1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * sigreturn.c - tests for x86 sigreturn(2) and exit-to-userspace
4 * Copyright (c) 2014-2015 Andrew Lutomirski
5 *
6 * This is a series of tests that exercises the sigreturn(2) syscall and
7 * the IRET / SYSRET paths in the kernel.
8 *
9 * For now, this focuses on the effects of unusual CS and SS values,
10 * and it has a bunch of tests to make sure that ESP/RSP is restored
11 * properly.
12 *
13 * The basic idea behind these tests is to raise(SIGUSR1) to create a
14 * sigcontext frame, plug in the values to be tested, and then return,
15 * which implicitly invokes sigreturn(2) and programs the user context
16 * as desired.
17 *
18 * For tests for which we expect sigreturn and the subsequent return to
19 * user mode to succeed, we return to a short trampoline that generates
20 * SIGTRAP so that the meat of the tests can be ordinary C code in a
21 * SIGTRAP handler.
22 *
23 * The inner workings of each test is documented below.
24 *
25 * Do not run on outdated, unpatched kernels at risk of nasty crashes.
26 */
27
28#define _GNU_SOURCE
29
30#include <sys/time.h>
31#include <time.h>
32#include <stdlib.h>
33#include <sys/syscall.h>
34#include <unistd.h>
35#include <stdio.h>
36#include <string.h>
37#include <inttypes.h>
38#include <sys/mman.h>
39#include <sys/signal.h>
40#include <sys/ucontext.h>
41#include <asm/ldt.h>
42#include <err.h>
43#include <setjmp.h>
44#include <stddef.h>
45#include <stdbool.h>
46#include <sys/ptrace.h>
47#include <sys/user.h>
48
49/* Pull in AR_xyz defines. */
50typedef unsigned int u32;
51typedef unsigned short u16;
52#include "../../../../arch/x86/include/asm/desc_defs.h"
53
54/*
55 * Copied from asm/ucontext.h, as asm/ucontext.h conflicts badly with the glibc
56 * headers.
57 */
58#ifdef __x86_64__
59/*
60 * UC_SIGCONTEXT_SS will be set when delivering 64-bit or x32 signals on
61 * kernels that save SS in the sigcontext.  All kernels that set
62 * UC_SIGCONTEXT_SS will correctly restore at least the low 32 bits of esp
63 * regardless of SS (i.e. they implement espfix).
64 *
65 * Kernels that set UC_SIGCONTEXT_SS will also set UC_STRICT_RESTORE_SS
66 * when delivering a signal that came from 64-bit code.
67 *
68 * Sigreturn restores SS as follows:
69 *
70 * if (saved SS is valid || UC_STRICT_RESTORE_SS is set ||
71 *     saved CS is not 64-bit)
72 *         new SS = saved SS  (will fail IRET and signal if invalid)
73 * else
74 *         new SS = a flat 32-bit data segment
75 */
76#define UC_SIGCONTEXT_SS       0x2
77#define UC_STRICT_RESTORE_SS   0x4
78#endif
79
80/*
81 * In principle, this test can run on Linux emulation layers (e.g.
82 * Illumos "LX branded zones").  Solaris-based kernels reserve LDT
83 * entries 0-5 for their own internal purposes, so start our LDT
84 * allocations above that reservation.  (The tests don't pass on LX
85 * branded zones, but at least this lets them run.)
86 */
87#define LDT_OFFSET 6
88
89/* An aligned stack accessible through some of our segments. */
90static unsigned char stack16[65536] __attribute__((aligned(4096)));
91
92/*
93 * An aligned int3 instruction used as a trampoline.  Some of the tests
94 * want to fish out their ss values, so this trampoline copies ss to eax
95 * before the int3.
96 */
97asm (".pushsection .text\n\t"
98     ".type int3, @function\n\t"
99     ".align 4096\n\t"
100     "int3:\n\t"
101     "mov %ss,%ecx\n\t"
102     "int3\n\t"
103     ".size int3, . - int3\n\t"
104     ".align 4096, 0xcc\n\t"
105     ".popsection");
106extern char int3[4096];
107
108/*
109 * At startup, we prepapre:
110 *
111 * - ldt_nonexistent_sel: An LDT entry that doesn't exist (all-zero
112 *   descriptor or out of bounds).
113 * - code16_sel: A 16-bit LDT code segment pointing to int3.
114 * - data16_sel: A 16-bit LDT data segment pointing to stack16.
115 * - npcode32_sel: A 32-bit not-present LDT code segment pointing to int3.
116 * - npdata32_sel: A 32-bit not-present LDT data segment pointing to stack16.
117 * - gdt_data16_idx: A 16-bit GDT data segment pointing to stack16.
118 * - gdt_npdata32_idx: A 32-bit not-present GDT data segment pointing to
119 *   stack16.
120 *
121 * For no particularly good reason, xyz_sel is a selector value with the
122 * RPL and LDT bits filled in, whereas xyz_idx is just an index into the
123 * descriptor table.  These variables will be zero if their respective
124 * segments could not be allocated.
125 */
126static unsigned short ldt_nonexistent_sel;
127static unsigned short code16_sel, data16_sel, npcode32_sel, npdata32_sel;
128
129static unsigned short gdt_data16_idx, gdt_npdata32_idx;
130
131static unsigned short GDT3(int idx)
132{
133	return (idx << 3) | 3;
134}
135
136static unsigned short LDT3(int idx)
137{
138	return (idx << 3) | 7;
139}
140
141static void sethandler(int sig, void (*handler)(int, siginfo_t *, void *),
142		       int flags)
143{
144	struct sigaction sa;
145	memset(&sa, 0, sizeof(sa));
146	sa.sa_sigaction = handler;
147	sa.sa_flags = SA_SIGINFO | flags;
148	sigemptyset(&sa.sa_mask);
149	if (sigaction(sig, &sa, 0))
150		err(1, "sigaction");
151}
152
153static void clearhandler(int sig)
154{
155	struct sigaction sa;
156	memset(&sa, 0, sizeof(sa));
157	sa.sa_handler = SIG_DFL;
158	sigemptyset(&sa.sa_mask);
159	if (sigaction(sig, &sa, 0))
160		err(1, "sigaction");
161}
162
163static void add_ldt(const struct user_desc *desc, unsigned short *var,
164		    const char *name)
165{
166	if (syscall(SYS_modify_ldt, 1, desc, sizeof(*desc)) == 0) {
167		*var = LDT3(desc->entry_number);
168	} else {
169		printf("[NOTE]\tFailed to create %s segment\n", name);
170		*var = 0;
171	}
172}
173
174static void setup_ldt(void)
175{
176	if ((unsigned long)stack16 > (1ULL << 32) - sizeof(stack16))
177		errx(1, "stack16 is too high\n");
178	if ((unsigned long)int3 > (1ULL << 32) - sizeof(int3))
179		errx(1, "int3 is too high\n");
180
181	ldt_nonexistent_sel = LDT3(LDT_OFFSET + 2);
182
183	const struct user_desc code16_desc = {
184		.entry_number    = LDT_OFFSET + 0,
185		.base_addr       = (unsigned long)int3,
186		.limit           = 4095,
187		.seg_32bit       = 0,
188		.contents        = 2, /* Code, not conforming */
189		.read_exec_only  = 0,
190		.limit_in_pages  = 0,
191		.seg_not_present = 0,
192		.useable         = 0
193	};
194	add_ldt(&code16_desc, &code16_sel, "code16");
195
196	const struct user_desc data16_desc = {
197		.entry_number    = LDT_OFFSET + 1,
198		.base_addr       = (unsigned long)stack16,
199		.limit           = 0xffff,
200		.seg_32bit       = 0,
201		.contents        = 0, /* Data, grow-up */
202		.read_exec_only  = 0,
203		.limit_in_pages  = 0,
204		.seg_not_present = 0,
205		.useable         = 0
206	};
207	add_ldt(&data16_desc, &data16_sel, "data16");
208
209	const struct user_desc npcode32_desc = {
210		.entry_number    = LDT_OFFSET + 3,
211		.base_addr       = (unsigned long)int3,
212		.limit           = 4095,
213		.seg_32bit       = 1,
214		.contents        = 2, /* Code, not conforming */
215		.read_exec_only  = 0,
216		.limit_in_pages  = 0,
217		.seg_not_present = 1,
218		.useable         = 0
219	};
220	add_ldt(&npcode32_desc, &npcode32_sel, "npcode32");
221
222	const struct user_desc npdata32_desc = {
223		.entry_number    = LDT_OFFSET + 4,
224		.base_addr       = (unsigned long)stack16,
225		.limit           = 0xffff,
226		.seg_32bit       = 1,
227		.contents        = 0, /* Data, grow-up */
228		.read_exec_only  = 0,
229		.limit_in_pages  = 0,
230		.seg_not_present = 1,
231		.useable         = 0
232	};
233	add_ldt(&npdata32_desc, &npdata32_sel, "npdata32");
234
235	struct user_desc gdt_data16_desc = {
236		.entry_number    = -1,
237		.base_addr       = (unsigned long)stack16,
238		.limit           = 0xffff,
239		.seg_32bit       = 0,
240		.contents        = 0, /* Data, grow-up */
241		.read_exec_only  = 0,
242		.limit_in_pages  = 0,
243		.seg_not_present = 0,
244		.useable         = 0
245	};
246
247	if (syscall(SYS_set_thread_area, &gdt_data16_desc) == 0) {
248		/*
249		 * This probably indicates vulnerability to CVE-2014-8133.
250		 * Merely getting here isn't definitive, though, and we'll
251		 * diagnose the problem for real later on.
252		 */
253		printf("[WARN]\tset_thread_area allocated data16 at index %d\n",
254		       gdt_data16_desc.entry_number);
255		gdt_data16_idx = gdt_data16_desc.entry_number;
256	} else {
257		printf("[OK]\tset_thread_area refused 16-bit data\n");
258	}
259
260	struct user_desc gdt_npdata32_desc = {
261		.entry_number    = -1,
262		.base_addr       = (unsigned long)stack16,
263		.limit           = 0xffff,
264		.seg_32bit       = 1,
265		.contents        = 0, /* Data, grow-up */
266		.read_exec_only  = 0,
267		.limit_in_pages  = 0,
268		.seg_not_present = 1,
269		.useable         = 0
270	};
271
272	if (syscall(SYS_set_thread_area, &gdt_npdata32_desc) == 0) {
273		/*
274		 * As a hardening measure, newer kernels don't allow this.
275		 */
276		printf("[WARN]\tset_thread_area allocated npdata32 at index %d\n",
277		       gdt_npdata32_desc.entry_number);
278		gdt_npdata32_idx = gdt_npdata32_desc.entry_number;
279	} else {
280		printf("[OK]\tset_thread_area refused 16-bit data\n");
281	}
282}
283
284/* State used by our signal handlers. */
285static gregset_t initial_regs, requested_regs, resulting_regs;
286
287/* Instructions for the SIGUSR1 handler. */
288static volatile unsigned short sig_cs, sig_ss;
289static volatile sig_atomic_t sig_trapped, sig_err, sig_trapno;
290#ifdef __x86_64__
291static volatile sig_atomic_t sig_corrupt_final_ss;
292#endif
293
294/* Abstractions for some 32-bit vs 64-bit differences. */
295#ifdef __x86_64__
296# define REG_IP REG_RIP
297# define REG_SP REG_RSP
298# define REG_CX REG_RCX
299
300struct selectors {
301	unsigned short cs, gs, fs, ss;
302};
303
304static unsigned short *ssptr(ucontext_t *ctx)
305{
306	struct selectors *sels = (void *)&ctx->uc_mcontext.gregs[REG_CSGSFS];
307	return &sels->ss;
308}
309
310static unsigned short *csptr(ucontext_t *ctx)
311{
312	struct selectors *sels = (void *)&ctx->uc_mcontext.gregs[REG_CSGSFS];
313	return &sels->cs;
314}
315#else
316# define REG_IP REG_EIP
317# define REG_SP REG_ESP
318# define REG_CX REG_ECX
319
320static greg_t *ssptr(ucontext_t *ctx)
321{
322	return &ctx->uc_mcontext.gregs[REG_SS];
323}
324
325static greg_t *csptr(ucontext_t *ctx)
326{
327	return &ctx->uc_mcontext.gregs[REG_CS];
328}
329#endif
330
331/*
332 * Checks a given selector for its code bitness or returns -1 if it's not
333 * a usable code segment selector.
334 */
335int cs_bitness(unsigned short cs)
336{
337	uint32_t valid = 0, ar;
338	asm ("lar %[cs], %[ar]\n\t"
339	     "jnz 1f\n\t"
340	     "mov $1, %[valid]\n\t"
341	     "1:"
342	     : [ar] "=r" (ar), [valid] "+rm" (valid)
343	     : [cs] "r" (cs));
344
345	if (!valid)
346		return -1;
347
348	bool db = (ar & (1 << 22));
349	bool l = (ar & (1 << 21));
350
351	if (!(ar & (1<<11)))
352	    return -1;	/* Not code. */
353
354	if (l && !db)
355		return 64;
356	else if (!l && db)
357		return 32;
358	else if (!l && !db)
359		return 16;
360	else
361		return -1;	/* Unknown bitness. */
362}
363
364/*
365 * Checks a given selector for its code bitness or returns -1 if it's not
366 * a usable code segment selector.
367 */
368bool is_valid_ss(unsigned short cs)
369{
370	uint32_t valid = 0, ar;
371	asm ("lar %[cs], %[ar]\n\t"
372	     "jnz 1f\n\t"
373	     "mov $1, %[valid]\n\t"
374	     "1:"
375	     : [ar] "=r" (ar), [valid] "+rm" (valid)
376	     : [cs] "r" (cs));
377
378	if (!valid)
379		return false;
380
381	if ((ar & AR_TYPE_MASK) != AR_TYPE_RWDATA &&
382	    (ar & AR_TYPE_MASK) != AR_TYPE_RWDATA_EXPDOWN)
383		return false;
384
385	return (ar & AR_P);
386}
387
388/* Number of errors in the current test case. */
389static volatile sig_atomic_t nerrs;
390
391static void validate_signal_ss(int sig, ucontext_t *ctx)
392{
393#ifdef __x86_64__
394	bool was_64bit = (cs_bitness(*csptr(ctx)) == 64);
395
396	if (!(ctx->uc_flags & UC_SIGCONTEXT_SS)) {
397		printf("[FAIL]\tUC_SIGCONTEXT_SS was not set\n");
398		nerrs++;
399
400		/*
401		 * This happens on Linux 4.1.  The rest will fail, too, so
402		 * return now to reduce the noise.
403		 */
404		return;
405	}
406
407	/* UC_STRICT_RESTORE_SS is set iff we came from 64-bit mode. */
408	if (!!(ctx->uc_flags & UC_STRICT_RESTORE_SS) != was_64bit) {
409		printf("[FAIL]\tUC_STRICT_RESTORE_SS was wrong in signal %d\n",
410		       sig);
411		nerrs++;
412	}
413
414	if (is_valid_ss(*ssptr(ctx))) {
415		/*
416		 * DOSEMU was written before 64-bit sigcontext had SS, and
417		 * it tries to figure out the signal source SS by looking at
418		 * the physical register.  Make sure that keeps working.
419		 */
420		unsigned short hw_ss;
421		asm ("mov %%ss, %0" : "=rm" (hw_ss));
422		if (hw_ss != *ssptr(ctx)) {
423			printf("[FAIL]\tHW SS didn't match saved SS\n");
424			nerrs++;
425		}
426	}
427#endif
428}
429
430/*
431 * SIGUSR1 handler.  Sets CS and SS as requested and points IP to the
432 * int3 trampoline.  Sets SP to a large known value so that we can see
433 * whether the value round-trips back to user mode correctly.
434 */
435static void sigusr1(int sig, siginfo_t *info, void *ctx_void)
436{
437	ucontext_t *ctx = (ucontext_t*)ctx_void;
438
439	validate_signal_ss(sig, ctx);
440
441	memcpy(&initial_regs, &ctx->uc_mcontext.gregs, sizeof(gregset_t));
442
443	*csptr(ctx) = sig_cs;
444	*ssptr(ctx) = sig_ss;
445
446	ctx->uc_mcontext.gregs[REG_IP] =
447		sig_cs == code16_sel ? 0 : (unsigned long)&int3;
448	ctx->uc_mcontext.gregs[REG_SP] = (unsigned long)0x8badf00d5aadc0deULL;
449	ctx->uc_mcontext.gregs[REG_CX] = 0;
450
451#ifdef __i386__
452	/*
453	 * Make sure the kernel doesn't inadvertently use DS or ES-relative
454	 * accesses in a region where user DS or ES is loaded.
455	 *
456	 * Skip this for 64-bit builds because long mode doesn't care about
457	 * DS and ES and skipping it increases test coverage a little bit,
458	 * since 64-bit kernels can still run the 32-bit build.
459	 */
460	ctx->uc_mcontext.gregs[REG_DS] = 0;
461	ctx->uc_mcontext.gregs[REG_ES] = 0;
462#endif
463
464	memcpy(&requested_regs, &ctx->uc_mcontext.gregs, sizeof(gregset_t));
465	requested_regs[REG_CX] = *ssptr(ctx);	/* The asm code does this. */
466
467	return;
468}
469
470/*
471 * Called after a successful sigreturn (via int3) or from a failed
472 * sigreturn (directly by kernel).  Restores our state so that the
473 * original raise(SIGUSR1) returns.
474 */
475static void sigtrap(int sig, siginfo_t *info, void *ctx_void)
476{
477	ucontext_t *ctx = (ucontext_t*)ctx_void;
478
479	validate_signal_ss(sig, ctx);
480
481	sig_err = ctx->uc_mcontext.gregs[REG_ERR];
482	sig_trapno = ctx->uc_mcontext.gregs[REG_TRAPNO];
483
484	unsigned short ss;
485	asm ("mov %%ss,%0" : "=r" (ss));
486
487	greg_t asm_ss = ctx->uc_mcontext.gregs[REG_CX];
488	if (asm_ss != sig_ss && sig == SIGTRAP) {
489		/* Sanity check failure. */
490		printf("[FAIL]\tSIGTRAP: ss = %hx, frame ss = %hx, ax = %llx\n",
491		       ss, *ssptr(ctx), (unsigned long long)asm_ss);
492		nerrs++;
493	}
494
495	memcpy(&resulting_regs, &ctx->uc_mcontext.gregs, sizeof(gregset_t));
496	memcpy(&ctx->uc_mcontext.gregs, &initial_regs, sizeof(gregset_t));
497
498#ifdef __x86_64__
499	if (sig_corrupt_final_ss) {
500		if (ctx->uc_flags & UC_STRICT_RESTORE_SS) {
501			printf("[FAIL]\tUC_STRICT_RESTORE_SS was set inappropriately\n");
502			nerrs++;
503		} else {
504			/*
505			 * DOSEMU transitions from 32-bit to 64-bit mode by
506			 * adjusting sigcontext, and it requires that this work
507			 * even if the saved SS is bogus.
508			 */
509			printf("\tCorrupting SS on return to 64-bit mode\n");
510			*ssptr(ctx) = 0;
511		}
512	}
513#endif
514
515	sig_trapped = sig;
516}
517
518#ifdef __x86_64__
519/* Tests recovery if !UC_STRICT_RESTORE_SS */
520static void sigusr2(int sig, siginfo_t *info, void *ctx_void)
521{
522	ucontext_t *ctx = (ucontext_t*)ctx_void;
523
524	if (!(ctx->uc_flags & UC_STRICT_RESTORE_SS)) {
525		printf("[FAIL]\traise(2) didn't set UC_STRICT_RESTORE_SS\n");
526		nerrs++;
527		return;  /* We can't do the rest. */
528	}
529
530	ctx->uc_flags &= ~UC_STRICT_RESTORE_SS;
531	*ssptr(ctx) = 0;
532
533	/* Return.  The kernel should recover without sending another signal. */
534}
535
536static int test_nonstrict_ss(void)
537{
538	clearhandler(SIGUSR1);
539	clearhandler(SIGTRAP);
540	clearhandler(SIGSEGV);
541	clearhandler(SIGILL);
542	sethandler(SIGUSR2, sigusr2, 0);
543
544	nerrs = 0;
545
546	printf("[RUN]\tClear UC_STRICT_RESTORE_SS and corrupt SS\n");
547	raise(SIGUSR2);
548	if (!nerrs)
549		printf("[OK]\tIt worked\n");
550
551	return nerrs;
552}
553#endif
554
555/* Finds a usable code segment of the requested bitness. */
556int find_cs(int bitness)
557{
558	unsigned short my_cs;
559
560	asm ("mov %%cs,%0" :  "=r" (my_cs));
561
562	if (cs_bitness(my_cs) == bitness)
563		return my_cs;
564	if (cs_bitness(my_cs + (2 << 3)) == bitness)
565		return my_cs + (2 << 3);
566	if (my_cs > (2<<3) && cs_bitness(my_cs - (2 << 3)) == bitness)
567	    return my_cs - (2 << 3);
568	if (cs_bitness(code16_sel) == bitness)
569		return code16_sel;
570
571	printf("[WARN]\tCould not find %d-bit CS\n", bitness);
572	return -1;
573}
574
575static int test_valid_sigreturn(int cs_bits, bool use_16bit_ss, int force_ss)
576{
577	int cs = find_cs(cs_bits);
578	if (cs == -1) {
579		printf("[SKIP]\tCode segment unavailable for %d-bit CS, %d-bit SS\n",
580		       cs_bits, use_16bit_ss ? 16 : 32);
581		return 0;
582	}
583
584	if (force_ss != -1) {
585		sig_ss = force_ss;
586	} else {
587		if (use_16bit_ss) {
588			if (!data16_sel) {
589				printf("[SKIP]\tData segment unavailable for %d-bit CS, 16-bit SS\n",
590				       cs_bits);
591				return 0;
592			}
593			sig_ss = data16_sel;
594		} else {
595			asm volatile ("mov %%ss,%0" : "=r" (sig_ss));
596		}
597	}
598
599	sig_cs = cs;
600
601	printf("[RUN]\tValid sigreturn: %d-bit CS (%hx), %d-bit SS (%hx%s)\n",
602	       cs_bits, sig_cs, use_16bit_ss ? 16 : 32, sig_ss,
603	       (sig_ss & 4) ? "" : ", GDT");
604
605	raise(SIGUSR1);
606
607	nerrs = 0;
608
609	/*
610	 * Check that each register had an acceptable value when the
611	 * int3 trampoline was invoked.
612	 */
613	for (int i = 0; i < NGREG; i++) {
614		greg_t req = requested_regs[i], res = resulting_regs[i];
615
616		if (i == REG_TRAPNO || i == REG_IP)
617			continue;	/* don't care */
618
619		if (i == REG_SP) {
620			/*
621			 * If we were using a 16-bit stack segment, then
622			 * the kernel is a bit stuck: IRET only restores
623			 * the low 16 bits of ESP/RSP if SS is 16-bit.
624			 * The kernel uses a hack to restore bits 31:16,
625			 * but that hack doesn't help with bits 63:32.
626			 * On Intel CPUs, bits 63:32 end up zeroed, and, on
627			 * AMD CPUs, they leak the high bits of the kernel
628			 * espfix64 stack pointer.  There's very little that
629			 * the kernel can do about it.
630			 *
631			 * Similarly, if we are returning to a 32-bit context,
632			 * the CPU will often lose the high 32 bits of RSP.
633			 */
634
635			if (res == req)
636				continue;
637
638			if (cs_bits != 64 && ((res ^ req) & 0xFFFFFFFF) == 0) {
639				printf("[NOTE]\tSP: %llx -> %llx\n",
640				       (unsigned long long)req,
641				       (unsigned long long)res);
642				continue;
643			}
644
645			printf("[FAIL]\tSP mismatch: requested 0x%llx; got 0x%llx\n",
646			       (unsigned long long)requested_regs[i],
647			       (unsigned long long)resulting_regs[i]);
648			nerrs++;
649			continue;
650		}
651
652		bool ignore_reg = false;
653#if __i386__
654		if (i == REG_UESP)
655			ignore_reg = true;
656#else
657		if (i == REG_CSGSFS) {
658			struct selectors *req_sels =
659				(void *)&requested_regs[REG_CSGSFS];
660			struct selectors *res_sels =
661				(void *)&resulting_regs[REG_CSGSFS];
662			if (req_sels->cs != res_sels->cs) {
663				printf("[FAIL]\tCS mismatch: requested 0x%hx; got 0x%hx\n",
664				       req_sels->cs, res_sels->cs);
665				nerrs++;
666			}
667
668			if (req_sels->ss != res_sels->ss) {
669				printf("[FAIL]\tSS mismatch: requested 0x%hx; got 0x%hx\n",
670				       req_sels->ss, res_sels->ss);
671				nerrs++;
672			}
673
674			continue;
675		}
676#endif
677
678		/* Sanity check on the kernel */
679		if (i == REG_CX && req != res) {
680			printf("[FAIL]\tCX (saved SP) mismatch: requested 0x%llx; got 0x%llx\n",
681			       (unsigned long long)req,
682			       (unsigned long long)res);
683			nerrs++;
684			continue;
685		}
686
687		if (req != res && !ignore_reg) {
688			printf("[FAIL]\tReg %d mismatch: requested 0x%llx; got 0x%llx\n",
689			       i, (unsigned long long)req,
690			       (unsigned long long)res);
691			nerrs++;
692		}
693	}
694
695	if (nerrs == 0)
696		printf("[OK]\tall registers okay\n");
697
698	return nerrs;
699}
700
701static int test_bad_iret(int cs_bits, unsigned short ss, int force_cs)
702{
703	int cs = force_cs == -1 ? find_cs(cs_bits) : force_cs;
704	if (cs == -1)
705		return 0;
706
707	sig_cs = cs;
708	sig_ss = ss;
709
710	printf("[RUN]\t%d-bit CS (%hx), bogus SS (%hx)\n",
711	       cs_bits, sig_cs, sig_ss);
712
713	sig_trapped = 0;
714	raise(SIGUSR1);
715	if (sig_trapped) {
716		char errdesc[32] = "";
717		if (sig_err) {
718			const char *src = (sig_err & 1) ? " EXT" : "";
719			const char *table;
720			if ((sig_err & 0x6) == 0x0)
721				table = "GDT";
722			else if ((sig_err & 0x6) == 0x4)
723				table = "LDT";
724			else if ((sig_err & 0x6) == 0x2)
725				table = "IDT";
726			else
727				table = "???";
728
729			sprintf(errdesc, "%s%s index %d, ",
730				table, src, sig_err >> 3);
731		}
732
733		char trapname[32];
734		if (sig_trapno == 13)
735			strcpy(trapname, "GP");
736		else if (sig_trapno == 11)
737			strcpy(trapname, "NP");
738		else if (sig_trapno == 12)
739			strcpy(trapname, "SS");
740		else if (sig_trapno == 32)
741			strcpy(trapname, "IRET");  /* X86_TRAP_IRET */
742		else
743			sprintf(trapname, "%d", sig_trapno);
744
745		printf("[OK]\tGot #%s(0x%lx) (i.e. %s%s)\n",
746		       trapname, (unsigned long)sig_err,
747		       errdesc, strsignal(sig_trapped));
748		return 0;
749	} else {
750		/*
751		 * This also implicitly tests UC_STRICT_RESTORE_SS:
752		 * We check that these signals set UC_STRICT_RESTORE_SS and,
753		 * if UC_STRICT_RESTORE_SS doesn't cause strict behavior,
754		 * then we won't get SIGSEGV.
755		 */
756		printf("[FAIL]\tDid not get SIGSEGV\n");
757		return 1;
758	}
759}
760
761int main()
762{
763	int total_nerrs = 0;
764	unsigned short my_cs, my_ss;
765
766	asm volatile ("mov %%cs,%0" : "=r" (my_cs));
767	asm volatile ("mov %%ss,%0" : "=r" (my_ss));
768	setup_ldt();
769
770	stack_t stack = {
771		/* Our sigaltstack scratch space. */
772		.ss_sp = malloc(sizeof(char) * SIGSTKSZ),
773		.ss_size = SIGSTKSZ,
774	};
775	if (sigaltstack(&stack, NULL) != 0)
776		err(1, "sigaltstack");
777
778	sethandler(SIGUSR1, sigusr1, 0);
779	sethandler(SIGTRAP, sigtrap, SA_ONSTACK);
780
781	/* Easy cases: return to a 32-bit SS in each possible CS bitness. */
782	total_nerrs += test_valid_sigreturn(64, false, -1);
783	total_nerrs += test_valid_sigreturn(32, false, -1);
784	total_nerrs += test_valid_sigreturn(16, false, -1);
785
786	/*
787	 * Test easy espfix cases: return to a 16-bit LDT SS in each possible
788	 * CS bitness.  NB: with a long mode CS, the SS bitness is irrelevant.
789	 *
790	 * This catches the original missing-espfix-on-64-bit-kernels issue
791	 * as well as CVE-2014-8134.
792	 */
793	total_nerrs += test_valid_sigreturn(64, true, -1);
794	total_nerrs += test_valid_sigreturn(32, true, -1);
795	total_nerrs += test_valid_sigreturn(16, true, -1);
796
797	if (gdt_data16_idx) {
798		/*
799		 * For performance reasons, Linux skips espfix if SS points
800		 * to the GDT.  If we were able to allocate a 16-bit SS in
801		 * the GDT, see if it leaks parts of the kernel stack pointer.
802		 *
803		 * This tests for CVE-2014-8133.
804		 */
805		total_nerrs += test_valid_sigreturn(64, true,
806						    GDT3(gdt_data16_idx));
807		total_nerrs += test_valid_sigreturn(32, true,
808						    GDT3(gdt_data16_idx));
809		total_nerrs += test_valid_sigreturn(16, true,
810						    GDT3(gdt_data16_idx));
811	}
812
813#ifdef __x86_64__
814	/* Nasty ABI case: check SS corruption handling. */
815	sig_corrupt_final_ss = 1;
816	total_nerrs += test_valid_sigreturn(32, false, -1);
817	total_nerrs += test_valid_sigreturn(32, true, -1);
818	sig_corrupt_final_ss = 0;
819#endif
820
821	/*
822	 * We're done testing valid sigreturn cases.  Now we test states
823	 * for which sigreturn itself will succeed but the subsequent
824	 * entry to user mode will fail.
825	 *
826	 * Depending on the failure mode and the kernel bitness, these
827	 * entry failures can generate SIGSEGV, SIGBUS, or SIGILL.
828	 */
829	clearhandler(SIGTRAP);
830	sethandler(SIGSEGV, sigtrap, SA_ONSTACK);
831	sethandler(SIGBUS, sigtrap, SA_ONSTACK);
832	sethandler(SIGILL, sigtrap, SA_ONSTACK);  /* 32-bit kernels do this */
833
834	/* Easy failures: invalid SS, resulting in #GP(0) */
835	test_bad_iret(64, ldt_nonexistent_sel, -1);
836	test_bad_iret(32, ldt_nonexistent_sel, -1);
837	test_bad_iret(16, ldt_nonexistent_sel, -1);
838
839	/* These fail because SS isn't a data segment, resulting in #GP(SS) */
840	test_bad_iret(64, my_cs, -1);
841	test_bad_iret(32, my_cs, -1);
842	test_bad_iret(16, my_cs, -1);
843
844	/* Try to return to a not-present code segment, triggering #NP(SS). */
845	test_bad_iret(32, my_ss, npcode32_sel);
846
847	/*
848	 * Try to return to a not-present but otherwise valid data segment.
849	 * This will cause IRET to fail with #SS on the espfix stack.  This
850	 * exercises CVE-2014-9322.
851	 *
852	 * Note that, if espfix is enabled, 64-bit Linux will lose track
853	 * of the actual cause of failure and report #GP(0) instead.
854	 * This would be very difficult for Linux to avoid, because
855	 * espfix64 causes IRET failures to be promoted to #DF, so the
856	 * original exception frame is never pushed onto the stack.
857	 */
858	test_bad_iret(32, npdata32_sel, -1);
859
860	/*
861	 * Try to return to a not-present but otherwise valid data
862	 * segment without invoking espfix.  Newer kernels don't allow
863	 * this to happen in the first place.  On older kernels, though,
864	 * this can trigger CVE-2014-9322.
865	 */
866	if (gdt_npdata32_idx)
867		test_bad_iret(32, GDT3(gdt_npdata32_idx), -1);
868
869#ifdef __x86_64__
870	total_nerrs += test_nonstrict_ss();
871#endif
872
873	free(stack.ss_sp);
874	return total_nerrs ? 1 : 0;
875}
876