1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 *   Avi Kivity   <avi@qumranet.com>
13 *   Yaniv Kamay  <yaniv@qumranet.com>
14 */
15
16#include <kvm/iodev.h>
17
18#include <linux/kvm_host.h>
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
22#include <linux/percpu.h>
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
26#include <linux/reboot.h>
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
30#include <linux/syscore_ops.h>
31#include <linux/cpu.h>
32#include <linux/sched/signal.h>
33#include <linux/sched/mm.h>
34#include <linux/sched/stat.h>
35#include <linux/cpumask.h>
36#include <linux/smp.h>
37#include <linux/anon_inodes.h>
38#include <linux/profile.h>
39#include <linux/kvm_para.h>
40#include <linux/pagemap.h>
41#include <linux/mman.h>
42#include <linux/swap.h>
43#include <linux/bitops.h>
44#include <linux/spinlock.h>
45#include <linux/compat.h>
46#include <linux/srcu.h>
47#include <linux/hugetlb.h>
48#include <linux/slab.h>
49#include <linux/sort.h>
50#include <linux/bsearch.h>
51#include <linux/io.h>
52#include <linux/lockdep.h>
53#include <linux/kthread.h>
54#include <linux/suspend.h>
55
56#include <asm/processor.h>
57#include <asm/ioctl.h>
58#include <linux/uaccess.h>
59
60#include "coalesced_mmio.h"
61#include "async_pf.h"
62#include "kvm_mm.h"
63#include "vfio.h"
64
65#include <trace/events/ipi.h>
66
67#define CREATE_TRACE_POINTS
68#include <trace/events/kvm.h>
69
70#include <linux/kvm_dirty_ring.h>
71
72
73/* Worst case buffer size needed for holding an integer. */
74#define ITOA_MAX_LEN 12
75
76MODULE_AUTHOR("Qumranet");
77MODULE_LICENSE("GPL");
78
79/* Architectures should define their poll value according to the halt latency */
80unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81module_param(halt_poll_ns, uint, 0644);
82EXPORT_SYMBOL_GPL(halt_poll_ns);
83
84/* Default doubles per-vcpu halt_poll_ns. */
85unsigned int halt_poll_ns_grow = 2;
86module_param(halt_poll_ns_grow, uint, 0644);
87EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88
89/* The start value to grow halt_poll_ns from */
90unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91module_param(halt_poll_ns_grow_start, uint, 0644);
92EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
94/* Default resets per-vcpu halt_poll_ns . */
95unsigned int halt_poll_ns_shrink;
96module_param(halt_poll_ns_shrink, uint, 0644);
97EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98
99/*
100 * Ordering of locks:
101 *
102 *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103 */
104
105DEFINE_MUTEX(kvm_lock);
106LIST_HEAD(vm_list);
107
108static struct kmem_cache *kvm_vcpu_cache;
109
110static __read_mostly struct preempt_ops kvm_preempt_ops;
111static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113struct dentry *kvm_debugfs_dir;
114EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116static const struct file_operations stat_fops_per_vm;
117
118static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119			   unsigned long arg);
120#ifdef CONFIG_KVM_COMPAT
121static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122				  unsigned long arg);
123#define KVM_COMPAT(c)	.compat_ioctl	= (c)
124#else
125/*
126 * For architectures that don't implement a compat infrastructure,
127 * adopt a double line of defense:
128 * - Prevent a compat task from opening /dev/kvm
129 * - If the open has been done by a 64bit task, and the KVM fd
130 *   passed to a compat task, let the ioctls fail.
131 */
132static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133				unsigned long arg) { return -EINVAL; }
134
135static int kvm_no_compat_open(struct inode *inode, struct file *file)
136{
137	return is_compat_task() ? -ENODEV : 0;
138}
139#define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
140			.open		= kvm_no_compat_open
141#endif
142static int hardware_enable_all(void);
143static void hardware_disable_all(void);
144
145static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147#define KVM_EVENT_CREATE_VM 0
148#define KVM_EVENT_DESTROY_VM 1
149static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
150static unsigned long long kvm_createvm_count;
151static unsigned long long kvm_active_vms;
152
153static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
154
155__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
156{
157}
158
159bool kvm_is_zone_device_page(struct page *page)
160{
161	/*
162	 * The metadata used by is_zone_device_page() to determine whether or
163	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
164	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
165	 * page_count() is zero to help detect bad usage of this helper.
166	 */
167	if (WARN_ON_ONCE(!page_count(page)))
168		return false;
169
170	return is_zone_device_page(page);
171}
172
173/*
174 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
175 * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
176 * is likely incomplete, it has been compiled purely through people wanting to
177 * back guest with a certain type of memory and encountering issues.
178 */
179struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
180{
181	struct page *page;
182
183	if (!pfn_valid(pfn))
184		return NULL;
185
186	page = pfn_to_page(pfn);
187	if (!PageReserved(page))
188		return page;
189
190	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
191	if (is_zero_pfn(pfn))
192		return page;
193
194	/*
195	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
196	 * perspective they are "normal" pages, albeit with slightly different
197	 * usage rules.
198	 */
199	if (kvm_is_zone_device_page(page))
200		return page;
201
202	return NULL;
203}
204
205/*
206 * Switches to specified vcpu, until a matching vcpu_put()
207 */
208void vcpu_load(struct kvm_vcpu *vcpu)
209{
210	int cpu = get_cpu();
211
212	__this_cpu_write(kvm_running_vcpu, vcpu);
213	preempt_notifier_register(&vcpu->preempt_notifier);
214	kvm_arch_vcpu_load(vcpu, cpu);
215	put_cpu();
216}
217EXPORT_SYMBOL_GPL(vcpu_load);
218
219void vcpu_put(struct kvm_vcpu *vcpu)
220{
221	preempt_disable();
222	kvm_arch_vcpu_put(vcpu);
223	preempt_notifier_unregister(&vcpu->preempt_notifier);
224	__this_cpu_write(kvm_running_vcpu, NULL);
225	preempt_enable();
226}
227EXPORT_SYMBOL_GPL(vcpu_put);
228
229/* TODO: merge with kvm_arch_vcpu_should_kick */
230static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231{
232	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233
234	/*
235	 * We need to wait for the VCPU to reenable interrupts and get out of
236	 * READING_SHADOW_PAGE_TABLES mode.
237	 */
238	if (req & KVM_REQUEST_WAIT)
239		return mode != OUTSIDE_GUEST_MODE;
240
241	/*
242	 * Need to kick a running VCPU, but otherwise there is nothing to do.
243	 */
244	return mode == IN_GUEST_MODE;
245}
246
247static void ack_kick(void *_completed)
248{
249}
250
251static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
252{
253	if (cpumask_empty(cpus))
254		return false;
255
256	smp_call_function_many(cpus, ack_kick, NULL, wait);
257	return true;
258}
259
260static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
261				  struct cpumask *tmp, int current_cpu)
262{
263	int cpu;
264
265	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
266		__kvm_make_request(req, vcpu);
267
268	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269		return;
270
271	/*
272	 * Note, the vCPU could get migrated to a different pCPU at any point
273	 * after kvm_request_needs_ipi(), which could result in sending an IPI
274	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
275	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
276	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
277	 * after this point is also OK, as the requirement is only that KVM wait
278	 * for vCPUs that were reading SPTEs _before_ any changes were
279	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
280	 */
281	if (kvm_request_needs_ipi(vcpu, req)) {
282		cpu = READ_ONCE(vcpu->cpu);
283		if (cpu != -1 && cpu != current_cpu)
284			__cpumask_set_cpu(cpu, tmp);
285	}
286}
287
288bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
289				 unsigned long *vcpu_bitmap)
290{
291	struct kvm_vcpu *vcpu;
292	struct cpumask *cpus;
293	int i, me;
294	bool called;
295
296	me = get_cpu();
297
298	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
299	cpumask_clear(cpus);
300
301	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302		vcpu = kvm_get_vcpu(kvm, i);
303		if (!vcpu)
304			continue;
305		kvm_make_vcpu_request(vcpu, req, cpus, me);
306	}
307
308	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
309	put_cpu();
310
311	return called;
312}
313
314bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
315{
316	struct kvm_vcpu *vcpu;
317	struct cpumask *cpus;
318	unsigned long i;
319	bool called;
320	int me;
321
322	me = get_cpu();
323
324	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
325	cpumask_clear(cpus);
326
327	kvm_for_each_vcpu(i, vcpu, kvm)
328		kvm_make_vcpu_request(vcpu, req, cpus, me);
329
330	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
331	put_cpu();
332
333	return called;
334}
335EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
336
337void kvm_flush_remote_tlbs(struct kvm *kvm)
338{
339	++kvm->stat.generic.remote_tlb_flush_requests;
340
341	/*
342	 * We want to publish modifications to the page tables before reading
343	 * mode. Pairs with a memory barrier in arch-specific code.
344	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
345	 * and smp_mb in walk_shadow_page_lockless_begin/end.
346	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
347	 *
348	 * There is already an smp_mb__after_atomic() before
349	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
350	 * barrier here.
351	 */
352	if (!kvm_arch_flush_remote_tlbs(kvm)
353	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
354		++kvm->stat.generic.remote_tlb_flush;
355}
356EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
357
358void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
359{
360	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
361		return;
362
363	/*
364	 * Fall back to a flushing entire TLBs if the architecture range-based
365	 * TLB invalidation is unsupported or can't be performed for whatever
366	 * reason.
367	 */
368	kvm_flush_remote_tlbs(kvm);
369}
370
371void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
372				   const struct kvm_memory_slot *memslot)
373{
374	/*
375	 * All current use cases for flushing the TLBs for a specific memslot
376	 * are related to dirty logging, and many do the TLB flush out of
377	 * mmu_lock. The interaction between the various operations on memslot
378	 * must be serialized by slots_locks to ensure the TLB flush from one
379	 * operation is observed by any other operation on the same memslot.
380	 */
381	lockdep_assert_held(&kvm->slots_lock);
382	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
383}
384
385static void kvm_flush_shadow_all(struct kvm *kvm)
386{
387	kvm_arch_flush_shadow_all(kvm);
388	kvm_arch_guest_memory_reclaimed(kvm);
389}
390
391#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
392static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
393					       gfp_t gfp_flags)
394{
395	void *page;
396
397	gfp_flags |= mc->gfp_zero;
398
399	if (mc->kmem_cache)
400		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
401
402	page = (void *)__get_free_page(gfp_flags);
403	if (page && mc->init_value)
404		memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
405	return page;
406}
407
408int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
409{
410	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
411	void *obj;
412
413	if (mc->nobjs >= min)
414		return 0;
415
416	if (unlikely(!mc->objects)) {
417		if (WARN_ON_ONCE(!capacity))
418			return -EIO;
419
420		/*
421		 * Custom init values can be used only for page allocations,
422		 * and obviously conflict with __GFP_ZERO.
423		 */
424		if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
425			return -EIO;
426
427		mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
428		if (!mc->objects)
429			return -ENOMEM;
430
431		mc->capacity = capacity;
432	}
433
434	/* It is illegal to request a different capacity across topups. */
435	if (WARN_ON_ONCE(mc->capacity != capacity))
436		return -EIO;
437
438	while (mc->nobjs < mc->capacity) {
439		obj = mmu_memory_cache_alloc_obj(mc, gfp);
440		if (!obj)
441			return mc->nobjs >= min ? 0 : -ENOMEM;
442		mc->objects[mc->nobjs++] = obj;
443	}
444	return 0;
445}
446
447int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
448{
449	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
450}
451
452int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
453{
454	return mc->nobjs;
455}
456
457void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
458{
459	while (mc->nobjs) {
460		if (mc->kmem_cache)
461			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
462		else
463			free_page((unsigned long)mc->objects[--mc->nobjs]);
464	}
465
466	kvfree(mc->objects);
467
468	mc->objects = NULL;
469	mc->capacity = 0;
470}
471
472void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
473{
474	void *p;
475
476	if (WARN_ON(!mc->nobjs))
477		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
478	else
479		p = mc->objects[--mc->nobjs];
480	BUG_ON(!p);
481	return p;
482}
483#endif
484
485static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
486{
487	mutex_init(&vcpu->mutex);
488	vcpu->cpu = -1;
489	vcpu->kvm = kvm;
490	vcpu->vcpu_id = id;
491	vcpu->pid = NULL;
492#ifndef __KVM_HAVE_ARCH_WQP
493	rcuwait_init(&vcpu->wait);
494#endif
495	kvm_async_pf_vcpu_init(vcpu);
496
497	kvm_vcpu_set_in_spin_loop(vcpu, false);
498	kvm_vcpu_set_dy_eligible(vcpu, false);
499	vcpu->preempted = false;
500	vcpu->ready = false;
501	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
502	vcpu->last_used_slot = NULL;
503
504	/* Fill the stats id string for the vcpu */
505	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
506		 task_pid_nr(current), id);
507}
508
509static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
510{
511	kvm_arch_vcpu_destroy(vcpu);
512	kvm_dirty_ring_free(&vcpu->dirty_ring);
513
514	/*
515	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
516	 * the vcpu->pid pointer, and at destruction time all file descriptors
517	 * are already gone.
518	 */
519	put_pid(rcu_dereference_protected(vcpu->pid, 1));
520
521	free_page((unsigned long)vcpu->run);
522	kmem_cache_free(kvm_vcpu_cache, vcpu);
523}
524
525void kvm_destroy_vcpus(struct kvm *kvm)
526{
527	unsigned long i;
528	struct kvm_vcpu *vcpu;
529
530	kvm_for_each_vcpu(i, vcpu, kvm) {
531		kvm_vcpu_destroy(vcpu);
532		xa_erase(&kvm->vcpu_array, i);
533	}
534
535	atomic_set(&kvm->online_vcpus, 0);
536}
537EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
538
539#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
540static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
541{
542	return container_of(mn, struct kvm, mmu_notifier);
543}
544
545typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
546
547typedef void (*on_lock_fn_t)(struct kvm *kvm);
548
549struct kvm_mmu_notifier_range {
550	/*
551	 * 64-bit addresses, as KVM notifiers can operate on host virtual
552	 * addresses (unsigned long) and guest physical addresses (64-bit).
553	 */
554	u64 start;
555	u64 end;
556	union kvm_mmu_notifier_arg arg;
557	gfn_handler_t handler;
558	on_lock_fn_t on_lock;
559	bool flush_on_ret;
560	bool may_block;
561};
562
563/*
564 * The inner-most helper returns a tuple containing the return value from the
565 * arch- and action-specific handler, plus a flag indicating whether or not at
566 * least one memslot was found, i.e. if the handler found guest memory.
567 *
568 * Note, most notifiers are averse to booleans, so even though KVM tracks the
569 * return from arch code as a bool, outer helpers will cast it to an int. :-(
570 */
571typedef struct kvm_mmu_notifier_return {
572	bool ret;
573	bool found_memslot;
574} kvm_mn_ret_t;
575
576/*
577 * Use a dedicated stub instead of NULL to indicate that there is no callback
578 * function/handler.  The compiler technically can't guarantee that a real
579 * function will have a non-zero address, and so it will generate code to
580 * check for !NULL, whereas comparing against a stub will be elided at compile
581 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
582 */
583static void kvm_null_fn(void)
584{
585
586}
587#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
588
589/* Iterate over each memslot intersecting [start, last] (inclusive) range */
590#define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
591	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
592	     node;							     \
593	     node = interval_tree_iter_next(node, start, last))	     \
594
595static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
596							   const struct kvm_mmu_notifier_range *range)
597{
598	struct kvm_mmu_notifier_return r = {
599		.ret = false,
600		.found_memslot = false,
601	};
602	struct kvm_gfn_range gfn_range;
603	struct kvm_memory_slot *slot;
604	struct kvm_memslots *slots;
605	int i, idx;
606
607	if (WARN_ON_ONCE(range->end <= range->start))
608		return r;
609
610	/* A null handler is allowed if and only if on_lock() is provided. */
611	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
612			 IS_KVM_NULL_FN(range->handler)))
613		return r;
614
615	idx = srcu_read_lock(&kvm->srcu);
616
617	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
618		struct interval_tree_node *node;
619
620		slots = __kvm_memslots(kvm, i);
621		kvm_for_each_memslot_in_hva_range(node, slots,
622						  range->start, range->end - 1) {
623			unsigned long hva_start, hva_end;
624
625			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
626			hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
627			hva_end = min_t(unsigned long, range->end,
628					slot->userspace_addr + (slot->npages << PAGE_SHIFT));
629
630			/*
631			 * To optimize for the likely case where the address
632			 * range is covered by zero or one memslots, don't
633			 * bother making these conditional (to avoid writes on
634			 * the second or later invocation of the handler).
635			 */
636			gfn_range.arg = range->arg;
637			gfn_range.may_block = range->may_block;
638
639			/*
640			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
641			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
642			 */
643			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
644			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
645			gfn_range.slot = slot;
646
647			if (!r.found_memslot) {
648				r.found_memslot = true;
649				KVM_MMU_LOCK(kvm);
650				if (!IS_KVM_NULL_FN(range->on_lock))
651					range->on_lock(kvm);
652
653				if (IS_KVM_NULL_FN(range->handler))
654					break;
655			}
656			r.ret |= range->handler(kvm, &gfn_range);
657		}
658	}
659
660	if (range->flush_on_ret && r.ret)
661		kvm_flush_remote_tlbs(kvm);
662
663	if (r.found_memslot)
664		KVM_MMU_UNLOCK(kvm);
665
666	srcu_read_unlock(&kvm->srcu, idx);
667
668	return r;
669}
670
671static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
672						unsigned long start,
673						unsigned long end,
674						gfn_handler_t handler)
675{
676	struct kvm *kvm = mmu_notifier_to_kvm(mn);
677	const struct kvm_mmu_notifier_range range = {
678		.start		= start,
679		.end		= end,
680		.handler	= handler,
681		.on_lock	= (void *)kvm_null_fn,
682		.flush_on_ret	= true,
683		.may_block	= false,
684	};
685
686	return __kvm_handle_hva_range(kvm, &range).ret;
687}
688
689static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
690							 unsigned long start,
691							 unsigned long end,
692							 gfn_handler_t handler)
693{
694	struct kvm *kvm = mmu_notifier_to_kvm(mn);
695	const struct kvm_mmu_notifier_range range = {
696		.start		= start,
697		.end		= end,
698		.handler	= handler,
699		.on_lock	= (void *)kvm_null_fn,
700		.flush_on_ret	= false,
701		.may_block	= false,
702	};
703
704	return __kvm_handle_hva_range(kvm, &range).ret;
705}
706
707void kvm_mmu_invalidate_begin(struct kvm *kvm)
708{
709	lockdep_assert_held_write(&kvm->mmu_lock);
710	/*
711	 * The count increase must become visible at unlock time as no
712	 * spte can be established without taking the mmu_lock and
713	 * count is also read inside the mmu_lock critical section.
714	 */
715	kvm->mmu_invalidate_in_progress++;
716
717	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
718		kvm->mmu_invalidate_range_start = INVALID_GPA;
719		kvm->mmu_invalidate_range_end = INVALID_GPA;
720	}
721}
722
723void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
724{
725	lockdep_assert_held_write(&kvm->mmu_lock);
726
727	WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
728
729	if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
730		kvm->mmu_invalidate_range_start = start;
731		kvm->mmu_invalidate_range_end = end;
732	} else {
733		/*
734		 * Fully tracking multiple concurrent ranges has diminishing
735		 * returns. Keep things simple and just find the minimal range
736		 * which includes the current and new ranges. As there won't be
737		 * enough information to subtract a range after its invalidate
738		 * completes, any ranges invalidated concurrently will
739		 * accumulate and persist until all outstanding invalidates
740		 * complete.
741		 */
742		kvm->mmu_invalidate_range_start =
743			min(kvm->mmu_invalidate_range_start, start);
744		kvm->mmu_invalidate_range_end =
745			max(kvm->mmu_invalidate_range_end, end);
746	}
747}
748
749bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
750{
751	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
752	return kvm_unmap_gfn_range(kvm, range);
753}
754
755static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
756					const struct mmu_notifier_range *range)
757{
758	struct kvm *kvm = mmu_notifier_to_kvm(mn);
759	const struct kvm_mmu_notifier_range hva_range = {
760		.start		= range->start,
761		.end		= range->end,
762		.handler	= kvm_mmu_unmap_gfn_range,
763		.on_lock	= kvm_mmu_invalidate_begin,
764		.flush_on_ret	= true,
765		.may_block	= mmu_notifier_range_blockable(range),
766	};
767
768	trace_kvm_unmap_hva_range(range->start, range->end);
769
770	/*
771	 * Prevent memslot modification between range_start() and range_end()
772	 * so that conditionally locking provides the same result in both
773	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
774	 * adjustments will be imbalanced.
775	 *
776	 * Pairs with the decrement in range_end().
777	 */
778	spin_lock(&kvm->mn_invalidate_lock);
779	kvm->mn_active_invalidate_count++;
780	spin_unlock(&kvm->mn_invalidate_lock);
781
782	/*
783	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
784	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
785	 * each cache's lock.  There are relatively few caches in existence at
786	 * any given time, and the caches themselves can check for hva overlap,
787	 * i.e. don't need to rely on memslot overlap checks for performance.
788	 * Because this runs without holding mmu_lock, the pfn caches must use
789	 * mn_active_invalidate_count (see above) instead of
790	 * mmu_invalidate_in_progress.
791	 */
792	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
793
794	/*
795	 * If one or more memslots were found and thus zapped, notify arch code
796	 * that guest memory has been reclaimed.  This needs to be done *after*
797	 * dropping mmu_lock, as x86's reclaim path is slooooow.
798	 */
799	if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
800		kvm_arch_guest_memory_reclaimed(kvm);
801
802	return 0;
803}
804
805void kvm_mmu_invalidate_end(struct kvm *kvm)
806{
807	lockdep_assert_held_write(&kvm->mmu_lock);
808
809	/*
810	 * This sequence increase will notify the kvm page fault that
811	 * the page that is going to be mapped in the spte could have
812	 * been freed.
813	 */
814	kvm->mmu_invalidate_seq++;
815	smp_wmb();
816	/*
817	 * The above sequence increase must be visible before the
818	 * below count decrease, which is ensured by the smp_wmb above
819	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
820	 */
821	kvm->mmu_invalidate_in_progress--;
822	KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
823
824	/*
825	 * Assert that at least one range was added between start() and end().
826	 * Not adding a range isn't fatal, but it is a KVM bug.
827	 */
828	WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
829}
830
831static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
832					const struct mmu_notifier_range *range)
833{
834	struct kvm *kvm = mmu_notifier_to_kvm(mn);
835	const struct kvm_mmu_notifier_range hva_range = {
836		.start		= range->start,
837		.end		= range->end,
838		.handler	= (void *)kvm_null_fn,
839		.on_lock	= kvm_mmu_invalidate_end,
840		.flush_on_ret	= false,
841		.may_block	= mmu_notifier_range_blockable(range),
842	};
843	bool wake;
844
845	__kvm_handle_hva_range(kvm, &hva_range);
846
847	/* Pairs with the increment in range_start(). */
848	spin_lock(&kvm->mn_invalidate_lock);
849	if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
850		--kvm->mn_active_invalidate_count;
851	wake = !kvm->mn_active_invalidate_count;
852	spin_unlock(&kvm->mn_invalidate_lock);
853
854	/*
855	 * There can only be one waiter, since the wait happens under
856	 * slots_lock.
857	 */
858	if (wake)
859		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
860}
861
862static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
863					      struct mm_struct *mm,
864					      unsigned long start,
865					      unsigned long end)
866{
867	trace_kvm_age_hva(start, end);
868
869	return kvm_handle_hva_range(mn, start, end, kvm_age_gfn);
870}
871
872static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
873					struct mm_struct *mm,
874					unsigned long start,
875					unsigned long end)
876{
877	trace_kvm_age_hva(start, end);
878
879	/*
880	 * Even though we do not flush TLB, this will still adversely
881	 * affect performance on pre-Haswell Intel EPT, where there is
882	 * no EPT Access Bit to clear so that we have to tear down EPT
883	 * tables instead. If we find this unacceptable, we can always
884	 * add a parameter to kvm_age_hva so that it effectively doesn't
885	 * do anything on clear_young.
886	 *
887	 * Also note that currently we never issue secondary TLB flushes
888	 * from clear_young, leaving this job up to the regular system
889	 * cadence. If we find this inaccurate, we might come up with a
890	 * more sophisticated heuristic later.
891	 */
892	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
893}
894
895static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
896				       struct mm_struct *mm,
897				       unsigned long address)
898{
899	trace_kvm_test_age_hva(address);
900
901	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
902					     kvm_test_age_gfn);
903}
904
905static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
906				     struct mm_struct *mm)
907{
908	struct kvm *kvm = mmu_notifier_to_kvm(mn);
909	int idx;
910
911	idx = srcu_read_lock(&kvm->srcu);
912	kvm_flush_shadow_all(kvm);
913	srcu_read_unlock(&kvm->srcu, idx);
914}
915
916static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
917	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
918	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
919	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
920	.clear_young		= kvm_mmu_notifier_clear_young,
921	.test_young		= kvm_mmu_notifier_test_young,
922	.release		= kvm_mmu_notifier_release,
923};
924
925static int kvm_init_mmu_notifier(struct kvm *kvm)
926{
927	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
928	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
929}
930
931#else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
932
933static int kvm_init_mmu_notifier(struct kvm *kvm)
934{
935	return 0;
936}
937
938#endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
939
940#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
941static int kvm_pm_notifier_call(struct notifier_block *bl,
942				unsigned long state,
943				void *unused)
944{
945	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
946
947	return kvm_arch_pm_notifier(kvm, state);
948}
949
950static void kvm_init_pm_notifier(struct kvm *kvm)
951{
952	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
953	/* Suspend KVM before we suspend ftrace, RCU, etc. */
954	kvm->pm_notifier.priority = INT_MAX;
955	register_pm_notifier(&kvm->pm_notifier);
956}
957
958static void kvm_destroy_pm_notifier(struct kvm *kvm)
959{
960	unregister_pm_notifier(&kvm->pm_notifier);
961}
962#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
963static void kvm_init_pm_notifier(struct kvm *kvm)
964{
965}
966
967static void kvm_destroy_pm_notifier(struct kvm *kvm)
968{
969}
970#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
971
972static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
973{
974	if (!memslot->dirty_bitmap)
975		return;
976
977	vfree(memslot->dirty_bitmap);
978	memslot->dirty_bitmap = NULL;
979}
980
981/* This does not remove the slot from struct kvm_memslots data structures */
982static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
983{
984	if (slot->flags & KVM_MEM_GUEST_MEMFD)
985		kvm_gmem_unbind(slot);
986
987	kvm_destroy_dirty_bitmap(slot);
988
989	kvm_arch_free_memslot(kvm, slot);
990
991	kfree(slot);
992}
993
994static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
995{
996	struct hlist_node *idnode;
997	struct kvm_memory_slot *memslot;
998	int bkt;
999
1000	/*
1001	 * The same memslot objects live in both active and inactive sets,
1002	 * arbitrarily free using index '1' so the second invocation of this
1003	 * function isn't operating over a structure with dangling pointers
1004	 * (even though this function isn't actually touching them).
1005	 */
1006	if (!slots->node_idx)
1007		return;
1008
1009	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1010		kvm_free_memslot(kvm, memslot);
1011}
1012
1013static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1014{
1015	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1016	case KVM_STATS_TYPE_INSTANT:
1017		return 0444;
1018	case KVM_STATS_TYPE_CUMULATIVE:
1019	case KVM_STATS_TYPE_PEAK:
1020	default:
1021		return 0644;
1022	}
1023}
1024
1025
1026static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1027{
1028	int i;
1029	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1030				      kvm_vcpu_stats_header.num_desc;
1031
1032	if (IS_ERR(kvm->debugfs_dentry))
1033		return;
1034
1035	debugfs_remove_recursive(kvm->debugfs_dentry);
1036
1037	if (kvm->debugfs_stat_data) {
1038		for (i = 0; i < kvm_debugfs_num_entries; i++)
1039			kfree(kvm->debugfs_stat_data[i]);
1040		kfree(kvm->debugfs_stat_data);
1041	}
1042}
1043
1044static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1045{
1046	static DEFINE_MUTEX(kvm_debugfs_lock);
1047	struct dentry *dent;
1048	char dir_name[ITOA_MAX_LEN * 2];
1049	struct kvm_stat_data *stat_data;
1050	const struct _kvm_stats_desc *pdesc;
1051	int i, ret = -ENOMEM;
1052	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1053				      kvm_vcpu_stats_header.num_desc;
1054
1055	if (!debugfs_initialized())
1056		return 0;
1057
1058	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1059	mutex_lock(&kvm_debugfs_lock);
1060	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1061	if (dent) {
1062		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1063		dput(dent);
1064		mutex_unlock(&kvm_debugfs_lock);
1065		return 0;
1066	}
1067	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1068	mutex_unlock(&kvm_debugfs_lock);
1069	if (IS_ERR(dent))
1070		return 0;
1071
1072	kvm->debugfs_dentry = dent;
1073	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1074					 sizeof(*kvm->debugfs_stat_data),
1075					 GFP_KERNEL_ACCOUNT);
1076	if (!kvm->debugfs_stat_data)
1077		goto out_err;
1078
1079	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1080		pdesc = &kvm_vm_stats_desc[i];
1081		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1082		if (!stat_data)
1083			goto out_err;
1084
1085		stat_data->kvm = kvm;
1086		stat_data->desc = pdesc;
1087		stat_data->kind = KVM_STAT_VM;
1088		kvm->debugfs_stat_data[i] = stat_data;
1089		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1090				    kvm->debugfs_dentry, stat_data,
1091				    &stat_fops_per_vm);
1092	}
1093
1094	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1095		pdesc = &kvm_vcpu_stats_desc[i];
1096		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1097		if (!stat_data)
1098			goto out_err;
1099
1100		stat_data->kvm = kvm;
1101		stat_data->desc = pdesc;
1102		stat_data->kind = KVM_STAT_VCPU;
1103		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1104		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1105				    kvm->debugfs_dentry, stat_data,
1106				    &stat_fops_per_vm);
1107	}
1108
1109	kvm_arch_create_vm_debugfs(kvm);
1110	return 0;
1111out_err:
1112	kvm_destroy_vm_debugfs(kvm);
1113	return ret;
1114}
1115
1116/*
1117 * Called after the VM is otherwise initialized, but just before adding it to
1118 * the vm_list.
1119 */
1120int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1121{
1122	return 0;
1123}
1124
1125/*
1126 * Called just after removing the VM from the vm_list, but before doing any
1127 * other destruction.
1128 */
1129void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1130{
1131}
1132
1133/*
1134 * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1135 * be setup already, so we can create arch-specific debugfs entries under it.
1136 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1137 * a per-arch destroy interface is not needed.
1138 */
1139void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1140{
1141}
1142
1143static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1144{
1145	struct kvm *kvm = kvm_arch_alloc_vm();
1146	struct kvm_memslots *slots;
1147	int r = -ENOMEM;
1148	int i, j;
1149
1150	if (!kvm)
1151		return ERR_PTR(-ENOMEM);
1152
1153	KVM_MMU_LOCK_INIT(kvm);
1154	mmgrab(current->mm);
1155	kvm->mm = current->mm;
1156	kvm_eventfd_init(kvm);
1157	mutex_init(&kvm->lock);
1158	mutex_init(&kvm->irq_lock);
1159	mutex_init(&kvm->slots_lock);
1160	mutex_init(&kvm->slots_arch_lock);
1161	spin_lock_init(&kvm->mn_invalidate_lock);
1162	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1163	xa_init(&kvm->vcpu_array);
1164#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1165	xa_init(&kvm->mem_attr_array);
1166#endif
1167
1168	INIT_LIST_HEAD(&kvm->gpc_list);
1169	spin_lock_init(&kvm->gpc_lock);
1170
1171	INIT_LIST_HEAD(&kvm->devices);
1172	kvm->max_vcpus = KVM_MAX_VCPUS;
1173
1174	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1175
1176	/*
1177	 * Force subsequent debugfs file creations to fail if the VM directory
1178	 * is not created (by kvm_create_vm_debugfs()).
1179	 */
1180	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1181
1182	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1183		 task_pid_nr(current));
1184
1185	if (init_srcu_struct(&kvm->srcu))
1186		goto out_err_no_srcu;
1187	if (init_srcu_struct(&kvm->irq_srcu))
1188		goto out_err_no_irq_srcu;
1189
1190	refcount_set(&kvm->users_count, 1);
1191	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1192		for (j = 0; j < 2; j++) {
1193			slots = &kvm->__memslots[i][j];
1194
1195			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1196			slots->hva_tree = RB_ROOT_CACHED;
1197			slots->gfn_tree = RB_ROOT;
1198			hash_init(slots->id_hash);
1199			slots->node_idx = j;
1200
1201			/* Generations must be different for each address space. */
1202			slots->generation = i;
1203		}
1204
1205		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1206	}
1207
1208	for (i = 0; i < KVM_NR_BUSES; i++) {
1209		rcu_assign_pointer(kvm->buses[i],
1210			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1211		if (!kvm->buses[i])
1212			goto out_err_no_arch_destroy_vm;
1213	}
1214
1215	r = kvm_arch_init_vm(kvm, type);
1216	if (r)
1217		goto out_err_no_arch_destroy_vm;
1218
1219	r = hardware_enable_all();
1220	if (r)
1221		goto out_err_no_disable;
1222
1223#ifdef CONFIG_HAVE_KVM_IRQCHIP
1224	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1225#endif
1226
1227	r = kvm_init_mmu_notifier(kvm);
1228	if (r)
1229		goto out_err_no_mmu_notifier;
1230
1231	r = kvm_coalesced_mmio_init(kvm);
1232	if (r < 0)
1233		goto out_no_coalesced_mmio;
1234
1235	r = kvm_create_vm_debugfs(kvm, fdname);
1236	if (r)
1237		goto out_err_no_debugfs;
1238
1239	r = kvm_arch_post_init_vm(kvm);
1240	if (r)
1241		goto out_err;
1242
1243	mutex_lock(&kvm_lock);
1244	list_add(&kvm->vm_list, &vm_list);
1245	mutex_unlock(&kvm_lock);
1246
1247	preempt_notifier_inc();
1248	kvm_init_pm_notifier(kvm);
1249
1250	return kvm;
1251
1252out_err:
1253	kvm_destroy_vm_debugfs(kvm);
1254out_err_no_debugfs:
1255	kvm_coalesced_mmio_free(kvm);
1256out_no_coalesced_mmio:
1257#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1258	if (kvm->mmu_notifier.ops)
1259		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1260#endif
1261out_err_no_mmu_notifier:
1262	hardware_disable_all();
1263out_err_no_disable:
1264	kvm_arch_destroy_vm(kvm);
1265out_err_no_arch_destroy_vm:
1266	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1267	for (i = 0; i < KVM_NR_BUSES; i++)
1268		kfree(kvm_get_bus(kvm, i));
1269	cleanup_srcu_struct(&kvm->irq_srcu);
1270out_err_no_irq_srcu:
1271	cleanup_srcu_struct(&kvm->srcu);
1272out_err_no_srcu:
1273	kvm_arch_free_vm(kvm);
1274	mmdrop(current->mm);
1275	return ERR_PTR(r);
1276}
1277
1278static void kvm_destroy_devices(struct kvm *kvm)
1279{
1280	struct kvm_device *dev, *tmp;
1281
1282	/*
1283	 * We do not need to take the kvm->lock here, because nobody else
1284	 * has a reference to the struct kvm at this point and therefore
1285	 * cannot access the devices list anyhow.
1286	 *
1287	 * The device list is generally managed as an rculist, but list_del()
1288	 * is used intentionally here. If a bug in KVM introduced a reader that
1289	 * was not backed by a reference on the kvm struct, the hope is that
1290	 * it'd consume the poisoned forward pointer instead of suffering a
1291	 * use-after-free, even though this cannot be guaranteed.
1292	 */
1293	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1294		list_del(&dev->vm_node);
1295		dev->ops->destroy(dev);
1296	}
1297}
1298
1299static void kvm_destroy_vm(struct kvm *kvm)
1300{
1301	int i;
1302	struct mm_struct *mm = kvm->mm;
1303
1304	kvm_destroy_pm_notifier(kvm);
1305	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1306	kvm_destroy_vm_debugfs(kvm);
1307	kvm_arch_sync_events(kvm);
1308	mutex_lock(&kvm_lock);
1309	list_del(&kvm->vm_list);
1310	mutex_unlock(&kvm_lock);
1311	kvm_arch_pre_destroy_vm(kvm);
1312
1313	kvm_free_irq_routing(kvm);
1314	for (i = 0; i < KVM_NR_BUSES; i++) {
1315		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1316
1317		if (bus)
1318			kvm_io_bus_destroy(bus);
1319		kvm->buses[i] = NULL;
1320	}
1321	kvm_coalesced_mmio_free(kvm);
1322#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1323	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1324	/*
1325	 * At this point, pending calls to invalidate_range_start()
1326	 * have completed but no more MMU notifiers will run, so
1327	 * mn_active_invalidate_count may remain unbalanced.
1328	 * No threads can be waiting in kvm_swap_active_memslots() as the
1329	 * last reference on KVM has been dropped, but freeing
1330	 * memslots would deadlock without this manual intervention.
1331	 *
1332	 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1333	 * notifier between a start() and end(), then there shouldn't be any
1334	 * in-progress invalidations.
1335	 */
1336	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1337	if (kvm->mn_active_invalidate_count)
1338		kvm->mn_active_invalidate_count = 0;
1339	else
1340		WARN_ON(kvm->mmu_invalidate_in_progress);
1341#else
1342	kvm_flush_shadow_all(kvm);
1343#endif
1344	kvm_arch_destroy_vm(kvm);
1345	kvm_destroy_devices(kvm);
1346	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1347		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1348		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1349	}
1350	cleanup_srcu_struct(&kvm->irq_srcu);
1351	cleanup_srcu_struct(&kvm->srcu);
1352#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1353	xa_destroy(&kvm->mem_attr_array);
1354#endif
1355	kvm_arch_free_vm(kvm);
1356	preempt_notifier_dec();
1357	hardware_disable_all();
1358	mmdrop(mm);
1359}
1360
1361void kvm_get_kvm(struct kvm *kvm)
1362{
1363	refcount_inc(&kvm->users_count);
1364}
1365EXPORT_SYMBOL_GPL(kvm_get_kvm);
1366
1367/*
1368 * Make sure the vm is not during destruction, which is a safe version of
1369 * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1370 */
1371bool kvm_get_kvm_safe(struct kvm *kvm)
1372{
1373	return refcount_inc_not_zero(&kvm->users_count);
1374}
1375EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1376
1377void kvm_put_kvm(struct kvm *kvm)
1378{
1379	if (refcount_dec_and_test(&kvm->users_count))
1380		kvm_destroy_vm(kvm);
1381}
1382EXPORT_SYMBOL_GPL(kvm_put_kvm);
1383
1384/*
1385 * Used to put a reference that was taken on behalf of an object associated
1386 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1387 * of the new file descriptor fails and the reference cannot be transferred to
1388 * its final owner.  In such cases, the caller is still actively using @kvm and
1389 * will fail miserably if the refcount unexpectedly hits zero.
1390 */
1391void kvm_put_kvm_no_destroy(struct kvm *kvm)
1392{
1393	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1394}
1395EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1396
1397static int kvm_vm_release(struct inode *inode, struct file *filp)
1398{
1399	struct kvm *kvm = filp->private_data;
1400
1401	kvm_irqfd_release(kvm);
1402
1403	kvm_put_kvm(kvm);
1404	return 0;
1405}
1406
1407/*
1408 * Allocation size is twice as large as the actual dirty bitmap size.
1409 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1410 */
1411static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1412{
1413	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1414
1415	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1416	if (!memslot->dirty_bitmap)
1417		return -ENOMEM;
1418
1419	return 0;
1420}
1421
1422static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1423{
1424	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1425	int node_idx_inactive = active->node_idx ^ 1;
1426
1427	return &kvm->__memslots[as_id][node_idx_inactive];
1428}
1429
1430/*
1431 * Helper to get the address space ID when one of memslot pointers may be NULL.
1432 * This also serves as a sanity that at least one of the pointers is non-NULL,
1433 * and that their address space IDs don't diverge.
1434 */
1435static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1436				  struct kvm_memory_slot *b)
1437{
1438	if (WARN_ON_ONCE(!a && !b))
1439		return 0;
1440
1441	if (!a)
1442		return b->as_id;
1443	if (!b)
1444		return a->as_id;
1445
1446	WARN_ON_ONCE(a->as_id != b->as_id);
1447	return a->as_id;
1448}
1449
1450static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1451				struct kvm_memory_slot *slot)
1452{
1453	struct rb_root *gfn_tree = &slots->gfn_tree;
1454	struct rb_node **node, *parent;
1455	int idx = slots->node_idx;
1456
1457	parent = NULL;
1458	for (node = &gfn_tree->rb_node; *node; ) {
1459		struct kvm_memory_slot *tmp;
1460
1461		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1462		parent = *node;
1463		if (slot->base_gfn < tmp->base_gfn)
1464			node = &(*node)->rb_left;
1465		else if (slot->base_gfn > tmp->base_gfn)
1466			node = &(*node)->rb_right;
1467		else
1468			BUG();
1469	}
1470
1471	rb_link_node(&slot->gfn_node[idx], parent, node);
1472	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1473}
1474
1475static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1476			       struct kvm_memory_slot *slot)
1477{
1478	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1479}
1480
1481static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1482				 struct kvm_memory_slot *old,
1483				 struct kvm_memory_slot *new)
1484{
1485	int idx = slots->node_idx;
1486
1487	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1488
1489	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1490			&slots->gfn_tree);
1491}
1492
1493/*
1494 * Replace @old with @new in the inactive memslots.
1495 *
1496 * With NULL @old this simply adds @new.
1497 * With NULL @new this simply removes @old.
1498 *
1499 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1500 * appropriately.
1501 */
1502static void kvm_replace_memslot(struct kvm *kvm,
1503				struct kvm_memory_slot *old,
1504				struct kvm_memory_slot *new)
1505{
1506	int as_id = kvm_memslots_get_as_id(old, new);
1507	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1508	int idx = slots->node_idx;
1509
1510	if (old) {
1511		hash_del(&old->id_node[idx]);
1512		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1513
1514		if ((long)old == atomic_long_read(&slots->last_used_slot))
1515			atomic_long_set(&slots->last_used_slot, (long)new);
1516
1517		if (!new) {
1518			kvm_erase_gfn_node(slots, old);
1519			return;
1520		}
1521	}
1522
1523	/*
1524	 * Initialize @new's hva range.  Do this even when replacing an @old
1525	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1526	 */
1527	new->hva_node[idx].start = new->userspace_addr;
1528	new->hva_node[idx].last = new->userspace_addr +
1529				  (new->npages << PAGE_SHIFT) - 1;
1530
1531	/*
1532	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1533	 * hva_node needs to be swapped with remove+insert even though hva can't
1534	 * change when replacing an existing slot.
1535	 */
1536	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1537	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1538
1539	/*
1540	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1541	 * switch the node in the gfn tree instead of removing the old and
1542	 * inserting the new as two separate operations. Replacement is a
1543	 * single O(1) operation versus two O(log(n)) operations for
1544	 * remove+insert.
1545	 */
1546	if (old && old->base_gfn == new->base_gfn) {
1547		kvm_replace_gfn_node(slots, old, new);
1548	} else {
1549		if (old)
1550			kvm_erase_gfn_node(slots, old);
1551		kvm_insert_gfn_node(slots, new);
1552	}
1553}
1554
1555/*
1556 * Flags that do not access any of the extra space of struct
1557 * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1558 * only allows these.
1559 */
1560#define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1561	(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1562
1563static int check_memory_region_flags(struct kvm *kvm,
1564				     const struct kvm_userspace_memory_region2 *mem)
1565{
1566	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1567
1568	if (kvm_arch_has_private_mem(kvm))
1569		valid_flags |= KVM_MEM_GUEST_MEMFD;
1570
1571	/* Dirty logging private memory is not currently supported. */
1572	if (mem->flags & KVM_MEM_GUEST_MEMFD)
1573		valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1574
1575#ifdef CONFIG_HAVE_KVM_READONLY_MEM
1576	/*
1577	 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1578	 * read-only memslots have emulated MMIO, not page fault, semantics,
1579	 * and KVM doesn't allow emulated MMIO for private memory.
1580	 */
1581	if (!(mem->flags & KVM_MEM_GUEST_MEMFD))
1582		valid_flags |= KVM_MEM_READONLY;
1583#endif
1584
1585	if (mem->flags & ~valid_flags)
1586		return -EINVAL;
1587
1588	return 0;
1589}
1590
1591static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1592{
1593	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1594
1595	/* Grab the generation from the activate memslots. */
1596	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1597
1598	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1599	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1600
1601	/*
1602	 * Do not store the new memslots while there are invalidations in
1603	 * progress, otherwise the locking in invalidate_range_start and
1604	 * invalidate_range_end will be unbalanced.
1605	 */
1606	spin_lock(&kvm->mn_invalidate_lock);
1607	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1608	while (kvm->mn_active_invalidate_count) {
1609		set_current_state(TASK_UNINTERRUPTIBLE);
1610		spin_unlock(&kvm->mn_invalidate_lock);
1611		schedule();
1612		spin_lock(&kvm->mn_invalidate_lock);
1613	}
1614	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1615	rcu_assign_pointer(kvm->memslots[as_id], slots);
1616	spin_unlock(&kvm->mn_invalidate_lock);
1617
1618	/*
1619	 * Acquired in kvm_set_memslot. Must be released before synchronize
1620	 * SRCU below in order to avoid deadlock with another thread
1621	 * acquiring the slots_arch_lock in an srcu critical section.
1622	 */
1623	mutex_unlock(&kvm->slots_arch_lock);
1624
1625	synchronize_srcu_expedited(&kvm->srcu);
1626
1627	/*
1628	 * Increment the new memslot generation a second time, dropping the
1629	 * update in-progress flag and incrementing the generation based on
1630	 * the number of address spaces.  This provides a unique and easily
1631	 * identifiable generation number while the memslots are in flux.
1632	 */
1633	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1634
1635	/*
1636	 * Generations must be unique even across address spaces.  We do not need
1637	 * a global counter for that, instead the generation space is evenly split
1638	 * across address spaces.  For example, with two address spaces, address
1639	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1640	 * use generations 1, 3, 5, ...
1641	 */
1642	gen += kvm_arch_nr_memslot_as_ids(kvm);
1643
1644	kvm_arch_memslots_updated(kvm, gen);
1645
1646	slots->generation = gen;
1647}
1648
1649static int kvm_prepare_memory_region(struct kvm *kvm,
1650				     const struct kvm_memory_slot *old,
1651				     struct kvm_memory_slot *new,
1652				     enum kvm_mr_change change)
1653{
1654	int r;
1655
1656	/*
1657	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1658	 * will be freed on "commit".  If logging is enabled in both old and
1659	 * new, reuse the existing bitmap.  If logging is enabled only in the
1660	 * new and KVM isn't using a ring buffer, allocate and initialize a
1661	 * new bitmap.
1662	 */
1663	if (change != KVM_MR_DELETE) {
1664		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1665			new->dirty_bitmap = NULL;
1666		else if (old && old->dirty_bitmap)
1667			new->dirty_bitmap = old->dirty_bitmap;
1668		else if (kvm_use_dirty_bitmap(kvm)) {
1669			r = kvm_alloc_dirty_bitmap(new);
1670			if (r)
1671				return r;
1672
1673			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1674				bitmap_set(new->dirty_bitmap, 0, new->npages);
1675		}
1676	}
1677
1678	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1679
1680	/* Free the bitmap on failure if it was allocated above. */
1681	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1682		kvm_destroy_dirty_bitmap(new);
1683
1684	return r;
1685}
1686
1687static void kvm_commit_memory_region(struct kvm *kvm,
1688				     struct kvm_memory_slot *old,
1689				     const struct kvm_memory_slot *new,
1690				     enum kvm_mr_change change)
1691{
1692	int old_flags = old ? old->flags : 0;
1693	int new_flags = new ? new->flags : 0;
1694	/*
1695	 * Update the total number of memslot pages before calling the arch
1696	 * hook so that architectures can consume the result directly.
1697	 */
1698	if (change == KVM_MR_DELETE)
1699		kvm->nr_memslot_pages -= old->npages;
1700	else if (change == KVM_MR_CREATE)
1701		kvm->nr_memslot_pages += new->npages;
1702
1703	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1704		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1705		atomic_set(&kvm->nr_memslots_dirty_logging,
1706			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1707	}
1708
1709	kvm_arch_commit_memory_region(kvm, old, new, change);
1710
1711	switch (change) {
1712	case KVM_MR_CREATE:
1713		/* Nothing more to do. */
1714		break;
1715	case KVM_MR_DELETE:
1716		/* Free the old memslot and all its metadata. */
1717		kvm_free_memslot(kvm, old);
1718		break;
1719	case KVM_MR_MOVE:
1720	case KVM_MR_FLAGS_ONLY:
1721		/*
1722		 * Free the dirty bitmap as needed; the below check encompasses
1723		 * both the flags and whether a ring buffer is being used)
1724		 */
1725		if (old->dirty_bitmap && !new->dirty_bitmap)
1726			kvm_destroy_dirty_bitmap(old);
1727
1728		/*
1729		 * The final quirk.  Free the detached, old slot, but only its
1730		 * memory, not any metadata.  Metadata, including arch specific
1731		 * data, may be reused by @new.
1732		 */
1733		kfree(old);
1734		break;
1735	default:
1736		BUG();
1737	}
1738}
1739
1740/*
1741 * Activate @new, which must be installed in the inactive slots by the caller,
1742 * by swapping the active slots and then propagating @new to @old once @old is
1743 * unreachable and can be safely modified.
1744 *
1745 * With NULL @old this simply adds @new to @active (while swapping the sets).
1746 * With NULL @new this simply removes @old from @active and frees it
1747 * (while also swapping the sets).
1748 */
1749static void kvm_activate_memslot(struct kvm *kvm,
1750				 struct kvm_memory_slot *old,
1751				 struct kvm_memory_slot *new)
1752{
1753	int as_id = kvm_memslots_get_as_id(old, new);
1754
1755	kvm_swap_active_memslots(kvm, as_id);
1756
1757	/* Propagate the new memslot to the now inactive memslots. */
1758	kvm_replace_memslot(kvm, old, new);
1759}
1760
1761static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1762			     const struct kvm_memory_slot *src)
1763{
1764	dest->base_gfn = src->base_gfn;
1765	dest->npages = src->npages;
1766	dest->dirty_bitmap = src->dirty_bitmap;
1767	dest->arch = src->arch;
1768	dest->userspace_addr = src->userspace_addr;
1769	dest->flags = src->flags;
1770	dest->id = src->id;
1771	dest->as_id = src->as_id;
1772}
1773
1774static void kvm_invalidate_memslot(struct kvm *kvm,
1775				   struct kvm_memory_slot *old,
1776				   struct kvm_memory_slot *invalid_slot)
1777{
1778	/*
1779	 * Mark the current slot INVALID.  As with all memslot modifications,
1780	 * this must be done on an unreachable slot to avoid modifying the
1781	 * current slot in the active tree.
1782	 */
1783	kvm_copy_memslot(invalid_slot, old);
1784	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1785	kvm_replace_memslot(kvm, old, invalid_slot);
1786
1787	/*
1788	 * Activate the slot that is now marked INVALID, but don't propagate
1789	 * the slot to the now inactive slots. The slot is either going to be
1790	 * deleted or recreated as a new slot.
1791	 */
1792	kvm_swap_active_memslots(kvm, old->as_id);
1793
1794	/*
1795	 * From this point no new shadow pages pointing to a deleted, or moved,
1796	 * memslot will be created.  Validation of sp->gfn happens in:
1797	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1798	 *	- kvm_is_visible_gfn (mmu_check_root)
1799	 */
1800	kvm_arch_flush_shadow_memslot(kvm, old);
1801	kvm_arch_guest_memory_reclaimed(kvm);
1802
1803	/* Was released by kvm_swap_active_memslots(), reacquire. */
1804	mutex_lock(&kvm->slots_arch_lock);
1805
1806	/*
1807	 * Copy the arch-specific field of the newly-installed slot back to the
1808	 * old slot as the arch data could have changed between releasing
1809	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1810	 * above.  Writers are required to retrieve memslots *after* acquiring
1811	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1812	 */
1813	old->arch = invalid_slot->arch;
1814}
1815
1816static void kvm_create_memslot(struct kvm *kvm,
1817			       struct kvm_memory_slot *new)
1818{
1819	/* Add the new memslot to the inactive set and activate. */
1820	kvm_replace_memslot(kvm, NULL, new);
1821	kvm_activate_memslot(kvm, NULL, new);
1822}
1823
1824static void kvm_delete_memslot(struct kvm *kvm,
1825			       struct kvm_memory_slot *old,
1826			       struct kvm_memory_slot *invalid_slot)
1827{
1828	/*
1829	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1830	 * the "new" slot, and for the invalid version in the active slots.
1831	 */
1832	kvm_replace_memslot(kvm, old, NULL);
1833	kvm_activate_memslot(kvm, invalid_slot, NULL);
1834}
1835
1836static void kvm_move_memslot(struct kvm *kvm,
1837			     struct kvm_memory_slot *old,
1838			     struct kvm_memory_slot *new,
1839			     struct kvm_memory_slot *invalid_slot)
1840{
1841	/*
1842	 * Replace the old memslot in the inactive slots, and then swap slots
1843	 * and replace the current INVALID with the new as well.
1844	 */
1845	kvm_replace_memslot(kvm, old, new);
1846	kvm_activate_memslot(kvm, invalid_slot, new);
1847}
1848
1849static void kvm_update_flags_memslot(struct kvm *kvm,
1850				     struct kvm_memory_slot *old,
1851				     struct kvm_memory_slot *new)
1852{
1853	/*
1854	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1855	 * an intermediate step. Instead, the old memslot is simply replaced
1856	 * with a new, updated copy in both memslot sets.
1857	 */
1858	kvm_replace_memslot(kvm, old, new);
1859	kvm_activate_memslot(kvm, old, new);
1860}
1861
1862static int kvm_set_memslot(struct kvm *kvm,
1863			   struct kvm_memory_slot *old,
1864			   struct kvm_memory_slot *new,
1865			   enum kvm_mr_change change)
1866{
1867	struct kvm_memory_slot *invalid_slot;
1868	int r;
1869
1870	/*
1871	 * Released in kvm_swap_active_memslots().
1872	 *
1873	 * Must be held from before the current memslots are copied until after
1874	 * the new memslots are installed with rcu_assign_pointer, then
1875	 * released before the synchronize srcu in kvm_swap_active_memslots().
1876	 *
1877	 * When modifying memslots outside of the slots_lock, must be held
1878	 * before reading the pointer to the current memslots until after all
1879	 * changes to those memslots are complete.
1880	 *
1881	 * These rules ensure that installing new memslots does not lose
1882	 * changes made to the previous memslots.
1883	 */
1884	mutex_lock(&kvm->slots_arch_lock);
1885
1886	/*
1887	 * Invalidate the old slot if it's being deleted or moved.  This is
1888	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1889	 * continue running by ensuring there are no mappings or shadow pages
1890	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1891	 * (and without a lock), a window would exist between effecting the
1892	 * delete/move and committing the changes in arch code where KVM or a
1893	 * guest could access a non-existent memslot.
1894	 *
1895	 * Modifications are done on a temporary, unreachable slot.  The old
1896	 * slot needs to be preserved in case a later step fails and the
1897	 * invalidation needs to be reverted.
1898	 */
1899	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1900		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1901		if (!invalid_slot) {
1902			mutex_unlock(&kvm->slots_arch_lock);
1903			return -ENOMEM;
1904		}
1905		kvm_invalidate_memslot(kvm, old, invalid_slot);
1906	}
1907
1908	r = kvm_prepare_memory_region(kvm, old, new, change);
1909	if (r) {
1910		/*
1911		 * For DELETE/MOVE, revert the above INVALID change.  No
1912		 * modifications required since the original slot was preserved
1913		 * in the inactive slots.  Changing the active memslots also
1914		 * release slots_arch_lock.
1915		 */
1916		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1917			kvm_activate_memslot(kvm, invalid_slot, old);
1918			kfree(invalid_slot);
1919		} else {
1920			mutex_unlock(&kvm->slots_arch_lock);
1921		}
1922		return r;
1923	}
1924
1925	/*
1926	 * For DELETE and MOVE, the working slot is now active as the INVALID
1927	 * version of the old slot.  MOVE is particularly special as it reuses
1928	 * the old slot and returns a copy of the old slot (in working_slot).
1929	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1930	 * old slot is detached but otherwise preserved.
1931	 */
1932	if (change == KVM_MR_CREATE)
1933		kvm_create_memslot(kvm, new);
1934	else if (change == KVM_MR_DELETE)
1935		kvm_delete_memslot(kvm, old, invalid_slot);
1936	else if (change == KVM_MR_MOVE)
1937		kvm_move_memslot(kvm, old, new, invalid_slot);
1938	else if (change == KVM_MR_FLAGS_ONLY)
1939		kvm_update_flags_memslot(kvm, old, new);
1940	else
1941		BUG();
1942
1943	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1944	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1945		kfree(invalid_slot);
1946
1947	/*
1948	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1949	 * will directly hit the final, active memslot.  Architectures are
1950	 * responsible for knowing that new->arch may be stale.
1951	 */
1952	kvm_commit_memory_region(kvm, old, new, change);
1953
1954	return 0;
1955}
1956
1957static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1958				      gfn_t start, gfn_t end)
1959{
1960	struct kvm_memslot_iter iter;
1961
1962	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1963		if (iter.slot->id != id)
1964			return true;
1965	}
1966
1967	return false;
1968}
1969
1970/*
1971 * Allocate some memory and give it an address in the guest physical address
1972 * space.
1973 *
1974 * Discontiguous memory is allowed, mostly for framebuffers.
1975 *
1976 * Must be called holding kvm->slots_lock for write.
1977 */
1978int __kvm_set_memory_region(struct kvm *kvm,
1979			    const struct kvm_userspace_memory_region2 *mem)
1980{
1981	struct kvm_memory_slot *old, *new;
1982	struct kvm_memslots *slots;
1983	enum kvm_mr_change change;
1984	unsigned long npages;
1985	gfn_t base_gfn;
1986	int as_id, id;
1987	int r;
1988
1989	r = check_memory_region_flags(kvm, mem);
1990	if (r)
1991		return r;
1992
1993	as_id = mem->slot >> 16;
1994	id = (u16)mem->slot;
1995
1996	/* General sanity checks */
1997	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1998	    (mem->memory_size != (unsigned long)mem->memory_size))
1999		return -EINVAL;
2000	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2001		return -EINVAL;
2002	/* We can read the guest memory with __xxx_user() later on. */
2003	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2004	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2005	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2006			mem->memory_size))
2007		return -EINVAL;
2008	if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2009	    (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2010	     mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2011		return -EINVAL;
2012	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2013		return -EINVAL;
2014	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2015		return -EINVAL;
2016	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2017		return -EINVAL;
2018
2019	slots = __kvm_memslots(kvm, as_id);
2020
2021	/*
2022	 * Note, the old memslot (and the pointer itself!) may be invalidated
2023	 * and/or destroyed by kvm_set_memslot().
2024	 */
2025	old = id_to_memslot(slots, id);
2026
2027	if (!mem->memory_size) {
2028		if (!old || !old->npages)
2029			return -EINVAL;
2030
2031		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2032			return -EIO;
2033
2034		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2035	}
2036
2037	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2038	npages = (mem->memory_size >> PAGE_SHIFT);
2039
2040	if (!old || !old->npages) {
2041		change = KVM_MR_CREATE;
2042
2043		/*
2044		 * To simplify KVM internals, the total number of pages across
2045		 * all memslots must fit in an unsigned long.
2046		 */
2047		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2048			return -EINVAL;
2049	} else { /* Modify an existing slot. */
2050		/* Private memslots are immutable, they can only be deleted. */
2051		if (mem->flags & KVM_MEM_GUEST_MEMFD)
2052			return -EINVAL;
2053		if ((mem->userspace_addr != old->userspace_addr) ||
2054		    (npages != old->npages) ||
2055		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2056			return -EINVAL;
2057
2058		if (base_gfn != old->base_gfn)
2059			change = KVM_MR_MOVE;
2060		else if (mem->flags != old->flags)
2061			change = KVM_MR_FLAGS_ONLY;
2062		else /* Nothing to change. */
2063			return 0;
2064	}
2065
2066	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2067	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2068		return -EEXIST;
2069
2070	/* Allocate a slot that will persist in the memslot. */
2071	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2072	if (!new)
2073		return -ENOMEM;
2074
2075	new->as_id = as_id;
2076	new->id = id;
2077	new->base_gfn = base_gfn;
2078	new->npages = npages;
2079	new->flags = mem->flags;
2080	new->userspace_addr = mem->userspace_addr;
2081	if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2082		r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2083		if (r)
2084			goto out;
2085	}
2086
2087	r = kvm_set_memslot(kvm, old, new, change);
2088	if (r)
2089		goto out_unbind;
2090
2091	return 0;
2092
2093out_unbind:
2094	if (mem->flags & KVM_MEM_GUEST_MEMFD)
2095		kvm_gmem_unbind(new);
2096out:
2097	kfree(new);
2098	return r;
2099}
2100EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2101
2102int kvm_set_memory_region(struct kvm *kvm,
2103			  const struct kvm_userspace_memory_region2 *mem)
2104{
2105	int r;
2106
2107	mutex_lock(&kvm->slots_lock);
2108	r = __kvm_set_memory_region(kvm, mem);
2109	mutex_unlock(&kvm->slots_lock);
2110	return r;
2111}
2112EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2113
2114static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2115					  struct kvm_userspace_memory_region2 *mem)
2116{
2117	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2118		return -EINVAL;
2119
2120	return kvm_set_memory_region(kvm, mem);
2121}
2122
2123#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2124/**
2125 * kvm_get_dirty_log - get a snapshot of dirty pages
2126 * @kvm:	pointer to kvm instance
2127 * @log:	slot id and address to which we copy the log
2128 * @is_dirty:	set to '1' if any dirty pages were found
2129 * @memslot:	set to the associated memslot, always valid on success
2130 */
2131int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2132		      int *is_dirty, struct kvm_memory_slot **memslot)
2133{
2134	struct kvm_memslots *slots;
2135	int i, as_id, id;
2136	unsigned long n;
2137	unsigned long any = 0;
2138
2139	/* Dirty ring tracking may be exclusive to dirty log tracking */
2140	if (!kvm_use_dirty_bitmap(kvm))
2141		return -ENXIO;
2142
2143	*memslot = NULL;
2144	*is_dirty = 0;
2145
2146	as_id = log->slot >> 16;
2147	id = (u16)log->slot;
2148	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2149		return -EINVAL;
2150
2151	slots = __kvm_memslots(kvm, as_id);
2152	*memslot = id_to_memslot(slots, id);
2153	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2154		return -ENOENT;
2155
2156	kvm_arch_sync_dirty_log(kvm, *memslot);
2157
2158	n = kvm_dirty_bitmap_bytes(*memslot);
2159
2160	for (i = 0; !any && i < n/sizeof(long); ++i)
2161		any = (*memslot)->dirty_bitmap[i];
2162
2163	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2164		return -EFAULT;
2165
2166	if (any)
2167		*is_dirty = 1;
2168	return 0;
2169}
2170EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2171
2172#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2173/**
2174 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2175 *	and reenable dirty page tracking for the corresponding pages.
2176 * @kvm:	pointer to kvm instance
2177 * @log:	slot id and address to which we copy the log
2178 *
2179 * We need to keep it in mind that VCPU threads can write to the bitmap
2180 * concurrently. So, to avoid losing track of dirty pages we keep the
2181 * following order:
2182 *
2183 *    1. Take a snapshot of the bit and clear it if needed.
2184 *    2. Write protect the corresponding page.
2185 *    3. Copy the snapshot to the userspace.
2186 *    4. Upon return caller flushes TLB's if needed.
2187 *
2188 * Between 2 and 4, the guest may write to the page using the remaining TLB
2189 * entry.  This is not a problem because the page is reported dirty using
2190 * the snapshot taken before and step 4 ensures that writes done after
2191 * exiting to userspace will be logged for the next call.
2192 *
2193 */
2194static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2195{
2196	struct kvm_memslots *slots;
2197	struct kvm_memory_slot *memslot;
2198	int i, as_id, id;
2199	unsigned long n;
2200	unsigned long *dirty_bitmap;
2201	unsigned long *dirty_bitmap_buffer;
2202	bool flush;
2203
2204	/* Dirty ring tracking may be exclusive to dirty log tracking */
2205	if (!kvm_use_dirty_bitmap(kvm))
2206		return -ENXIO;
2207
2208	as_id = log->slot >> 16;
2209	id = (u16)log->slot;
2210	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2211		return -EINVAL;
2212
2213	slots = __kvm_memslots(kvm, as_id);
2214	memslot = id_to_memslot(slots, id);
2215	if (!memslot || !memslot->dirty_bitmap)
2216		return -ENOENT;
2217
2218	dirty_bitmap = memslot->dirty_bitmap;
2219
2220	kvm_arch_sync_dirty_log(kvm, memslot);
2221
2222	n = kvm_dirty_bitmap_bytes(memslot);
2223	flush = false;
2224	if (kvm->manual_dirty_log_protect) {
2225		/*
2226		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2227		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2228		 * is some code duplication between this function and
2229		 * kvm_get_dirty_log, but hopefully all architecture
2230		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2231		 * can be eliminated.
2232		 */
2233		dirty_bitmap_buffer = dirty_bitmap;
2234	} else {
2235		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2236		memset(dirty_bitmap_buffer, 0, n);
2237
2238		KVM_MMU_LOCK(kvm);
2239		for (i = 0; i < n / sizeof(long); i++) {
2240			unsigned long mask;
2241			gfn_t offset;
2242
2243			if (!dirty_bitmap[i])
2244				continue;
2245
2246			flush = true;
2247			mask = xchg(&dirty_bitmap[i], 0);
2248			dirty_bitmap_buffer[i] = mask;
2249
2250			offset = i * BITS_PER_LONG;
2251			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2252								offset, mask);
2253		}
2254		KVM_MMU_UNLOCK(kvm);
2255	}
2256
2257	if (flush)
2258		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2259
2260	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2261		return -EFAULT;
2262	return 0;
2263}
2264
2265
2266/**
2267 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2268 * @kvm: kvm instance
2269 * @log: slot id and address to which we copy the log
2270 *
2271 * Steps 1-4 below provide general overview of dirty page logging. See
2272 * kvm_get_dirty_log_protect() function description for additional details.
2273 *
2274 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2275 * always flush the TLB (step 4) even if previous step failed  and the dirty
2276 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2277 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2278 * writes will be marked dirty for next log read.
2279 *
2280 *   1. Take a snapshot of the bit and clear it if needed.
2281 *   2. Write protect the corresponding page.
2282 *   3. Copy the snapshot to the userspace.
2283 *   4. Flush TLB's if needed.
2284 */
2285static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2286				      struct kvm_dirty_log *log)
2287{
2288	int r;
2289
2290	mutex_lock(&kvm->slots_lock);
2291
2292	r = kvm_get_dirty_log_protect(kvm, log);
2293
2294	mutex_unlock(&kvm->slots_lock);
2295	return r;
2296}
2297
2298/**
2299 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2300 *	and reenable dirty page tracking for the corresponding pages.
2301 * @kvm:	pointer to kvm instance
2302 * @log:	slot id and address from which to fetch the bitmap of dirty pages
2303 */
2304static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2305				       struct kvm_clear_dirty_log *log)
2306{
2307	struct kvm_memslots *slots;
2308	struct kvm_memory_slot *memslot;
2309	int as_id, id;
2310	gfn_t offset;
2311	unsigned long i, n;
2312	unsigned long *dirty_bitmap;
2313	unsigned long *dirty_bitmap_buffer;
2314	bool flush;
2315
2316	/* Dirty ring tracking may be exclusive to dirty log tracking */
2317	if (!kvm_use_dirty_bitmap(kvm))
2318		return -ENXIO;
2319
2320	as_id = log->slot >> 16;
2321	id = (u16)log->slot;
2322	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2323		return -EINVAL;
2324
2325	if (log->first_page & 63)
2326		return -EINVAL;
2327
2328	slots = __kvm_memslots(kvm, as_id);
2329	memslot = id_to_memslot(slots, id);
2330	if (!memslot || !memslot->dirty_bitmap)
2331		return -ENOENT;
2332
2333	dirty_bitmap = memslot->dirty_bitmap;
2334
2335	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2336
2337	if (log->first_page > memslot->npages ||
2338	    log->num_pages > memslot->npages - log->first_page ||
2339	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2340	    return -EINVAL;
2341
2342	kvm_arch_sync_dirty_log(kvm, memslot);
2343
2344	flush = false;
2345	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2346	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2347		return -EFAULT;
2348
2349	KVM_MMU_LOCK(kvm);
2350	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2351		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2352	     i++, offset += BITS_PER_LONG) {
2353		unsigned long mask = *dirty_bitmap_buffer++;
2354		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2355		if (!mask)
2356			continue;
2357
2358		mask &= atomic_long_fetch_andnot(mask, p);
2359
2360		/*
2361		 * mask contains the bits that really have been cleared.  This
2362		 * never includes any bits beyond the length of the memslot (if
2363		 * the length is not aligned to 64 pages), therefore it is not
2364		 * a problem if userspace sets them in log->dirty_bitmap.
2365		*/
2366		if (mask) {
2367			flush = true;
2368			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2369								offset, mask);
2370		}
2371	}
2372	KVM_MMU_UNLOCK(kvm);
2373
2374	if (flush)
2375		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2376
2377	return 0;
2378}
2379
2380static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2381					struct kvm_clear_dirty_log *log)
2382{
2383	int r;
2384
2385	mutex_lock(&kvm->slots_lock);
2386
2387	r = kvm_clear_dirty_log_protect(kvm, log);
2388
2389	mutex_unlock(&kvm->slots_lock);
2390	return r;
2391}
2392#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2393
2394#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2395/*
2396 * Returns true if _all_ gfns in the range [@start, @end) have attributes
2397 * matching @attrs.
2398 */
2399bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2400				     unsigned long attrs)
2401{
2402	XA_STATE(xas, &kvm->mem_attr_array, start);
2403	unsigned long index;
2404	bool has_attrs;
2405	void *entry;
2406
2407	rcu_read_lock();
2408
2409	if (!attrs) {
2410		has_attrs = !xas_find(&xas, end - 1);
2411		goto out;
2412	}
2413
2414	has_attrs = true;
2415	for (index = start; index < end; index++) {
2416		do {
2417			entry = xas_next(&xas);
2418		} while (xas_retry(&xas, entry));
2419
2420		if (xas.xa_index != index || xa_to_value(entry) != attrs) {
2421			has_attrs = false;
2422			break;
2423		}
2424	}
2425
2426out:
2427	rcu_read_unlock();
2428	return has_attrs;
2429}
2430
2431static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2432{
2433	if (!kvm || kvm_arch_has_private_mem(kvm))
2434		return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2435
2436	return 0;
2437}
2438
2439static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2440						 struct kvm_mmu_notifier_range *range)
2441{
2442	struct kvm_gfn_range gfn_range;
2443	struct kvm_memory_slot *slot;
2444	struct kvm_memslots *slots;
2445	struct kvm_memslot_iter iter;
2446	bool found_memslot = false;
2447	bool ret = false;
2448	int i;
2449
2450	gfn_range.arg = range->arg;
2451	gfn_range.may_block = range->may_block;
2452
2453	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2454		slots = __kvm_memslots(kvm, i);
2455
2456		kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2457			slot = iter.slot;
2458			gfn_range.slot = slot;
2459
2460			gfn_range.start = max(range->start, slot->base_gfn);
2461			gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2462			if (gfn_range.start >= gfn_range.end)
2463				continue;
2464
2465			if (!found_memslot) {
2466				found_memslot = true;
2467				KVM_MMU_LOCK(kvm);
2468				if (!IS_KVM_NULL_FN(range->on_lock))
2469					range->on_lock(kvm);
2470			}
2471
2472			ret |= range->handler(kvm, &gfn_range);
2473		}
2474	}
2475
2476	if (range->flush_on_ret && ret)
2477		kvm_flush_remote_tlbs(kvm);
2478
2479	if (found_memslot)
2480		KVM_MMU_UNLOCK(kvm);
2481}
2482
2483static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2484					  struct kvm_gfn_range *range)
2485{
2486	/*
2487	 * Unconditionally add the range to the invalidation set, regardless of
2488	 * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2489	 * if KVM supports RWX attributes in the future and the attributes are
2490	 * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2491	 * adding the range allows KVM to require that MMU invalidations add at
2492	 * least one range between begin() and end(), e.g. allows KVM to detect
2493	 * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2494	 * but it's not obvious that allowing new mappings while the attributes
2495	 * are in flux is desirable or worth the complexity.
2496	 */
2497	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2498
2499	return kvm_arch_pre_set_memory_attributes(kvm, range);
2500}
2501
2502/* Set @attributes for the gfn range [@start, @end). */
2503static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2504				     unsigned long attributes)
2505{
2506	struct kvm_mmu_notifier_range pre_set_range = {
2507		.start = start,
2508		.end = end,
2509		.handler = kvm_pre_set_memory_attributes,
2510		.on_lock = kvm_mmu_invalidate_begin,
2511		.flush_on_ret = true,
2512		.may_block = true,
2513	};
2514	struct kvm_mmu_notifier_range post_set_range = {
2515		.start = start,
2516		.end = end,
2517		.arg.attributes = attributes,
2518		.handler = kvm_arch_post_set_memory_attributes,
2519		.on_lock = kvm_mmu_invalidate_end,
2520		.may_block = true,
2521	};
2522	unsigned long i;
2523	void *entry;
2524	int r = 0;
2525
2526	entry = attributes ? xa_mk_value(attributes) : NULL;
2527
2528	mutex_lock(&kvm->slots_lock);
2529
2530	/* Nothing to do if the entire range as the desired attributes. */
2531	if (kvm_range_has_memory_attributes(kvm, start, end, attributes))
2532		goto out_unlock;
2533
2534	/*
2535	 * Reserve memory ahead of time to avoid having to deal with failures
2536	 * partway through setting the new attributes.
2537	 */
2538	for (i = start; i < end; i++) {
2539		r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2540		if (r)
2541			goto out_unlock;
2542	}
2543
2544	kvm_handle_gfn_range(kvm, &pre_set_range);
2545
2546	for (i = start; i < end; i++) {
2547		r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2548				    GFP_KERNEL_ACCOUNT));
2549		KVM_BUG_ON(r, kvm);
2550	}
2551
2552	kvm_handle_gfn_range(kvm, &post_set_range);
2553
2554out_unlock:
2555	mutex_unlock(&kvm->slots_lock);
2556
2557	return r;
2558}
2559static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2560					   struct kvm_memory_attributes *attrs)
2561{
2562	gfn_t start, end;
2563
2564	/* flags is currently not used. */
2565	if (attrs->flags)
2566		return -EINVAL;
2567	if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2568		return -EINVAL;
2569	if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2570		return -EINVAL;
2571	if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2572		return -EINVAL;
2573
2574	start = attrs->address >> PAGE_SHIFT;
2575	end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2576
2577	/*
2578	 * xarray tracks data using "unsigned long", and as a result so does
2579	 * KVM.  For simplicity, supports generic attributes only on 64-bit
2580	 * architectures.
2581	 */
2582	BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2583
2584	return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2585}
2586#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2587
2588struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2589{
2590	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2591}
2592EXPORT_SYMBOL_GPL(gfn_to_memslot);
2593
2594struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2595{
2596	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2597	u64 gen = slots->generation;
2598	struct kvm_memory_slot *slot;
2599
2600	/*
2601	 * This also protects against using a memslot from a different address space,
2602	 * since different address spaces have different generation numbers.
2603	 */
2604	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2605		vcpu->last_used_slot = NULL;
2606		vcpu->last_used_slot_gen = gen;
2607	}
2608
2609	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2610	if (slot)
2611		return slot;
2612
2613	/*
2614	 * Fall back to searching all memslots. We purposely use
2615	 * search_memslots() instead of __gfn_to_memslot() to avoid
2616	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2617	 */
2618	slot = search_memslots(slots, gfn, false);
2619	if (slot) {
2620		vcpu->last_used_slot = slot;
2621		return slot;
2622	}
2623
2624	return NULL;
2625}
2626
2627bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2628{
2629	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2630
2631	return kvm_is_visible_memslot(memslot);
2632}
2633EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2634
2635bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2636{
2637	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2638
2639	return kvm_is_visible_memslot(memslot);
2640}
2641EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2642
2643unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2644{
2645	struct vm_area_struct *vma;
2646	unsigned long addr, size;
2647
2648	size = PAGE_SIZE;
2649
2650	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2651	if (kvm_is_error_hva(addr))
2652		return PAGE_SIZE;
2653
2654	mmap_read_lock(current->mm);
2655	vma = find_vma(current->mm, addr);
2656	if (!vma)
2657		goto out;
2658
2659	size = vma_kernel_pagesize(vma);
2660
2661out:
2662	mmap_read_unlock(current->mm);
2663
2664	return size;
2665}
2666
2667static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2668{
2669	return slot->flags & KVM_MEM_READONLY;
2670}
2671
2672static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2673				       gfn_t *nr_pages, bool write)
2674{
2675	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2676		return KVM_HVA_ERR_BAD;
2677
2678	if (memslot_is_readonly(slot) && write)
2679		return KVM_HVA_ERR_RO_BAD;
2680
2681	if (nr_pages)
2682		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2683
2684	return __gfn_to_hva_memslot(slot, gfn);
2685}
2686
2687static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2688				     gfn_t *nr_pages)
2689{
2690	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2691}
2692
2693unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2694					gfn_t gfn)
2695{
2696	return gfn_to_hva_many(slot, gfn, NULL);
2697}
2698EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2699
2700unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2701{
2702	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2703}
2704EXPORT_SYMBOL_GPL(gfn_to_hva);
2705
2706unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2707{
2708	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2709}
2710EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2711
2712/*
2713 * Return the hva of a @gfn and the R/W attribute if possible.
2714 *
2715 * @slot: the kvm_memory_slot which contains @gfn
2716 * @gfn: the gfn to be translated
2717 * @writable: used to return the read/write attribute of the @slot if the hva
2718 * is valid and @writable is not NULL
2719 */
2720unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2721				      gfn_t gfn, bool *writable)
2722{
2723	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2724
2725	if (!kvm_is_error_hva(hva) && writable)
2726		*writable = !memslot_is_readonly(slot);
2727
2728	return hva;
2729}
2730
2731unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2732{
2733	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2734
2735	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2736}
2737
2738unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2739{
2740	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2741
2742	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2743}
2744
2745static inline int check_user_page_hwpoison(unsigned long addr)
2746{
2747	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2748
2749	rc = get_user_pages(addr, 1, flags, NULL);
2750	return rc == -EHWPOISON;
2751}
2752
2753/*
2754 * The fast path to get the writable pfn which will be stored in @pfn,
2755 * true indicates success, otherwise false is returned.  It's also the
2756 * only part that runs if we can in atomic context.
2757 */
2758static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2759			    bool *writable, kvm_pfn_t *pfn)
2760{
2761	struct page *page[1];
2762
2763	/*
2764	 * Fast pin a writable pfn only if it is a write fault request
2765	 * or the caller allows to map a writable pfn for a read fault
2766	 * request.
2767	 */
2768	if (!(write_fault || writable))
2769		return false;
2770
2771	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2772		*pfn = page_to_pfn(page[0]);
2773
2774		if (writable)
2775			*writable = true;
2776		return true;
2777	}
2778
2779	return false;
2780}
2781
2782/*
2783 * The slow path to get the pfn of the specified host virtual address,
2784 * 1 indicates success, -errno is returned if error is detected.
2785 */
2786static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2787			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2788{
2789	/*
2790	 * When a VCPU accesses a page that is not mapped into the secondary
2791	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2792	 * make progress. We always want to honor NUMA hinting faults in that
2793	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2794	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2795	 * mapped into the secondary MMU and gets accessed by a VCPU.
2796	 *
2797	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2798	 * implicitly honor NUMA hinting faults and don't need this flag.
2799	 */
2800	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2801	struct page *page;
2802	int npages;
2803
2804	might_sleep();
2805
2806	if (writable)
2807		*writable = write_fault;
2808
2809	if (write_fault)
2810		flags |= FOLL_WRITE;
2811	if (async)
2812		flags |= FOLL_NOWAIT;
2813	if (interruptible)
2814		flags |= FOLL_INTERRUPTIBLE;
2815
2816	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2817	if (npages != 1)
2818		return npages;
2819
2820	/* map read fault as writable if possible */
2821	if (unlikely(!write_fault) && writable) {
2822		struct page *wpage;
2823
2824		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2825			*writable = true;
2826			put_page(page);
2827			page = wpage;
2828		}
2829	}
2830	*pfn = page_to_pfn(page);
2831	return npages;
2832}
2833
2834static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2835{
2836	if (unlikely(!(vma->vm_flags & VM_READ)))
2837		return false;
2838
2839	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2840		return false;
2841
2842	return true;
2843}
2844
2845static int kvm_try_get_pfn(kvm_pfn_t pfn)
2846{
2847	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2848
2849	if (!page)
2850		return 1;
2851
2852	return get_page_unless_zero(page);
2853}
2854
2855static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2856			       unsigned long addr, bool write_fault,
2857			       bool *writable, kvm_pfn_t *p_pfn)
2858{
2859	kvm_pfn_t pfn;
2860	pte_t *ptep;
2861	pte_t pte;
2862	spinlock_t *ptl;
2863	int r;
2864
2865	r = follow_pte(vma, addr, &ptep, &ptl);
2866	if (r) {
2867		/*
2868		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2869		 * not call the fault handler, so do it here.
2870		 */
2871		bool unlocked = false;
2872		r = fixup_user_fault(current->mm, addr,
2873				     (write_fault ? FAULT_FLAG_WRITE : 0),
2874				     &unlocked);
2875		if (unlocked)
2876			return -EAGAIN;
2877		if (r)
2878			return r;
2879
2880		r = follow_pte(vma, addr, &ptep, &ptl);
2881		if (r)
2882			return r;
2883	}
2884
2885	pte = ptep_get(ptep);
2886
2887	if (write_fault && !pte_write(pte)) {
2888		pfn = KVM_PFN_ERR_RO_FAULT;
2889		goto out;
2890	}
2891
2892	if (writable)
2893		*writable = pte_write(pte);
2894	pfn = pte_pfn(pte);
2895
2896	/*
2897	 * Get a reference here because callers of *hva_to_pfn* and
2898	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2899	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2900	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2901	 * simply do nothing for reserved pfns.
2902	 *
2903	 * Whoever called remap_pfn_range is also going to call e.g.
2904	 * unmap_mapping_range before the underlying pages are freed,
2905	 * causing a call to our MMU notifier.
2906	 *
2907	 * Certain IO or PFNMAP mappings can be backed with valid
2908	 * struct pages, but be allocated without refcounting e.g.,
2909	 * tail pages of non-compound higher order allocations, which
2910	 * would then underflow the refcount when the caller does the
2911	 * required put_page. Don't allow those pages here.
2912	 */
2913	if (!kvm_try_get_pfn(pfn))
2914		r = -EFAULT;
2915
2916out:
2917	pte_unmap_unlock(ptep, ptl);
2918	*p_pfn = pfn;
2919
2920	return r;
2921}
2922
2923/*
2924 * Pin guest page in memory and return its pfn.
2925 * @addr: host virtual address which maps memory to the guest
2926 * @atomic: whether this function is forbidden from sleeping
2927 * @interruptible: whether the process can be interrupted by non-fatal signals
2928 * @async: whether this function need to wait IO complete if the
2929 *         host page is not in the memory
2930 * @write_fault: whether we should get a writable host page
2931 * @writable: whether it allows to map a writable host page for !@write_fault
2932 *
2933 * The function will map a writable host page for these two cases:
2934 * 1): @write_fault = true
2935 * 2): @write_fault = false && @writable, @writable will tell the caller
2936 *     whether the mapping is writable.
2937 */
2938kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2939		     bool *async, bool write_fault, bool *writable)
2940{
2941	struct vm_area_struct *vma;
2942	kvm_pfn_t pfn;
2943	int npages, r;
2944
2945	/* we can do it either atomically or asynchronously, not both */
2946	BUG_ON(atomic && async);
2947
2948	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2949		return pfn;
2950
2951	if (atomic)
2952		return KVM_PFN_ERR_FAULT;
2953
2954	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2955				 writable, &pfn);
2956	if (npages == 1)
2957		return pfn;
2958	if (npages == -EINTR)
2959		return KVM_PFN_ERR_SIGPENDING;
2960
2961	mmap_read_lock(current->mm);
2962	if (npages == -EHWPOISON ||
2963	      (!async && check_user_page_hwpoison(addr))) {
2964		pfn = KVM_PFN_ERR_HWPOISON;
2965		goto exit;
2966	}
2967
2968retry:
2969	vma = vma_lookup(current->mm, addr);
2970
2971	if (vma == NULL)
2972		pfn = KVM_PFN_ERR_FAULT;
2973	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2974		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2975		if (r == -EAGAIN)
2976			goto retry;
2977		if (r < 0)
2978			pfn = KVM_PFN_ERR_FAULT;
2979	} else {
2980		if (async && vma_is_valid(vma, write_fault))
2981			*async = true;
2982		pfn = KVM_PFN_ERR_FAULT;
2983	}
2984exit:
2985	mmap_read_unlock(current->mm);
2986	return pfn;
2987}
2988
2989kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2990			       bool atomic, bool interruptible, bool *async,
2991			       bool write_fault, bool *writable, hva_t *hva)
2992{
2993	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2994
2995	if (hva)
2996		*hva = addr;
2997
2998	if (kvm_is_error_hva(addr)) {
2999		if (writable)
3000			*writable = false;
3001
3002		return addr == KVM_HVA_ERR_RO_BAD ? KVM_PFN_ERR_RO_FAULT :
3003						    KVM_PFN_NOSLOT;
3004	}
3005
3006	/* Do not map writable pfn in the readonly memslot. */
3007	if (writable && memslot_is_readonly(slot)) {
3008		*writable = false;
3009		writable = NULL;
3010	}
3011
3012	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3013			  writable);
3014}
3015EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3016
3017kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3018		      bool *writable)
3019{
3020	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3021				    NULL, write_fault, writable, NULL);
3022}
3023EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3024
3025kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3026{
3027	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3028				    NULL, NULL);
3029}
3030EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3031
3032kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3033{
3034	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3035				    NULL, NULL);
3036}
3037EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3038
3039kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3040{
3041	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3042}
3043EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3044
3045kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3046{
3047	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3048}
3049EXPORT_SYMBOL_GPL(gfn_to_pfn);
3050
3051kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3052{
3053	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3054}
3055EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3056
3057int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3058			    struct page **pages, int nr_pages)
3059{
3060	unsigned long addr;
3061	gfn_t entry = 0;
3062
3063	addr = gfn_to_hva_many(slot, gfn, &entry);
3064	if (kvm_is_error_hva(addr))
3065		return -1;
3066
3067	if (entry < nr_pages)
3068		return 0;
3069
3070	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3071}
3072EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3073
3074/*
3075 * Do not use this helper unless you are absolutely certain the gfn _must_ be
3076 * backed by 'struct page'.  A valid example is if the backing memslot is
3077 * controlled by KVM.  Note, if the returned page is valid, it's refcount has
3078 * been elevated by gfn_to_pfn().
3079 */
3080struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3081{
3082	struct page *page;
3083	kvm_pfn_t pfn;
3084
3085	pfn = gfn_to_pfn(kvm, gfn);
3086
3087	if (is_error_noslot_pfn(pfn))
3088		return KVM_ERR_PTR_BAD_PAGE;
3089
3090	page = kvm_pfn_to_refcounted_page(pfn);
3091	if (!page)
3092		return KVM_ERR_PTR_BAD_PAGE;
3093
3094	return page;
3095}
3096EXPORT_SYMBOL_GPL(gfn_to_page);
3097
3098void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3099{
3100	if (dirty)
3101		kvm_release_pfn_dirty(pfn);
3102	else
3103		kvm_release_pfn_clean(pfn);
3104}
3105
3106int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3107{
3108	kvm_pfn_t pfn;
3109	void *hva = NULL;
3110	struct page *page = KVM_UNMAPPED_PAGE;
3111
3112	if (!map)
3113		return -EINVAL;
3114
3115	pfn = gfn_to_pfn(vcpu->kvm, gfn);
3116	if (is_error_noslot_pfn(pfn))
3117		return -EINVAL;
3118
3119	if (pfn_valid(pfn)) {
3120		page = pfn_to_page(pfn);
3121		hva = kmap(page);
3122#ifdef CONFIG_HAS_IOMEM
3123	} else {
3124		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3125#endif
3126	}
3127
3128	if (!hva)
3129		return -EFAULT;
3130
3131	map->page = page;
3132	map->hva = hva;
3133	map->pfn = pfn;
3134	map->gfn = gfn;
3135
3136	return 0;
3137}
3138EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3139
3140void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3141{
3142	if (!map)
3143		return;
3144
3145	if (!map->hva)
3146		return;
3147
3148	if (map->page != KVM_UNMAPPED_PAGE)
3149		kunmap(map->page);
3150#ifdef CONFIG_HAS_IOMEM
3151	else
3152		memunmap(map->hva);
3153#endif
3154
3155	if (dirty)
3156		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3157
3158	kvm_release_pfn(map->pfn, dirty);
3159
3160	map->hva = NULL;
3161	map->page = NULL;
3162}
3163EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3164
3165static bool kvm_is_ad_tracked_page(struct page *page)
3166{
3167	/*
3168	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
3169	 * touched (e.g. set dirty) except by its owner".
3170	 */
3171	return !PageReserved(page);
3172}
3173
3174static void kvm_set_page_dirty(struct page *page)
3175{
3176	if (kvm_is_ad_tracked_page(page))
3177		SetPageDirty(page);
3178}
3179
3180static void kvm_set_page_accessed(struct page *page)
3181{
3182	if (kvm_is_ad_tracked_page(page))
3183		mark_page_accessed(page);
3184}
3185
3186void kvm_release_page_clean(struct page *page)
3187{
3188	WARN_ON(is_error_page(page));
3189
3190	kvm_set_page_accessed(page);
3191	put_page(page);
3192}
3193EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3194
3195void kvm_release_pfn_clean(kvm_pfn_t pfn)
3196{
3197	struct page *page;
3198
3199	if (is_error_noslot_pfn(pfn))
3200		return;
3201
3202	page = kvm_pfn_to_refcounted_page(pfn);
3203	if (!page)
3204		return;
3205
3206	kvm_release_page_clean(page);
3207}
3208EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3209
3210void kvm_release_page_dirty(struct page *page)
3211{
3212	WARN_ON(is_error_page(page));
3213
3214	kvm_set_page_dirty(page);
3215	kvm_release_page_clean(page);
3216}
3217EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3218
3219void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3220{
3221	struct page *page;
3222
3223	if (is_error_noslot_pfn(pfn))
3224		return;
3225
3226	page = kvm_pfn_to_refcounted_page(pfn);
3227	if (!page)
3228		return;
3229
3230	kvm_release_page_dirty(page);
3231}
3232EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3233
3234/*
3235 * Note, checking for an error/noslot pfn is the caller's responsibility when
3236 * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
3237 * "set" helpers are not to be used when the pfn might point at garbage.
3238 */
3239void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3240{
3241	if (WARN_ON(is_error_noslot_pfn(pfn)))
3242		return;
3243
3244	if (pfn_valid(pfn))
3245		kvm_set_page_dirty(pfn_to_page(pfn));
3246}
3247EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3248
3249void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3250{
3251	if (WARN_ON(is_error_noslot_pfn(pfn)))
3252		return;
3253
3254	if (pfn_valid(pfn))
3255		kvm_set_page_accessed(pfn_to_page(pfn));
3256}
3257EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3258
3259static int next_segment(unsigned long len, int offset)
3260{
3261	if (len > PAGE_SIZE - offset)
3262		return PAGE_SIZE - offset;
3263	else
3264		return len;
3265}
3266
3267/* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
3268static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3269				 void *data, int offset, int len)
3270{
3271	int r;
3272	unsigned long addr;
3273
3274	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3275	if (kvm_is_error_hva(addr))
3276		return -EFAULT;
3277	r = __copy_from_user(data, (void __user *)addr + offset, len);
3278	if (r)
3279		return -EFAULT;
3280	return 0;
3281}
3282
3283int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3284			int len)
3285{
3286	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3287
3288	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3289}
3290EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3291
3292int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3293			     int offset, int len)
3294{
3295	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3296
3297	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3298}
3299EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3300
3301int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3302{
3303	gfn_t gfn = gpa >> PAGE_SHIFT;
3304	int seg;
3305	int offset = offset_in_page(gpa);
3306	int ret;
3307
3308	while ((seg = next_segment(len, offset)) != 0) {
3309		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3310		if (ret < 0)
3311			return ret;
3312		offset = 0;
3313		len -= seg;
3314		data += seg;
3315		++gfn;
3316	}
3317	return 0;
3318}
3319EXPORT_SYMBOL_GPL(kvm_read_guest);
3320
3321int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3322{
3323	gfn_t gfn = gpa >> PAGE_SHIFT;
3324	int seg;
3325	int offset = offset_in_page(gpa);
3326	int ret;
3327
3328	while ((seg = next_segment(len, offset)) != 0) {
3329		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3330		if (ret < 0)
3331			return ret;
3332		offset = 0;
3333		len -= seg;
3334		data += seg;
3335		++gfn;
3336	}
3337	return 0;
3338}
3339EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3340
3341static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3342			           void *data, int offset, unsigned long len)
3343{
3344	int r;
3345	unsigned long addr;
3346
3347	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3348	if (kvm_is_error_hva(addr))
3349		return -EFAULT;
3350	pagefault_disable();
3351	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3352	pagefault_enable();
3353	if (r)
3354		return -EFAULT;
3355	return 0;
3356}
3357
3358int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3359			       void *data, unsigned long len)
3360{
3361	gfn_t gfn = gpa >> PAGE_SHIFT;
3362	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3363	int offset = offset_in_page(gpa);
3364
3365	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3366}
3367EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3368
3369/* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
3370static int __kvm_write_guest_page(struct kvm *kvm,
3371				  struct kvm_memory_slot *memslot, gfn_t gfn,
3372			          const void *data, int offset, int len)
3373{
3374	int r;
3375	unsigned long addr;
3376
3377	addr = gfn_to_hva_memslot(memslot, gfn);
3378	if (kvm_is_error_hva(addr))
3379		return -EFAULT;
3380	r = __copy_to_user((void __user *)addr + offset, data, len);
3381	if (r)
3382		return -EFAULT;
3383	mark_page_dirty_in_slot(kvm, memslot, gfn);
3384	return 0;
3385}
3386
3387int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3388			 const void *data, int offset, int len)
3389{
3390	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3391
3392	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3393}
3394EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3395
3396int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3397			      const void *data, int offset, int len)
3398{
3399	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3400
3401	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3402}
3403EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3404
3405int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3406		    unsigned long len)
3407{
3408	gfn_t gfn = gpa >> PAGE_SHIFT;
3409	int seg;
3410	int offset = offset_in_page(gpa);
3411	int ret;
3412
3413	while ((seg = next_segment(len, offset)) != 0) {
3414		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3415		if (ret < 0)
3416			return ret;
3417		offset = 0;
3418		len -= seg;
3419		data += seg;
3420		++gfn;
3421	}
3422	return 0;
3423}
3424EXPORT_SYMBOL_GPL(kvm_write_guest);
3425
3426int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3427		         unsigned long len)
3428{
3429	gfn_t gfn = gpa >> PAGE_SHIFT;
3430	int seg;
3431	int offset = offset_in_page(gpa);
3432	int ret;
3433
3434	while ((seg = next_segment(len, offset)) != 0) {
3435		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3436		if (ret < 0)
3437			return ret;
3438		offset = 0;
3439		len -= seg;
3440		data += seg;
3441		++gfn;
3442	}
3443	return 0;
3444}
3445EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3446
3447static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3448				       struct gfn_to_hva_cache *ghc,
3449				       gpa_t gpa, unsigned long len)
3450{
3451	int offset = offset_in_page(gpa);
3452	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3453	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3454	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3455	gfn_t nr_pages_avail;
3456
3457	/* Update ghc->generation before performing any error checks. */
3458	ghc->generation = slots->generation;
3459
3460	if (start_gfn > end_gfn) {
3461		ghc->hva = KVM_HVA_ERR_BAD;
3462		return -EINVAL;
3463	}
3464
3465	/*
3466	 * If the requested region crosses two memslots, we still
3467	 * verify that the entire region is valid here.
3468	 */
3469	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3470		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3471		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3472					   &nr_pages_avail);
3473		if (kvm_is_error_hva(ghc->hva))
3474			return -EFAULT;
3475	}
3476
3477	/* Use the slow path for cross page reads and writes. */
3478	if (nr_pages_needed == 1)
3479		ghc->hva += offset;
3480	else
3481		ghc->memslot = NULL;
3482
3483	ghc->gpa = gpa;
3484	ghc->len = len;
3485	return 0;
3486}
3487
3488int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3489			      gpa_t gpa, unsigned long len)
3490{
3491	struct kvm_memslots *slots = kvm_memslots(kvm);
3492	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3493}
3494EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3495
3496int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3497				  void *data, unsigned int offset,
3498				  unsigned long len)
3499{
3500	struct kvm_memslots *slots = kvm_memslots(kvm);
3501	int r;
3502	gpa_t gpa = ghc->gpa + offset;
3503
3504	if (WARN_ON_ONCE(len + offset > ghc->len))
3505		return -EINVAL;
3506
3507	if (slots->generation != ghc->generation) {
3508		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3509			return -EFAULT;
3510	}
3511
3512	if (kvm_is_error_hva(ghc->hva))
3513		return -EFAULT;
3514
3515	if (unlikely(!ghc->memslot))
3516		return kvm_write_guest(kvm, gpa, data, len);
3517
3518	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3519	if (r)
3520		return -EFAULT;
3521	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3522
3523	return 0;
3524}
3525EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3526
3527int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3528			   void *data, unsigned long len)
3529{
3530	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3531}
3532EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3533
3534int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3535				 void *data, unsigned int offset,
3536				 unsigned long len)
3537{
3538	struct kvm_memslots *slots = kvm_memslots(kvm);
3539	int r;
3540	gpa_t gpa = ghc->gpa + offset;
3541
3542	if (WARN_ON_ONCE(len + offset > ghc->len))
3543		return -EINVAL;
3544
3545	if (slots->generation != ghc->generation) {
3546		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3547			return -EFAULT;
3548	}
3549
3550	if (kvm_is_error_hva(ghc->hva))
3551		return -EFAULT;
3552
3553	if (unlikely(!ghc->memslot))
3554		return kvm_read_guest(kvm, gpa, data, len);
3555
3556	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3557	if (r)
3558		return -EFAULT;
3559
3560	return 0;
3561}
3562EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3563
3564int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3565			  void *data, unsigned long len)
3566{
3567	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3568}
3569EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3570
3571int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3572{
3573	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3574	gfn_t gfn = gpa >> PAGE_SHIFT;
3575	int seg;
3576	int offset = offset_in_page(gpa);
3577	int ret;
3578
3579	while ((seg = next_segment(len, offset)) != 0) {
3580		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3581		if (ret < 0)
3582			return ret;
3583		offset = 0;
3584		len -= seg;
3585		++gfn;
3586	}
3587	return 0;
3588}
3589EXPORT_SYMBOL_GPL(kvm_clear_guest);
3590
3591void mark_page_dirty_in_slot(struct kvm *kvm,
3592			     const struct kvm_memory_slot *memslot,
3593		 	     gfn_t gfn)
3594{
3595	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3596
3597#ifdef CONFIG_HAVE_KVM_DIRTY_RING
3598	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3599		return;
3600
3601	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3602#endif
3603
3604	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3605		unsigned long rel_gfn = gfn - memslot->base_gfn;
3606		u32 slot = (memslot->as_id << 16) | memslot->id;
3607
3608		if (kvm->dirty_ring_size && vcpu)
3609			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3610		else if (memslot->dirty_bitmap)
3611			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3612	}
3613}
3614EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3615
3616void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3617{
3618	struct kvm_memory_slot *memslot;
3619
3620	memslot = gfn_to_memslot(kvm, gfn);
3621	mark_page_dirty_in_slot(kvm, memslot, gfn);
3622}
3623EXPORT_SYMBOL_GPL(mark_page_dirty);
3624
3625void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3626{
3627	struct kvm_memory_slot *memslot;
3628
3629	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3630	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3631}
3632EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3633
3634void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3635{
3636	if (!vcpu->sigset_active)
3637		return;
3638
3639	/*
3640	 * This does a lockless modification of ->real_blocked, which is fine
3641	 * because, only current can change ->real_blocked and all readers of
3642	 * ->real_blocked don't care as long ->real_blocked is always a subset
3643	 * of ->blocked.
3644	 */
3645	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3646}
3647
3648void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3649{
3650	if (!vcpu->sigset_active)
3651		return;
3652
3653	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3654	sigemptyset(&current->real_blocked);
3655}
3656
3657static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3658{
3659	unsigned int old, val, grow, grow_start;
3660
3661	old = val = vcpu->halt_poll_ns;
3662	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3663	grow = READ_ONCE(halt_poll_ns_grow);
3664	if (!grow)
3665		goto out;
3666
3667	val *= grow;
3668	if (val < grow_start)
3669		val = grow_start;
3670
3671	vcpu->halt_poll_ns = val;
3672out:
3673	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3674}
3675
3676static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3677{
3678	unsigned int old, val, shrink, grow_start;
3679
3680	old = val = vcpu->halt_poll_ns;
3681	shrink = READ_ONCE(halt_poll_ns_shrink);
3682	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3683	if (shrink == 0)
3684		val = 0;
3685	else
3686		val /= shrink;
3687
3688	if (val < grow_start)
3689		val = 0;
3690
3691	vcpu->halt_poll_ns = val;
3692	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3693}
3694
3695static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3696{
3697	int ret = -EINTR;
3698	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3699
3700	if (kvm_arch_vcpu_runnable(vcpu))
3701		goto out;
3702	if (kvm_cpu_has_pending_timer(vcpu))
3703		goto out;
3704	if (signal_pending(current))
3705		goto out;
3706	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3707		goto out;
3708
3709	ret = 0;
3710out:
3711	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3712	return ret;
3713}
3714
3715/*
3716 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3717 * pending.  This is mostly used when halting a vCPU, but may also be used
3718 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3719 */
3720bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3721{
3722	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3723	bool waited = false;
3724
3725	vcpu->stat.generic.blocking = 1;
3726
3727	preempt_disable();
3728	kvm_arch_vcpu_blocking(vcpu);
3729	prepare_to_rcuwait(wait);
3730	preempt_enable();
3731
3732	for (;;) {
3733		set_current_state(TASK_INTERRUPTIBLE);
3734
3735		if (kvm_vcpu_check_block(vcpu) < 0)
3736			break;
3737
3738		waited = true;
3739		schedule();
3740	}
3741
3742	preempt_disable();
3743	finish_rcuwait(wait);
3744	kvm_arch_vcpu_unblocking(vcpu);
3745	preempt_enable();
3746
3747	vcpu->stat.generic.blocking = 0;
3748
3749	return waited;
3750}
3751
3752static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3753					  ktime_t end, bool success)
3754{
3755	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3756	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3757
3758	++vcpu->stat.generic.halt_attempted_poll;
3759
3760	if (success) {
3761		++vcpu->stat.generic.halt_successful_poll;
3762
3763		if (!vcpu_valid_wakeup(vcpu))
3764			++vcpu->stat.generic.halt_poll_invalid;
3765
3766		stats->halt_poll_success_ns += poll_ns;
3767		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3768	} else {
3769		stats->halt_poll_fail_ns += poll_ns;
3770		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3771	}
3772}
3773
3774static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3775{
3776	struct kvm *kvm = vcpu->kvm;
3777
3778	if (kvm->override_halt_poll_ns) {
3779		/*
3780		 * Ensure kvm->max_halt_poll_ns is not read before
3781		 * kvm->override_halt_poll_ns.
3782		 *
3783		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3784		 */
3785		smp_rmb();
3786		return READ_ONCE(kvm->max_halt_poll_ns);
3787	}
3788
3789	return READ_ONCE(halt_poll_ns);
3790}
3791
3792/*
3793 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3794 * polling is enabled, busy wait for a short time before blocking to avoid the
3795 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3796 * is halted.
3797 */
3798void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3799{
3800	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3801	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3802	ktime_t start, cur, poll_end;
3803	bool waited = false;
3804	bool do_halt_poll;
3805	u64 halt_ns;
3806
3807	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3808		vcpu->halt_poll_ns = max_halt_poll_ns;
3809
3810	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3811
3812	start = cur = poll_end = ktime_get();
3813	if (do_halt_poll) {
3814		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3815
3816		do {
3817			if (kvm_vcpu_check_block(vcpu) < 0)
3818				goto out;
3819			cpu_relax();
3820			poll_end = cur = ktime_get();
3821		} while (kvm_vcpu_can_poll(cur, stop));
3822	}
3823
3824	waited = kvm_vcpu_block(vcpu);
3825
3826	cur = ktime_get();
3827	if (waited) {
3828		vcpu->stat.generic.halt_wait_ns +=
3829			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3830		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3831				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3832	}
3833out:
3834	/* The total time the vCPU was "halted", including polling time. */
3835	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3836
3837	/*
3838	 * Note, halt-polling is considered successful so long as the vCPU was
3839	 * never actually scheduled out, i.e. even if the wake event arrived
3840	 * after of the halt-polling loop itself, but before the full wait.
3841	 */
3842	if (do_halt_poll)
3843		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3844
3845	if (halt_poll_allowed) {
3846		/* Recompute the max halt poll time in case it changed. */
3847		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3848
3849		if (!vcpu_valid_wakeup(vcpu)) {
3850			shrink_halt_poll_ns(vcpu);
3851		} else if (max_halt_poll_ns) {
3852			if (halt_ns <= vcpu->halt_poll_ns)
3853				;
3854			/* we had a long block, shrink polling */
3855			else if (vcpu->halt_poll_ns &&
3856				 halt_ns > max_halt_poll_ns)
3857				shrink_halt_poll_ns(vcpu);
3858			/* we had a short halt and our poll time is too small */
3859			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3860				 halt_ns < max_halt_poll_ns)
3861				grow_halt_poll_ns(vcpu);
3862		} else {
3863			vcpu->halt_poll_ns = 0;
3864		}
3865	}
3866
3867	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3868}
3869EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3870
3871bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3872{
3873	if (__kvm_vcpu_wake_up(vcpu)) {
3874		WRITE_ONCE(vcpu->ready, true);
3875		++vcpu->stat.generic.halt_wakeup;
3876		return true;
3877	}
3878
3879	return false;
3880}
3881EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3882
3883#ifndef CONFIG_S390
3884/*
3885 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3886 */
3887void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3888{
3889	int me, cpu;
3890
3891	if (kvm_vcpu_wake_up(vcpu))
3892		return;
3893
3894	me = get_cpu();
3895	/*
3896	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3897	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3898	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3899	 * within the vCPU thread itself.
3900	 */
3901	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3902		if (vcpu->mode == IN_GUEST_MODE)
3903			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3904		goto out;
3905	}
3906
3907	/*
3908	 * Note, the vCPU could get migrated to a different pCPU at any point
3909	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3910	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3911	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3912	 * vCPU also requires it to leave IN_GUEST_MODE.
3913	 */
3914	if (kvm_arch_vcpu_should_kick(vcpu)) {
3915		cpu = READ_ONCE(vcpu->cpu);
3916		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3917			smp_send_reschedule(cpu);
3918	}
3919out:
3920	put_cpu();
3921}
3922EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3923#endif /* !CONFIG_S390 */
3924
3925int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3926{
3927	struct pid *pid;
3928	struct task_struct *task = NULL;
3929	int ret = 0;
3930
3931	rcu_read_lock();
3932	pid = rcu_dereference(target->pid);
3933	if (pid)
3934		task = get_pid_task(pid, PIDTYPE_PID);
3935	rcu_read_unlock();
3936	if (!task)
3937		return ret;
3938	ret = yield_to(task, 1);
3939	put_task_struct(task);
3940
3941	return ret;
3942}
3943EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3944
3945/*
3946 * Helper that checks whether a VCPU is eligible for directed yield.
3947 * Most eligible candidate to yield is decided by following heuristics:
3948 *
3949 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3950 *  (preempted lock holder), indicated by @in_spin_loop.
3951 *  Set at the beginning and cleared at the end of interception/PLE handler.
3952 *
3953 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3954 *  chance last time (mostly it has become eligible now since we have probably
3955 *  yielded to lockholder in last iteration. This is done by toggling
3956 *  @dy_eligible each time a VCPU checked for eligibility.)
3957 *
3958 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3959 *  to preempted lock-holder could result in wrong VCPU selection and CPU
3960 *  burning. Giving priority for a potential lock-holder increases lock
3961 *  progress.
3962 *
3963 *  Since algorithm is based on heuristics, accessing another VCPU data without
3964 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3965 *  and continue with next VCPU and so on.
3966 */
3967static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3968{
3969#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3970	bool eligible;
3971
3972	eligible = !vcpu->spin_loop.in_spin_loop ||
3973		    vcpu->spin_loop.dy_eligible;
3974
3975	if (vcpu->spin_loop.in_spin_loop)
3976		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3977
3978	return eligible;
3979#else
3980	return true;
3981#endif
3982}
3983
3984/*
3985 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3986 * a vcpu_load/vcpu_put pair.  However, for most architectures
3987 * kvm_arch_vcpu_runnable does not require vcpu_load.
3988 */
3989bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3990{
3991	return kvm_arch_vcpu_runnable(vcpu);
3992}
3993
3994static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3995{
3996	if (kvm_arch_dy_runnable(vcpu))
3997		return true;
3998
3999#ifdef CONFIG_KVM_ASYNC_PF
4000	if (!list_empty_careful(&vcpu->async_pf.done))
4001		return true;
4002#endif
4003
4004	return false;
4005}
4006
4007/*
4008 * By default, simply query the target vCPU's current mode when checking if a
4009 * vCPU was preempted in kernel mode.  All architectures except x86 (or more
4010 * specifical, except VMX) allow querying whether or not a vCPU is in kernel
4011 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
4012 * directly for cross-vCPU checks is functionally correct and accurate.
4013 */
4014bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
4015{
4016	return kvm_arch_vcpu_in_kernel(vcpu);
4017}
4018
4019bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4020{
4021	return false;
4022}
4023
4024void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4025{
4026	struct kvm *kvm = me->kvm;
4027	struct kvm_vcpu *vcpu;
4028	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
4029	unsigned long i;
4030	int yielded = 0;
4031	int try = 3;
4032	int pass;
4033
4034	kvm_vcpu_set_in_spin_loop(me, true);
4035	/*
4036	 * We boost the priority of a VCPU that is runnable but not
4037	 * currently running, because it got preempted by something
4038	 * else and called schedule in __vcpu_run.  Hopefully that
4039	 * VCPU is holding the lock that we need and will release it.
4040	 * We approximate round-robin by starting at the last boosted VCPU.
4041	 */
4042	for (pass = 0; pass < 2 && !yielded && try; pass++) {
4043		kvm_for_each_vcpu(i, vcpu, kvm) {
4044			if (!pass && i <= last_boosted_vcpu) {
4045				i = last_boosted_vcpu;
4046				continue;
4047			} else if (pass && i > last_boosted_vcpu)
4048				break;
4049			if (!READ_ONCE(vcpu->ready))
4050				continue;
4051			if (vcpu == me)
4052				continue;
4053			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4054				continue;
4055
4056			/*
4057			 * Treat the target vCPU as being in-kernel if it has a
4058			 * pending interrupt, as the vCPU trying to yield may
4059			 * be spinning waiting on IPI delivery, i.e. the target
4060			 * vCPU is in-kernel for the purposes of directed yield.
4061			 */
4062			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4063			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4064			    !kvm_arch_vcpu_preempted_in_kernel(vcpu))
4065				continue;
4066			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4067				continue;
4068
4069			yielded = kvm_vcpu_yield_to(vcpu);
4070			if (yielded > 0) {
4071				kvm->last_boosted_vcpu = i;
4072				break;
4073			} else if (yielded < 0) {
4074				try--;
4075				if (!try)
4076					break;
4077			}
4078		}
4079	}
4080	kvm_vcpu_set_in_spin_loop(me, false);
4081
4082	/* Ensure vcpu is not eligible during next spinloop */
4083	kvm_vcpu_set_dy_eligible(me, false);
4084}
4085EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4086
4087static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4088{
4089#ifdef CONFIG_HAVE_KVM_DIRTY_RING
4090	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4091	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4092	     kvm->dirty_ring_size / PAGE_SIZE);
4093#else
4094	return false;
4095#endif
4096}
4097
4098static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4099{
4100	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4101	struct page *page;
4102
4103	if (vmf->pgoff == 0)
4104		page = virt_to_page(vcpu->run);
4105#ifdef CONFIG_X86
4106	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4107		page = virt_to_page(vcpu->arch.pio_data);
4108#endif
4109#ifdef CONFIG_KVM_MMIO
4110	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4111		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4112#endif
4113	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4114		page = kvm_dirty_ring_get_page(
4115		    &vcpu->dirty_ring,
4116		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4117	else
4118		return kvm_arch_vcpu_fault(vcpu, vmf);
4119	get_page(page);
4120	vmf->page = page;
4121	return 0;
4122}
4123
4124static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4125	.fault = kvm_vcpu_fault,
4126};
4127
4128static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4129{
4130	struct kvm_vcpu *vcpu = file->private_data;
4131	unsigned long pages = vma_pages(vma);
4132
4133	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4134	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4135	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4136		return -EINVAL;
4137
4138	vma->vm_ops = &kvm_vcpu_vm_ops;
4139	return 0;
4140}
4141
4142static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4143{
4144	struct kvm_vcpu *vcpu = filp->private_data;
4145
4146	kvm_put_kvm(vcpu->kvm);
4147	return 0;
4148}
4149
4150static struct file_operations kvm_vcpu_fops = {
4151	.release        = kvm_vcpu_release,
4152	.unlocked_ioctl = kvm_vcpu_ioctl,
4153	.mmap           = kvm_vcpu_mmap,
4154	.llseek		= noop_llseek,
4155	KVM_COMPAT(kvm_vcpu_compat_ioctl),
4156};
4157
4158/*
4159 * Allocates an inode for the vcpu.
4160 */
4161static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4162{
4163	char name[8 + 1 + ITOA_MAX_LEN + 1];
4164
4165	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4166	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4167}
4168
4169#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4170static int vcpu_get_pid(void *data, u64 *val)
4171{
4172	struct kvm_vcpu *vcpu = data;
4173
4174	rcu_read_lock();
4175	*val = pid_nr(rcu_dereference(vcpu->pid));
4176	rcu_read_unlock();
4177	return 0;
4178}
4179
4180DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4181
4182static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4183{
4184	struct dentry *debugfs_dentry;
4185	char dir_name[ITOA_MAX_LEN * 2];
4186
4187	if (!debugfs_initialized())
4188		return;
4189
4190	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4191	debugfs_dentry = debugfs_create_dir(dir_name,
4192					    vcpu->kvm->debugfs_dentry);
4193	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4194			    &vcpu_get_pid_fops);
4195
4196	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4197}
4198#endif
4199
4200/*
4201 * Creates some virtual cpus.  Good luck creating more than one.
4202 */
4203static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
4204{
4205	int r;
4206	struct kvm_vcpu *vcpu;
4207	struct page *page;
4208
4209	if (id >= KVM_MAX_VCPU_IDS)
4210		return -EINVAL;
4211
4212	mutex_lock(&kvm->lock);
4213	if (kvm->created_vcpus >= kvm->max_vcpus) {
4214		mutex_unlock(&kvm->lock);
4215		return -EINVAL;
4216	}
4217
4218	r = kvm_arch_vcpu_precreate(kvm, id);
4219	if (r) {
4220		mutex_unlock(&kvm->lock);
4221		return r;
4222	}
4223
4224	kvm->created_vcpus++;
4225	mutex_unlock(&kvm->lock);
4226
4227	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4228	if (!vcpu) {
4229		r = -ENOMEM;
4230		goto vcpu_decrement;
4231	}
4232
4233	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4234	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4235	if (!page) {
4236		r = -ENOMEM;
4237		goto vcpu_free;
4238	}
4239	vcpu->run = page_address(page);
4240
4241	kvm_vcpu_init(vcpu, kvm, id);
4242
4243	r = kvm_arch_vcpu_create(vcpu);
4244	if (r)
4245		goto vcpu_free_run_page;
4246
4247	if (kvm->dirty_ring_size) {
4248		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4249					 id, kvm->dirty_ring_size);
4250		if (r)
4251			goto arch_vcpu_destroy;
4252	}
4253
4254	mutex_lock(&kvm->lock);
4255
4256#ifdef CONFIG_LOCKDEP
4257	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4258	mutex_lock(&vcpu->mutex);
4259	mutex_unlock(&vcpu->mutex);
4260#endif
4261
4262	if (kvm_get_vcpu_by_id(kvm, id)) {
4263		r = -EEXIST;
4264		goto unlock_vcpu_destroy;
4265	}
4266
4267	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4268	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4269	if (r)
4270		goto unlock_vcpu_destroy;
4271
4272	/* Now it's all set up, let userspace reach it */
4273	kvm_get_kvm(kvm);
4274	r = create_vcpu_fd(vcpu);
4275	if (r < 0)
4276		goto kvm_put_xa_release;
4277
4278	if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4279		r = -EINVAL;
4280		goto kvm_put_xa_release;
4281	}
4282
4283	/*
4284	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4285	 * pointer before kvm->online_vcpu's incremented value.
4286	 */
4287	smp_wmb();
4288	atomic_inc(&kvm->online_vcpus);
4289
4290	mutex_unlock(&kvm->lock);
4291	kvm_arch_vcpu_postcreate(vcpu);
4292	kvm_create_vcpu_debugfs(vcpu);
4293	return r;
4294
4295kvm_put_xa_release:
4296	kvm_put_kvm_no_destroy(kvm);
4297	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4298unlock_vcpu_destroy:
4299	mutex_unlock(&kvm->lock);
4300	kvm_dirty_ring_free(&vcpu->dirty_ring);
4301arch_vcpu_destroy:
4302	kvm_arch_vcpu_destroy(vcpu);
4303vcpu_free_run_page:
4304	free_page((unsigned long)vcpu->run);
4305vcpu_free:
4306	kmem_cache_free(kvm_vcpu_cache, vcpu);
4307vcpu_decrement:
4308	mutex_lock(&kvm->lock);
4309	kvm->created_vcpus--;
4310	mutex_unlock(&kvm->lock);
4311	return r;
4312}
4313
4314static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4315{
4316	if (sigset) {
4317		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4318		vcpu->sigset_active = 1;
4319		vcpu->sigset = *sigset;
4320	} else
4321		vcpu->sigset_active = 0;
4322	return 0;
4323}
4324
4325static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4326			      size_t size, loff_t *offset)
4327{
4328	struct kvm_vcpu *vcpu = file->private_data;
4329
4330	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4331			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4332			sizeof(vcpu->stat), user_buffer, size, offset);
4333}
4334
4335static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4336{
4337	struct kvm_vcpu *vcpu = file->private_data;
4338
4339	kvm_put_kvm(vcpu->kvm);
4340	return 0;
4341}
4342
4343static const struct file_operations kvm_vcpu_stats_fops = {
4344	.owner = THIS_MODULE,
4345	.read = kvm_vcpu_stats_read,
4346	.release = kvm_vcpu_stats_release,
4347	.llseek = noop_llseek,
4348};
4349
4350static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4351{
4352	int fd;
4353	struct file *file;
4354	char name[15 + ITOA_MAX_LEN + 1];
4355
4356	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4357
4358	fd = get_unused_fd_flags(O_CLOEXEC);
4359	if (fd < 0)
4360		return fd;
4361
4362	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4363	if (IS_ERR(file)) {
4364		put_unused_fd(fd);
4365		return PTR_ERR(file);
4366	}
4367
4368	kvm_get_kvm(vcpu->kvm);
4369
4370	file->f_mode |= FMODE_PREAD;
4371	fd_install(fd, file);
4372
4373	return fd;
4374}
4375
4376static long kvm_vcpu_ioctl(struct file *filp,
4377			   unsigned int ioctl, unsigned long arg)
4378{
4379	struct kvm_vcpu *vcpu = filp->private_data;
4380	void __user *argp = (void __user *)arg;
4381	int r;
4382	struct kvm_fpu *fpu = NULL;
4383	struct kvm_sregs *kvm_sregs = NULL;
4384
4385	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4386		return -EIO;
4387
4388	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4389		return -EINVAL;
4390
4391	/*
4392	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4393	 * execution; mutex_lock() would break them.
4394	 */
4395	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4396	if (r != -ENOIOCTLCMD)
4397		return r;
4398
4399	if (mutex_lock_killable(&vcpu->mutex))
4400		return -EINTR;
4401	switch (ioctl) {
4402	case KVM_RUN: {
4403		struct pid *oldpid;
4404		r = -EINVAL;
4405		if (arg)
4406			goto out;
4407		oldpid = rcu_access_pointer(vcpu->pid);
4408		if (unlikely(oldpid != task_pid(current))) {
4409			/* The thread running this VCPU changed. */
4410			struct pid *newpid;
4411
4412			r = kvm_arch_vcpu_run_pid_change(vcpu);
4413			if (r)
4414				break;
4415
4416			newpid = get_task_pid(current, PIDTYPE_PID);
4417			rcu_assign_pointer(vcpu->pid, newpid);
4418			if (oldpid)
4419				synchronize_rcu();
4420			put_pid(oldpid);
4421		}
4422		r = kvm_arch_vcpu_ioctl_run(vcpu);
4423		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4424		break;
4425	}
4426	case KVM_GET_REGS: {
4427		struct kvm_regs *kvm_regs;
4428
4429		r = -ENOMEM;
4430		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4431		if (!kvm_regs)
4432			goto out;
4433		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4434		if (r)
4435			goto out_free1;
4436		r = -EFAULT;
4437		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4438			goto out_free1;
4439		r = 0;
4440out_free1:
4441		kfree(kvm_regs);
4442		break;
4443	}
4444	case KVM_SET_REGS: {
4445		struct kvm_regs *kvm_regs;
4446
4447		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4448		if (IS_ERR(kvm_regs)) {
4449			r = PTR_ERR(kvm_regs);
4450			goto out;
4451		}
4452		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4453		kfree(kvm_regs);
4454		break;
4455	}
4456	case KVM_GET_SREGS: {
4457		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4458				    GFP_KERNEL_ACCOUNT);
4459		r = -ENOMEM;
4460		if (!kvm_sregs)
4461			goto out;
4462		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4463		if (r)
4464			goto out;
4465		r = -EFAULT;
4466		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4467			goto out;
4468		r = 0;
4469		break;
4470	}
4471	case KVM_SET_SREGS: {
4472		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4473		if (IS_ERR(kvm_sregs)) {
4474			r = PTR_ERR(kvm_sregs);
4475			kvm_sregs = NULL;
4476			goto out;
4477		}
4478		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4479		break;
4480	}
4481	case KVM_GET_MP_STATE: {
4482		struct kvm_mp_state mp_state;
4483
4484		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4485		if (r)
4486			goto out;
4487		r = -EFAULT;
4488		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4489			goto out;
4490		r = 0;
4491		break;
4492	}
4493	case KVM_SET_MP_STATE: {
4494		struct kvm_mp_state mp_state;
4495
4496		r = -EFAULT;
4497		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4498			goto out;
4499		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4500		break;
4501	}
4502	case KVM_TRANSLATE: {
4503		struct kvm_translation tr;
4504
4505		r = -EFAULT;
4506		if (copy_from_user(&tr, argp, sizeof(tr)))
4507			goto out;
4508		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4509		if (r)
4510			goto out;
4511		r = -EFAULT;
4512		if (copy_to_user(argp, &tr, sizeof(tr)))
4513			goto out;
4514		r = 0;
4515		break;
4516	}
4517	case KVM_SET_GUEST_DEBUG: {
4518		struct kvm_guest_debug dbg;
4519
4520		r = -EFAULT;
4521		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4522			goto out;
4523		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4524		break;
4525	}
4526	case KVM_SET_SIGNAL_MASK: {
4527		struct kvm_signal_mask __user *sigmask_arg = argp;
4528		struct kvm_signal_mask kvm_sigmask;
4529		sigset_t sigset, *p;
4530
4531		p = NULL;
4532		if (argp) {
4533			r = -EFAULT;
4534			if (copy_from_user(&kvm_sigmask, argp,
4535					   sizeof(kvm_sigmask)))
4536				goto out;
4537			r = -EINVAL;
4538			if (kvm_sigmask.len != sizeof(sigset))
4539				goto out;
4540			r = -EFAULT;
4541			if (copy_from_user(&sigset, sigmask_arg->sigset,
4542					   sizeof(sigset)))
4543				goto out;
4544			p = &sigset;
4545		}
4546		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4547		break;
4548	}
4549	case KVM_GET_FPU: {
4550		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4551		r = -ENOMEM;
4552		if (!fpu)
4553			goto out;
4554		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4555		if (r)
4556			goto out;
4557		r = -EFAULT;
4558		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4559			goto out;
4560		r = 0;
4561		break;
4562	}
4563	case KVM_SET_FPU: {
4564		fpu = memdup_user(argp, sizeof(*fpu));
4565		if (IS_ERR(fpu)) {
4566			r = PTR_ERR(fpu);
4567			fpu = NULL;
4568			goto out;
4569		}
4570		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4571		break;
4572	}
4573	case KVM_GET_STATS_FD: {
4574		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4575		break;
4576	}
4577	default:
4578		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4579	}
4580out:
4581	mutex_unlock(&vcpu->mutex);
4582	kfree(fpu);
4583	kfree(kvm_sregs);
4584	return r;
4585}
4586
4587#ifdef CONFIG_KVM_COMPAT
4588static long kvm_vcpu_compat_ioctl(struct file *filp,
4589				  unsigned int ioctl, unsigned long arg)
4590{
4591	struct kvm_vcpu *vcpu = filp->private_data;
4592	void __user *argp = compat_ptr(arg);
4593	int r;
4594
4595	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4596		return -EIO;
4597
4598	switch (ioctl) {
4599	case KVM_SET_SIGNAL_MASK: {
4600		struct kvm_signal_mask __user *sigmask_arg = argp;
4601		struct kvm_signal_mask kvm_sigmask;
4602		sigset_t sigset;
4603
4604		if (argp) {
4605			r = -EFAULT;
4606			if (copy_from_user(&kvm_sigmask, argp,
4607					   sizeof(kvm_sigmask)))
4608				goto out;
4609			r = -EINVAL;
4610			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4611				goto out;
4612			r = -EFAULT;
4613			if (get_compat_sigset(&sigset,
4614					      (compat_sigset_t __user *)sigmask_arg->sigset))
4615				goto out;
4616			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4617		} else
4618			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4619		break;
4620	}
4621	default:
4622		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4623	}
4624
4625out:
4626	return r;
4627}
4628#endif
4629
4630static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4631{
4632	struct kvm_device *dev = filp->private_data;
4633
4634	if (dev->ops->mmap)
4635		return dev->ops->mmap(dev, vma);
4636
4637	return -ENODEV;
4638}
4639
4640static int kvm_device_ioctl_attr(struct kvm_device *dev,
4641				 int (*accessor)(struct kvm_device *dev,
4642						 struct kvm_device_attr *attr),
4643				 unsigned long arg)
4644{
4645	struct kvm_device_attr attr;
4646
4647	if (!accessor)
4648		return -EPERM;
4649
4650	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4651		return -EFAULT;
4652
4653	return accessor(dev, &attr);
4654}
4655
4656static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4657			     unsigned long arg)
4658{
4659	struct kvm_device *dev = filp->private_data;
4660
4661	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4662		return -EIO;
4663
4664	switch (ioctl) {
4665	case KVM_SET_DEVICE_ATTR:
4666		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4667	case KVM_GET_DEVICE_ATTR:
4668		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4669	case KVM_HAS_DEVICE_ATTR:
4670		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4671	default:
4672		if (dev->ops->ioctl)
4673			return dev->ops->ioctl(dev, ioctl, arg);
4674
4675		return -ENOTTY;
4676	}
4677}
4678
4679static int kvm_device_release(struct inode *inode, struct file *filp)
4680{
4681	struct kvm_device *dev = filp->private_data;
4682	struct kvm *kvm = dev->kvm;
4683
4684	if (dev->ops->release) {
4685		mutex_lock(&kvm->lock);
4686		list_del_rcu(&dev->vm_node);
4687		synchronize_rcu();
4688		dev->ops->release(dev);
4689		mutex_unlock(&kvm->lock);
4690	}
4691
4692	kvm_put_kvm(kvm);
4693	return 0;
4694}
4695
4696static struct file_operations kvm_device_fops = {
4697	.unlocked_ioctl = kvm_device_ioctl,
4698	.release = kvm_device_release,
4699	KVM_COMPAT(kvm_device_ioctl),
4700	.mmap = kvm_device_mmap,
4701};
4702
4703struct kvm_device *kvm_device_from_filp(struct file *filp)
4704{
4705	if (filp->f_op != &kvm_device_fops)
4706		return NULL;
4707
4708	return filp->private_data;
4709}
4710
4711static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4712#ifdef CONFIG_KVM_MPIC
4713	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4714	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4715#endif
4716};
4717
4718int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4719{
4720	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4721		return -ENOSPC;
4722
4723	if (kvm_device_ops_table[type] != NULL)
4724		return -EEXIST;
4725
4726	kvm_device_ops_table[type] = ops;
4727	return 0;
4728}
4729
4730void kvm_unregister_device_ops(u32 type)
4731{
4732	if (kvm_device_ops_table[type] != NULL)
4733		kvm_device_ops_table[type] = NULL;
4734}
4735
4736static int kvm_ioctl_create_device(struct kvm *kvm,
4737				   struct kvm_create_device *cd)
4738{
4739	const struct kvm_device_ops *ops;
4740	struct kvm_device *dev;
4741	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4742	int type;
4743	int ret;
4744
4745	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4746		return -ENODEV;
4747
4748	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4749	ops = kvm_device_ops_table[type];
4750	if (ops == NULL)
4751		return -ENODEV;
4752
4753	if (test)
4754		return 0;
4755
4756	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4757	if (!dev)
4758		return -ENOMEM;
4759
4760	dev->ops = ops;
4761	dev->kvm = kvm;
4762
4763	mutex_lock(&kvm->lock);
4764	ret = ops->create(dev, type);
4765	if (ret < 0) {
4766		mutex_unlock(&kvm->lock);
4767		kfree(dev);
4768		return ret;
4769	}
4770	list_add_rcu(&dev->vm_node, &kvm->devices);
4771	mutex_unlock(&kvm->lock);
4772
4773	if (ops->init)
4774		ops->init(dev);
4775
4776	kvm_get_kvm(kvm);
4777	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4778	if (ret < 0) {
4779		kvm_put_kvm_no_destroy(kvm);
4780		mutex_lock(&kvm->lock);
4781		list_del_rcu(&dev->vm_node);
4782		synchronize_rcu();
4783		if (ops->release)
4784			ops->release(dev);
4785		mutex_unlock(&kvm->lock);
4786		if (ops->destroy)
4787			ops->destroy(dev);
4788		return ret;
4789	}
4790
4791	cd->fd = ret;
4792	return 0;
4793}
4794
4795static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4796{
4797	switch (arg) {
4798	case KVM_CAP_USER_MEMORY:
4799	case KVM_CAP_USER_MEMORY2:
4800	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4801	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4802	case KVM_CAP_INTERNAL_ERROR_DATA:
4803#ifdef CONFIG_HAVE_KVM_MSI
4804	case KVM_CAP_SIGNAL_MSI:
4805#endif
4806#ifdef CONFIG_HAVE_KVM_IRQCHIP
4807	case KVM_CAP_IRQFD:
4808#endif
4809	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4810	case KVM_CAP_CHECK_EXTENSION_VM:
4811	case KVM_CAP_ENABLE_CAP_VM:
4812	case KVM_CAP_HALT_POLL:
4813		return 1;
4814#ifdef CONFIG_KVM_MMIO
4815	case KVM_CAP_COALESCED_MMIO:
4816		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4817	case KVM_CAP_COALESCED_PIO:
4818		return 1;
4819#endif
4820#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4821	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4822		return KVM_DIRTY_LOG_MANUAL_CAPS;
4823#endif
4824#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4825	case KVM_CAP_IRQ_ROUTING:
4826		return KVM_MAX_IRQ_ROUTES;
4827#endif
4828#if KVM_MAX_NR_ADDRESS_SPACES > 1
4829	case KVM_CAP_MULTI_ADDRESS_SPACE:
4830		if (kvm)
4831			return kvm_arch_nr_memslot_as_ids(kvm);
4832		return KVM_MAX_NR_ADDRESS_SPACES;
4833#endif
4834	case KVM_CAP_NR_MEMSLOTS:
4835		return KVM_USER_MEM_SLOTS;
4836	case KVM_CAP_DIRTY_LOG_RING:
4837#ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4838		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4839#else
4840		return 0;
4841#endif
4842	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4843#ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4844		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4845#else
4846		return 0;
4847#endif
4848#ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4849	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4850#endif
4851	case KVM_CAP_BINARY_STATS_FD:
4852	case KVM_CAP_SYSTEM_EVENT_DATA:
4853	case KVM_CAP_DEVICE_CTRL:
4854		return 1;
4855#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4856	case KVM_CAP_MEMORY_ATTRIBUTES:
4857		return kvm_supported_mem_attributes(kvm);
4858#endif
4859#ifdef CONFIG_KVM_PRIVATE_MEM
4860	case KVM_CAP_GUEST_MEMFD:
4861		return !kvm || kvm_arch_has_private_mem(kvm);
4862#endif
4863	default:
4864		break;
4865	}
4866	return kvm_vm_ioctl_check_extension(kvm, arg);
4867}
4868
4869static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4870{
4871	int r;
4872
4873	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4874		return -EINVAL;
4875
4876	/* the size should be power of 2 */
4877	if (!size || (size & (size - 1)))
4878		return -EINVAL;
4879
4880	/* Should be bigger to keep the reserved entries, or a page */
4881	if (size < kvm_dirty_ring_get_rsvd_entries() *
4882	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4883		return -EINVAL;
4884
4885	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4886	    sizeof(struct kvm_dirty_gfn))
4887		return -E2BIG;
4888
4889	/* We only allow it to set once */
4890	if (kvm->dirty_ring_size)
4891		return -EINVAL;
4892
4893	mutex_lock(&kvm->lock);
4894
4895	if (kvm->created_vcpus) {
4896		/* We don't allow to change this value after vcpu created */
4897		r = -EINVAL;
4898	} else {
4899		kvm->dirty_ring_size = size;
4900		r = 0;
4901	}
4902
4903	mutex_unlock(&kvm->lock);
4904	return r;
4905}
4906
4907static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4908{
4909	unsigned long i;
4910	struct kvm_vcpu *vcpu;
4911	int cleared = 0;
4912
4913	if (!kvm->dirty_ring_size)
4914		return -EINVAL;
4915
4916	mutex_lock(&kvm->slots_lock);
4917
4918	kvm_for_each_vcpu(i, vcpu, kvm)
4919		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4920
4921	mutex_unlock(&kvm->slots_lock);
4922
4923	if (cleared)
4924		kvm_flush_remote_tlbs(kvm);
4925
4926	return cleared;
4927}
4928
4929int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4930						  struct kvm_enable_cap *cap)
4931{
4932	return -EINVAL;
4933}
4934
4935bool kvm_are_all_memslots_empty(struct kvm *kvm)
4936{
4937	int i;
4938
4939	lockdep_assert_held(&kvm->slots_lock);
4940
4941	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4942		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4943			return false;
4944	}
4945
4946	return true;
4947}
4948EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4949
4950static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4951					   struct kvm_enable_cap *cap)
4952{
4953	switch (cap->cap) {
4954#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4955	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4956		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4957
4958		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4959			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4960
4961		if (cap->flags || (cap->args[0] & ~allowed_options))
4962			return -EINVAL;
4963		kvm->manual_dirty_log_protect = cap->args[0];
4964		return 0;
4965	}
4966#endif
4967	case KVM_CAP_HALT_POLL: {
4968		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4969			return -EINVAL;
4970
4971		kvm->max_halt_poll_ns = cap->args[0];
4972
4973		/*
4974		 * Ensure kvm->override_halt_poll_ns does not become visible
4975		 * before kvm->max_halt_poll_ns.
4976		 *
4977		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4978		 */
4979		smp_wmb();
4980		kvm->override_halt_poll_ns = true;
4981
4982		return 0;
4983	}
4984	case KVM_CAP_DIRTY_LOG_RING:
4985	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4986		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4987			return -EINVAL;
4988
4989		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4990	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4991		int r = -EINVAL;
4992
4993		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4994		    !kvm->dirty_ring_size || cap->flags)
4995			return r;
4996
4997		mutex_lock(&kvm->slots_lock);
4998
4999		/*
5000		 * For simplicity, allow enabling ring+bitmap if and only if
5001		 * there are no memslots, e.g. to ensure all memslots allocate
5002		 * a bitmap after the capability is enabled.
5003		 */
5004		if (kvm_are_all_memslots_empty(kvm)) {
5005			kvm->dirty_ring_with_bitmap = true;
5006			r = 0;
5007		}
5008
5009		mutex_unlock(&kvm->slots_lock);
5010
5011		return r;
5012	}
5013	default:
5014		return kvm_vm_ioctl_enable_cap(kvm, cap);
5015	}
5016}
5017
5018static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5019			      size_t size, loff_t *offset)
5020{
5021	struct kvm *kvm = file->private_data;
5022
5023	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5024				&kvm_vm_stats_desc[0], &kvm->stat,
5025				sizeof(kvm->stat), user_buffer, size, offset);
5026}
5027
5028static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5029{
5030	struct kvm *kvm = file->private_data;
5031
5032	kvm_put_kvm(kvm);
5033	return 0;
5034}
5035
5036static const struct file_operations kvm_vm_stats_fops = {
5037	.owner = THIS_MODULE,
5038	.read = kvm_vm_stats_read,
5039	.release = kvm_vm_stats_release,
5040	.llseek = noop_llseek,
5041};
5042
5043static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5044{
5045	int fd;
5046	struct file *file;
5047
5048	fd = get_unused_fd_flags(O_CLOEXEC);
5049	if (fd < 0)
5050		return fd;
5051
5052	file = anon_inode_getfile("kvm-vm-stats",
5053			&kvm_vm_stats_fops, kvm, O_RDONLY);
5054	if (IS_ERR(file)) {
5055		put_unused_fd(fd);
5056		return PTR_ERR(file);
5057	}
5058
5059	kvm_get_kvm(kvm);
5060
5061	file->f_mode |= FMODE_PREAD;
5062	fd_install(fd, file);
5063
5064	return fd;
5065}
5066
5067#define SANITY_CHECK_MEM_REGION_FIELD(field)					\
5068do {										\
5069	BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=		\
5070		     offsetof(struct kvm_userspace_memory_region2, field));	\
5071	BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=		\
5072		     sizeof_field(struct kvm_userspace_memory_region2, field));	\
5073} while (0)
5074
5075static long kvm_vm_ioctl(struct file *filp,
5076			   unsigned int ioctl, unsigned long arg)
5077{
5078	struct kvm *kvm = filp->private_data;
5079	void __user *argp = (void __user *)arg;
5080	int r;
5081
5082	if (kvm->mm != current->mm || kvm->vm_dead)
5083		return -EIO;
5084	switch (ioctl) {
5085	case KVM_CREATE_VCPU:
5086		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5087		break;
5088	case KVM_ENABLE_CAP: {
5089		struct kvm_enable_cap cap;
5090
5091		r = -EFAULT;
5092		if (copy_from_user(&cap, argp, sizeof(cap)))
5093			goto out;
5094		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5095		break;
5096	}
5097	case KVM_SET_USER_MEMORY_REGION2:
5098	case KVM_SET_USER_MEMORY_REGION: {
5099		struct kvm_userspace_memory_region2 mem;
5100		unsigned long size;
5101
5102		if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5103			/*
5104			 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5105			 * accessed, but avoid leaking kernel memory in case of a bug.
5106			 */
5107			memset(&mem, 0, sizeof(mem));
5108			size = sizeof(struct kvm_userspace_memory_region);
5109		} else {
5110			size = sizeof(struct kvm_userspace_memory_region2);
5111		}
5112
5113		/* Ensure the common parts of the two structs are identical. */
5114		SANITY_CHECK_MEM_REGION_FIELD(slot);
5115		SANITY_CHECK_MEM_REGION_FIELD(flags);
5116		SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5117		SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5118		SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5119
5120		r = -EFAULT;
5121		if (copy_from_user(&mem, argp, size))
5122			goto out;
5123
5124		r = -EINVAL;
5125		if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5126		    (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5127			goto out;
5128
5129		r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5130		break;
5131	}
5132	case KVM_GET_DIRTY_LOG: {
5133		struct kvm_dirty_log log;
5134
5135		r = -EFAULT;
5136		if (copy_from_user(&log, argp, sizeof(log)))
5137			goto out;
5138		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5139		break;
5140	}
5141#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5142	case KVM_CLEAR_DIRTY_LOG: {
5143		struct kvm_clear_dirty_log log;
5144
5145		r = -EFAULT;
5146		if (copy_from_user(&log, argp, sizeof(log)))
5147			goto out;
5148		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5149		break;
5150	}
5151#endif
5152#ifdef CONFIG_KVM_MMIO
5153	case KVM_REGISTER_COALESCED_MMIO: {
5154		struct kvm_coalesced_mmio_zone zone;
5155
5156		r = -EFAULT;
5157		if (copy_from_user(&zone, argp, sizeof(zone)))
5158			goto out;
5159		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5160		break;
5161	}
5162	case KVM_UNREGISTER_COALESCED_MMIO: {
5163		struct kvm_coalesced_mmio_zone zone;
5164
5165		r = -EFAULT;
5166		if (copy_from_user(&zone, argp, sizeof(zone)))
5167			goto out;
5168		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5169		break;
5170	}
5171#endif
5172	case KVM_IRQFD: {
5173		struct kvm_irqfd data;
5174
5175		r = -EFAULT;
5176		if (copy_from_user(&data, argp, sizeof(data)))
5177			goto out;
5178		r = kvm_irqfd(kvm, &data);
5179		break;
5180	}
5181	case KVM_IOEVENTFD: {
5182		struct kvm_ioeventfd data;
5183
5184		r = -EFAULT;
5185		if (copy_from_user(&data, argp, sizeof(data)))
5186			goto out;
5187		r = kvm_ioeventfd(kvm, &data);
5188		break;
5189	}
5190#ifdef CONFIG_HAVE_KVM_MSI
5191	case KVM_SIGNAL_MSI: {
5192		struct kvm_msi msi;
5193
5194		r = -EFAULT;
5195		if (copy_from_user(&msi, argp, sizeof(msi)))
5196			goto out;
5197		r = kvm_send_userspace_msi(kvm, &msi);
5198		break;
5199	}
5200#endif
5201#ifdef __KVM_HAVE_IRQ_LINE
5202	case KVM_IRQ_LINE_STATUS:
5203	case KVM_IRQ_LINE: {
5204		struct kvm_irq_level irq_event;
5205
5206		r = -EFAULT;
5207		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5208			goto out;
5209
5210		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5211					ioctl == KVM_IRQ_LINE_STATUS);
5212		if (r)
5213			goto out;
5214
5215		r = -EFAULT;
5216		if (ioctl == KVM_IRQ_LINE_STATUS) {
5217			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5218				goto out;
5219		}
5220
5221		r = 0;
5222		break;
5223	}
5224#endif
5225#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5226	case KVM_SET_GSI_ROUTING: {
5227		struct kvm_irq_routing routing;
5228		struct kvm_irq_routing __user *urouting;
5229		struct kvm_irq_routing_entry *entries = NULL;
5230
5231		r = -EFAULT;
5232		if (copy_from_user(&routing, argp, sizeof(routing)))
5233			goto out;
5234		r = -EINVAL;
5235		if (!kvm_arch_can_set_irq_routing(kvm))
5236			goto out;
5237		if (routing.nr > KVM_MAX_IRQ_ROUTES)
5238			goto out;
5239		if (routing.flags)
5240			goto out;
5241		if (routing.nr) {
5242			urouting = argp;
5243			entries = vmemdup_array_user(urouting->entries,
5244						     routing.nr, sizeof(*entries));
5245			if (IS_ERR(entries)) {
5246				r = PTR_ERR(entries);
5247				goto out;
5248			}
5249		}
5250		r = kvm_set_irq_routing(kvm, entries, routing.nr,
5251					routing.flags);
5252		kvfree(entries);
5253		break;
5254	}
5255#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5256#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5257	case KVM_SET_MEMORY_ATTRIBUTES: {
5258		struct kvm_memory_attributes attrs;
5259
5260		r = -EFAULT;
5261		if (copy_from_user(&attrs, argp, sizeof(attrs)))
5262			goto out;
5263
5264		r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5265		break;
5266	}
5267#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5268	case KVM_CREATE_DEVICE: {
5269		struct kvm_create_device cd;
5270
5271		r = -EFAULT;
5272		if (copy_from_user(&cd, argp, sizeof(cd)))
5273			goto out;
5274
5275		r = kvm_ioctl_create_device(kvm, &cd);
5276		if (r)
5277			goto out;
5278
5279		r = -EFAULT;
5280		if (copy_to_user(argp, &cd, sizeof(cd)))
5281			goto out;
5282
5283		r = 0;
5284		break;
5285	}
5286	case KVM_CHECK_EXTENSION:
5287		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5288		break;
5289	case KVM_RESET_DIRTY_RINGS:
5290		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5291		break;
5292	case KVM_GET_STATS_FD:
5293		r = kvm_vm_ioctl_get_stats_fd(kvm);
5294		break;
5295#ifdef CONFIG_KVM_PRIVATE_MEM
5296	case KVM_CREATE_GUEST_MEMFD: {
5297		struct kvm_create_guest_memfd guest_memfd;
5298
5299		r = -EFAULT;
5300		if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5301			goto out;
5302
5303		r = kvm_gmem_create(kvm, &guest_memfd);
5304		break;
5305	}
5306#endif
5307	default:
5308		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5309	}
5310out:
5311	return r;
5312}
5313
5314#ifdef CONFIG_KVM_COMPAT
5315struct compat_kvm_dirty_log {
5316	__u32 slot;
5317	__u32 padding1;
5318	union {
5319		compat_uptr_t dirty_bitmap; /* one bit per page */
5320		__u64 padding2;
5321	};
5322};
5323
5324struct compat_kvm_clear_dirty_log {
5325	__u32 slot;
5326	__u32 num_pages;
5327	__u64 first_page;
5328	union {
5329		compat_uptr_t dirty_bitmap; /* one bit per page */
5330		__u64 padding2;
5331	};
5332};
5333
5334long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5335				     unsigned long arg)
5336{
5337	return -ENOTTY;
5338}
5339
5340static long kvm_vm_compat_ioctl(struct file *filp,
5341			   unsigned int ioctl, unsigned long arg)
5342{
5343	struct kvm *kvm = filp->private_data;
5344	int r;
5345
5346	if (kvm->mm != current->mm || kvm->vm_dead)
5347		return -EIO;
5348
5349	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5350	if (r != -ENOTTY)
5351		return r;
5352
5353	switch (ioctl) {
5354#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5355	case KVM_CLEAR_DIRTY_LOG: {
5356		struct compat_kvm_clear_dirty_log compat_log;
5357		struct kvm_clear_dirty_log log;
5358
5359		if (copy_from_user(&compat_log, (void __user *)arg,
5360				   sizeof(compat_log)))
5361			return -EFAULT;
5362		log.slot	 = compat_log.slot;
5363		log.num_pages	 = compat_log.num_pages;
5364		log.first_page	 = compat_log.first_page;
5365		log.padding2	 = compat_log.padding2;
5366		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5367
5368		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5369		break;
5370	}
5371#endif
5372	case KVM_GET_DIRTY_LOG: {
5373		struct compat_kvm_dirty_log compat_log;
5374		struct kvm_dirty_log log;
5375
5376		if (copy_from_user(&compat_log, (void __user *)arg,
5377				   sizeof(compat_log)))
5378			return -EFAULT;
5379		log.slot	 = compat_log.slot;
5380		log.padding1	 = compat_log.padding1;
5381		log.padding2	 = compat_log.padding2;
5382		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5383
5384		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5385		break;
5386	}
5387	default:
5388		r = kvm_vm_ioctl(filp, ioctl, arg);
5389	}
5390	return r;
5391}
5392#endif
5393
5394static struct file_operations kvm_vm_fops = {
5395	.release        = kvm_vm_release,
5396	.unlocked_ioctl = kvm_vm_ioctl,
5397	.llseek		= noop_llseek,
5398	KVM_COMPAT(kvm_vm_compat_ioctl),
5399};
5400
5401bool file_is_kvm(struct file *file)
5402{
5403	return file && file->f_op == &kvm_vm_fops;
5404}
5405EXPORT_SYMBOL_GPL(file_is_kvm);
5406
5407static int kvm_dev_ioctl_create_vm(unsigned long type)
5408{
5409	char fdname[ITOA_MAX_LEN + 1];
5410	int r, fd;
5411	struct kvm *kvm;
5412	struct file *file;
5413
5414	fd = get_unused_fd_flags(O_CLOEXEC);
5415	if (fd < 0)
5416		return fd;
5417
5418	snprintf(fdname, sizeof(fdname), "%d", fd);
5419
5420	kvm = kvm_create_vm(type, fdname);
5421	if (IS_ERR(kvm)) {
5422		r = PTR_ERR(kvm);
5423		goto put_fd;
5424	}
5425
5426	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5427	if (IS_ERR(file)) {
5428		r = PTR_ERR(file);
5429		goto put_kvm;
5430	}
5431
5432	/*
5433	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5434	 * already set, with ->release() being kvm_vm_release().  In error
5435	 * cases it will be called by the final fput(file) and will take
5436	 * care of doing kvm_put_kvm(kvm).
5437	 */
5438	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5439
5440	fd_install(fd, file);
5441	return fd;
5442
5443put_kvm:
5444	kvm_put_kvm(kvm);
5445put_fd:
5446	put_unused_fd(fd);
5447	return r;
5448}
5449
5450static long kvm_dev_ioctl(struct file *filp,
5451			  unsigned int ioctl, unsigned long arg)
5452{
5453	int r = -EINVAL;
5454
5455	switch (ioctl) {
5456	case KVM_GET_API_VERSION:
5457		if (arg)
5458			goto out;
5459		r = KVM_API_VERSION;
5460		break;
5461	case KVM_CREATE_VM:
5462		r = kvm_dev_ioctl_create_vm(arg);
5463		break;
5464	case KVM_CHECK_EXTENSION:
5465		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5466		break;
5467	case KVM_GET_VCPU_MMAP_SIZE:
5468		if (arg)
5469			goto out;
5470		r = PAGE_SIZE;     /* struct kvm_run */
5471#ifdef CONFIG_X86
5472		r += PAGE_SIZE;    /* pio data page */
5473#endif
5474#ifdef CONFIG_KVM_MMIO
5475		r += PAGE_SIZE;    /* coalesced mmio ring page */
5476#endif
5477		break;
5478	default:
5479		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5480	}
5481out:
5482	return r;
5483}
5484
5485static struct file_operations kvm_chardev_ops = {
5486	.unlocked_ioctl = kvm_dev_ioctl,
5487	.llseek		= noop_llseek,
5488	KVM_COMPAT(kvm_dev_ioctl),
5489};
5490
5491static struct miscdevice kvm_dev = {
5492	KVM_MINOR,
5493	"kvm",
5494	&kvm_chardev_ops,
5495};
5496
5497#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5498__visible bool kvm_rebooting;
5499EXPORT_SYMBOL_GPL(kvm_rebooting);
5500
5501static DEFINE_PER_CPU(bool, hardware_enabled);
5502static int kvm_usage_count;
5503
5504static int __hardware_enable_nolock(void)
5505{
5506	if (__this_cpu_read(hardware_enabled))
5507		return 0;
5508
5509	if (kvm_arch_hardware_enable()) {
5510		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5511			raw_smp_processor_id());
5512		return -EIO;
5513	}
5514
5515	__this_cpu_write(hardware_enabled, true);
5516	return 0;
5517}
5518
5519static void hardware_enable_nolock(void *failed)
5520{
5521	if (__hardware_enable_nolock())
5522		atomic_inc(failed);
5523}
5524
5525static int kvm_online_cpu(unsigned int cpu)
5526{
5527	int ret = 0;
5528
5529	/*
5530	 * Abort the CPU online process if hardware virtualization cannot
5531	 * be enabled. Otherwise running VMs would encounter unrecoverable
5532	 * errors when scheduled to this CPU.
5533	 */
5534	mutex_lock(&kvm_lock);
5535	if (kvm_usage_count)
5536		ret = __hardware_enable_nolock();
5537	mutex_unlock(&kvm_lock);
5538	return ret;
5539}
5540
5541static void hardware_disable_nolock(void *junk)
5542{
5543	/*
5544	 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5545	 * hardware, not just CPUs that successfully enabled hardware!
5546	 */
5547	if (!__this_cpu_read(hardware_enabled))
5548		return;
5549
5550	kvm_arch_hardware_disable();
5551
5552	__this_cpu_write(hardware_enabled, false);
5553}
5554
5555static int kvm_offline_cpu(unsigned int cpu)
5556{
5557	mutex_lock(&kvm_lock);
5558	if (kvm_usage_count)
5559		hardware_disable_nolock(NULL);
5560	mutex_unlock(&kvm_lock);
5561	return 0;
5562}
5563
5564static void hardware_disable_all_nolock(void)
5565{
5566	BUG_ON(!kvm_usage_count);
5567
5568	kvm_usage_count--;
5569	if (!kvm_usage_count)
5570		on_each_cpu(hardware_disable_nolock, NULL, 1);
5571}
5572
5573static void hardware_disable_all(void)
5574{
5575	cpus_read_lock();
5576	mutex_lock(&kvm_lock);
5577	hardware_disable_all_nolock();
5578	mutex_unlock(&kvm_lock);
5579	cpus_read_unlock();
5580}
5581
5582static int hardware_enable_all(void)
5583{
5584	atomic_t failed = ATOMIC_INIT(0);
5585	int r;
5586
5587	/*
5588	 * Do not enable hardware virtualization if the system is going down.
5589	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5590	 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5591	 * after kvm_reboot() is called.  Note, this relies on system_state
5592	 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5593	 * hook instead of registering a dedicated reboot notifier (the latter
5594	 * runs before system_state is updated).
5595	 */
5596	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5597	    system_state == SYSTEM_RESTART)
5598		return -EBUSY;
5599
5600	/*
5601	 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5602	 * is called, and so on_each_cpu() between them includes the CPU that
5603	 * is being onlined.  As a result, hardware_enable_nolock() may get
5604	 * invoked before kvm_online_cpu(), which also enables hardware if the
5605	 * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5606	 * enable hardware multiple times.
5607	 */
5608	cpus_read_lock();
5609	mutex_lock(&kvm_lock);
5610
5611	r = 0;
5612
5613	kvm_usage_count++;
5614	if (kvm_usage_count == 1) {
5615		on_each_cpu(hardware_enable_nolock, &failed, 1);
5616
5617		if (atomic_read(&failed)) {
5618			hardware_disable_all_nolock();
5619			r = -EBUSY;
5620		}
5621	}
5622
5623	mutex_unlock(&kvm_lock);
5624	cpus_read_unlock();
5625
5626	return r;
5627}
5628
5629static void kvm_shutdown(void)
5630{
5631	/*
5632	 * Disable hardware virtualization and set kvm_rebooting to indicate
5633	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5634	 * that relevant errors and exceptions aren't entirely unexpected.
5635	 * Some flavors of hardware virtualization need to be disabled before
5636	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5637	 * on x86, virtualization can block INIT interrupts, which are used by
5638	 * firmware to pull APs back under firmware control.  Note, this path
5639	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5640	 * 100% comprehensive.
5641	 */
5642	pr_info("kvm: exiting hardware virtualization\n");
5643	kvm_rebooting = true;
5644	on_each_cpu(hardware_disable_nolock, NULL, 1);
5645}
5646
5647static int kvm_suspend(void)
5648{
5649	/*
5650	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5651	 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5652	 * is stable.  Assert that kvm_lock is not held to ensure the system
5653	 * isn't suspended while KVM is enabling hardware.  Hardware enabling
5654	 * can be preempted, but the task cannot be frozen until it has dropped
5655	 * all locks (userspace tasks are frozen via a fake signal).
5656	 */
5657	lockdep_assert_not_held(&kvm_lock);
5658	lockdep_assert_irqs_disabled();
5659
5660	if (kvm_usage_count)
5661		hardware_disable_nolock(NULL);
5662	return 0;
5663}
5664
5665static void kvm_resume(void)
5666{
5667	lockdep_assert_not_held(&kvm_lock);
5668	lockdep_assert_irqs_disabled();
5669
5670	if (kvm_usage_count)
5671		WARN_ON_ONCE(__hardware_enable_nolock());
5672}
5673
5674static struct syscore_ops kvm_syscore_ops = {
5675	.suspend = kvm_suspend,
5676	.resume = kvm_resume,
5677	.shutdown = kvm_shutdown,
5678};
5679#else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5680static int hardware_enable_all(void)
5681{
5682	return 0;
5683}
5684
5685static void hardware_disable_all(void)
5686{
5687
5688}
5689#endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5690
5691static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5692{
5693	if (dev->ops->destructor)
5694		dev->ops->destructor(dev);
5695}
5696
5697static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5698{
5699	int i;
5700
5701	for (i = 0; i < bus->dev_count; i++) {
5702		struct kvm_io_device *pos = bus->range[i].dev;
5703
5704		kvm_iodevice_destructor(pos);
5705	}
5706	kfree(bus);
5707}
5708
5709static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5710				 const struct kvm_io_range *r2)
5711{
5712	gpa_t addr1 = r1->addr;
5713	gpa_t addr2 = r2->addr;
5714
5715	if (addr1 < addr2)
5716		return -1;
5717
5718	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5719	 * accept any overlapping write.  Any order is acceptable for
5720	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5721	 * we process all of them.
5722	 */
5723	if (r2->len) {
5724		addr1 += r1->len;
5725		addr2 += r2->len;
5726	}
5727
5728	if (addr1 > addr2)
5729		return 1;
5730
5731	return 0;
5732}
5733
5734static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5735{
5736	return kvm_io_bus_cmp(p1, p2);
5737}
5738
5739static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5740			     gpa_t addr, int len)
5741{
5742	struct kvm_io_range *range, key;
5743	int off;
5744
5745	key = (struct kvm_io_range) {
5746		.addr = addr,
5747		.len = len,
5748	};
5749
5750	range = bsearch(&key, bus->range, bus->dev_count,
5751			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5752	if (range == NULL)
5753		return -ENOENT;
5754
5755	off = range - bus->range;
5756
5757	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5758		off--;
5759
5760	return off;
5761}
5762
5763static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5764			      struct kvm_io_range *range, const void *val)
5765{
5766	int idx;
5767
5768	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5769	if (idx < 0)
5770		return -EOPNOTSUPP;
5771
5772	while (idx < bus->dev_count &&
5773		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5774		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5775					range->len, val))
5776			return idx;
5777		idx++;
5778	}
5779
5780	return -EOPNOTSUPP;
5781}
5782
5783/* kvm_io_bus_write - called under kvm->slots_lock */
5784int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5785		     int len, const void *val)
5786{
5787	struct kvm_io_bus *bus;
5788	struct kvm_io_range range;
5789	int r;
5790
5791	range = (struct kvm_io_range) {
5792		.addr = addr,
5793		.len = len,
5794	};
5795
5796	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5797	if (!bus)
5798		return -ENOMEM;
5799	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5800	return r < 0 ? r : 0;
5801}
5802EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5803
5804/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5805int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5806			    gpa_t addr, int len, const void *val, long cookie)
5807{
5808	struct kvm_io_bus *bus;
5809	struct kvm_io_range range;
5810
5811	range = (struct kvm_io_range) {
5812		.addr = addr,
5813		.len = len,
5814	};
5815
5816	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5817	if (!bus)
5818		return -ENOMEM;
5819
5820	/* First try the device referenced by cookie. */
5821	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5822	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5823		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5824					val))
5825			return cookie;
5826
5827	/*
5828	 * cookie contained garbage; fall back to search and return the
5829	 * correct cookie value.
5830	 */
5831	return __kvm_io_bus_write(vcpu, bus, &range, val);
5832}
5833
5834static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5835			     struct kvm_io_range *range, void *val)
5836{
5837	int idx;
5838
5839	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5840	if (idx < 0)
5841		return -EOPNOTSUPP;
5842
5843	while (idx < bus->dev_count &&
5844		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5845		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5846				       range->len, val))
5847			return idx;
5848		idx++;
5849	}
5850
5851	return -EOPNOTSUPP;
5852}
5853
5854/* kvm_io_bus_read - called under kvm->slots_lock */
5855int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5856		    int len, void *val)
5857{
5858	struct kvm_io_bus *bus;
5859	struct kvm_io_range range;
5860	int r;
5861
5862	range = (struct kvm_io_range) {
5863		.addr = addr,
5864		.len = len,
5865	};
5866
5867	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5868	if (!bus)
5869		return -ENOMEM;
5870	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5871	return r < 0 ? r : 0;
5872}
5873
5874int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5875			    int len, struct kvm_io_device *dev)
5876{
5877	int i;
5878	struct kvm_io_bus *new_bus, *bus;
5879	struct kvm_io_range range;
5880
5881	lockdep_assert_held(&kvm->slots_lock);
5882
5883	bus = kvm_get_bus(kvm, bus_idx);
5884	if (!bus)
5885		return -ENOMEM;
5886
5887	/* exclude ioeventfd which is limited by maximum fd */
5888	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5889		return -ENOSPC;
5890
5891	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5892			  GFP_KERNEL_ACCOUNT);
5893	if (!new_bus)
5894		return -ENOMEM;
5895
5896	range = (struct kvm_io_range) {
5897		.addr = addr,
5898		.len = len,
5899		.dev = dev,
5900	};
5901
5902	for (i = 0; i < bus->dev_count; i++)
5903		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5904			break;
5905
5906	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5907	new_bus->dev_count++;
5908	new_bus->range[i] = range;
5909	memcpy(new_bus->range + i + 1, bus->range + i,
5910		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5911	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5912	synchronize_srcu_expedited(&kvm->srcu);
5913	kfree(bus);
5914
5915	return 0;
5916}
5917
5918int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5919			      struct kvm_io_device *dev)
5920{
5921	int i;
5922	struct kvm_io_bus *new_bus, *bus;
5923
5924	lockdep_assert_held(&kvm->slots_lock);
5925
5926	bus = kvm_get_bus(kvm, bus_idx);
5927	if (!bus)
5928		return 0;
5929
5930	for (i = 0; i < bus->dev_count; i++) {
5931		if (bus->range[i].dev == dev) {
5932			break;
5933		}
5934	}
5935
5936	if (i == bus->dev_count)
5937		return 0;
5938
5939	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5940			  GFP_KERNEL_ACCOUNT);
5941	if (new_bus) {
5942		memcpy(new_bus, bus, struct_size(bus, range, i));
5943		new_bus->dev_count--;
5944		memcpy(new_bus->range + i, bus->range + i + 1,
5945				flex_array_size(new_bus, range, new_bus->dev_count - i));
5946	}
5947
5948	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5949	synchronize_srcu_expedited(&kvm->srcu);
5950
5951	/*
5952	 * If NULL bus is installed, destroy the old bus, including all the
5953	 * attached devices. Otherwise, destroy the caller's device only.
5954	 */
5955	if (!new_bus) {
5956		pr_err("kvm: failed to shrink bus, removing it completely\n");
5957		kvm_io_bus_destroy(bus);
5958		return -ENOMEM;
5959	}
5960
5961	kvm_iodevice_destructor(dev);
5962	kfree(bus);
5963	return 0;
5964}
5965
5966struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5967					 gpa_t addr)
5968{
5969	struct kvm_io_bus *bus;
5970	int dev_idx, srcu_idx;
5971	struct kvm_io_device *iodev = NULL;
5972
5973	srcu_idx = srcu_read_lock(&kvm->srcu);
5974
5975	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5976	if (!bus)
5977		goto out_unlock;
5978
5979	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5980	if (dev_idx < 0)
5981		goto out_unlock;
5982
5983	iodev = bus->range[dev_idx].dev;
5984
5985out_unlock:
5986	srcu_read_unlock(&kvm->srcu, srcu_idx);
5987
5988	return iodev;
5989}
5990EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5991
5992static int kvm_debugfs_open(struct inode *inode, struct file *file,
5993			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5994			   const char *fmt)
5995{
5996	int ret;
5997	struct kvm_stat_data *stat_data = inode->i_private;
5998
5999	/*
6000	 * The debugfs files are a reference to the kvm struct which
6001        * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
6002        * avoids the race between open and the removal of the debugfs directory.
6003	 */
6004	if (!kvm_get_kvm_safe(stat_data->kvm))
6005		return -ENOENT;
6006
6007	ret = simple_attr_open(inode, file, get,
6008			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
6009			       ? set : NULL, fmt);
6010	if (ret)
6011		kvm_put_kvm(stat_data->kvm);
6012
6013	return ret;
6014}
6015
6016static int kvm_debugfs_release(struct inode *inode, struct file *file)
6017{
6018	struct kvm_stat_data *stat_data = inode->i_private;
6019
6020	simple_attr_release(inode, file);
6021	kvm_put_kvm(stat_data->kvm);
6022
6023	return 0;
6024}
6025
6026static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6027{
6028	*val = *(u64 *)((void *)(&kvm->stat) + offset);
6029
6030	return 0;
6031}
6032
6033static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6034{
6035	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
6036
6037	return 0;
6038}
6039
6040static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6041{
6042	unsigned long i;
6043	struct kvm_vcpu *vcpu;
6044
6045	*val = 0;
6046
6047	kvm_for_each_vcpu(i, vcpu, kvm)
6048		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
6049
6050	return 0;
6051}
6052
6053static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6054{
6055	unsigned long i;
6056	struct kvm_vcpu *vcpu;
6057
6058	kvm_for_each_vcpu(i, vcpu, kvm)
6059		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6060
6061	return 0;
6062}
6063
6064static int kvm_stat_data_get(void *data, u64 *val)
6065{
6066	int r = -EFAULT;
6067	struct kvm_stat_data *stat_data = data;
6068
6069	switch (stat_data->kind) {
6070	case KVM_STAT_VM:
6071		r = kvm_get_stat_per_vm(stat_data->kvm,
6072					stat_data->desc->desc.offset, val);
6073		break;
6074	case KVM_STAT_VCPU:
6075		r = kvm_get_stat_per_vcpu(stat_data->kvm,
6076					  stat_data->desc->desc.offset, val);
6077		break;
6078	}
6079
6080	return r;
6081}
6082
6083static int kvm_stat_data_clear(void *data, u64 val)
6084{
6085	int r = -EFAULT;
6086	struct kvm_stat_data *stat_data = data;
6087
6088	if (val)
6089		return -EINVAL;
6090
6091	switch (stat_data->kind) {
6092	case KVM_STAT_VM:
6093		r = kvm_clear_stat_per_vm(stat_data->kvm,
6094					  stat_data->desc->desc.offset);
6095		break;
6096	case KVM_STAT_VCPU:
6097		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6098					    stat_data->desc->desc.offset);
6099		break;
6100	}
6101
6102	return r;
6103}
6104
6105static int kvm_stat_data_open(struct inode *inode, struct file *file)
6106{
6107	__simple_attr_check_format("%llu\n", 0ull);
6108	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6109				kvm_stat_data_clear, "%llu\n");
6110}
6111
6112static const struct file_operations stat_fops_per_vm = {
6113	.owner = THIS_MODULE,
6114	.open = kvm_stat_data_open,
6115	.release = kvm_debugfs_release,
6116	.read = simple_attr_read,
6117	.write = simple_attr_write,
6118	.llseek = no_llseek,
6119};
6120
6121static int vm_stat_get(void *_offset, u64 *val)
6122{
6123	unsigned offset = (long)_offset;
6124	struct kvm *kvm;
6125	u64 tmp_val;
6126
6127	*val = 0;
6128	mutex_lock(&kvm_lock);
6129	list_for_each_entry(kvm, &vm_list, vm_list) {
6130		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6131		*val += tmp_val;
6132	}
6133	mutex_unlock(&kvm_lock);
6134	return 0;
6135}
6136
6137static int vm_stat_clear(void *_offset, u64 val)
6138{
6139	unsigned offset = (long)_offset;
6140	struct kvm *kvm;
6141
6142	if (val)
6143		return -EINVAL;
6144
6145	mutex_lock(&kvm_lock);
6146	list_for_each_entry(kvm, &vm_list, vm_list) {
6147		kvm_clear_stat_per_vm(kvm, offset);
6148	}
6149	mutex_unlock(&kvm_lock);
6150
6151	return 0;
6152}
6153
6154DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6155DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6156
6157static int vcpu_stat_get(void *_offset, u64 *val)
6158{
6159	unsigned offset = (long)_offset;
6160	struct kvm *kvm;
6161	u64 tmp_val;
6162
6163	*val = 0;
6164	mutex_lock(&kvm_lock);
6165	list_for_each_entry(kvm, &vm_list, vm_list) {
6166		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6167		*val += tmp_val;
6168	}
6169	mutex_unlock(&kvm_lock);
6170	return 0;
6171}
6172
6173static int vcpu_stat_clear(void *_offset, u64 val)
6174{
6175	unsigned offset = (long)_offset;
6176	struct kvm *kvm;
6177
6178	if (val)
6179		return -EINVAL;
6180
6181	mutex_lock(&kvm_lock);
6182	list_for_each_entry(kvm, &vm_list, vm_list) {
6183		kvm_clear_stat_per_vcpu(kvm, offset);
6184	}
6185	mutex_unlock(&kvm_lock);
6186
6187	return 0;
6188}
6189
6190DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6191			"%llu\n");
6192DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6193
6194static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6195{
6196	struct kobj_uevent_env *env;
6197	unsigned long long created, active;
6198
6199	if (!kvm_dev.this_device || !kvm)
6200		return;
6201
6202	mutex_lock(&kvm_lock);
6203	if (type == KVM_EVENT_CREATE_VM) {
6204		kvm_createvm_count++;
6205		kvm_active_vms++;
6206	} else if (type == KVM_EVENT_DESTROY_VM) {
6207		kvm_active_vms--;
6208	}
6209	created = kvm_createvm_count;
6210	active = kvm_active_vms;
6211	mutex_unlock(&kvm_lock);
6212
6213	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
6214	if (!env)
6215		return;
6216
6217	add_uevent_var(env, "CREATED=%llu", created);
6218	add_uevent_var(env, "COUNT=%llu", active);
6219
6220	if (type == KVM_EVENT_CREATE_VM) {
6221		add_uevent_var(env, "EVENT=create");
6222		kvm->userspace_pid = task_pid_nr(current);
6223	} else if (type == KVM_EVENT_DESTROY_VM) {
6224		add_uevent_var(env, "EVENT=destroy");
6225	}
6226	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6227
6228	if (!IS_ERR(kvm->debugfs_dentry)) {
6229		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
6230
6231		if (p) {
6232			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6233			if (!IS_ERR(tmp))
6234				add_uevent_var(env, "STATS_PATH=%s", tmp);
6235			kfree(p);
6236		}
6237	}
6238	/* no need for checks, since we are adding at most only 5 keys */
6239	env->envp[env->envp_idx++] = NULL;
6240	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6241	kfree(env);
6242}
6243
6244static void kvm_init_debug(void)
6245{
6246	const struct file_operations *fops;
6247	const struct _kvm_stats_desc *pdesc;
6248	int i;
6249
6250	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6251
6252	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6253		pdesc = &kvm_vm_stats_desc[i];
6254		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6255			fops = &vm_stat_fops;
6256		else
6257			fops = &vm_stat_readonly_fops;
6258		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6259				kvm_debugfs_dir,
6260				(void *)(long)pdesc->desc.offset, fops);
6261	}
6262
6263	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6264		pdesc = &kvm_vcpu_stats_desc[i];
6265		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6266			fops = &vcpu_stat_fops;
6267		else
6268			fops = &vcpu_stat_readonly_fops;
6269		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6270				kvm_debugfs_dir,
6271				(void *)(long)pdesc->desc.offset, fops);
6272	}
6273}
6274
6275static inline
6276struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6277{
6278	return container_of(pn, struct kvm_vcpu, preempt_notifier);
6279}
6280
6281static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6282{
6283	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6284
6285	WRITE_ONCE(vcpu->preempted, false);
6286	WRITE_ONCE(vcpu->ready, false);
6287
6288	__this_cpu_write(kvm_running_vcpu, vcpu);
6289	kvm_arch_sched_in(vcpu, cpu);
6290	kvm_arch_vcpu_load(vcpu, cpu);
6291}
6292
6293static void kvm_sched_out(struct preempt_notifier *pn,
6294			  struct task_struct *next)
6295{
6296	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6297
6298	if (current->on_rq) {
6299		WRITE_ONCE(vcpu->preempted, true);
6300		WRITE_ONCE(vcpu->ready, true);
6301	}
6302	kvm_arch_vcpu_put(vcpu);
6303	__this_cpu_write(kvm_running_vcpu, NULL);
6304}
6305
6306/**
6307 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6308 *
6309 * We can disable preemption locally around accessing the per-CPU variable,
6310 * and use the resolved vcpu pointer after enabling preemption again,
6311 * because even if the current thread is migrated to another CPU, reading
6312 * the per-CPU value later will give us the same value as we update the
6313 * per-CPU variable in the preempt notifier handlers.
6314 */
6315struct kvm_vcpu *kvm_get_running_vcpu(void)
6316{
6317	struct kvm_vcpu *vcpu;
6318
6319	preempt_disable();
6320	vcpu = __this_cpu_read(kvm_running_vcpu);
6321	preempt_enable();
6322
6323	return vcpu;
6324}
6325EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6326
6327/**
6328 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6329 */
6330struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6331{
6332        return &kvm_running_vcpu;
6333}
6334
6335#ifdef CONFIG_GUEST_PERF_EVENTS
6336static unsigned int kvm_guest_state(void)
6337{
6338	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6339	unsigned int state;
6340
6341	if (!kvm_arch_pmi_in_guest(vcpu))
6342		return 0;
6343
6344	state = PERF_GUEST_ACTIVE;
6345	if (!kvm_arch_vcpu_in_kernel(vcpu))
6346		state |= PERF_GUEST_USER;
6347
6348	return state;
6349}
6350
6351static unsigned long kvm_guest_get_ip(void)
6352{
6353	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6354
6355	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6356	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6357		return 0;
6358
6359	return kvm_arch_vcpu_get_ip(vcpu);
6360}
6361
6362static struct perf_guest_info_callbacks kvm_guest_cbs = {
6363	.state			= kvm_guest_state,
6364	.get_ip			= kvm_guest_get_ip,
6365	.handle_intel_pt_intr	= NULL,
6366};
6367
6368void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6369{
6370	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6371	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6372}
6373void kvm_unregister_perf_callbacks(void)
6374{
6375	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6376}
6377#endif
6378
6379int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6380{
6381	int r;
6382	int cpu;
6383
6384#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6385	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6386				      kvm_online_cpu, kvm_offline_cpu);
6387	if (r)
6388		return r;
6389
6390	register_syscore_ops(&kvm_syscore_ops);
6391#endif
6392
6393	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6394	if (!vcpu_align)
6395		vcpu_align = __alignof__(struct kvm_vcpu);
6396	kvm_vcpu_cache =
6397		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6398					   SLAB_ACCOUNT,
6399					   offsetof(struct kvm_vcpu, arch),
6400					   offsetofend(struct kvm_vcpu, stats_id)
6401					   - offsetof(struct kvm_vcpu, arch),
6402					   NULL);
6403	if (!kvm_vcpu_cache) {
6404		r = -ENOMEM;
6405		goto err_vcpu_cache;
6406	}
6407
6408	for_each_possible_cpu(cpu) {
6409		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6410					    GFP_KERNEL, cpu_to_node(cpu))) {
6411			r = -ENOMEM;
6412			goto err_cpu_kick_mask;
6413		}
6414	}
6415
6416	r = kvm_irqfd_init();
6417	if (r)
6418		goto err_irqfd;
6419
6420	r = kvm_async_pf_init();
6421	if (r)
6422		goto err_async_pf;
6423
6424	kvm_chardev_ops.owner = module;
6425	kvm_vm_fops.owner = module;
6426	kvm_vcpu_fops.owner = module;
6427	kvm_device_fops.owner = module;
6428
6429	kvm_preempt_ops.sched_in = kvm_sched_in;
6430	kvm_preempt_ops.sched_out = kvm_sched_out;
6431
6432	kvm_init_debug();
6433
6434	r = kvm_vfio_ops_init();
6435	if (WARN_ON_ONCE(r))
6436		goto err_vfio;
6437
6438	kvm_gmem_init(module);
6439
6440	/*
6441	 * Registration _must_ be the very last thing done, as this exposes
6442	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6443	 */
6444	r = misc_register(&kvm_dev);
6445	if (r) {
6446		pr_err("kvm: misc device register failed\n");
6447		goto err_register;
6448	}
6449
6450	return 0;
6451
6452err_register:
6453	kvm_vfio_ops_exit();
6454err_vfio:
6455	kvm_async_pf_deinit();
6456err_async_pf:
6457	kvm_irqfd_exit();
6458err_irqfd:
6459err_cpu_kick_mask:
6460	for_each_possible_cpu(cpu)
6461		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6462	kmem_cache_destroy(kvm_vcpu_cache);
6463err_vcpu_cache:
6464#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6465	unregister_syscore_ops(&kvm_syscore_ops);
6466	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6467#endif
6468	return r;
6469}
6470EXPORT_SYMBOL_GPL(kvm_init);
6471
6472void kvm_exit(void)
6473{
6474	int cpu;
6475
6476	/*
6477	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6478	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6479	 * to KVM while the module is being stopped.
6480	 */
6481	misc_deregister(&kvm_dev);
6482
6483	debugfs_remove_recursive(kvm_debugfs_dir);
6484	for_each_possible_cpu(cpu)
6485		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6486	kmem_cache_destroy(kvm_vcpu_cache);
6487	kvm_vfio_ops_exit();
6488	kvm_async_pf_deinit();
6489#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6490	unregister_syscore_ops(&kvm_syscore_ops);
6491	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6492#endif
6493	kvm_irqfd_exit();
6494}
6495EXPORT_SYMBOL_GPL(kvm_exit);
6496
6497struct kvm_vm_worker_thread_context {
6498	struct kvm *kvm;
6499	struct task_struct *parent;
6500	struct completion init_done;
6501	kvm_vm_thread_fn_t thread_fn;
6502	uintptr_t data;
6503	int err;
6504};
6505
6506static int kvm_vm_worker_thread(void *context)
6507{
6508	/*
6509	 * The init_context is allocated on the stack of the parent thread, so
6510	 * we have to locally copy anything that is needed beyond initialization
6511	 */
6512	struct kvm_vm_worker_thread_context *init_context = context;
6513	struct task_struct *parent;
6514	struct kvm *kvm = init_context->kvm;
6515	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6516	uintptr_t data = init_context->data;
6517	int err;
6518
6519	err = kthread_park(current);
6520	/* kthread_park(current) is never supposed to return an error */
6521	WARN_ON(err != 0);
6522	if (err)
6523		goto init_complete;
6524
6525	err = cgroup_attach_task_all(init_context->parent, current);
6526	if (err) {
6527		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6528			__func__, err);
6529		goto init_complete;
6530	}
6531
6532	set_user_nice(current, task_nice(init_context->parent));
6533
6534init_complete:
6535	init_context->err = err;
6536	complete(&init_context->init_done);
6537	init_context = NULL;
6538
6539	if (err)
6540		goto out;
6541
6542	/* Wait to be woken up by the spawner before proceeding. */
6543	kthread_parkme();
6544
6545	if (!kthread_should_stop())
6546		err = thread_fn(kvm, data);
6547
6548out:
6549	/*
6550	 * Move kthread back to its original cgroup to prevent it lingering in
6551	 * the cgroup of the VM process, after the latter finishes its
6552	 * execution.
6553	 *
6554	 * kthread_stop() waits on the 'exited' completion condition which is
6555	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6556	 * kthread is removed from the cgroup in the cgroup_exit() which is
6557	 * called after the exit_mm(). This causes the kthread_stop() to return
6558	 * before the kthread actually quits the cgroup.
6559	 */
6560	rcu_read_lock();
6561	parent = rcu_dereference(current->real_parent);
6562	get_task_struct(parent);
6563	rcu_read_unlock();
6564	cgroup_attach_task_all(parent, current);
6565	put_task_struct(parent);
6566
6567	return err;
6568}
6569
6570int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6571				uintptr_t data, const char *name,
6572				struct task_struct **thread_ptr)
6573{
6574	struct kvm_vm_worker_thread_context init_context = {};
6575	struct task_struct *thread;
6576
6577	*thread_ptr = NULL;
6578	init_context.kvm = kvm;
6579	init_context.parent = current;
6580	init_context.thread_fn = thread_fn;
6581	init_context.data = data;
6582	init_completion(&init_context.init_done);
6583
6584	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6585			     "%s-%d", name, task_pid_nr(current));
6586	if (IS_ERR(thread))
6587		return PTR_ERR(thread);
6588
6589	/* kthread_run is never supposed to return NULL */
6590	WARN_ON(thread == NULL);
6591
6592	wait_for_completion(&init_context.init_done);
6593
6594	if (!init_context.err)
6595		*thread_ptr = thread;
6596
6597	return init_context.err;
6598}
6599