == 0;
1045				} else if (iarg->guid != 0) {
1046					uint64_t this_guid;
1047
1048					matched = nvlist_lookup_uint64(config,
1049					    ZPOOL_CONFIG_POOL_GUID,
1050					    &this_guid) == 0 &&
1051					    iarg->guid == this_guid;
1052				}
1053				if (!matched) {
1054					nvlist_free(config);
1055					config = NULL;
1056					continue;
1057				}
1058				/* use the non-raw path for the config */
1059				(void) strlcpy(end, name, pathleft);
1060				if (add_config(hdl, &pools, path, config) != 0)
1061					goto error;
1062			}
1063		}
1064
1065		(void) closedir(dirp);
1066		dirp = NULL;
1067	}
1068
1069	ret = get_configs(hdl, &pools, iarg->can_be_active);
1070
1071error:
1072	for (pe = pools.pools; pe != NULL; pe = penext) {
1073		penext = pe->pe_next;
1074		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1075			venext = ve->ve_next;
1076			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1077				cenext = ce->ce_next;
1078				if (ce->ce_config)
1079					nvlist_free(ce->ce_config);
1080				free(ce);
1081			}
1082			free(ve);
1083		}
1084		free(pe);
1085	}
1086
1087	for (ne = pools.names; ne != NULL; ne = nenext) {
1088		nenext = ne->ne_next;
1089		if (ne->ne_name)
1090			free(ne->ne_name);
1091		free(ne);
1092	}
1093
1094	if (dirp)
1095		(void) closedir(dirp);
1096
1097	return (ret);
1098}
1099
1100nvlist_t *
1101zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1102{
1103	importargs_t iarg = { 0 };
1104
1105	iarg.paths = argc;
1106	iarg.path = argv;
1107
1108	return (zpool_find_import_impl(hdl, &iarg));
1109}
1110
1111/*
1112 * Given a cache file, return the contents as a list of importable pools.
1113 * poolname or guid (but not both) are provided by the caller when trying
1114 * to import a specific pool.
1115 */
1116nvlist_t *
1117zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1118    char *poolname, uint64_t guid)
1119{
1120	char *buf;
1121	int fd;
1122	struct stat64 statbuf;
1123	nvlist_t *raw, *src, *dst;
1124	nvlist_t *pools;
1125	nvpair_t *elem;
1126	char *name;
1127	uint64_t this_guid;
1128	boolean_t active;
1129
1130	verify(poolname == NULL || guid == 0);
1131
1132	if ((fd = open(cachefile, O_RDONLY)) < 0) {
1133		zfs_error_aux(hdl, "%s", strerror(errno));
1134		(void) zfs_error(hdl, EZFS_BADCACHE,
1135		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1136		return (NULL);
1137	}
1138
1139	if (fstat64(fd, &statbuf) != 0) {
1140		zfs_error_aux(hdl, "%s", strerror(errno));
1141		(void) close(fd);
1142		(void) zfs_error(hdl, EZFS_BADCACHE,
1143		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1144		return (NULL);
1145	}
1146
1147	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1148		(void) close(fd);
1149		return (NULL);
1150	}
1151
1152	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1153		(void) close(fd);
1154		free(buf);
1155		(void) zfs_error(hdl, EZFS_BADCACHE,
1156		    dgettext(TEXT_DOMAIN,
1157		    "failed to read cache file contents"));
1158		return (NULL);
1159	}
1160
1161	(void) close(fd);
1162
1163	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1164		free(buf);
1165		(void) zfs_error(hdl, EZFS_BADCACHE,
1166		    dgettext(TEXT_DOMAIN,
1167		    "invalid or corrupt cache file contents"));
1168		return (NULL);
1169	}
1170
1171	free(buf);
1172
1173	/*
1174	 * Go through and get the current state of the pools and refresh their
1175	 * state.
1176	 */
1177	if (nvlist_alloc(&pools, 0, 0) != 0) {
1178		(void) no_memory(hdl);
1179		nvlist_free(raw);
1180		return (NULL);
1181	}
1182
1183	elem = NULL;
1184	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1185		verify(nvpair_value_nvlist(elem, &src) == 0);
1186
1187		verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME,
1188		    &name) == 0);
1189		if (poolname != NULL && strcmp(poolname, name) != 0)
1190			continue;
1191
1192		verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1193		    &this_guid) == 0);
1194		if (guid != 0) {
1195			verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1196			    &this_guid) == 0);
1197			if (guid != this_guid)
1198				continue;
1199		}
1200
1201		if (pool_active(hdl, name, this_guid, &active) != 0) {
1202			nvlist_free(raw);
1203			nvlist_free(pools);
1204			return (NULL);
1205		}
1206
1207		if (active)
1208			continue;
1209
1210		if ((dst = refresh_config(hdl, src)) == NULL) {
1211			nvlist_free(raw);
1212			nvlist_free(pools);
1213			return (NULL);
1214		}
1215
1216		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1217			(void) no_memory(hdl);
1218			nvlist_free(dst);
1219			nvlist_free(raw);
1220			nvlist_free(pools);
1221			return (NULL);
1222		}
1223		nvlist_free(dst);
1224	}
1225
1226	nvlist_free(raw);
1227	return (pools);
1228}
1229
1230static int
1231name_or_guid_exists(zpool_handle_t *zhp, void *data)
1232{
1233	importargs_t *import = data;
1234	int found = 0;
1235
1236	if (import->poolname != NULL) {
1237		char *pool_name;
1238
1239		verify(nvlist_lookup_string(zhp->zpool_config,
1240		    ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1241		if (strcmp(pool_name, import->poolname) == 0)
1242			found = 1;
1243	} else {
1244		uint64_t pool_guid;
1245
1246		verify(nvlist_lookup_uint64(zhp->zpool_config,
1247		    ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1248		if (pool_guid == import->guid)
1249			found = 1;
1250	}
1251
1252	zpool_close(zhp);
1253	return (found);
1254}
1255
1256nvlist_t *
1257zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1258{
1259	verify(import->poolname == NULL || import->guid == 0);
1260
1261	if (import->unique)
1262		import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1263
1264	if (import->cachefile != NULL)
1265		return (zpool_find_import_cached(hdl, import->cachefile,
1266		    import->poolname, import->guid));
1267
1268	return (zpool_find_import_impl(hdl, import));
1269}
1270
1271boolean_t
1272find_guid(nvlist_t *nv, uint64_t guid)
1273{
1274	uint64_t tmp;
1275	nvlist_t **child;
1276	uint_t c, children;
1277
1278	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1279	if (tmp == guid)
1280		return (B_TRUE);
1281
1282	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1283	    &child, &children) == 0) {
1284		for (c = 0; c < children; c++)
1285			if (find_guid(child[c], guid))
1286				return (B_TRUE);
1287	}
1288
1289	return (B_FALSE);
1290}
1291
1292typedef struct aux_cbdata {
1293	const char	*cb_type;
1294	uint64_t	cb_guid;
1295	zpool_handle_t	*cb_zhp;
1296} aux_cbdata_t;
1297
1298static int
1299find_aux(zpool_handle_t *zhp, void *data)
1300{
1301	aux_cbdata_t *cbp = data;
1302	nvlist_t **list;
1303	uint_t i, count;
1304	uint64_t guid;
1305	nvlist_t *nvroot;
1306
1307	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1308	    &nvroot) == 0);
1309
1310	if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1311	    &list, &count) == 0) {
1312		for (i = 0; i < count; i++) {
1313			verify(nvlist_lookup_uint64(list[i],
1314			    ZPOOL_CONFIG_GUID, &guid) == 0);
1315			if (guid == cbp->cb_guid) {
1316				cbp->cb_zhp = zhp;
1317				return (1);
1318			}
1319		}
1320	}
1321
1322	zpool_close(zhp);
1323	return (0);
1324}
1325
1326/*
1327 * Determines if the pool is in use.  If so, it returns true and the state of
1328 * the pool as well as the name of the pool.  Both strings are allocated and
1329 * must be freed by the caller.
1330 */
1331int
1332zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1333    boolean_t *inuse)
1334{
1335	nvlist_t *config;
1336	char *name;
1337	boolean_t ret;
1338	uint64_t guid, vdev_guid;
1339	zpool_handle_t *zhp;
1340	nvlist_t *pool_config;
1341	uint64_t stateval, isspare;
1342	aux_cbdata_t cb = { 0 };
1343	boolean_t isactive;
1344
1345	*inuse = B_FALSE;
1346
1347	if (zpool_read_label(fd, &config) != 0) {
1348		(void) no_memory(hdl);
1349		return (-1);
1350	}
1351
1352	if (config == NULL)
1353		return (0);
1354
1355	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1356	    &stateval) == 0);
1357	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1358	    &vdev_guid) == 0);
1359
1360	if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1361		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1362		    &name) == 0);
1363		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1364		    &guid) == 0);
1365	}
1366
1367	switch (stateval) {
1368	case POOL_STATE_EXPORTED:
1369		ret = B_TRUE;
1370		break;
1371
1372	case POOL_STATE_ACTIVE:
1373		/*
1374		 * For an active pool, we have to determine if it's really part
1375		 * of a currently active pool (in which case the pool will exist
1376		 * and the guid will be the same), or whether it's part of an
1377		 * active pool that was disconnected without being explicitly
1378		 * exported.
1379		 */
1380		if (pool_active(hdl, name, guid, &isactive) != 0) {
1381			nvlist_free(config);
1382			return (-1);
1383		}
1384
1385		if (isactive) {
1386			/*
1387			 * Because the device may have been removed while
1388			 * offlined, we only report it as active if the vdev is
1389			 * still present in the config.  Otherwise, pretend like
1390			 * it's not in use.
1391			 */
1392			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1393			    (pool_config = zpool_get_config(zhp, NULL))
1394			    != NULL) {
1395				nvlist_t *nvroot;
1396
1397				verify(nvlist_lookup_nvlist(pool_config,
1398				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1399				ret = find_guid(nvroot, vdev_guid);
1400			} else {
1401				ret = B_FALSE;
1402			}
1403
1404			/*
1405			 * If this is an active spare within another pool, we
1406			 * treat it like an unused hot spare.  This allows the
1407			 * user to create a pool with a hot spare that currently
1408			 * in use within another pool.  Since we return B_TRUE,
1409			 * libdiskmgt will continue to prevent generic consumers
1410			 * from using the device.
1411			 */
1412			if (ret && nvlist_lookup_uint64(config,
1413			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1414				stateval = POOL_STATE_SPARE;
1415
1416			if (zhp != NULL)
1417				zpool_close(zhp);
1418		} else {
1419			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1420			ret = B_TRUE;
1421		}
1422		break;
1423
1424	case POOL_STATE_SPARE:
1425		/*
1426		 * For a hot spare, it can be either definitively in use, or
1427		 * potentially active.  To determine if it's in use, we iterate
1428		 * over all pools in the system and search for one with a spare
1429		 * with a matching guid.
1430		 *
1431		 * Due to the shared nature of spares, we don't actually report
1432		 * the potentially active case as in use.  This means the user
1433		 * can freely create pools on the hot spares of exported pools,
1434		 * but to do otherwise makes the resulting code complicated, and
1435		 * we end up having to deal with this case anyway.
1436		 */
1437		cb.cb_zhp = NULL;
1438		cb.cb_guid = vdev_guid;
1439		cb.cb_type = ZPOOL_CONFIG_SPARES;
1440		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1441			name = (char *)zpool_get_name(cb.cb_zhp);
1442			ret = TRUE;
1443		} else {
1444			ret = FALSE;
1445		}
1446		break;
1447
1448	case POOL_STATE_L2CACHE:
1449
1450		/*
1451		 * Check if any pool is currently using this l2cache device.
1452		 */
1453		cb.cb_zhp = NULL;
1454		cb.cb_guid = vdev_guid;
1455		cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1456		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1457			name = (char *)zpool_get_name(cb.cb_zhp);
1458			ret = TRUE;
1459		} else {
1460			ret = FALSE;
1461		}
1462		break;
1463
1464	default:
1465		ret = B_FALSE;
1466	}
1467
1468
1469	if (ret) {
1470		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1471			if (cb.cb_zhp)
1472				zpool_close(cb.cb_zhp);
1473			nvlist_free(config);
1474			return (-1);
1475		}
1476		*state = (pool_state_t)stateval;
1477	}
1478
1479	if (cb.cb_zhp)
1480		zpool_close(cb.cb_zhp);
1481
1482	nvlist_free(config);
1483	*inuse = ret;
1484	return (0);
1485}
1486