1/* crypto/rand/md_rand.c */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to.  The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 *    must display the following acknowledgement:
33 *    "This product includes cryptographic software written by
34 *     Eric Young (eay@cryptsoft.com)"
35 *    The word 'cryptographic' can be left out if the rouines from the library
36 *    being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 *    the apps directory (application code) you must include an acknowledgement:
39 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 *    notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 *    notice, this list of conditions and the following disclaimer in
70 *    the documentation and/or other materials provided with the
71 *    distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 *    software must display the following acknowledgment:
75 *    "This product includes software developed by the OpenSSL Project
76 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 *    endorse or promote products derived from this software without
80 *    prior written permission. For written permission, please contact
81 *    openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 *    nor may "OpenSSL" appear in their names without prior written
85 *    permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 *    acknowledgment:
89 *    "This product includes software developed by the OpenSSL Project
90 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com).  This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112#define OPENSSL_FIPSEVP
113
114#ifdef MD_RAND_DEBUG
115# ifndef NDEBUG
116#   define NDEBUG
117# endif
118#endif
119
120#include <assert.h>
121#include <stdio.h>
122#include <string.h>
123
124#include "e_os.h"
125
126#include <openssl/crypto.h>
127#include <openssl/rand.h>
128#include "rand_lcl.h"
129
130#include <openssl/err.h>
131
132#ifdef BN_DEBUG
133# define PREDICT
134#endif
135
136/* #define PREDICT	1 */
137
138#define STATE_SIZE	1023
139static int state_num=0,state_index=0;
140static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH];
141static unsigned char md[MD_DIGEST_LENGTH];
142static long md_count[2]={0,0};
143static double entropy=0;
144
145static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
146                                           * holds CRYPTO_LOCK_RAND
147                                           * (to prevent double locking) */
148/* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
149static CRYPTO_THREADID locking_threadid; /* valid iff crypto_lock_rand is set */
150
151
152#ifdef PREDICT
153int rand_predictable=0;
154#endif
155
156const char RAND_version[]="RAND" OPENSSL_VERSION_PTEXT;
157
158static void ssleay_rand_cleanup(void);
159static void ssleay_rand_seed(const void *buf, int num);
160static void ssleay_rand_add(const void *buf, int num, double add_entropy);
161static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num);
162static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
163static int ssleay_rand_status(void);
164
165RAND_METHOD rand_ssleay_meth={
166	ssleay_rand_seed,
167	ssleay_rand_nopseudo_bytes,
168	ssleay_rand_cleanup,
169	ssleay_rand_add,
170	ssleay_rand_pseudo_bytes,
171	ssleay_rand_status
172	};
173
174RAND_METHOD *RAND_SSLeay(void)
175	{
176	return(&rand_ssleay_meth);
177	}
178
179static void ssleay_rand_cleanup(void)
180	{
181	OPENSSL_cleanse(state,sizeof(state));
182	state_num=0;
183	state_index=0;
184	OPENSSL_cleanse(md,MD_DIGEST_LENGTH);
185	md_count[0]=0;
186	md_count[1]=0;
187	entropy=0;
188	}
189
190static void ssleay_rand_add(const void *buf, int num, double add)
191	{
192	int i,j,k,st_idx;
193	long md_c[2];
194	unsigned char local_md[MD_DIGEST_LENGTH];
195	EVP_MD_CTX m;
196	int do_not_lock;
197
198	if (!num)
199		return;
200
201	/*
202	 * (Based on the rand(3) manpage)
203	 *
204	 * The input is chopped up into units of 20 bytes (or less for
205	 * the last block).  Each of these blocks is run through the hash
206	 * function as follows:  The data passed to the hash function
207	 * is the current 'md', the same number of bytes from the 'state'
208	 * (the location determined by in incremented looping index) as
209	 * the current 'block', the new key data 'block', and 'count'
210	 * (which is incremented after each use).
211	 * The result of this is kept in 'md' and also xored into the
212	 * 'state' at the same locations that were used as input into the
213         * hash function.
214	 */
215
216	/* check if we already have the lock */
217	if (crypto_lock_rand)
218		{
219		CRYPTO_THREADID cur;
220		CRYPTO_THREADID_current(&cur);
221		CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
222		do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
223		CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
224		}
225	else
226		do_not_lock = 0;
227
228	if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
229	st_idx=state_index;
230
231	/* use our own copies of the counters so that even
232	 * if a concurrent thread seeds with exactly the
233	 * same data and uses the same subarray there's _some_
234	 * difference */
235	md_c[0] = md_count[0];
236	md_c[1] = md_count[1];
237
238	memcpy(local_md, md, sizeof md);
239
240	/* state_index <= state_num <= STATE_SIZE */
241	state_index += num;
242	if (state_index >= STATE_SIZE)
243		{
244		state_index%=STATE_SIZE;
245		state_num=STATE_SIZE;
246		}
247	else if (state_num < STATE_SIZE)
248		{
249		if (state_index > state_num)
250			state_num=state_index;
251		}
252	/* state_index <= state_num <= STATE_SIZE */
253
254	/* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
255	 * are what we will use now, but other threads may use them
256	 * as well */
257
258	md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
259
260	if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
261
262	EVP_MD_CTX_init(&m);
263	for (i=0; i<num; i+=MD_DIGEST_LENGTH)
264		{
265		j=(num-i);
266		j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;
267
268		MD_Init(&m);
269		MD_Update(&m,local_md,MD_DIGEST_LENGTH);
270		k=(st_idx+j)-STATE_SIZE;
271		if (k > 0)
272			{
273			MD_Update(&m,&(state[st_idx]),j-k);
274			MD_Update(&m,&(state[0]),k);
275			}
276		else
277			MD_Update(&m,&(state[st_idx]),j);
278
279		/* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */
280		MD_Update(&m,buf,j);
281		/* We know that line may cause programs such as
282		   purify and valgrind to complain about use of
283		   uninitialized data.  The problem is not, it's
284		   with the caller.  Removing that line will make
285		   sure you get really bad randomness and thereby
286		   other problems such as very insecure keys. */
287
288		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
289		MD_Final(&m,local_md);
290		md_c[1]++;
291
292		buf=(const char *)buf + j;
293
294		for (k=0; k<j; k++)
295			{
296			/* Parallel threads may interfere with this,
297			 * but always each byte of the new state is
298			 * the XOR of some previous value of its
299			 * and local_md (itermediate values may be lost).
300			 * Alway using locking could hurt performance more
301			 * than necessary given that conflicts occur only
302			 * when the total seeding is longer than the random
303			 * state. */
304			state[st_idx++]^=local_md[k];
305			if (st_idx >= STATE_SIZE)
306				st_idx=0;
307			}
308		}
309	EVP_MD_CTX_cleanup(&m);
310
311	if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
312	/* Don't just copy back local_md into md -- this could mean that
313	 * other thread's seeding remains without effect (except for
314	 * the incremented counter).  By XORing it we keep at least as
315	 * much entropy as fits into md. */
316	for (k = 0; k < (int)sizeof(md); k++)
317		{
318		md[k] ^= local_md[k];
319		}
320	if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
321	    entropy += add;
322	if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
323
324#if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
325	assert(md_c[1] == md_count[1]);
326#endif
327	}
328
329static void ssleay_rand_seed(const void *buf, int num)
330	{
331	ssleay_rand_add(buf, num, (double)num);
332	}
333
334int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo, int lock)
335	{
336	static volatile int stirred_pool = 0;
337	int i,j,k,st_num,st_idx;
338	int num_ceil;
339	int ok;
340	long md_c[2];
341	unsigned char local_md[MD_DIGEST_LENGTH];
342	EVP_MD_CTX m;
343#ifndef GETPID_IS_MEANINGLESS
344	pid_t curr_pid = getpid();
345#endif
346	int do_stir_pool = 0;
347
348#ifdef PREDICT
349	if (rand_predictable)
350		{
351		static unsigned char val=0;
352
353		for (i=0; i<num; i++)
354			buf[i]=val++;
355		return(1);
356		}
357#endif
358
359	if (num <= 0)
360		return 1;
361
362	EVP_MD_CTX_init(&m);
363	/* round upwards to multiple of MD_DIGEST_LENGTH/2 */
364	num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2);
365
366	/*
367	 * (Based on the rand(3) manpage:)
368	 *
369	 * For each group of 10 bytes (or less), we do the following:
370	 *
371	 * Input into the hash function the local 'md' (which is initialized from
372	 * the global 'md' before any bytes are generated), the bytes that are to
373	 * be overwritten by the random bytes, and bytes from the 'state'
374	 * (incrementing looping index). From this digest output (which is kept
375	 * in 'md'), the top (up to) 10 bytes are returned to the caller and the
376	 * bottom 10 bytes are xored into the 'state'.
377	 *
378	 * Finally, after we have finished 'num' random bytes for the
379	 * caller, 'count' (which is incremented) and the local and global 'md'
380	 * are fed into the hash function and the results are kept in the
381	 * global 'md'.
382	 */
383	if (lock)
384	CRYPTO_w_lock(CRYPTO_LOCK_RAND);
385
386	/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
387	CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
388	CRYPTO_THREADID_current(&locking_threadid);
389	CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
390	crypto_lock_rand = 1;
391
392	if (!stirred_pool)
393		do_stir_pool = 1;
394
395	ok = (entropy >= ENTROPY_NEEDED);
396	if (!ok)
397		{
398
399		RAND_poll();
400		ok = (entropy >= ENTROPY_NEEDED);
401
402		}
403
404	if (!ok)
405		{
406
407		/* If the PRNG state is not yet unpredictable, then seeing
408		 * the PRNG output may help attackers to determine the new
409		 * state; thus we have to decrease the entropy estimate.
410		 * Once we've had enough initial seeding we don't bother to
411		 * adjust the entropy count, though, because we're not ambitious
412		 * to provide *information-theoretic* randomness.
413		 *
414		 * NOTE: This approach fails if the program forks before
415		 * we have enough entropy. Entropy should be collected
416		 * in a separate input pool and be transferred to the
417		 * output pool only when the entropy limit has been reached.
418		 */
419		entropy -= num;
420		if (entropy < 0)
421			entropy = 0;
422		}
423
424	if (do_stir_pool)
425		{
426		/* In the output function only half of 'md' remains secret,
427		 * so we better make sure that the required entropy gets
428		 * 'evenly distributed' through 'state', our randomness pool.
429		 * The input function (ssleay_rand_add) chains all of 'md',
430		 * which makes it more suitable for this purpose.
431		 */
432
433		int n = STATE_SIZE; /* so that the complete pool gets accessed */
434		while (n > 0)
435			{
436#if MD_DIGEST_LENGTH > 20
437# error "Please adjust DUMMY_SEED."
438#endif
439#define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
440			/* Note that the seed does not matter, it's just that
441			 * ssleay_rand_add expects to have something to hash. */
442			ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
443			n -= MD_DIGEST_LENGTH;
444			}
445		if (ok)
446			stirred_pool = 1;
447		}
448
449	st_idx=state_index;
450	st_num=state_num;
451	md_c[0] = md_count[0];
452	md_c[1] = md_count[1];
453	memcpy(local_md, md, sizeof md);
454
455	state_index+=num_ceil;
456	if (state_index > state_num)
457		state_index %= state_num;
458
459	/* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num]
460	 * are now ours (but other threads may use them too) */
461
462	md_count[0] += 1;
463
464	/* before unlocking, we must clear 'crypto_lock_rand' */
465	crypto_lock_rand = 0;
466	if (lock)
467	CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
468
469	while (num > 0)
470		{
471		/* num_ceil -= MD_DIGEST_LENGTH/2 */
472		j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num;
473		num-=j;
474		MD_Init(&m);
475#ifndef GETPID_IS_MEANINGLESS
476		if (curr_pid) /* just in the first iteration to save time */
477			{
478			MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid);
479			curr_pid = 0;
480			}
481#endif
482		MD_Update(&m,local_md,MD_DIGEST_LENGTH);
483		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
484
485#ifndef PURIFY /* purify complains */
486		/* The following line uses the supplied buffer as a small
487		 * source of entropy: since this buffer is often uninitialised
488		 * it may cause programs such as purify or valgrind to
489		 * complain. So for those builds it is not used: the removal
490		 * of such a small source of entropy has negligible impact on
491		 * security.
492		 */
493		MD_Update(&m,buf,j);
494#endif
495
496		k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
497		if (k > 0)
498			{
499			MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k);
500			MD_Update(&m,&(state[0]),k);
501			}
502		else
503			MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2);
504		MD_Final(&m,local_md);
505
506		for (i=0; i<MD_DIGEST_LENGTH/2; i++)
507			{
508			state[st_idx++]^=local_md[i]; /* may compete with other threads */
509			if (st_idx >= st_num)
510				st_idx=0;
511			if (i < j)
512				*(buf++)=local_md[i+MD_DIGEST_LENGTH/2];
513			}
514		}
515
516	MD_Init(&m);
517	MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
518	MD_Update(&m,local_md,MD_DIGEST_LENGTH);
519	if (lock)
520	CRYPTO_w_lock(CRYPTO_LOCK_RAND);
521	MD_Update(&m,md,MD_DIGEST_LENGTH);
522	MD_Final(&m,md);
523	if (lock)
524	CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
525
526	EVP_MD_CTX_cleanup(&m);
527	if (ok)
528		return(1);
529	else if (pseudo)
530		return 0;
531	else
532		{
533		RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED);
534		ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
535			"http://www.openssl.org/support/faq.html");
536		return(0);
537		}
538	}
539
540static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num)
541	{
542	return ssleay_rand_bytes(buf, num, 0, 1);
543	}
544
545/* pseudo-random bytes that are guaranteed to be unique but not
546   unpredictable */
547static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
548	{
549	return ssleay_rand_bytes(buf, num, 1, 1);
550	}
551
552static int ssleay_rand_status(void)
553	{
554	CRYPTO_THREADID cur;
555	int ret;
556	int do_not_lock;
557
558	CRYPTO_THREADID_current(&cur);
559	/* check if we already have the lock
560	 * (could happen if a RAND_poll() implementation calls RAND_status()) */
561	if (crypto_lock_rand)
562		{
563		CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
564		do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
565		CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
566		}
567	else
568		do_not_lock = 0;
569
570	if (!do_not_lock)
571		{
572		CRYPTO_w_lock(CRYPTO_LOCK_RAND);
573
574		/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
575		CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
576		CRYPTO_THREADID_cpy(&locking_threadid, &cur);
577		CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
578		crypto_lock_rand = 1;
579		}
580
581	if (entropy < ENTROPY_NEEDED)
582		{
583		RAND_poll();
584		}
585
586	ret = entropy >= ENTROPY_NEEDED;
587
588	if (!do_not_lock)
589		{
590		/* before unlocking, we must clear 'crypto_lock_rand' */
591		crypto_lock_rand = 0;
592
593		CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
594		}
595
596	return ret;
597	}
598