1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bpf.h>
4#include <bpf/bpf_helpers.h>
5#include "bpf_misc.h"
6
7/* Check that precision marks propagate through scalar IDs.
8 * Registers r{0,1,2} have the same scalar ID at the moment when r0 is
9 * marked to be precise, this mark is immediately propagated to r{1,2}.
10 */
11SEC("socket")
12__success __log_level(2)
13__msg("frame0: regs=r0,r1,r2 stack= before 4: (bf) r3 = r10")
14__msg("frame0: regs=r0,r1,r2 stack= before 3: (bf) r2 = r0")
15__msg("frame0: regs=r0,r1 stack= before 2: (bf) r1 = r0")
16__msg("frame0: regs=r0 stack= before 1: (57) r0 &= 255")
17__msg("frame0: regs=r0 stack= before 0: (85) call bpf_ktime_get_ns")
18__flag(BPF_F_TEST_STATE_FREQ)
19__naked void precision_same_state(void)
20{
21	asm volatile (
22	/* r0 = random number up to 0xff */
23	"call %[bpf_ktime_get_ns];"
24	"r0 &= 0xff;"
25	/* tie r0.id == r1.id == r2.id */
26	"r1 = r0;"
27	"r2 = r0;"
28	/* force r0 to be precise, this immediately marks r1 and r2 as
29	 * precise as well because of shared IDs
30	 */
31	"r3 = r10;"
32	"r3 += r0;"
33	"r0 = 0;"
34	"exit;"
35	:
36	: __imm(bpf_ktime_get_ns)
37	: __clobber_all);
38}
39
40/* Same as precision_same_state, but mark propagates through state /
41 * parent state boundary.
42 */
43SEC("socket")
44__success __log_level(2)
45__msg("frame0: last_idx 6 first_idx 5 subseq_idx -1")
46__msg("frame0: regs=r0,r1,r2 stack= before 5: (bf) r3 = r10")
47__msg("frame0: parent state regs=r0,r1,r2 stack=:")
48__msg("frame0: regs=r0,r1,r2 stack= before 4: (05) goto pc+0")
49__msg("frame0: regs=r0,r1,r2 stack= before 3: (bf) r2 = r0")
50__msg("frame0: regs=r0,r1 stack= before 2: (bf) r1 = r0")
51__msg("frame0: regs=r0 stack= before 1: (57) r0 &= 255")
52__msg("frame0: parent state regs=r0 stack=:")
53__msg("frame0: regs=r0 stack= before 0: (85) call bpf_ktime_get_ns")
54__flag(BPF_F_TEST_STATE_FREQ)
55__naked void precision_cross_state(void)
56{
57	asm volatile (
58	/* r0 = random number up to 0xff */
59	"call %[bpf_ktime_get_ns];"
60	"r0 &= 0xff;"
61	/* tie r0.id == r1.id == r2.id */
62	"r1 = r0;"
63	"r2 = r0;"
64	/* force checkpoint */
65	"goto +0;"
66	/* force r0 to be precise, this immediately marks r1 and r2 as
67	 * precise as well because of shared IDs
68	 */
69	"r3 = r10;"
70	"r3 += r0;"
71	"r0 = 0;"
72	"exit;"
73	:
74	: __imm(bpf_ktime_get_ns)
75	: __clobber_all);
76}
77
78/* Same as precision_same_state, but break one of the
79 * links, note that r1 is absent from regs=... in __msg below.
80 */
81SEC("socket")
82__success __log_level(2)
83__msg("frame0: regs=r0,r2 stack= before 5: (bf) r3 = r10")
84__msg("frame0: regs=r0,r2 stack= before 4: (b7) r1 = 0")
85__msg("frame0: regs=r0,r2 stack= before 3: (bf) r2 = r0")
86__msg("frame0: regs=r0 stack= before 2: (bf) r1 = r0")
87__msg("frame0: regs=r0 stack= before 1: (57) r0 &= 255")
88__msg("frame0: regs=r0 stack= before 0: (85) call bpf_ktime_get_ns")
89__flag(BPF_F_TEST_STATE_FREQ)
90__naked void precision_same_state_broken_link(void)
91{
92	asm volatile (
93	/* r0 = random number up to 0xff */
94	"call %[bpf_ktime_get_ns];"
95	"r0 &= 0xff;"
96	/* tie r0.id == r1.id == r2.id */
97	"r1 = r0;"
98	"r2 = r0;"
99	/* break link for r1, this is the only line that differs
100	 * compared to the previous test
101	 */
102	"r1 = 0;"
103	/* force r0 to be precise, this immediately marks r1 and r2 as
104	 * precise as well because of shared IDs
105	 */
106	"r3 = r10;"
107	"r3 += r0;"
108	"r0 = 0;"
109	"exit;"
110	:
111	: __imm(bpf_ktime_get_ns)
112	: __clobber_all);
113}
114
115/* Same as precision_same_state_broken_link, but with state /
116 * parent state boundary.
117 */
118SEC("socket")
119__success __log_level(2)
120__msg("frame0: regs=r0,r2 stack= before 6: (bf) r3 = r10")
121__msg("frame0: regs=r0,r2 stack= before 5: (b7) r1 = 0")
122__msg("frame0: parent state regs=r0,r2 stack=:")
123__msg("frame0: regs=r0,r1,r2 stack= before 4: (05) goto pc+0")
124__msg("frame0: regs=r0,r1,r2 stack= before 3: (bf) r2 = r0")
125__msg("frame0: regs=r0,r1 stack= before 2: (bf) r1 = r0")
126__msg("frame0: regs=r0 stack= before 1: (57) r0 &= 255")
127__msg("frame0: parent state regs=r0 stack=:")
128__msg("frame0: regs=r0 stack= before 0: (85) call bpf_ktime_get_ns")
129__flag(BPF_F_TEST_STATE_FREQ)
130__naked void precision_cross_state_broken_link(void)
131{
132	asm volatile (
133	/* r0 = random number up to 0xff */
134	"call %[bpf_ktime_get_ns];"
135	"r0 &= 0xff;"
136	/* tie r0.id == r1.id == r2.id */
137	"r1 = r0;"
138	"r2 = r0;"
139	/* force checkpoint, although link between r1 and r{0,2} is
140	 * broken by the next statement current precision tracking
141	 * algorithm can't react to it and propagates mark for r1 to
142	 * the parent state.
143	 */
144	"goto +0;"
145	/* break link for r1, this is the only line that differs
146	 * compared to precision_cross_state()
147	 */
148	"r1 = 0;"
149	/* force r0 to be precise, this immediately marks r1 and r2 as
150	 * precise as well because of shared IDs
151	 */
152	"r3 = r10;"
153	"r3 += r0;"
154	"r0 = 0;"
155	"exit;"
156	:
157	: __imm(bpf_ktime_get_ns)
158	: __clobber_all);
159}
160
161/* Check that precision marks propagate through scalar IDs.
162 * Use the same scalar ID in multiple stack frames, check that
163 * precision information is propagated up the call stack.
164 */
165SEC("socket")
166__success __log_level(2)
167__msg("11: (0f) r2 += r1")
168/* Current state */
169__msg("frame2: last_idx 11 first_idx 10 subseq_idx -1")
170__msg("frame2: regs=r1 stack= before 10: (bf) r2 = r10")
171__msg("frame2: parent state regs=r1 stack=")
172/* frame1.r{6,7} are marked because mark_precise_scalar_ids()
173 * looks for all registers with frame2.r1.id in the current state
174 */
175__msg("frame1: parent state regs=r6,r7 stack=")
176__msg("frame0: parent state regs=r6 stack=")
177/* Parent state */
178__msg("frame2: last_idx 8 first_idx 8 subseq_idx 10")
179__msg("frame2: regs=r1 stack= before 8: (85) call pc+1")
180/* frame1.r1 is marked because of backtracking of call instruction */
181__msg("frame1: parent state regs=r1,r6,r7 stack=")
182__msg("frame0: parent state regs=r6 stack=")
183/* Parent state */
184__msg("frame1: last_idx 7 first_idx 6 subseq_idx 8")
185__msg("frame1: regs=r1,r6,r7 stack= before 7: (bf) r7 = r1")
186__msg("frame1: regs=r1,r6 stack= before 6: (bf) r6 = r1")
187__msg("frame1: parent state regs=r1 stack=")
188__msg("frame0: parent state regs=r6 stack=")
189/* Parent state */
190__msg("frame1: last_idx 4 first_idx 4 subseq_idx 6")
191__msg("frame1: regs=r1 stack= before 4: (85) call pc+1")
192__msg("frame0: parent state regs=r1,r6 stack=")
193/* Parent state */
194__msg("frame0: last_idx 3 first_idx 1 subseq_idx 4")
195__msg("frame0: regs=r0,r1,r6 stack= before 3: (bf) r6 = r0")
196__msg("frame0: regs=r0,r1 stack= before 2: (bf) r1 = r0")
197__msg("frame0: regs=r0 stack= before 1: (57) r0 &= 255")
198__flag(BPF_F_TEST_STATE_FREQ)
199__naked void precision_many_frames(void)
200{
201	asm volatile (
202	/* r0 = random number up to 0xff */
203	"call %[bpf_ktime_get_ns];"
204	"r0 &= 0xff;"
205	/* tie r0.id == r1.id == r6.id */
206	"r1 = r0;"
207	"r6 = r0;"
208	"call precision_many_frames__foo;"
209	"exit;"
210	:
211	: __imm(bpf_ktime_get_ns)
212	: __clobber_all);
213}
214
215static __naked __noinline __used
216void precision_many_frames__foo(void)
217{
218	asm volatile (
219	/* conflate one of the register numbers (r6) with outer frame,
220	 * to verify that those are tracked independently
221	 */
222	"r6 = r1;"
223	"r7 = r1;"
224	"call precision_many_frames__bar;"
225	"exit"
226	::: __clobber_all);
227}
228
229static __naked __noinline __used
230void precision_many_frames__bar(void)
231{
232	asm volatile (
233	/* force r1 to be precise, this immediately marks:
234	 * - bar frame r1
235	 * - foo frame r{1,6,7}
236	 * - main frame r{1,6}
237	 */
238	"r2 = r10;"
239	"r2 += r1;"
240	"r0 = 0;"
241	"exit;"
242	::: __clobber_all);
243}
244
245/* Check that scalars with the same IDs are marked precise on stack as
246 * well as in registers.
247 */
248SEC("socket")
249__success __log_level(2)
250/* foo frame */
251__msg("frame1: regs=r1 stack=-8,-16 before 9: (bf) r2 = r10")
252__msg("frame1: regs=r1 stack=-8,-16 before 8: (7b) *(u64 *)(r10 -16) = r1")
253__msg("frame1: regs=r1 stack=-8 before 7: (7b) *(u64 *)(r10 -8) = r1")
254__msg("frame1: regs=r1 stack= before 4: (85) call pc+2")
255/* main frame */
256__msg("frame0: regs=r0,r1 stack=-8 before 3: (7b) *(u64 *)(r10 -8) = r1")
257__msg("frame0: regs=r0,r1 stack= before 2: (bf) r1 = r0")
258__msg("frame0: regs=r0 stack= before 1: (57) r0 &= 255")
259__flag(BPF_F_TEST_STATE_FREQ)
260__naked void precision_stack(void)
261{
262	asm volatile (
263	/* r0 = random number up to 0xff */
264	"call %[bpf_ktime_get_ns];"
265	"r0 &= 0xff;"
266	/* tie r0.id == r1.id == fp[-8].id */
267	"r1 = r0;"
268	"*(u64*)(r10 - 8) = r1;"
269	"call precision_stack__foo;"
270	"r0 = 0;"
271	"exit;"
272	:
273	: __imm(bpf_ktime_get_ns)
274	: __clobber_all);
275}
276
277static __naked __noinline __used
278void precision_stack__foo(void)
279{
280	asm volatile (
281	/* conflate one of the register numbers (r6) with outer frame,
282	 * to verify that those are tracked independently
283	 */
284	"*(u64*)(r10 - 8) = r1;"
285	"*(u64*)(r10 - 16) = r1;"
286	/* force r1 to be precise, this immediately marks:
287	 * - foo frame r1,fp{-8,-16}
288	 * - main frame r1,fp{-8}
289	 */
290	"r2 = r10;"
291	"r2 += r1;"
292	"exit"
293	::: __clobber_all);
294}
295
296/* Use two separate scalar IDs to check that these are propagated
297 * independently.
298 */
299SEC("socket")
300__success __log_level(2)
301/* r{6,7} */
302__msg("11: (0f) r3 += r7")
303__msg("frame0: regs=r6,r7 stack= before 10: (bf) r3 = r10")
304/* ... skip some insns ... */
305__msg("frame0: regs=r6,r7 stack= before 3: (bf) r7 = r0")
306__msg("frame0: regs=r0,r6 stack= before 2: (bf) r6 = r0")
307/* r{8,9} */
308__msg("12: (0f) r3 += r9")
309__msg("frame0: regs=r8,r9 stack= before 11: (0f) r3 += r7")
310/* ... skip some insns ... */
311__msg("frame0: regs=r8,r9 stack= before 7: (bf) r9 = r0")
312__msg("frame0: regs=r0,r8 stack= before 6: (bf) r8 = r0")
313__flag(BPF_F_TEST_STATE_FREQ)
314__naked void precision_two_ids(void)
315{
316	asm volatile (
317	/* r6 = random number up to 0xff
318	 * r6.id == r7.id
319	 */
320	"call %[bpf_ktime_get_ns];"
321	"r0 &= 0xff;"
322	"r6 = r0;"
323	"r7 = r0;"
324	/* same, but for r{8,9} */
325	"call %[bpf_ktime_get_ns];"
326	"r0 &= 0xff;"
327	"r8 = r0;"
328	"r9 = r0;"
329	/* clear r0 id */
330	"r0 = 0;"
331	/* force checkpoint */
332	"goto +0;"
333	"r3 = r10;"
334	/* force r7 to be precise, this also marks r6 */
335	"r3 += r7;"
336	/* force r9 to be precise, this also marks r8 */
337	"r3 += r9;"
338	"exit;"
339	:
340	: __imm(bpf_ktime_get_ns)
341	: __clobber_all);
342}
343
344/* Verify that check_ids() is used by regsafe() for scalars.
345 *
346 * r9 = ... some pointer with range X ...
347 * r6 = ... unbound scalar ID=a ...
348 * r7 = ... unbound scalar ID=b ...
349 * if (r6 > r7) goto +1
350 * r7 = r6
351 * if (r7 > X) goto exit
352 * r9 += r6
353 * ... access memory using r9 ...
354 *
355 * The memory access is safe only if r7 is bounded,
356 * which is true for one branch and not true for another.
357 */
358SEC("socket")
359__failure __msg("register with unbounded min value")
360__flag(BPF_F_TEST_STATE_FREQ)
361__naked void check_ids_in_regsafe(void)
362{
363	asm volatile (
364	/* Bump allocated stack */
365	"r1 = 0;"
366	"*(u64*)(r10 - 8) = r1;"
367	/* r9 = pointer to stack */
368	"r9 = r10;"
369	"r9 += -8;"
370	/* r7 = ktime_get_ns() */
371	"call %[bpf_ktime_get_ns];"
372	"r7 = r0;"
373	/* r6 = ktime_get_ns() */
374	"call %[bpf_ktime_get_ns];"
375	"r6 = r0;"
376	/* if r6 > r7 is an unpredictable jump */
377	"if r6 > r7 goto l1_%=;"
378	"r7 = r6;"
379"l1_%=:"
380	/* if r7 > 4 ...; transfers range to r6 on one execution path
381	 * but does not transfer on another
382	 */
383	"if r7 > 4 goto l2_%=;"
384	/* Access memory at r9[r6], r6 is not always bounded */
385	"r9 += r6;"
386	"r0 = *(u8*)(r9 + 0);"
387"l2_%=:"
388	"r0 = 0;"
389	"exit;"
390	:
391	: __imm(bpf_ktime_get_ns)
392	: __clobber_all);
393}
394
395/* Similar to check_ids_in_regsafe.
396 * The l0 could be reached in two states:
397 *
398 *   (1) r6{.id=A}, r7{.id=A}, r8{.id=B}
399 *   (2) r6{.id=B}, r7{.id=A}, r8{.id=B}
400 *
401 * Where (2) is not safe, as "r7 > 4" check won't propagate range for it.
402 * This example would be considered safe without changes to
403 * mark_chain_precision() to track scalar values with equal IDs.
404 */
405SEC("socket")
406__failure __msg("register with unbounded min value")
407__flag(BPF_F_TEST_STATE_FREQ)
408__naked void check_ids_in_regsafe_2(void)
409{
410	asm volatile (
411	/* Bump allocated stack */
412	"r1 = 0;"
413	"*(u64*)(r10 - 8) = r1;"
414	/* r9 = pointer to stack */
415	"r9 = r10;"
416	"r9 += -8;"
417	/* r8 = ktime_get_ns() */
418	"call %[bpf_ktime_get_ns];"
419	"r8 = r0;"
420	/* r7 = ktime_get_ns() */
421	"call %[bpf_ktime_get_ns];"
422	"r7 = r0;"
423	/* r6 = ktime_get_ns() */
424	"call %[bpf_ktime_get_ns];"
425	"r6 = r0;"
426	/* scratch .id from r0 */
427	"r0 = 0;"
428	/* if r6 > r7 is an unpredictable jump */
429	"if r6 > r7 goto l1_%=;"
430	/* tie r6 and r7 .id */
431	"r6 = r7;"
432"l0_%=:"
433	/* if r7 > 4 exit(0) */
434	"if r7 > 4 goto l2_%=;"
435	/* Access memory at r9[r6] */
436	"r9 += r6;"
437	"r0 = *(u8*)(r9 + 0);"
438"l2_%=:"
439	"r0 = 0;"
440	"exit;"
441"l1_%=:"
442	/* tie r6 and r8 .id */
443	"r6 = r8;"
444	"goto l0_%=;"
445	:
446	: __imm(bpf_ktime_get_ns)
447	: __clobber_all);
448}
449
450/* Check that scalar IDs *are not* generated on register to register
451 * assignments if source register is a constant.
452 *
453 * If such IDs *are* generated the 'l1' below would be reached in
454 * two states:
455 *
456 *   (1) r1{.id=A}, r2{.id=A}
457 *   (2) r1{.id=C}, r2{.id=C}
458 *
459 * Thus forcing 'if r1 == r2' verification twice.
460 */
461SEC("socket")
462__success __log_level(2)
463__msg("11: (1d) if r3 == r4 goto pc+0")
464__msg("frame 0: propagating r3,r4")
465__msg("11: safe")
466__msg("processed 15 insns")
467__flag(BPF_F_TEST_STATE_FREQ)
468__naked void no_scalar_id_for_const(void)
469{
470	asm volatile (
471	"call %[bpf_ktime_get_ns];"
472	/* unpredictable jump */
473	"if r0 > 7 goto l0_%=;"
474	/* possibly generate same scalar ids for r3 and r4 */
475	"r1 = 0;"
476	"r1 = r1;"
477	"r3 = r1;"
478	"r4 = r1;"
479	"goto l1_%=;"
480"l0_%=:"
481	/* possibly generate different scalar ids for r3 and r4 */
482	"r1 = 0;"
483	"r2 = 0;"
484	"r3 = r1;"
485	"r4 = r2;"
486"l1_%=:"
487	/* predictable jump, marks r3 and r4 precise */
488	"if r3 == r4 goto +0;"
489	"r0 = 0;"
490	"exit;"
491	:
492	: __imm(bpf_ktime_get_ns)
493	: __clobber_all);
494}
495
496/* Same as no_scalar_id_for_const() but for 32-bit values */
497SEC("socket")
498__success __log_level(2)
499__msg("11: (1e) if w3 == w4 goto pc+0")
500__msg("frame 0: propagating r3,r4")
501__msg("11: safe")
502__msg("processed 15 insns")
503__flag(BPF_F_TEST_STATE_FREQ)
504__naked void no_scalar_id_for_const32(void)
505{
506	asm volatile (
507	"call %[bpf_ktime_get_ns];"
508	/* unpredictable jump */
509	"if r0 > 7 goto l0_%=;"
510	/* possibly generate same scalar ids for r3 and r4 */
511	"w1 = 0;"
512	"w1 = w1;"
513	"w3 = w1;"
514	"w4 = w1;"
515	"goto l1_%=;"
516"l0_%=:"
517	/* possibly generate different scalar ids for r3 and r4 */
518	"w1 = 0;"
519	"w2 = 0;"
520	"w3 = w1;"
521	"w4 = w2;"
522"l1_%=:"
523	/* predictable jump, marks r1 and r2 precise */
524	"if w3 == w4 goto +0;"
525	"r0 = 0;"
526	"exit;"
527	:
528	: __imm(bpf_ktime_get_ns)
529	: __clobber_all);
530}
531
532/* Check that unique scalar IDs are ignored when new verifier state is
533 * compared to cached verifier state. For this test:
534 * - cached state has no id on r1
535 * - new state has a unique id on r1
536 */
537SEC("socket")
538__success __log_level(2)
539__msg("6: (25) if r6 > 0x7 goto pc+1")
540__msg("7: (57) r1 &= 255")
541__msg("8: (bf) r2 = r10")
542__msg("from 6 to 8: safe")
543__msg("processed 12 insns")
544__flag(BPF_F_TEST_STATE_FREQ)
545__naked void ignore_unique_scalar_ids_cur(void)
546{
547	asm volatile (
548	"call %[bpf_ktime_get_ns];"
549	"r6 = r0;"
550	"call %[bpf_ktime_get_ns];"
551	"r0 &= 0xff;"
552	/* r1.id == r0.id */
553	"r1 = r0;"
554	/* make r1.id unique */
555	"r0 = 0;"
556	"if r6 > 7 goto l0_%=;"
557	/* clear r1 id, but keep the range compatible */
558	"r1 &= 0xff;"
559"l0_%=:"
560	/* get here in two states:
561	 * - first: r1 has no id (cached state)
562	 * - second: r1 has a unique id (should be considered equivalent)
563	 */
564	"r2 = r10;"
565	"r2 += r1;"
566	"exit;"
567	:
568	: __imm(bpf_ktime_get_ns)
569	: __clobber_all);
570}
571
572/* Check that unique scalar IDs are ignored when new verifier state is
573 * compared to cached verifier state. For this test:
574 * - cached state has a unique id on r1
575 * - new state has no id on r1
576 */
577SEC("socket")
578__success __log_level(2)
579__msg("6: (25) if r6 > 0x7 goto pc+1")
580__msg("7: (05) goto pc+1")
581__msg("9: (bf) r2 = r10")
582__msg("9: safe")
583__msg("processed 13 insns")
584__flag(BPF_F_TEST_STATE_FREQ)
585__naked void ignore_unique_scalar_ids_old(void)
586{
587	asm volatile (
588	"call %[bpf_ktime_get_ns];"
589	"r6 = r0;"
590	"call %[bpf_ktime_get_ns];"
591	"r0 &= 0xff;"
592	/* r1.id == r0.id */
593	"r1 = r0;"
594	/* make r1.id unique */
595	"r0 = 0;"
596	"if r6 > 7 goto l1_%=;"
597	"goto l0_%=;"
598"l1_%=:"
599	/* clear r1 id, but keep the range compatible */
600	"r1 &= 0xff;"
601"l0_%=:"
602	/* get here in two states:
603	 * - first: r1 has a unique id (cached state)
604	 * - second: r1 has no id (should be considered equivalent)
605	 */
606	"r2 = r10;"
607	"r2 += r1;"
608	"exit;"
609	:
610	: __imm(bpf_ktime_get_ns)
611	: __clobber_all);
612}
613
614/* Check that two different scalar IDs in a verified state can't be
615 * mapped to the same scalar ID in current state.
616 */
617SEC("socket")
618__success __log_level(2)
619/* The exit instruction should be reachable from two states,
620 * use two matches and "processed .. insns" to ensure this.
621 */
622__msg("13: (95) exit")
623__msg("13: (95) exit")
624__msg("processed 18 insns")
625__flag(BPF_F_TEST_STATE_FREQ)
626__naked void two_old_ids_one_cur_id(void)
627{
628	asm volatile (
629	/* Give unique scalar IDs to r{6,7} */
630	"call %[bpf_ktime_get_ns];"
631	"r0 &= 0xff;"
632	"r6 = r0;"
633	"call %[bpf_ktime_get_ns];"
634	"r0 &= 0xff;"
635	"r7 = r0;"
636	"r0 = 0;"
637	/* Maybe make r{6,7} IDs identical */
638	"if r6 > r7 goto l0_%=;"
639	"goto l1_%=;"
640"l0_%=:"
641	"r6 = r7;"
642"l1_%=:"
643	/* Mark r{6,7} precise.
644	 * Get here in two states:
645	 * - first:  r6{.id=A}, r7{.id=B} (cached state)
646	 * - second: r6{.id=A}, r7{.id=A}
647	 * Currently we don't want to consider such states equivalent.
648	 * Thus "exit;" would be verified twice.
649	 */
650	"r2 = r10;"
651	"r2 += r6;"
652	"r2 += r7;"
653	"exit;"
654	:
655	: __imm(bpf_ktime_get_ns)
656	: __clobber_all);
657}
658
659char _license[] SEC("license") = "GPL";
660