1Block Implementation Specification
2
3Copyright 2008-2009 Apple, Inc.
4Permission is hereby granted, free of charge, to any person obtaining a copy
5of this software and associated documentation files (the "Software"), to deal
6in the Software without restriction, including without limitation the rights
7to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8copies of the Software, and to permit persons to whom the Software is
9furnished to do so, subject to the following conditions:
10
11The above copyright notice and this permission notice shall be included in
12all copies or substantial portions of the Software.
13
14THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20THE SOFTWARE.
21
220. History
23
242008/7/14  - created
252008/8/21  - revised, C++
262008/9/24  - add NULL isa field to __block storage
272008/10/1  - revise block layout to use a static descriptor structure
282008/10/6  - revise block layout to use an unsigned long int flags
292008/10/28 - specify use of _Block_object_assign/dispose for all "Object" types in helper functions
302008/10/30 - revise new layout to have invoke function in same place
312008/10/30 - add __weak support
32
33This document describes the Apple ABI implementation specification of Blocks.
34
351. High Level
36
37A Block consists of a structure of the following form:
38
39struct Block_literal_1 {
40    void *isa; // initialized to &_NSConcreteStackBlock or &_NSConcreteGlobalBlock
41    int flags;
42    int reserved; 
43    void (*invoke)(void *, ...);
44    struct Block_descriptor_1 {
45	unsigned long int reserved;	// NULL
46    	unsigned long int size;  // sizeof(struct Block_literal_1)
47	// optional helper functions
48    	void (*copy_helper)(void *dst, void *src);
49    	void (*dispose_helper)(void *src); 
50    } *descriptor;
51    // imported variables
52};
53
54The following flags bits are used by the compiler:
55
56enum {
57    BLOCK_HAS_COPY_DISPOSE =  (1 << 25),
58    BLOCK_HAS_CTOR =          (1 << 26), // helpers have C++ code
59    BLOCK_IS_GLOBAL =         (1 << 28),
60    BLOCK_HAS_DESCRIPTOR =    (1 << 29), // interim until complete world build is accomplished
61};
62
63Block literals may occur within functions where the structure is created in stack local memory.  They may also appear as initialization expressions for Block variables of global or static local variables.
64
65When a Block literal expression is evaluated the stack based structure is initialized as follows:
66
671) static descriptor structure is declared and initialized as follows:
681a) the invoke function pointer is set to a function that takes the Block structure as its first argument and the rest of the arguments (if any) to the Block and executes the Block compound statement.
691b) the size field is set to the size of the following Block literal structure.
701c) the copy_helper and dispose_helper function pointers are set to respective helper functions if they are required by the Block literal
712) a stack (or global) Block literal data structure is created and initialized as follows:
722a) the isa field is set to the address of the external _NSConcreteStackBlock, which is a block of uninitialized memory supplied in libSystem, or _NSConcreteGlobalBlock if this is a static or file level block literal.
732) The flags field is set to zero unless there are variables imported into the block that need helper functions for program level Block_copy() and Block_release() operations, in which case the (1<<25) flags bit is set.
74
75As an example, the Block literal expression
76   ^ { printf("hello world\n"); }
77would cause to be created on a 32-bit system:
78
79struct __block_literal_1 {
80    void *isa;
81    int flags;
82    int reserved; 
83    void (*invoke)(struct __block_literal_1 *);
84    struct __block_descriptor_1 *descriptor;
85};
86
87void __block_invoke_1(struct __block_literal_1 *_block) {
88    printf("hello world\n");
89}
90
91static struct __block_descriptor_1 {
92    unsigned long int reserved;
93    unsigned long int Block_size;
94} __block_descriptor_1 = { 0, sizeof(struct __block_literal_1), __block_invoke_1 };
95
96and where the block literal appeared
97
98  struct __block_literal_1 _block_literal = {
99	&_NSConcreteStackBlock,
100	(1<<29), <uninitialized>,
101	__block_invoke_1,
102	&__block_descriptor_1
103   };
104
105Blocks import other Block references, const copies of other variables, and variables marked __block.  In Objective-C variables may additionally be objects.
106
107When a Block literal expression used as the initial value of a global or static local variable it is initialized as follows:
108  struct __block_literal_1 __block_literal_1 = {
109	&_NSConcreteGlobalBlock,
110	(1<<28)|(1<<29), <uninitialized>,
111	__block_invoke_1,
112	&__block_descriptor_1
113   };
114that is, a different address is provided as the first value and a particular (1<<28) bit is set in the flags field, and otherwise it is the same as for stack based Block literals.  This is an optimization that can be used for any Block literal that imports no const or __block storage variables.
115
116
1172. Imported Variables
118
119Variables of "auto" storage class are imported as const copies.  Variables of "__block" storage class are imported as a pointer to an enclosing data structure.  Global variables are simply referenced and not considered as imported.
120
1212.1 Imported const copy variables
122
123Automatic storage variables not marked with __block are imported as const copies.
124
125The simplest example is that of importing a variable of type int.
126
127   int x = 10;
128   void (^vv)(void) = ^{ printf("x is %d\n", x); }
129   x = 11;
130   vv();
131
132would be compiled
133
134struct __block_literal_2 {
135    void *isa;
136    int flags;
137    int reserved; 
138    void (*invoke)(struct __block_literal_2 *);
139    struct __block_descriptor_2 *descriptor;
140    const int x;
141};
142
143void __block_invoke_2(struct __block_literal_2 *_block) {
144    printf("x is %d\n", _block->x);
145}
146
147static struct __block_descriptor_2 {
148    unsigned long int reserved;
149    unsigned long int Block_size;
150} __block_descriptor_2 = { 0, sizeof(struct __block_literal_2) };
151
152and
153
154  struct __block_literal_2 __block_literal_2 = {
155	&_NSConcreteStackBlock,
156	(1<<29), <uninitialized>,
157	__block_invoke_2,
158	&__block_descriptor_2,
159        x
160   };
161
162In summary, scalars, structures, unions, and function pointers are generally imported as const copies with no need for helper functions.
163
1642.2 Imported const copy of Block reference
165
166The first case where copy and dispose helper functions are required is for the case of when a block itself is imported.  In this case both a copy_helper function and a dispose_helper function are needed.  The copy_helper function is passed both the existing stack based pointer and the pointer to the new heap version and should call back into the runtime to actually do the copy operation on the imported fields within the block.  The runtime functions are all described in Section 5.0 Runtime Helper Functions.
167
168An example:
169
170   void (^existingBlock)(void) = ...;
171   void (^vv)(void) = ^{ existingBlock(); }
172   vv();
173
174struct __block_literal_3 {
175   ...; // existing block
176};
177
178struct __block_literal_4 {
179    void *isa;
180    int flags;
181    int reserved; 
182    void (*invoke)(struct __block_literal_4 *);
183    struct __block_literal_3 *const existingBlock;
184};
185
186void __block_invoke_4(struct __block_literal_2 *_block) {
187   __block->existingBlock->invoke(__block->existingBlock);
188}
189
190void __block_copy_4(struct __block_literal_4 *dst, struct __block_literal_4 *src) {
191     //_Block_copy_assign(&dst->existingBlock, src->existingBlock, 0);
192     _Block_object_assign(&dst->existingBlock, src->existingBlock, BLOCK_FIELD_IS_BLOCK);
193}
194
195void __block_dispose_4(struct __block_literal_4 *src) {
196     // was _Block_destroy
197     _Block_object_dispose(src->existingBlock, BLOCK_FIELD_IS_BLOCK);
198}
199
200static struct __block_descriptor_4 {
201    unsigned long int reserved;
202    unsigned long int Block_size;
203    void (*copy_helper)(struct __block_literal_4 *dst, struct __block_literal_4 *src);
204    void (*dispose_helper)(struct __block_literal_4 *);
205} __block_descriptor_4 = {
206	0,
207	sizeof(struct __block_literal_4),
208	__block_copy_4,
209	__block_dispose_4,
210};
211
212and where it is used
213
214  struct __block_literal_4 _block_literal = {
215	&_NSConcreteStackBlock,
216	(1<<25)|(1<<29), <uninitialized>
217	__block_invoke_4,
218	& __block_descriptor_4,
219        existingBlock,
220   };
221
2222.2.1 Importing __attribute__((NSObject)) variables.
223
224GCC introduces __attribute__((NSObject)) on structure pointers to mean "this is an object".  This is useful because many low level data structures are declared as opaque structure pointers, e.g. CFStringRef, CFArrayRef, etc.  When used from C, however, these are still really objects and are the second case where that requires copy and dispose helper functions to be generated.  The copy helper functions generated by the compiler should use the _Block_object_assign runtime helper function and in the dispose helper the _Block_object_dispose runtime helper function should be called.
225
226For example, block xyzzy in the following
227
228    struct Opaque *__attribute__((NSObject)) objectPointer = ...;
229    ...
230    void (^xyzzy)(void) = ^{  CFPrint(objectPointer); };
231
232would have helper functions
233
234void __block_copy_xyzzy(struct __block_literal_5 *dst, struct __block_literal_5 *src) {
235     _Block_object_assign(&dst->objectPointer, src-> objectPointer, BLOCK_FIELD_IS_OBJECT);
236}
237
238void __block_dispose_xyzzy(struct __block_literal_5 *src) {
239     _Block_object_dispose(src->objectPointer, BLOCK_FIELD_IS_OBJECT);
240}
241
242generated.
243
244
2452.3 Imported __block marked variables.
246
2472.3.1 Layout of __block marked variables
248
249The compiler must embed variables that are marked __block in a specialized structure of the form:
250
251struct _block_byref_xxxx {
252    void *isa;
253    struct Block_byref *forwarding;
254    int flags;   //refcount;
255    int size;
256    typeof(marked_variable) marked_variable;
257};
258
259Variables of certain types require helper functions for when Block_copy() and Block_release() are performed upon a referencing Block.  At the "C" level only variables that are of type Block or ones that have __attribute__((NSObject)) marked require helper functions.  In Objective-C objects require helper functions and in C++ stack based objects require helper functions. Variables that require helper functions use the form:
260
261struct _block_byref_xxxx {
262    void *isa;
263    struct _block_byref_xxxx *forwarding;
264    int flags;   //refcount;
265    int size;
266    // helper functions called via Block_copy() and Block_release()
267    void (*byref_keep)(void  *dst, void *src);
268    void (*byref_dispose)(void *);
269    typeof(marked_variable) marked_variable;
270};
271
272The structure is initialized such that
273 a) the forwarding pointer is set to the beginning of its enclosing structure,
274 b) the size field is initialized to the total size of the enclosing structure,
275 c) the flags field is set to either 0 if no helper functions are needed or (1<<25) if they are,
276 d) the helper functions are initialized (if present)
277 e) the variable itself is set to its initial value.
278 f) the isa field is set to NULL
279
2802.3.2 Access to __block variables from within its lexical scope.
281
282In order to "move" the variable to the heap upon a copy_helper operation the compiler must rewrite access to such a variable to be indirect through the structures forwarding pointer.  For example:
283
284  int __block i = 10;
285  i = 11;
286
287would be rewritten to be:
288
289  struct _block_byref_i {
290    void *isa;
291    struct _block_byref_i *forwarding;
292    int flags;   //refcount;
293    int size;
294    int captured_i;
295  } i = { NULL, &i, 0, sizeof(struct _block_byref_i), 10 };
296
297  ({ int tmp = 11; i.forwarding->captured_i = tmp; });
298  
299The use of the tmp intermediary is necessary to avoid cases where the expression might cause the __block variable to be moved to the heap and the forwarding pointer updated after it was loaded.  Expressions not including Blocks referencing the __block variable may be optimized to avoid the temporary.
300
301In the case of a Block reference variable being marked __block the helper code generated must use the _Block_object_assign and _Block_object_dispose routines supplied by the runtime to make the copies.  For example:
302
303   __block void (voidBlock)(void) = blockA;
304   voidBlock = blockB;
305
306would translate into
307
308struct _block_byref_voidBlock {
309    void *isa;
310    struct _block_byref_voidBlock *forwarding;
311    int flags;   //refcount;
312    int size;
313    void (*byref_keep)(struct _block_byref_voidBlock *dst, struct _block_byref_voidBlock *src);
314    void (*byref_dispose)(struct _block_byref_voidBlock *);
315    void (^captured_voidBlock)(void);
316};
317
318void _block_byref_keep_helper(struct _block_byref_voidBlock *dst, struct _block_byref_voidBlock *src) {
319    //_Block_copy_assign(&dst->captured_voidBlock, src->captured_voidBlock, 0);
320    _Block_object_assign(&dst->captured_voidBlock, src->captured_voidBlock, BLOCK_FIELD_IS_BLOCK | BLOCK_BYREF_CALLER);
321}
322
323void _block_byref_dispose_helper(struct _block_byref_voidBlock *param) {
324    //_Block_destroy(param->captured_voidBlock, 0);
325    _Block_object_dispose(param->captured_voidBlock, BLOCK_FIELD_IS_BLOCK | BLOCK_BYREF_CALLER)}
326
327and
328  struct _block_byref_voidBlock voidBlock = {( .forwarding=&voidBlock, .flags=(1<<25), .size=sizeof(struct _block_byref_voidBlock *),
329      .byref_keep=_block_byref_keep_helper, .byref_dispose=_block_byref_dispose_helper,
330      .captured_voidBlock=blockA )};
331
332  voidBlock.forwarding->captured_voidBlock = blockB;
333  
334
3352.3.3 Importing __block variables into Blocks
336
337A Block that uses a __block variable in its compound statement body must import the variable and emit copy_helper and dispose_helper helper functions that, in turn, call back into the runtime to actually copy or release the byref data block using the functions _Block_object_assign and _Block_object_dispose.
338
339For example:
340
341   int __block i = 2;
342   functioncall(^{ i = 10; });
343
344would translate to
345
346struct _block_byref_i {
347    void *isa;
348    struct _block_byref_voidBlock *forwarding;
349    int flags;   //refcount;
350    int size;
351    void (*byref_keep)(struct _block_byref_i *dst, struct _block_byref_i *src);
352    void (*byref_dispose)(struct _block_byref_i *);
353    int captured_i;
354};
355
356
357struct __block_literal_5 {
358    void *isa;
359    int flags;
360    int reserved; 
361    void (*invoke)(struct __block_literal_5 *);
362    struct __block_descriptor_5 *descriptor;
363    struct _block_byref_i *i_holder;
364};
365
366void __block_invoke_5(struct __block_literal_5 *_block) {
367   _block->forwarding->captured_i = 10;
368}
369
370void __block_copy_5(struct __block_literal_5 *dst, struct __block_literal_5 *src) {
371     //_Block_byref_assign_copy(&dst->captured_i, src->captured_i);
372     _Block_object_assign(&dst->captured_i, src->captured_i, BLOCK_FIELD_IS_BYREF | BLOCK_BYREF_CALLER);
373}
374
375void __block_dispose_5(struct __block_literal_5 *src) {
376     //_Block_byref_release(src->captured_i);
377     _Block_object_dispose(src->captured_i, BLOCK_FIELD_IS_BYREF | BLOCK_BYREF_CALLER);
378}
379
380static struct __block_descriptor_5 {
381    unsigned long int reserved;
382    unsigned long int Block_size;
383    void (*copy_helper)(struct __block_literal_5 *dst, struct __block_literal_5 *src);
384    void (*dispose_helper)(struct __block_literal_5 *);
385} __block_descriptor_5 = { 0, sizeof(struct __block_literal_5) __block_copy_5, __block_dispose_5 };
386
387and
388
389  struct _block_byref_i i = {( .forwarding=&i, .flags=0, .size=sizeof(struct _block_byref_i) )};
390  struct __block_literal_5 _block_literal = {
391	&_NSConcreteStackBlock,
392	(1<<25)|(1<<29), <uninitialized>,
393	__block_invoke_5,
394	&__block_descriptor_5,
395        2,
396   };
397
3982.3.4 Importing __attribute__((NSObject)) __block variables
399
400A __block variable that is also marked __attribute__((NSObject)) should have byref_keep and byref_dispose helper functions that use _Block_object_assign and _Block_object_dispose.
401
4022.3.5 __block escapes
403
404Because Blocks referencing __block variables may have Block_copy() performed upon them the underlying storage for the variables may move to the heap.  In Objective-C Garbage Collection Only compilation environments the heap used is the garbage collected one and no further action is required.  Otherwise the compiler must issue a call to potentially release any heap storage for __block variables at all escapes or terminations of their scope.  The call should be:
405
406   _Block_object_dispose(&_block_byref_xxx, BLOCK_FIELD_IS_BYREF);
407
408
4092.3.6 Nesting
410
411Blocks may contain Block literal expressions.  Any variables used within inner blocks are imported into all enclosing Block scopes even if the variables are not used.  This includes const imports as well as __block variables.
412
4133. Objective C Extensions to Blocks
414
4153.1 Importing Objects
416
417Objects should be treated as __attribute__((NSObject)) variables; all copy_helper, dispose_helper, byref_keep, and byref_dispose helper functions should use _Block_object_assign and _Block_object_dispose.  There should be no code generated that uses -retain or -release methods.
418
419
4203.2 Blocks as Objects
421
422The compiler will treat Blocks as objects when synthesizing property setters and getters, will characterize them as objects when generating garbage collection strong and weak layout information in the same manner as objects, and will issue strong and weak write-barrier assignments in the same manner as objects.
423
4243.3 __weak __block Support
425
426Objective-C (and Objective-C++) support the __weak attribute on __block variables.  Under normal circumstances the compiler uses the Objective-C runtime helper support functions objc_assign_weak and objc_read_weak.  Both should continue to be used for all reads and writes of __weak __block variables:
427	objc_read_weak(&block->byref_i->forwarding->i)
428
429The __weak variable is stored in a _block_byref_xxxx structure and the Block has copy and dispose helpers for this structure that call:
430	_Block_object_assign(&dest->_block_byref_i, src-> _block_byref_i, BLOCK_FIELD_IS_WEAK | BLOCK_FIELD_IS_BYREF);
431and
432	_Block_object_dispose(src->_block_byref_i, BLOCK_FIELD_IS_WEAK | BLOCK_FIELD_IS_BYREF);
433
434
435In turn, the block_byref copy support helpers distinguish between whether the __block variable is a Block or not and should either call:
436	_Block_object_assign(&dest->_block_byref_i, src->_block_byref_i, BLOCK_FIELD_IS_WEAK | BLOCK_FIELD_IS_OBJECT | BLOCK_BYREF_CALLER);
437for something declared as an object or
438	_Block_object_assign(&dest->_block_byref_i, src->_block_byref_i, BLOCK_FIELD_IS_WEAK | BLOCK_FIELD_IS_BLOCK | BLOCK_BYREF_CALLER);
439for something declared as a Block.
440
441A full example follows:
442
443
444   __block __weak id obj = <initialization expression>;
445   functioncall(^{ [obj somemessage]; });
446
447would translate to
448
449struct _block_byref_obj {
450    void *isa;  // uninitialized
451    struct _block_byref_obj *forwarding;
452    int flags;   //refcount;
453    int size;
454    void (*byref_keep)(struct _block_byref_i *dst, struct _block_byref_i *src);
455    void (*byref_dispose)(struct _block_byref_i *);
456    int captured_obj;
457};
458
459void _block_byref_obj_keep(struct _block_byref_voidBlock *dst, struct _block_byref_voidBlock *src) {
460    //_Block_copy_assign(&dst->captured_obj, src->captured_obj, 0);
461    _Block_object_assign(&dst->captured_obj, src->captured_obj, BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK | BLOCK_BYREF_CALLER);
462}
463
464void _block_byref_obj_dispose(struct _block_byref_voidBlock *param) {
465    //_Block_destroy(param->captured_obj, 0);
466    _Block_object_dispose(param->captured_obj, BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK | BLOCK_BYREF_CALLER);
467};
468
469for the block byref part and
470
471struct __block_literal_5 {
472    void *isa;
473    int flags;
474    int reserved; 
475    void (*invoke)(struct __block_literal_5 *);
476    struct __block_descriptor_5 *descriptor;
477    struct _block_byref_obj *byref_obj;
478};
479
480void __block_invoke_5(struct __block_literal_5 *_block) {
481   [objc_read_weak(&_block->byref_obj->forwarding->captured_obj) somemessage];
482}
483
484void __block_copy_5(struct __block_literal_5 *dst, struct __block_literal_5 *src) {
485     //_Block_byref_assign_copy(&dst->byref_obj, src->byref_obj);
486     _Block_object_assign(&dst->byref_obj, src->byref_obj, BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK);
487}
488
489void __block_dispose_5(struct __block_literal_5 *src) {
490     //_Block_byref_release(src->byref_obj);
491     _Block_object_dispose(src->byref_obj, BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK);
492}
493
494static struct __block_descriptor_5 {
495    unsigned long int reserved;
496    unsigned long int Block_size;
497    void (*copy_helper)(struct __block_literal_5 *dst, struct __block_literal_5 *src);
498    void (*dispose_helper)(struct __block_literal_5 *);
499} __block_descriptor_5 = { 0, sizeof(struct __block_literal_5), __block_copy_5, __block_dispose_5 };
500
501and within the compound statement:
502
503  struct _block_byref_obj obj = {( .forwarding=&obj, .flags=(1<<25), .size=sizeof(struct _block_byref_obj),
504				.byref_keep=_block_byref_obj_keep, .byref_dispose=_block_byref_obj_dispose,
505				.captured_obj = <initialization expression> )};
506
507  struct __block_literal_5 _block_literal = {
508	&_NSConcreteStackBlock,
509	(1<<25)|(1<<29), <uninitialized>,
510	__block_invoke_5,
511	&__block_descriptor_5,
512        &obj,		// a reference to the on-stack structure containing "captured_obj"
513   };
514
515
516   functioncall(_block_literal->invoke(&_block_literal));
517
518
5194.0 C++ Support
520
521Within a block stack based C++ objects are copied as const copies using the const copy constructor.  It is an error if a stack based C++ object is used within a block if it does not have a const copy constructor.  In addition both copy and destroy helper routines must be synthesized for the block to support the Block_copy() operation, and the flags work marked with the (1<<26) bit in addition to the (1<<25) bit.  The copy helper should call the constructor using appropriate offsets of the variable within the supplied stack based block source and heap based destination for all const constructed copies, and similarly should call the destructor in the destroy routine.
522
523As an example, suppose a C++ class FOO existed with a const copy constructor.  Within a code block a stack version of a FOO object is declared and used within a Block literal expression:
524
525{
526    FOO foo;
527    void (^block)(void) = ^{ printf("%d\n", foo.value()); };
528}
529
530The compiler would synthesize
531
532struct __block_literal_10 {
533    void *isa;
534    int flags;
535    int reserved; 
536    void (*invoke)(struct __block_literal_10 *);
537    struct __block_descriptor_10 *descriptor;
538    const FOO foo;
539};
540
541void __block_invoke_10(struct __block_literal_10 *_block) {
542   printf("%d\n", _block->foo.value());
543}
544
545void __block_literal_10(struct __block_literal_10 *dst, struct __block_literal_10 *src) {
546     comp_ctor(&dst->foo, &src->foo);
547}
548
549void __block_dispose_10(struct __block_literal_10 *src) {
550     comp_dtor(&src->foo);
551}
552
553static struct __block_descriptor_10 {
554    unsigned long int reserved;
555    unsigned long int Block_size;
556    void (*copy_helper)(struct __block_literal_10 *dst, struct __block_literal_10 *src);
557    void (*dispose_helper)(struct __block_literal_10 *);
558} __block_descriptor_10 = { 0, sizeof(struct __block_literal_10), __block_copy_10, __block_dispose_10 };
559
560and the code would be:
561{
562  FOO foo;
563  comp_ctor(&foo); // default constructor
564  struct __block_literal_10 _block_literal = {
565	&_NSConcreteStackBlock,
566	(1<<25)|(1<<26)|(1<<29), <uninitialized>,
567	__block_invoke_10,
568	&__block_descriptor_10,
569   };
570   comp_ctor(&_block_literal->foo, &foo);  // const copy into stack version
571   struct __block_literal_10 &block = &_block_literal;  // assign literal to block variable
572   block->invoke(block);	// invoke block
573   comp_dtor(&_block_literal->foo); // destroy stack version of const block copy
574   comp_dtor(&foo); // destroy original version
575}
576
577
578C++ objects stored in __block storage start out on the stack in a block_byref data structure as do other variables.  Such objects (if not const objects) must support a regular copy constructor.  The block_byref data structure will have copy and destroy helper routines synthesized by the compiler.  The copy helper will have code created to perform the copy constructor based on the initial stack block_byref data structure, and will also set the (1<<26) bit in addition to the (1<<25) bit.  The destroy helper will have code to do the destructor on the object stored within the supplied block_byref heap data structure.
579
580To support member variable and function access the compiler will synthesize a const pointer to a block version of the this pointer.
581
5825.0 Runtime Helper Functions
583
584The runtime helper functions are described in /usr/local/include/Block_private.h.  To summarize their use, a block requires copy/dispose helpers if it imports any block variables, __block storage variables, __attribute__((NSObject)) variables, or C++ const copied objects with constructor/destructors.  The (1<<26) bit is set and functions are generated.
585
586The block copy helper function should, for each of the variables of the type mentioned above, call
587     _Block_object_assign(&dst->target, src->target, BLOCK_FIELD_<appropo>);
588in the copy helper and
589    _Block_object_dispose(->target, BLOCK_FIELD_<appropo>);
590in the dispose helper where
591      <appropo> is
592
593enum {
594    BLOCK_FIELD_IS_OBJECT   =  3,  // id, NSObject, __attribute__((NSObject)), block, ...
595    BLOCK_FIELD_IS_BLOCK    =  7,  // a block variable
596    BLOCK_FIELD_IS_BYREF    =  8,  // the on stack structure holding the __block variable
597
598    BLOCK_FIELD_IS_WEAK     = 16,  // declared __weak
599
600    BLOCK_BYREF_CALLER      = 128, // called from byref copy/dispose helpers
601};
602
603and of course the CTORs/DTORs for const copied C++ objects.
604
605The block_byref data structure similarly requires copy/dispose helpers for block variables, __attribute__((NSObject)) variables, or C++ const copied objects with constructor/destructors, and again the (1<<26) bit is set and functions are generated in the same manner.
606
607Under ObjC we allow __weak as an attribute on __block variables, and this causes the addition of BLOCK_FIELD_IS_WEAK orred onto the BLOCK_FIELD_IS_BYREF flag when copying the block_byref structure in the block copy helper, and onto the BLOCK_FIELD_<appropo> field within the block_byref copy/dispose helper calls.
608
609The prototypes, and summary, of the helper functions are
610
611/* Certain field types require runtime assistance when being copied to the heap.  The following function is used
612   to copy fields of types: blocks, pointers to byref structures, and objects (including __attribute__((NSObject)) pointers.
613   BLOCK_FIELD_IS_WEAK is orthogonal to the other choices which are mutually exclusive.
614   Only in a Block copy helper will one see BLOCK_FIELD_IS_BYREF.
615 */
616void _Block_object_assign(void *destAddr, const void *object, const int flags);
617
618/* Similarly a compiler generated dispose helper needs to call back for each field of the byref data structure.
619   (Currently the implementation only packs one field into the byref structure but in principle there could be more).
620   The same flags used in the copy helper should be used for each call generated to this function:
621 */
622void _Block_object_dispose(const void *object, const int flags);
623
624