1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014  Intel Mobile Communications GmbH
7 * Copyright      2017  Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2024 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24/**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50#include <linux/kernel.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/list.h>
54#include <linux/ctype.h>
55#include <linux/nl80211.h>
56#include <linux/platform_device.h>
57#include <linux/verification.h>
58#include <linux/moduleparam.h>
59#include <linux/firmware.h>
60#include <linux/units.h>
61
62#include <net/cfg80211.h>
63#include "core.h"
64#include "reg.h"
65#include "rdev-ops.h"
66#include "nl80211.h"
67
68/*
69 * Grace period we give before making sure all current interfaces reside on
70 * channels allowed by the current regulatory domain.
71 */
72#define REG_ENFORCE_GRACE_MS 60000
73
74/**
75 * enum reg_request_treatment - regulatory request treatment
76 *
77 * @REG_REQ_OK: continue processing the regulatory request
78 * @REG_REQ_IGNORE: ignore the regulatory request
79 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
80 *	be intersected with the current one.
81 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
82 *	regulatory settings, and no further processing is required.
83 */
84enum reg_request_treatment {
85	REG_REQ_OK,
86	REG_REQ_IGNORE,
87	REG_REQ_INTERSECT,
88	REG_REQ_ALREADY_SET,
89};
90
91static struct regulatory_request core_request_world = {
92	.initiator = NL80211_REGDOM_SET_BY_CORE,
93	.alpha2[0] = '0',
94	.alpha2[1] = '0',
95	.intersect = false,
96	.processed = true,
97	.country_ie_env = ENVIRON_ANY,
98};
99
100/*
101 * Receipt of information from last regulatory request,
102 * protected by RTNL (and can be accessed with RCU protection)
103 */
104static struct regulatory_request __rcu *last_request =
105	(void __force __rcu *)&core_request_world;
106
107/* To trigger userspace events and load firmware */
108static struct platform_device *reg_pdev;
109
110/*
111 * Central wireless core regulatory domains, we only need two,
112 * the current one and a world regulatory domain in case we have no
113 * information to give us an alpha2.
114 * (protected by RTNL, can be read under RCU)
115 */
116const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117
118/*
119 * Number of devices that registered to the core
120 * that support cellular base station regulatory hints
121 * (protected by RTNL)
122 */
123static int reg_num_devs_support_basehint;
124
125/*
126 * State variable indicating if the platform on which the devices
127 * are attached is operating in an indoor environment. The state variable
128 * is relevant for all registered devices.
129 */
130static bool reg_is_indoor;
131static DEFINE_SPINLOCK(reg_indoor_lock);
132
133/* Used to track the userspace process controlling the indoor setting */
134static u32 reg_is_indoor_portid;
135
136static void restore_regulatory_settings(bool reset_user, bool cached);
137static void print_regdomain(const struct ieee80211_regdomain *rd);
138static void reg_process_hint(struct regulatory_request *reg_request);
139
140static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141{
142	return rcu_dereference_rtnl(cfg80211_regdomain);
143}
144
145/*
146 * Returns the regulatory domain associated with the wiphy.
147 *
148 * Requires any of RTNL, wiphy mutex or RCU protection.
149 */
150const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
151{
152	return rcu_dereference_check(wiphy->regd,
153				     lockdep_is_held(&wiphy->mtx) ||
154				     lockdep_rtnl_is_held());
155}
156EXPORT_SYMBOL(get_wiphy_regdom);
157
158static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
159{
160	switch (dfs_region) {
161	case NL80211_DFS_UNSET:
162		return "unset";
163	case NL80211_DFS_FCC:
164		return "FCC";
165	case NL80211_DFS_ETSI:
166		return "ETSI";
167	case NL80211_DFS_JP:
168		return "JP";
169	}
170	return "Unknown";
171}
172
173enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
174{
175	const struct ieee80211_regdomain *regd = NULL;
176	const struct ieee80211_regdomain *wiphy_regd = NULL;
177	enum nl80211_dfs_regions dfs_region;
178
179	rcu_read_lock();
180	regd = get_cfg80211_regdom();
181	dfs_region = regd->dfs_region;
182
183	if (!wiphy)
184		goto out;
185
186	wiphy_regd = get_wiphy_regdom(wiphy);
187	if (!wiphy_regd)
188		goto out;
189
190	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
191		dfs_region = wiphy_regd->dfs_region;
192		goto out;
193	}
194
195	if (wiphy_regd->dfs_region == regd->dfs_region)
196		goto out;
197
198	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
199		 dev_name(&wiphy->dev),
200		 reg_dfs_region_str(wiphy_regd->dfs_region),
201		 reg_dfs_region_str(regd->dfs_region));
202
203out:
204	rcu_read_unlock();
205
206	return dfs_region;
207}
208
209static void rcu_free_regdom(const struct ieee80211_regdomain *r)
210{
211	if (!r)
212		return;
213	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
214}
215
216static struct regulatory_request *get_last_request(void)
217{
218	return rcu_dereference_rtnl(last_request);
219}
220
221/* Used to queue up regulatory hints */
222static LIST_HEAD(reg_requests_list);
223static DEFINE_SPINLOCK(reg_requests_lock);
224
225/* Used to queue up beacon hints for review */
226static LIST_HEAD(reg_pending_beacons);
227static DEFINE_SPINLOCK(reg_pending_beacons_lock);
228
229/* Used to keep track of processed beacon hints */
230static LIST_HEAD(reg_beacon_list);
231
232struct reg_beacon {
233	struct list_head list;
234	struct ieee80211_channel chan;
235};
236
237static void reg_check_chans_work(struct work_struct *work);
238static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
239
240static void reg_todo(struct work_struct *work);
241static DECLARE_WORK(reg_work, reg_todo);
242
243/* We keep a static world regulatory domain in case of the absence of CRDA */
244static const struct ieee80211_regdomain world_regdom = {
245	.n_reg_rules = 8,
246	.alpha2 =  "00",
247	.reg_rules = {
248		/* IEEE 802.11b/g, channels 1..11 */
249		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
250		/* IEEE 802.11b/g, channels 12..13. */
251		REG_RULE(2467-10, 2472+10, 20, 6, 20,
252			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
253		/* IEEE 802.11 channel 14 - Only JP enables
254		 * this and for 802.11b only */
255		REG_RULE(2484-10, 2484+10, 20, 6, 20,
256			NL80211_RRF_NO_IR |
257			NL80211_RRF_NO_OFDM),
258		/* IEEE 802.11a, channel 36..48 */
259		REG_RULE(5180-10, 5240+10, 80, 6, 20,
260                        NL80211_RRF_NO_IR |
261                        NL80211_RRF_AUTO_BW),
262
263		/* IEEE 802.11a, channel 52..64 - DFS required */
264		REG_RULE(5260-10, 5320+10, 80, 6, 20,
265			NL80211_RRF_NO_IR |
266			NL80211_RRF_AUTO_BW |
267			NL80211_RRF_DFS),
268
269		/* IEEE 802.11a, channel 100..144 - DFS required */
270		REG_RULE(5500-10, 5720+10, 160, 6, 20,
271			NL80211_RRF_NO_IR |
272			NL80211_RRF_DFS),
273
274		/* IEEE 802.11a, channel 149..165 */
275		REG_RULE(5745-10, 5825+10, 80, 6, 20,
276			NL80211_RRF_NO_IR),
277
278		/* IEEE 802.11ad (60GHz), channels 1..3 */
279		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
280	}
281};
282
283/* protected by RTNL */
284static const struct ieee80211_regdomain *cfg80211_world_regdom =
285	&world_regdom;
286
287static char *ieee80211_regdom = "00";
288static char user_alpha2[2];
289static const struct ieee80211_regdomain *cfg80211_user_regdom;
290
291module_param(ieee80211_regdom, charp, 0444);
292MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
293
294static void reg_free_request(struct regulatory_request *request)
295{
296	if (request == &core_request_world)
297		return;
298
299	if (request != get_last_request())
300		kfree(request);
301}
302
303static void reg_free_last_request(void)
304{
305	struct regulatory_request *lr = get_last_request();
306
307	if (lr != &core_request_world && lr)
308		kfree_rcu(lr, rcu_head);
309}
310
311static void reg_update_last_request(struct regulatory_request *request)
312{
313	struct regulatory_request *lr;
314
315	lr = get_last_request();
316	if (lr == request)
317		return;
318
319	reg_free_last_request();
320	rcu_assign_pointer(last_request, request);
321}
322
323static void reset_regdomains(bool full_reset,
324			     const struct ieee80211_regdomain *new_regdom)
325{
326	const struct ieee80211_regdomain *r;
327
328	ASSERT_RTNL();
329
330	r = get_cfg80211_regdom();
331
332	/* avoid freeing static information or freeing something twice */
333	if (r == cfg80211_world_regdom)
334		r = NULL;
335	if (cfg80211_world_regdom == &world_regdom)
336		cfg80211_world_regdom = NULL;
337	if (r == &world_regdom)
338		r = NULL;
339
340	rcu_free_regdom(r);
341	rcu_free_regdom(cfg80211_world_regdom);
342
343	cfg80211_world_regdom = &world_regdom;
344	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
345
346	if (!full_reset)
347		return;
348
349	reg_update_last_request(&core_request_world);
350}
351
352/*
353 * Dynamic world regulatory domain requested by the wireless
354 * core upon initialization
355 */
356static void update_world_regdomain(const struct ieee80211_regdomain *rd)
357{
358	struct regulatory_request *lr;
359
360	lr = get_last_request();
361
362	WARN_ON(!lr);
363
364	reset_regdomains(false, rd);
365
366	cfg80211_world_regdom = rd;
367}
368
369bool is_world_regdom(const char *alpha2)
370{
371	if (!alpha2)
372		return false;
373	return alpha2[0] == '0' && alpha2[1] == '0';
374}
375
376static bool is_alpha2_set(const char *alpha2)
377{
378	if (!alpha2)
379		return false;
380	return alpha2[0] && alpha2[1];
381}
382
383static bool is_unknown_alpha2(const char *alpha2)
384{
385	if (!alpha2)
386		return false;
387	/*
388	 * Special case where regulatory domain was built by driver
389	 * but a specific alpha2 cannot be determined
390	 */
391	return alpha2[0] == '9' && alpha2[1] == '9';
392}
393
394static bool is_intersected_alpha2(const char *alpha2)
395{
396	if (!alpha2)
397		return false;
398	/*
399	 * Special case where regulatory domain is the
400	 * result of an intersection between two regulatory domain
401	 * structures
402	 */
403	return alpha2[0] == '9' && alpha2[1] == '8';
404}
405
406static bool is_an_alpha2(const char *alpha2)
407{
408	if (!alpha2)
409		return false;
410	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
411}
412
413static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
414{
415	if (!alpha2_x || !alpha2_y)
416		return false;
417	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
418}
419
420static bool regdom_changes(const char *alpha2)
421{
422	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
423
424	if (!r)
425		return true;
426	return !alpha2_equal(r->alpha2, alpha2);
427}
428
429/*
430 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
431 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
432 * has ever been issued.
433 */
434static bool is_user_regdom_saved(void)
435{
436	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
437		return false;
438
439	/* This would indicate a mistake on the design */
440	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
441		 "Unexpected user alpha2: %c%c\n",
442		 user_alpha2[0], user_alpha2[1]))
443		return false;
444
445	return true;
446}
447
448static const struct ieee80211_regdomain *
449reg_copy_regd(const struct ieee80211_regdomain *src_regd)
450{
451	struct ieee80211_regdomain *regd;
452	unsigned int i;
453
454	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
455		       GFP_KERNEL);
456	if (!regd)
457		return ERR_PTR(-ENOMEM);
458
459	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
460
461	for (i = 0; i < src_regd->n_reg_rules; i++)
462		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
463		       sizeof(struct ieee80211_reg_rule));
464
465	return regd;
466}
467
468static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
469{
470	ASSERT_RTNL();
471
472	if (!IS_ERR(cfg80211_user_regdom))
473		kfree(cfg80211_user_regdom);
474	cfg80211_user_regdom = reg_copy_regd(rd);
475}
476
477struct reg_regdb_apply_request {
478	struct list_head list;
479	const struct ieee80211_regdomain *regdom;
480};
481
482static LIST_HEAD(reg_regdb_apply_list);
483static DEFINE_MUTEX(reg_regdb_apply_mutex);
484
485static void reg_regdb_apply(struct work_struct *work)
486{
487	struct reg_regdb_apply_request *request;
488
489	rtnl_lock();
490
491	mutex_lock(&reg_regdb_apply_mutex);
492	while (!list_empty(&reg_regdb_apply_list)) {
493		request = list_first_entry(&reg_regdb_apply_list,
494					   struct reg_regdb_apply_request,
495					   list);
496		list_del(&request->list);
497
498		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
499		kfree(request);
500	}
501	mutex_unlock(&reg_regdb_apply_mutex);
502
503	rtnl_unlock();
504}
505
506static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
507
508static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
509{
510	struct reg_regdb_apply_request *request;
511
512	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
513	if (!request) {
514		kfree(regdom);
515		return -ENOMEM;
516	}
517
518	request->regdom = regdom;
519
520	mutex_lock(&reg_regdb_apply_mutex);
521	list_add_tail(&request->list, &reg_regdb_apply_list);
522	mutex_unlock(&reg_regdb_apply_mutex);
523
524	schedule_work(&reg_regdb_work);
525	return 0;
526}
527
528#ifdef CONFIG_CFG80211_CRDA_SUPPORT
529/* Max number of consecutive attempts to communicate with CRDA  */
530#define REG_MAX_CRDA_TIMEOUTS 10
531
532static u32 reg_crda_timeouts;
533
534static void crda_timeout_work(struct work_struct *work);
535static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
536
537static void crda_timeout_work(struct work_struct *work)
538{
539	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
540	rtnl_lock();
541	reg_crda_timeouts++;
542	restore_regulatory_settings(true, false);
543	rtnl_unlock();
544}
545
546static void cancel_crda_timeout(void)
547{
548	cancel_delayed_work(&crda_timeout);
549}
550
551static void cancel_crda_timeout_sync(void)
552{
553	cancel_delayed_work_sync(&crda_timeout);
554}
555
556static void reset_crda_timeouts(void)
557{
558	reg_crda_timeouts = 0;
559}
560
561/*
562 * This lets us keep regulatory code which is updated on a regulatory
563 * basis in userspace.
564 */
565static int call_crda(const char *alpha2)
566{
567	char country[12];
568	char *env[] = { country, NULL };
569	int ret;
570
571	snprintf(country, sizeof(country), "COUNTRY=%c%c",
572		 alpha2[0], alpha2[1]);
573
574	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
575		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
576		return -EINVAL;
577	}
578
579	if (!is_world_regdom((char *) alpha2))
580		pr_debug("Calling CRDA for country: %c%c\n",
581			 alpha2[0], alpha2[1]);
582	else
583		pr_debug("Calling CRDA to update world regulatory domain\n");
584
585	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
586	if (ret)
587		return ret;
588
589	queue_delayed_work(system_power_efficient_wq,
590			   &crda_timeout, msecs_to_jiffies(3142));
591	return 0;
592}
593#else
594static inline void cancel_crda_timeout(void) {}
595static inline void cancel_crda_timeout_sync(void) {}
596static inline void reset_crda_timeouts(void) {}
597static inline int call_crda(const char *alpha2)
598{
599	return -ENODATA;
600}
601#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
602
603/* code to directly load a firmware database through request_firmware */
604static const struct fwdb_header *regdb;
605
606struct fwdb_country {
607	u8 alpha2[2];
608	__be16 coll_ptr;
609	/* this struct cannot be extended */
610} __packed __aligned(4);
611
612struct fwdb_collection {
613	u8 len;
614	u8 n_rules;
615	u8 dfs_region;
616	/* no optional data yet */
617	/* aligned to 2, then followed by __be16 array of rule pointers */
618} __packed __aligned(4);
619
620enum fwdb_flags {
621	FWDB_FLAG_NO_OFDM	= BIT(0),
622	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
623	FWDB_FLAG_DFS		= BIT(2),
624	FWDB_FLAG_NO_IR		= BIT(3),
625	FWDB_FLAG_AUTO_BW	= BIT(4),
626};
627
628struct fwdb_wmm_ac {
629	u8 ecw;
630	u8 aifsn;
631	__be16 cot;
632} __packed;
633
634struct fwdb_wmm_rule {
635	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
636	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
637} __packed;
638
639struct fwdb_rule {
640	u8 len;
641	u8 flags;
642	__be16 max_eirp;
643	__be32 start, end, max_bw;
644	/* start of optional data */
645	__be16 cac_timeout;
646	__be16 wmm_ptr;
647} __packed __aligned(4);
648
649#define FWDB_MAGIC 0x52474442
650#define FWDB_VERSION 20
651
652struct fwdb_header {
653	__be32 magic;
654	__be32 version;
655	struct fwdb_country country[];
656} __packed __aligned(4);
657
658static int ecw2cw(int ecw)
659{
660	return (1 << ecw) - 1;
661}
662
663static bool valid_wmm(struct fwdb_wmm_rule *rule)
664{
665	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
666	int i;
667
668	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
669		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
670		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
671		u8 aifsn = ac[i].aifsn;
672
673		if (cw_min >= cw_max)
674			return false;
675
676		if (aifsn < 1)
677			return false;
678	}
679
680	return true;
681}
682
683static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
684{
685	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
686
687	if ((u8 *)rule + sizeof(rule->len) > data + size)
688		return false;
689
690	/* mandatory fields */
691	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
692		return false;
693	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
694		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
695		struct fwdb_wmm_rule *wmm;
696
697		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
698			return false;
699
700		wmm = (void *)(data + wmm_ptr);
701
702		if (!valid_wmm(wmm))
703			return false;
704	}
705	return true;
706}
707
708static bool valid_country(const u8 *data, unsigned int size,
709			  const struct fwdb_country *country)
710{
711	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
712	struct fwdb_collection *coll = (void *)(data + ptr);
713	__be16 *rules_ptr;
714	unsigned int i;
715
716	/* make sure we can read len/n_rules */
717	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
718		return false;
719
720	/* make sure base struct and all rules fit */
721	if ((u8 *)coll + ALIGN(coll->len, 2) +
722	    (coll->n_rules * 2) > data + size)
723		return false;
724
725	/* mandatory fields must exist */
726	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
727		return false;
728
729	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
730
731	for (i = 0; i < coll->n_rules; i++) {
732		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
733
734		if (!valid_rule(data, size, rule_ptr))
735			return false;
736	}
737
738	return true;
739}
740
741#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
742#include <keys/asymmetric-type.h>
743
744static struct key *builtin_regdb_keys;
745
746static int __init load_builtin_regdb_keys(void)
747{
748	builtin_regdb_keys =
749		keyring_alloc(".builtin_regdb_keys",
750			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
751			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
752			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
753			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
754	if (IS_ERR(builtin_regdb_keys))
755		return PTR_ERR(builtin_regdb_keys);
756
757	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
758
759#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
760	x509_load_certificate_list(shipped_regdb_certs,
761				   shipped_regdb_certs_len,
762				   builtin_regdb_keys);
763#endif
764#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
765	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
766		x509_load_certificate_list(extra_regdb_certs,
767					   extra_regdb_certs_len,
768					   builtin_regdb_keys);
769#endif
770
771	return 0;
772}
773
774MODULE_FIRMWARE("regulatory.db.p7s");
775
776static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
777{
778	const struct firmware *sig;
779	bool result;
780
781	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
782		return false;
783
784	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
785					builtin_regdb_keys,
786					VERIFYING_UNSPECIFIED_SIGNATURE,
787					NULL, NULL) == 0;
788
789	release_firmware(sig);
790
791	return result;
792}
793
794static void free_regdb_keyring(void)
795{
796	key_put(builtin_regdb_keys);
797}
798#else
799static int load_builtin_regdb_keys(void)
800{
801	return 0;
802}
803
804static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
805{
806	return true;
807}
808
809static void free_regdb_keyring(void)
810{
811}
812#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
813
814static bool valid_regdb(const u8 *data, unsigned int size)
815{
816	const struct fwdb_header *hdr = (void *)data;
817	const struct fwdb_country *country;
818
819	if (size < sizeof(*hdr))
820		return false;
821
822	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
823		return false;
824
825	if (hdr->version != cpu_to_be32(FWDB_VERSION))
826		return false;
827
828	if (!regdb_has_valid_signature(data, size))
829		return false;
830
831	country = &hdr->country[0];
832	while ((u8 *)(country + 1) <= data + size) {
833		if (!country->coll_ptr)
834			break;
835		if (!valid_country(data, size, country))
836			return false;
837		country++;
838	}
839
840	return true;
841}
842
843static void set_wmm_rule(const struct fwdb_header *db,
844			 const struct fwdb_country *country,
845			 const struct fwdb_rule *rule,
846			 struct ieee80211_reg_rule *rrule)
847{
848	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
849	struct fwdb_wmm_rule *wmm;
850	unsigned int i, wmm_ptr;
851
852	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
853	wmm = (void *)((u8 *)db + wmm_ptr);
854
855	if (!valid_wmm(wmm)) {
856		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
857		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
858		       country->alpha2[0], country->alpha2[1]);
859		return;
860	}
861
862	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
863		wmm_rule->client[i].cw_min =
864			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
865		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
866		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
867		wmm_rule->client[i].cot =
868			1000 * be16_to_cpu(wmm->client[i].cot);
869		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
870		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
871		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
872		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
873	}
874
875	rrule->has_wmm = true;
876}
877
878static int __regdb_query_wmm(const struct fwdb_header *db,
879			     const struct fwdb_country *country, int freq,
880			     struct ieee80211_reg_rule *rrule)
881{
882	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
883	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
884	int i;
885
886	for (i = 0; i < coll->n_rules; i++) {
887		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
888		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
889		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
890
891		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
892			continue;
893
894		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
895		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
896			set_wmm_rule(db, country, rule, rrule);
897			return 0;
898		}
899	}
900
901	return -ENODATA;
902}
903
904int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
905{
906	const struct fwdb_header *hdr = regdb;
907	const struct fwdb_country *country;
908
909	if (!regdb)
910		return -ENODATA;
911
912	if (IS_ERR(regdb))
913		return PTR_ERR(regdb);
914
915	country = &hdr->country[0];
916	while (country->coll_ptr) {
917		if (alpha2_equal(alpha2, country->alpha2))
918			return __regdb_query_wmm(regdb, country, freq, rule);
919
920		country++;
921	}
922
923	return -ENODATA;
924}
925EXPORT_SYMBOL(reg_query_regdb_wmm);
926
927static int regdb_query_country(const struct fwdb_header *db,
928			       const struct fwdb_country *country)
929{
930	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
931	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
932	struct ieee80211_regdomain *regdom;
933	unsigned int i;
934
935	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
936			 GFP_KERNEL);
937	if (!regdom)
938		return -ENOMEM;
939
940	regdom->n_reg_rules = coll->n_rules;
941	regdom->alpha2[0] = country->alpha2[0];
942	regdom->alpha2[1] = country->alpha2[1];
943	regdom->dfs_region = coll->dfs_region;
944
945	for (i = 0; i < regdom->n_reg_rules; i++) {
946		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
947		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
948		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
949		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
950
951		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
952		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
953		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
954
955		rrule->power_rule.max_antenna_gain = 0;
956		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
957
958		rrule->flags = 0;
959		if (rule->flags & FWDB_FLAG_NO_OFDM)
960			rrule->flags |= NL80211_RRF_NO_OFDM;
961		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
962			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
963		if (rule->flags & FWDB_FLAG_DFS)
964			rrule->flags |= NL80211_RRF_DFS;
965		if (rule->flags & FWDB_FLAG_NO_IR)
966			rrule->flags |= NL80211_RRF_NO_IR;
967		if (rule->flags & FWDB_FLAG_AUTO_BW)
968			rrule->flags |= NL80211_RRF_AUTO_BW;
969
970		rrule->dfs_cac_ms = 0;
971
972		/* handle optional data */
973		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
974			rrule->dfs_cac_ms =
975				1000 * be16_to_cpu(rule->cac_timeout);
976		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
977			set_wmm_rule(db, country, rule, rrule);
978	}
979
980	return reg_schedule_apply(regdom);
981}
982
983static int query_regdb(const char *alpha2)
984{
985	const struct fwdb_header *hdr = regdb;
986	const struct fwdb_country *country;
987
988	ASSERT_RTNL();
989
990	if (IS_ERR(regdb))
991		return PTR_ERR(regdb);
992
993	country = &hdr->country[0];
994	while (country->coll_ptr) {
995		if (alpha2_equal(alpha2, country->alpha2))
996			return regdb_query_country(regdb, country);
997		country++;
998	}
999
1000	return -ENODATA;
1001}
1002
1003static void regdb_fw_cb(const struct firmware *fw, void *context)
1004{
1005	int set_error = 0;
1006	bool restore = true;
1007	void *db;
1008
1009	if (!fw) {
1010		pr_info("failed to load regulatory.db\n");
1011		set_error = -ENODATA;
1012	} else if (!valid_regdb(fw->data, fw->size)) {
1013		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1014		set_error = -EINVAL;
1015	}
1016
1017	rtnl_lock();
1018	if (regdb && !IS_ERR(regdb)) {
1019		/* negative case - a bug
1020		 * positive case - can happen due to race in case of multiple cb's in
1021		 * queue, due to usage of asynchronous callback
1022		 *
1023		 * Either case, just restore and free new db.
1024		 */
1025	} else if (set_error) {
1026		regdb = ERR_PTR(set_error);
1027	} else if (fw) {
1028		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1029		if (db) {
1030			regdb = db;
1031			restore = context && query_regdb(context);
1032		} else {
1033			restore = true;
1034		}
1035	}
1036
1037	if (restore)
1038		restore_regulatory_settings(true, false);
1039
1040	rtnl_unlock();
1041
1042	kfree(context);
1043
1044	release_firmware(fw);
1045}
1046
1047MODULE_FIRMWARE("regulatory.db");
1048
1049static int query_regdb_file(const char *alpha2)
1050{
1051	int err;
1052
1053	ASSERT_RTNL();
1054
1055	if (regdb)
1056		return query_regdb(alpha2);
1057
1058	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1059	if (!alpha2)
1060		return -ENOMEM;
1061
1062	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1063				      &reg_pdev->dev, GFP_KERNEL,
1064				      (void *)alpha2, regdb_fw_cb);
1065	if (err)
1066		kfree(alpha2);
1067
1068	return err;
1069}
1070
1071int reg_reload_regdb(void)
1072{
1073	const struct firmware *fw;
1074	void *db;
1075	int err;
1076	const struct ieee80211_regdomain *current_regdomain;
1077	struct regulatory_request *request;
1078
1079	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1080	if (err)
1081		return err;
1082
1083	if (!valid_regdb(fw->data, fw->size)) {
1084		err = -ENODATA;
1085		goto out;
1086	}
1087
1088	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1089	if (!db) {
1090		err = -ENOMEM;
1091		goto out;
1092	}
1093
1094	rtnl_lock();
1095	if (!IS_ERR_OR_NULL(regdb))
1096		kfree(regdb);
1097	regdb = db;
1098
1099	/* reset regulatory domain */
1100	current_regdomain = get_cfg80211_regdom();
1101
1102	request = kzalloc(sizeof(*request), GFP_KERNEL);
1103	if (!request) {
1104		err = -ENOMEM;
1105		goto out_unlock;
1106	}
1107
1108	request->wiphy_idx = WIPHY_IDX_INVALID;
1109	request->alpha2[0] = current_regdomain->alpha2[0];
1110	request->alpha2[1] = current_regdomain->alpha2[1];
1111	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1112	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1113
1114	reg_process_hint(request);
1115
1116out_unlock:
1117	rtnl_unlock();
1118 out:
1119	release_firmware(fw);
1120	return err;
1121}
1122
1123static bool reg_query_database(struct regulatory_request *request)
1124{
1125	if (query_regdb_file(request->alpha2) == 0)
1126		return true;
1127
1128	if (call_crda(request->alpha2) == 0)
1129		return true;
1130
1131	return false;
1132}
1133
1134bool reg_is_valid_request(const char *alpha2)
1135{
1136	struct regulatory_request *lr = get_last_request();
1137
1138	if (!lr || lr->processed)
1139		return false;
1140
1141	return alpha2_equal(lr->alpha2, alpha2);
1142}
1143
1144static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1145{
1146	struct regulatory_request *lr = get_last_request();
1147
1148	/*
1149	 * Follow the driver's regulatory domain, if present, unless a country
1150	 * IE has been processed or a user wants to help complaince further
1151	 */
1152	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1153	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1154	    wiphy->regd)
1155		return get_wiphy_regdom(wiphy);
1156
1157	return get_cfg80211_regdom();
1158}
1159
1160static unsigned int
1161reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1162				 const struct ieee80211_reg_rule *rule)
1163{
1164	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1165	const struct ieee80211_freq_range *freq_range_tmp;
1166	const struct ieee80211_reg_rule *tmp;
1167	u32 start_freq, end_freq, idx, no;
1168
1169	for (idx = 0; idx < rd->n_reg_rules; idx++)
1170		if (rule == &rd->reg_rules[idx])
1171			break;
1172
1173	if (idx == rd->n_reg_rules)
1174		return 0;
1175
1176	/* get start_freq */
1177	no = idx;
1178
1179	while (no) {
1180		tmp = &rd->reg_rules[--no];
1181		freq_range_tmp = &tmp->freq_range;
1182
1183		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1184			break;
1185
1186		freq_range = freq_range_tmp;
1187	}
1188
1189	start_freq = freq_range->start_freq_khz;
1190
1191	/* get end_freq */
1192	freq_range = &rule->freq_range;
1193	no = idx;
1194
1195	while (no < rd->n_reg_rules - 1) {
1196		tmp = &rd->reg_rules[++no];
1197		freq_range_tmp = &tmp->freq_range;
1198
1199		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1200			break;
1201
1202		freq_range = freq_range_tmp;
1203	}
1204
1205	end_freq = freq_range->end_freq_khz;
1206
1207	return end_freq - start_freq;
1208}
1209
1210unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1211				   const struct ieee80211_reg_rule *rule)
1212{
1213	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1214
1215	if (rule->flags & NL80211_RRF_NO_320MHZ)
1216		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1217	if (rule->flags & NL80211_RRF_NO_160MHZ)
1218		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1219	if (rule->flags & NL80211_RRF_NO_80MHZ)
1220		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1221
1222	/*
1223	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1224	 * are not allowed.
1225	 */
1226	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1227	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1228		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1229
1230	return bw;
1231}
1232
1233/* Sanity check on a regulatory rule */
1234static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1235{
1236	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1237	u32 freq_diff;
1238
1239	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1240		return false;
1241
1242	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1243		return false;
1244
1245	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1246
1247	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1248	    freq_range->max_bandwidth_khz > freq_diff)
1249		return false;
1250
1251	return true;
1252}
1253
1254static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1255{
1256	const struct ieee80211_reg_rule *reg_rule = NULL;
1257	unsigned int i;
1258
1259	if (!rd->n_reg_rules)
1260		return false;
1261
1262	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1263		return false;
1264
1265	for (i = 0; i < rd->n_reg_rules; i++) {
1266		reg_rule = &rd->reg_rules[i];
1267		if (!is_valid_reg_rule(reg_rule))
1268			return false;
1269	}
1270
1271	return true;
1272}
1273
1274/**
1275 * freq_in_rule_band - tells us if a frequency is in a frequency band
1276 * @freq_range: frequency rule we want to query
1277 * @freq_khz: frequency we are inquiring about
1278 *
1279 * This lets us know if a specific frequency rule is or is not relevant to
1280 * a specific frequency's band. Bands are device specific and artificial
1281 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1282 * however it is safe for now to assume that a frequency rule should not be
1283 * part of a frequency's band if the start freq or end freq are off by more
1284 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1285 * 60 GHz band.
1286 * This resolution can be lowered and should be considered as we add
1287 * regulatory rule support for other "bands".
1288 *
1289 * Returns: whether or not the frequency is in the range
1290 */
1291static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1292			      u32 freq_khz)
1293{
1294	/*
1295	 * From 802.11ad: directional multi-gigabit (DMG):
1296	 * Pertaining to operation in a frequency band containing a channel
1297	 * with the Channel starting frequency above 45 GHz.
1298	 */
1299	u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ;
1300	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1301		return true;
1302	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303		return true;
1304	return false;
1305}
1306
1307/*
1308 * Later on we can perhaps use the more restrictive DFS
1309 * region but we don't have information for that yet so
1310 * for now simply disallow conflicts.
1311 */
1312static enum nl80211_dfs_regions
1313reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1314			 const enum nl80211_dfs_regions dfs_region2)
1315{
1316	if (dfs_region1 != dfs_region2)
1317		return NL80211_DFS_UNSET;
1318	return dfs_region1;
1319}
1320
1321static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1322				    const struct ieee80211_wmm_ac *wmm_ac2,
1323				    struct ieee80211_wmm_ac *intersect)
1324{
1325	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1326	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1327	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1328	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1329}
1330
1331/*
1332 * Helper for regdom_intersect(), this does the real
1333 * mathematical intersection fun
1334 */
1335static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1336			       const struct ieee80211_regdomain *rd2,
1337			       const struct ieee80211_reg_rule *rule1,
1338			       const struct ieee80211_reg_rule *rule2,
1339			       struct ieee80211_reg_rule *intersected_rule)
1340{
1341	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1342	struct ieee80211_freq_range *freq_range;
1343	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1344	struct ieee80211_power_rule *power_rule;
1345	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1346	struct ieee80211_wmm_rule *wmm_rule;
1347	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1348
1349	freq_range1 = &rule1->freq_range;
1350	freq_range2 = &rule2->freq_range;
1351	freq_range = &intersected_rule->freq_range;
1352
1353	power_rule1 = &rule1->power_rule;
1354	power_rule2 = &rule2->power_rule;
1355	power_rule = &intersected_rule->power_rule;
1356
1357	wmm_rule1 = &rule1->wmm_rule;
1358	wmm_rule2 = &rule2->wmm_rule;
1359	wmm_rule = &intersected_rule->wmm_rule;
1360
1361	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1362					 freq_range2->start_freq_khz);
1363	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1364				       freq_range2->end_freq_khz);
1365
1366	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1367	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1368
1369	if (rule1->flags & NL80211_RRF_AUTO_BW)
1370		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1371	if (rule2->flags & NL80211_RRF_AUTO_BW)
1372		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1373
1374	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1375
1376	intersected_rule->flags = rule1->flags | rule2->flags;
1377
1378	/*
1379	 * In case NL80211_RRF_AUTO_BW requested for both rules
1380	 * set AUTO_BW in intersected rule also. Next we will
1381	 * calculate BW correctly in handle_channel function.
1382	 * In other case remove AUTO_BW flag while we calculate
1383	 * maximum bandwidth correctly and auto calculation is
1384	 * not required.
1385	 */
1386	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1387	    (rule2->flags & NL80211_RRF_AUTO_BW))
1388		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1389	else
1390		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1391
1392	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1393	if (freq_range->max_bandwidth_khz > freq_diff)
1394		freq_range->max_bandwidth_khz = freq_diff;
1395
1396	power_rule->max_eirp = min(power_rule1->max_eirp,
1397		power_rule2->max_eirp);
1398	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1399		power_rule2->max_antenna_gain);
1400
1401	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1402					   rule2->dfs_cac_ms);
1403
1404	if (rule1->has_wmm && rule2->has_wmm) {
1405		u8 ac;
1406
1407		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1408			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1409						&wmm_rule2->client[ac],
1410						&wmm_rule->client[ac]);
1411			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1412						&wmm_rule2->ap[ac],
1413						&wmm_rule->ap[ac]);
1414		}
1415
1416		intersected_rule->has_wmm = true;
1417	} else if (rule1->has_wmm) {
1418		*wmm_rule = *wmm_rule1;
1419		intersected_rule->has_wmm = true;
1420	} else if (rule2->has_wmm) {
1421		*wmm_rule = *wmm_rule2;
1422		intersected_rule->has_wmm = true;
1423	} else {
1424		intersected_rule->has_wmm = false;
1425	}
1426
1427	if (!is_valid_reg_rule(intersected_rule))
1428		return -EINVAL;
1429
1430	return 0;
1431}
1432
1433/* check whether old rule contains new rule */
1434static bool rule_contains(struct ieee80211_reg_rule *r1,
1435			  struct ieee80211_reg_rule *r2)
1436{
1437	/* for simplicity, currently consider only same flags */
1438	if (r1->flags != r2->flags)
1439		return false;
1440
1441	/* verify r1 is more restrictive */
1442	if ((r1->power_rule.max_antenna_gain >
1443	     r2->power_rule.max_antenna_gain) ||
1444	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1445		return false;
1446
1447	/* make sure r2's range is contained within r1 */
1448	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1449	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1450		return false;
1451
1452	/* and finally verify that r1.max_bw >= r2.max_bw */
1453	if (r1->freq_range.max_bandwidth_khz <
1454	    r2->freq_range.max_bandwidth_khz)
1455		return false;
1456
1457	return true;
1458}
1459
1460/* add or extend current rules. do nothing if rule is already contained */
1461static void add_rule(struct ieee80211_reg_rule *rule,
1462		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1463{
1464	struct ieee80211_reg_rule *tmp_rule;
1465	int i;
1466
1467	for (i = 0; i < *n_rules; i++) {
1468		tmp_rule = &reg_rules[i];
1469		/* rule is already contained - do nothing */
1470		if (rule_contains(tmp_rule, rule))
1471			return;
1472
1473		/* extend rule if possible */
1474		if (rule_contains(rule, tmp_rule)) {
1475			memcpy(tmp_rule, rule, sizeof(*rule));
1476			return;
1477		}
1478	}
1479
1480	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1481	(*n_rules)++;
1482}
1483
1484/**
1485 * regdom_intersect - do the intersection between two regulatory domains
1486 * @rd1: first regulatory domain
1487 * @rd2: second regulatory domain
1488 *
1489 * Use this function to get the intersection between two regulatory domains.
1490 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1491 * as no one single alpha2 can represent this regulatory domain.
1492 *
1493 * Returns a pointer to the regulatory domain structure which will hold the
1494 * resulting intersection of rules between rd1 and rd2. We will
1495 * kzalloc() this structure for you.
1496 *
1497 * Returns: the intersected regdomain
1498 */
1499static struct ieee80211_regdomain *
1500regdom_intersect(const struct ieee80211_regdomain *rd1,
1501		 const struct ieee80211_regdomain *rd2)
1502{
1503	int r;
1504	unsigned int x, y;
1505	unsigned int num_rules = 0;
1506	const struct ieee80211_reg_rule *rule1, *rule2;
1507	struct ieee80211_reg_rule intersected_rule;
1508	struct ieee80211_regdomain *rd;
1509
1510	if (!rd1 || !rd2)
1511		return NULL;
1512
1513	/*
1514	 * First we get a count of the rules we'll need, then we actually
1515	 * build them. This is to so we can malloc() and free() a
1516	 * regdomain once. The reason we use reg_rules_intersect() here
1517	 * is it will return -EINVAL if the rule computed makes no sense.
1518	 * All rules that do check out OK are valid.
1519	 */
1520
1521	for (x = 0; x < rd1->n_reg_rules; x++) {
1522		rule1 = &rd1->reg_rules[x];
1523		for (y = 0; y < rd2->n_reg_rules; y++) {
1524			rule2 = &rd2->reg_rules[y];
1525			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1526						 &intersected_rule))
1527				num_rules++;
1528		}
1529	}
1530
1531	if (!num_rules)
1532		return NULL;
1533
1534	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1535	if (!rd)
1536		return NULL;
1537
1538	for (x = 0; x < rd1->n_reg_rules; x++) {
1539		rule1 = &rd1->reg_rules[x];
1540		for (y = 0; y < rd2->n_reg_rules; y++) {
1541			rule2 = &rd2->reg_rules[y];
1542			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1543						&intersected_rule);
1544			/*
1545			 * No need to memset here the intersected rule here as
1546			 * we're not using the stack anymore
1547			 */
1548			if (r)
1549				continue;
1550
1551			add_rule(&intersected_rule, rd->reg_rules,
1552				 &rd->n_reg_rules);
1553		}
1554	}
1555
1556	rd->alpha2[0] = '9';
1557	rd->alpha2[1] = '8';
1558	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1559						  rd2->dfs_region);
1560
1561	return rd;
1562}
1563
1564/*
1565 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1566 * want to just have the channel structure use these
1567 */
1568static u32 map_regdom_flags(u32 rd_flags)
1569{
1570	u32 channel_flags = 0;
1571	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1572		channel_flags |= IEEE80211_CHAN_NO_IR;
1573	if (rd_flags & NL80211_RRF_DFS)
1574		channel_flags |= IEEE80211_CHAN_RADAR;
1575	if (rd_flags & NL80211_RRF_NO_OFDM)
1576		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1577	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1578		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1579	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1580		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1581	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1582		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1583	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1584		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1585	if (rd_flags & NL80211_RRF_NO_80MHZ)
1586		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1587	if (rd_flags & NL80211_RRF_NO_160MHZ)
1588		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1589	if (rd_flags & NL80211_RRF_NO_HE)
1590		channel_flags |= IEEE80211_CHAN_NO_HE;
1591	if (rd_flags & NL80211_RRF_NO_320MHZ)
1592		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1593	if (rd_flags & NL80211_RRF_NO_EHT)
1594		channel_flags |= IEEE80211_CHAN_NO_EHT;
1595	if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1596		channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1597	if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT)
1598		channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
1599	if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT)
1600		channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
1601	if (rd_flags & NL80211_RRF_PSD)
1602		channel_flags |= IEEE80211_CHAN_PSD;
1603	return channel_flags;
1604}
1605
1606static const struct ieee80211_reg_rule *
1607freq_reg_info_regd(u32 center_freq,
1608		   const struct ieee80211_regdomain *regd, u32 bw)
1609{
1610	int i;
1611	bool band_rule_found = false;
1612	bool bw_fits = false;
1613
1614	if (!regd)
1615		return ERR_PTR(-EINVAL);
1616
1617	for (i = 0; i < regd->n_reg_rules; i++) {
1618		const struct ieee80211_reg_rule *rr;
1619		const struct ieee80211_freq_range *fr = NULL;
1620
1621		rr = &regd->reg_rules[i];
1622		fr = &rr->freq_range;
1623
1624		/*
1625		 * We only need to know if one frequency rule was
1626		 * in center_freq's band, that's enough, so let's
1627		 * not overwrite it once found
1628		 */
1629		if (!band_rule_found)
1630			band_rule_found = freq_in_rule_band(fr, center_freq);
1631
1632		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1633
1634		if (band_rule_found && bw_fits)
1635			return rr;
1636	}
1637
1638	if (!band_rule_found)
1639		return ERR_PTR(-ERANGE);
1640
1641	return ERR_PTR(-EINVAL);
1642}
1643
1644static const struct ieee80211_reg_rule *
1645__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1646{
1647	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1648	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1649	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1650	int i = ARRAY_SIZE(bws) - 1;
1651	u32 bw;
1652
1653	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1654		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1655		if (!IS_ERR(reg_rule))
1656			return reg_rule;
1657	}
1658
1659	return reg_rule;
1660}
1661
1662const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1663					       u32 center_freq)
1664{
1665	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1666
1667	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1668}
1669EXPORT_SYMBOL(freq_reg_info);
1670
1671const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1672{
1673	switch (initiator) {
1674	case NL80211_REGDOM_SET_BY_CORE:
1675		return "core";
1676	case NL80211_REGDOM_SET_BY_USER:
1677		return "user";
1678	case NL80211_REGDOM_SET_BY_DRIVER:
1679		return "driver";
1680	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1681		return "country element";
1682	default:
1683		WARN_ON(1);
1684		return "bug";
1685	}
1686}
1687EXPORT_SYMBOL(reg_initiator_name);
1688
1689static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1690					  const struct ieee80211_reg_rule *reg_rule,
1691					  const struct ieee80211_channel *chan)
1692{
1693	const struct ieee80211_freq_range *freq_range = NULL;
1694	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1695	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1696
1697	freq_range = &reg_rule->freq_range;
1698
1699	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1700	center_freq_khz = ieee80211_channel_to_khz(chan);
1701	/* Check if auto calculation requested */
1702	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1703		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1704
1705	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1706	if (!cfg80211_does_bw_fit_range(freq_range,
1707					center_freq_khz,
1708					MHZ_TO_KHZ(10)))
1709		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1710	if (!cfg80211_does_bw_fit_range(freq_range,
1711					center_freq_khz,
1712					MHZ_TO_KHZ(20)))
1713		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1714
1715	if (is_s1g) {
1716		/* S1G is strict about non overlapping channels. We can
1717		 * calculate which bandwidth is allowed per channel by finding
1718		 * the largest bandwidth which cleanly divides the freq_range.
1719		 */
1720		int edge_offset;
1721		int ch_bw = max_bandwidth_khz;
1722
1723		while (ch_bw) {
1724			edge_offset = (center_freq_khz - ch_bw / 2) -
1725				      freq_range->start_freq_khz;
1726			if (edge_offset % ch_bw == 0) {
1727				switch (KHZ_TO_MHZ(ch_bw)) {
1728				case 1:
1729					bw_flags |= IEEE80211_CHAN_1MHZ;
1730					break;
1731				case 2:
1732					bw_flags |= IEEE80211_CHAN_2MHZ;
1733					break;
1734				case 4:
1735					bw_flags |= IEEE80211_CHAN_4MHZ;
1736					break;
1737				case 8:
1738					bw_flags |= IEEE80211_CHAN_8MHZ;
1739					break;
1740				case 16:
1741					bw_flags |= IEEE80211_CHAN_16MHZ;
1742					break;
1743				default:
1744					/* If we got here, no bandwidths fit on
1745					 * this frequency, ie. band edge.
1746					 */
1747					bw_flags |= IEEE80211_CHAN_DISABLED;
1748					break;
1749				}
1750				break;
1751			}
1752			ch_bw /= 2;
1753		}
1754	} else {
1755		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1756			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1757		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1758			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1759		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1760			bw_flags |= IEEE80211_CHAN_NO_HT40;
1761		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1762			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1763		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1764			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1765		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1766			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1767	}
1768	return bw_flags;
1769}
1770
1771static void handle_channel_single_rule(struct wiphy *wiphy,
1772				       enum nl80211_reg_initiator initiator,
1773				       struct ieee80211_channel *chan,
1774				       u32 flags,
1775				       struct regulatory_request *lr,
1776				       struct wiphy *request_wiphy,
1777				       const struct ieee80211_reg_rule *reg_rule)
1778{
1779	u32 bw_flags = 0;
1780	const struct ieee80211_power_rule *power_rule = NULL;
1781	const struct ieee80211_regdomain *regd;
1782
1783	regd = reg_get_regdomain(wiphy);
1784
1785	power_rule = &reg_rule->power_rule;
1786	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1787
1788	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1789	    request_wiphy && request_wiphy == wiphy &&
1790	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1791		/*
1792		 * This guarantees the driver's requested regulatory domain
1793		 * will always be used as a base for further regulatory
1794		 * settings
1795		 */
1796		chan->flags = chan->orig_flags =
1797			map_regdom_flags(reg_rule->flags) | bw_flags;
1798		chan->max_antenna_gain = chan->orig_mag =
1799			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1800		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1801			(int) MBM_TO_DBM(power_rule->max_eirp);
1802
1803		if (chan->flags & IEEE80211_CHAN_RADAR) {
1804			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1805			if (reg_rule->dfs_cac_ms)
1806				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1807		}
1808
1809		if (chan->flags & IEEE80211_CHAN_PSD)
1810			chan->psd = reg_rule->psd;
1811
1812		return;
1813	}
1814
1815	chan->dfs_state = NL80211_DFS_USABLE;
1816	chan->dfs_state_entered = jiffies;
1817
1818	chan->beacon_found = false;
1819	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1820	chan->max_antenna_gain =
1821		min_t(int, chan->orig_mag,
1822		      MBI_TO_DBI(power_rule->max_antenna_gain));
1823	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1824
1825	if (chan->flags & IEEE80211_CHAN_RADAR) {
1826		if (reg_rule->dfs_cac_ms)
1827			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1828		else
1829			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1830	}
1831
1832	if (chan->flags & IEEE80211_CHAN_PSD)
1833		chan->psd = reg_rule->psd;
1834
1835	if (chan->orig_mpwr) {
1836		/*
1837		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1838		 * will always follow the passed country IE power settings.
1839		 */
1840		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1841		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1842			chan->max_power = chan->max_reg_power;
1843		else
1844			chan->max_power = min(chan->orig_mpwr,
1845					      chan->max_reg_power);
1846	} else
1847		chan->max_power = chan->max_reg_power;
1848}
1849
1850static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1851					  enum nl80211_reg_initiator initiator,
1852					  struct ieee80211_channel *chan,
1853					  u32 flags,
1854					  struct regulatory_request *lr,
1855					  struct wiphy *request_wiphy,
1856					  const struct ieee80211_reg_rule *rrule1,
1857					  const struct ieee80211_reg_rule *rrule2,
1858					  struct ieee80211_freq_range *comb_range)
1859{
1860	u32 bw_flags1 = 0;
1861	u32 bw_flags2 = 0;
1862	const struct ieee80211_power_rule *power_rule1 = NULL;
1863	const struct ieee80211_power_rule *power_rule2 = NULL;
1864	const struct ieee80211_regdomain *regd;
1865
1866	regd = reg_get_regdomain(wiphy);
1867
1868	power_rule1 = &rrule1->power_rule;
1869	power_rule2 = &rrule2->power_rule;
1870	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1871	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1872
1873	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1874	    request_wiphy && request_wiphy == wiphy &&
1875	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1876		/* This guarantees the driver's requested regulatory domain
1877		 * will always be used as a base for further regulatory
1878		 * settings
1879		 */
1880		chan->flags =
1881			map_regdom_flags(rrule1->flags) |
1882			map_regdom_flags(rrule2->flags) |
1883			bw_flags1 |
1884			bw_flags2;
1885		chan->orig_flags = chan->flags;
1886		chan->max_antenna_gain =
1887			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1888			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1889		chan->orig_mag = chan->max_antenna_gain;
1890		chan->max_reg_power =
1891			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1892			      MBM_TO_DBM(power_rule2->max_eirp));
1893		chan->max_power = chan->max_reg_power;
1894		chan->orig_mpwr = chan->max_reg_power;
1895
1896		if (chan->flags & IEEE80211_CHAN_RADAR) {
1897			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1898			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1899				chan->dfs_cac_ms = max_t(unsigned int,
1900							 rrule1->dfs_cac_ms,
1901							 rrule2->dfs_cac_ms);
1902		}
1903
1904		if ((rrule1->flags & NL80211_RRF_PSD) &&
1905		    (rrule2->flags & NL80211_RRF_PSD))
1906			chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1907		else
1908			chan->flags &= ~NL80211_RRF_PSD;
1909
1910		return;
1911	}
1912
1913	chan->dfs_state = NL80211_DFS_USABLE;
1914	chan->dfs_state_entered = jiffies;
1915
1916	chan->beacon_found = false;
1917	chan->flags = flags | bw_flags1 | bw_flags2 |
1918		      map_regdom_flags(rrule1->flags) |
1919		      map_regdom_flags(rrule2->flags);
1920
1921	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1922	 * (otherwise no adj. rule case), recheck therefore
1923	 */
1924	if (cfg80211_does_bw_fit_range(comb_range,
1925				       ieee80211_channel_to_khz(chan),
1926				       MHZ_TO_KHZ(10)))
1927		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1928	if (cfg80211_does_bw_fit_range(comb_range,
1929				       ieee80211_channel_to_khz(chan),
1930				       MHZ_TO_KHZ(20)))
1931		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1932
1933	chan->max_antenna_gain =
1934		min_t(int, chan->orig_mag,
1935		      min_t(int,
1936			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1937			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1938	chan->max_reg_power = min_t(int,
1939				    MBM_TO_DBM(power_rule1->max_eirp),
1940				    MBM_TO_DBM(power_rule2->max_eirp));
1941
1942	if (chan->flags & IEEE80211_CHAN_RADAR) {
1943		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1944			chan->dfs_cac_ms = max_t(unsigned int,
1945						 rrule1->dfs_cac_ms,
1946						 rrule2->dfs_cac_ms);
1947		else
1948			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1949	}
1950
1951	if (chan->orig_mpwr) {
1952		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1953		 * will always follow the passed country IE power settings.
1954		 */
1955		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1956		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1957			chan->max_power = chan->max_reg_power;
1958		else
1959			chan->max_power = min(chan->orig_mpwr,
1960					      chan->max_reg_power);
1961	} else {
1962		chan->max_power = chan->max_reg_power;
1963	}
1964}
1965
1966/* Note that right now we assume the desired channel bandwidth
1967 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1968 * per channel, the primary and the extension channel).
1969 */
1970static void handle_channel(struct wiphy *wiphy,
1971			   enum nl80211_reg_initiator initiator,
1972			   struct ieee80211_channel *chan)
1973{
1974	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1975	struct regulatory_request *lr = get_last_request();
1976	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1977	const struct ieee80211_reg_rule *rrule = NULL;
1978	const struct ieee80211_reg_rule *rrule1 = NULL;
1979	const struct ieee80211_reg_rule *rrule2 = NULL;
1980
1981	u32 flags = chan->orig_flags;
1982
1983	rrule = freq_reg_info(wiphy, orig_chan_freq);
1984	if (IS_ERR(rrule)) {
1985		/* check for adjacent match, therefore get rules for
1986		 * chan - 20 MHz and chan + 20 MHz and test
1987		 * if reg rules are adjacent
1988		 */
1989		rrule1 = freq_reg_info(wiphy,
1990				       orig_chan_freq - MHZ_TO_KHZ(20));
1991		rrule2 = freq_reg_info(wiphy,
1992				       orig_chan_freq + MHZ_TO_KHZ(20));
1993		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1994			struct ieee80211_freq_range comb_range;
1995
1996			if (rrule1->freq_range.end_freq_khz !=
1997			    rrule2->freq_range.start_freq_khz)
1998				goto disable_chan;
1999
2000			comb_range.start_freq_khz =
2001				rrule1->freq_range.start_freq_khz;
2002			comb_range.end_freq_khz =
2003				rrule2->freq_range.end_freq_khz;
2004			comb_range.max_bandwidth_khz =
2005				min_t(u32,
2006				      rrule1->freq_range.max_bandwidth_khz,
2007				      rrule2->freq_range.max_bandwidth_khz);
2008
2009			if (!cfg80211_does_bw_fit_range(&comb_range,
2010							orig_chan_freq,
2011							MHZ_TO_KHZ(20)))
2012				goto disable_chan;
2013
2014			handle_channel_adjacent_rules(wiphy, initiator, chan,
2015						      flags, lr, request_wiphy,
2016						      rrule1, rrule2,
2017						      &comb_range);
2018			return;
2019		}
2020
2021disable_chan:
2022		/* We will disable all channels that do not match our
2023		 * received regulatory rule unless the hint is coming
2024		 * from a Country IE and the Country IE had no information
2025		 * about a band. The IEEE 802.11 spec allows for an AP
2026		 * to send only a subset of the regulatory rules allowed,
2027		 * so an AP in the US that only supports 2.4 GHz may only send
2028		 * a country IE with information for the 2.4 GHz band
2029		 * while 5 GHz is still supported.
2030		 */
2031		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2032		    PTR_ERR(rrule) == -ERANGE)
2033			return;
2034
2035		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2036		    request_wiphy && request_wiphy == wiphy &&
2037		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2038			pr_debug("Disabling freq %d.%03d MHz for good\n",
2039				 chan->center_freq, chan->freq_offset);
2040			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2041			chan->flags = chan->orig_flags;
2042		} else {
2043			pr_debug("Disabling freq %d.%03d MHz\n",
2044				 chan->center_freq, chan->freq_offset);
2045			chan->flags |= IEEE80211_CHAN_DISABLED;
2046		}
2047		return;
2048	}
2049
2050	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2051				   request_wiphy, rrule);
2052}
2053
2054static void handle_band(struct wiphy *wiphy,
2055			enum nl80211_reg_initiator initiator,
2056			struct ieee80211_supported_band *sband)
2057{
2058	unsigned int i;
2059
2060	if (!sband)
2061		return;
2062
2063	for (i = 0; i < sband->n_channels; i++)
2064		handle_channel(wiphy, initiator, &sband->channels[i]);
2065}
2066
2067static bool reg_request_cell_base(struct regulatory_request *request)
2068{
2069	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2070		return false;
2071	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2072}
2073
2074bool reg_last_request_cell_base(void)
2075{
2076	return reg_request_cell_base(get_last_request());
2077}
2078
2079#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2080/* Core specific check */
2081static enum reg_request_treatment
2082reg_ignore_cell_hint(struct regulatory_request *pending_request)
2083{
2084	struct regulatory_request *lr = get_last_request();
2085
2086	if (!reg_num_devs_support_basehint)
2087		return REG_REQ_IGNORE;
2088
2089	if (reg_request_cell_base(lr) &&
2090	    !regdom_changes(pending_request->alpha2))
2091		return REG_REQ_ALREADY_SET;
2092
2093	return REG_REQ_OK;
2094}
2095
2096/* Device specific check */
2097static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2098{
2099	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2100}
2101#else
2102static enum reg_request_treatment
2103reg_ignore_cell_hint(struct regulatory_request *pending_request)
2104{
2105	return REG_REQ_IGNORE;
2106}
2107
2108static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2109{
2110	return true;
2111}
2112#endif
2113
2114static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2115{
2116	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2117	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2118		return true;
2119	return false;
2120}
2121
2122static bool ignore_reg_update(struct wiphy *wiphy,
2123			      enum nl80211_reg_initiator initiator)
2124{
2125	struct regulatory_request *lr = get_last_request();
2126
2127	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2128		return true;
2129
2130	if (!lr) {
2131		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2132			 reg_initiator_name(initiator));
2133		return true;
2134	}
2135
2136	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2137	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2138		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2139			 reg_initiator_name(initiator));
2140		return true;
2141	}
2142
2143	/*
2144	 * wiphy->regd will be set once the device has its own
2145	 * desired regulatory domain set
2146	 */
2147	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2148	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2149	    !is_world_regdom(lr->alpha2)) {
2150		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2151			 reg_initiator_name(initiator));
2152		return true;
2153	}
2154
2155	if (reg_request_cell_base(lr))
2156		return reg_dev_ignore_cell_hint(wiphy);
2157
2158	return false;
2159}
2160
2161static bool reg_is_world_roaming(struct wiphy *wiphy)
2162{
2163	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2164	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2165	struct regulatory_request *lr = get_last_request();
2166
2167	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2168		return true;
2169
2170	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2171	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2172		return true;
2173
2174	return false;
2175}
2176
2177static void reg_call_notifier(struct wiphy *wiphy,
2178			      struct regulatory_request *request)
2179{
2180	if (wiphy->reg_notifier)
2181		wiphy->reg_notifier(wiphy, request);
2182}
2183
2184static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2185			      struct reg_beacon *reg_beacon)
2186{
2187	struct ieee80211_supported_band *sband;
2188	struct ieee80211_channel *chan;
2189	bool channel_changed = false;
2190	struct ieee80211_channel chan_before;
2191	struct regulatory_request *lr = get_last_request();
2192
2193	sband = wiphy->bands[reg_beacon->chan.band];
2194	chan = &sband->channels[chan_idx];
2195
2196	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2197		return;
2198
2199	if (chan->beacon_found)
2200		return;
2201
2202	chan->beacon_found = true;
2203
2204	if (!reg_is_world_roaming(wiphy))
2205		return;
2206
2207	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2208		return;
2209
2210	chan_before = *chan;
2211
2212	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2213		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2214		channel_changed = true;
2215	}
2216
2217	if (channel_changed) {
2218		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2219		if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2220			reg_call_notifier(wiphy, lr);
2221	}
2222}
2223
2224/*
2225 * Called when a scan on a wiphy finds a beacon on
2226 * new channel
2227 */
2228static void wiphy_update_new_beacon(struct wiphy *wiphy,
2229				    struct reg_beacon *reg_beacon)
2230{
2231	unsigned int i;
2232	struct ieee80211_supported_band *sband;
2233
2234	if (!wiphy->bands[reg_beacon->chan.band])
2235		return;
2236
2237	sband = wiphy->bands[reg_beacon->chan.band];
2238
2239	for (i = 0; i < sband->n_channels; i++)
2240		handle_reg_beacon(wiphy, i, reg_beacon);
2241}
2242
2243/*
2244 * Called upon reg changes or a new wiphy is added
2245 */
2246static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2247{
2248	unsigned int i;
2249	struct ieee80211_supported_band *sband;
2250	struct reg_beacon *reg_beacon;
2251
2252	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2253		if (!wiphy->bands[reg_beacon->chan.band])
2254			continue;
2255		sband = wiphy->bands[reg_beacon->chan.band];
2256		for (i = 0; i < sband->n_channels; i++)
2257			handle_reg_beacon(wiphy, i, reg_beacon);
2258	}
2259}
2260
2261/* Reap the advantages of previously found beacons */
2262static void reg_process_beacons(struct wiphy *wiphy)
2263{
2264	/*
2265	 * Means we are just firing up cfg80211, so no beacons would
2266	 * have been processed yet.
2267	 */
2268	if (!last_request)
2269		return;
2270	wiphy_update_beacon_reg(wiphy);
2271}
2272
2273static bool is_ht40_allowed(struct ieee80211_channel *chan)
2274{
2275	if (!chan)
2276		return false;
2277	if (chan->flags & IEEE80211_CHAN_DISABLED)
2278		return false;
2279	/* This would happen when regulatory rules disallow HT40 completely */
2280	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2281		return false;
2282	return true;
2283}
2284
2285static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2286					 struct ieee80211_channel *channel)
2287{
2288	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2289	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2290	const struct ieee80211_regdomain *regd;
2291	unsigned int i;
2292	u32 flags;
2293
2294	if (!is_ht40_allowed(channel)) {
2295		channel->flags |= IEEE80211_CHAN_NO_HT40;
2296		return;
2297	}
2298
2299	/*
2300	 * We need to ensure the extension channels exist to
2301	 * be able to use HT40- or HT40+, this finds them (or not)
2302	 */
2303	for (i = 0; i < sband->n_channels; i++) {
2304		struct ieee80211_channel *c = &sband->channels[i];
2305
2306		if (c->center_freq == (channel->center_freq - 20))
2307			channel_before = c;
2308		if (c->center_freq == (channel->center_freq + 20))
2309			channel_after = c;
2310	}
2311
2312	flags = 0;
2313	regd = get_wiphy_regdom(wiphy);
2314	if (regd) {
2315		const struct ieee80211_reg_rule *reg_rule =
2316			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2317					   regd, MHZ_TO_KHZ(20));
2318
2319		if (!IS_ERR(reg_rule))
2320			flags = reg_rule->flags;
2321	}
2322
2323	/*
2324	 * Please note that this assumes target bandwidth is 20 MHz,
2325	 * if that ever changes we also need to change the below logic
2326	 * to include that as well.
2327	 */
2328	if (!is_ht40_allowed(channel_before) ||
2329	    flags & NL80211_RRF_NO_HT40MINUS)
2330		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2331	else
2332		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2333
2334	if (!is_ht40_allowed(channel_after) ||
2335	    flags & NL80211_RRF_NO_HT40PLUS)
2336		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2337	else
2338		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2339}
2340
2341static void reg_process_ht_flags_band(struct wiphy *wiphy,
2342				      struct ieee80211_supported_band *sband)
2343{
2344	unsigned int i;
2345
2346	if (!sband)
2347		return;
2348
2349	for (i = 0; i < sband->n_channels; i++)
2350		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2351}
2352
2353static void reg_process_ht_flags(struct wiphy *wiphy)
2354{
2355	enum nl80211_band band;
2356
2357	if (!wiphy)
2358		return;
2359
2360	for (band = 0; band < NUM_NL80211_BANDS; band++)
2361		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2362}
2363
2364static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2365{
2366	struct cfg80211_chan_def chandef = {};
2367	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2368	enum nl80211_iftype iftype;
2369	bool ret;
2370	int link;
2371
2372	iftype = wdev->iftype;
2373
2374	/* make sure the interface is active */
2375	if (!wdev->netdev || !netif_running(wdev->netdev))
2376		return true;
2377
2378	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2379		struct ieee80211_channel *chan;
2380
2381		if (!wdev->valid_links && link > 0)
2382			break;
2383		if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2384			continue;
2385		switch (iftype) {
2386		case NL80211_IFTYPE_AP:
2387		case NL80211_IFTYPE_P2P_GO:
2388			if (!wdev->links[link].ap.beacon_interval)
2389				continue;
2390			chandef = wdev->links[link].ap.chandef;
2391			break;
2392		case NL80211_IFTYPE_MESH_POINT:
2393			if (!wdev->u.mesh.beacon_interval)
2394				continue;
2395			chandef = wdev->u.mesh.chandef;
2396			break;
2397		case NL80211_IFTYPE_ADHOC:
2398			if (!wdev->u.ibss.ssid_len)
2399				continue;
2400			chandef = wdev->u.ibss.chandef;
2401			break;
2402		case NL80211_IFTYPE_STATION:
2403		case NL80211_IFTYPE_P2P_CLIENT:
2404			/* Maybe we could consider disabling that link only? */
2405			if (!wdev->links[link].client.current_bss)
2406				continue;
2407
2408			chan = wdev->links[link].client.current_bss->pub.channel;
2409			if (!chan)
2410				continue;
2411
2412			if (!rdev->ops->get_channel ||
2413			    rdev_get_channel(rdev, wdev, link, &chandef))
2414				cfg80211_chandef_create(&chandef, chan,
2415							NL80211_CHAN_NO_HT);
2416			break;
2417		case NL80211_IFTYPE_MONITOR:
2418		case NL80211_IFTYPE_AP_VLAN:
2419		case NL80211_IFTYPE_P2P_DEVICE:
2420			/* no enforcement required */
2421			break;
2422		case NL80211_IFTYPE_OCB:
2423			if (!wdev->u.ocb.chandef.chan)
2424				continue;
2425			chandef = wdev->u.ocb.chandef;
2426			break;
2427		case NL80211_IFTYPE_NAN:
2428			/* we have no info, but NAN is also pretty universal */
2429			continue;
2430		default:
2431			/* others not implemented for now */
2432			WARN_ON_ONCE(1);
2433			break;
2434		}
2435
2436		switch (iftype) {
2437		case NL80211_IFTYPE_AP:
2438		case NL80211_IFTYPE_P2P_GO:
2439		case NL80211_IFTYPE_ADHOC:
2440		case NL80211_IFTYPE_MESH_POINT:
2441			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2442							    iftype);
2443			if (!ret)
2444				return ret;
2445			break;
2446		case NL80211_IFTYPE_STATION:
2447		case NL80211_IFTYPE_P2P_CLIENT:
2448			ret = cfg80211_chandef_usable(wiphy, &chandef,
2449						      IEEE80211_CHAN_DISABLED);
2450			if (!ret)
2451				return ret;
2452			break;
2453		default:
2454			break;
2455		}
2456	}
2457
2458	return true;
2459}
2460
2461static void reg_leave_invalid_chans(struct wiphy *wiphy)
2462{
2463	struct wireless_dev *wdev;
2464	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2465
2466	wiphy_lock(wiphy);
2467	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2468		if (!reg_wdev_chan_valid(wiphy, wdev))
2469			cfg80211_leave(rdev, wdev);
2470	wiphy_unlock(wiphy);
2471}
2472
2473static void reg_check_chans_work(struct work_struct *work)
2474{
2475	struct cfg80211_registered_device *rdev;
2476
2477	pr_debug("Verifying active interfaces after reg change\n");
2478	rtnl_lock();
2479
2480	for_each_rdev(rdev)
2481		reg_leave_invalid_chans(&rdev->wiphy);
2482
2483	rtnl_unlock();
2484}
2485
2486void reg_check_channels(void)
2487{
2488	/*
2489	 * Give usermode a chance to do something nicer (move to another
2490	 * channel, orderly disconnection), before forcing a disconnection.
2491	 */
2492	mod_delayed_work(system_power_efficient_wq,
2493			 &reg_check_chans,
2494			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2495}
2496
2497static void wiphy_update_regulatory(struct wiphy *wiphy,
2498				    enum nl80211_reg_initiator initiator)
2499{
2500	enum nl80211_band band;
2501	struct regulatory_request *lr = get_last_request();
2502
2503	if (ignore_reg_update(wiphy, initiator)) {
2504		/*
2505		 * Regulatory updates set by CORE are ignored for custom
2506		 * regulatory cards. Let us notify the changes to the driver,
2507		 * as some drivers used this to restore its orig_* reg domain.
2508		 */
2509		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2510		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2511		    !(wiphy->regulatory_flags &
2512		      REGULATORY_WIPHY_SELF_MANAGED))
2513			reg_call_notifier(wiphy, lr);
2514		return;
2515	}
2516
2517	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2518
2519	for (band = 0; band < NUM_NL80211_BANDS; band++)
2520		handle_band(wiphy, initiator, wiphy->bands[band]);
2521
2522	reg_process_beacons(wiphy);
2523	reg_process_ht_flags(wiphy);
2524	reg_call_notifier(wiphy, lr);
2525}
2526
2527static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2528{
2529	struct cfg80211_registered_device *rdev;
2530	struct wiphy *wiphy;
2531
2532	ASSERT_RTNL();
2533
2534	for_each_rdev(rdev) {
2535		wiphy = &rdev->wiphy;
2536		wiphy_update_regulatory(wiphy, initiator);
2537	}
2538
2539	reg_check_channels();
2540}
2541
2542static void handle_channel_custom(struct wiphy *wiphy,
2543				  struct ieee80211_channel *chan,
2544				  const struct ieee80211_regdomain *regd,
2545				  u32 min_bw)
2546{
2547	u32 bw_flags = 0;
2548	const struct ieee80211_reg_rule *reg_rule = NULL;
2549	const struct ieee80211_power_rule *power_rule = NULL;
2550	u32 bw, center_freq_khz;
2551
2552	center_freq_khz = ieee80211_channel_to_khz(chan);
2553	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2554		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2555		if (!IS_ERR(reg_rule))
2556			break;
2557	}
2558
2559	if (IS_ERR_OR_NULL(reg_rule)) {
2560		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2561			 chan->center_freq, chan->freq_offset);
2562		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2563			chan->flags |= IEEE80211_CHAN_DISABLED;
2564		} else {
2565			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2566			chan->flags = chan->orig_flags;
2567		}
2568		return;
2569	}
2570
2571	power_rule = &reg_rule->power_rule;
2572	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2573
2574	chan->dfs_state_entered = jiffies;
2575	chan->dfs_state = NL80211_DFS_USABLE;
2576
2577	chan->beacon_found = false;
2578
2579	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2580		chan->flags = chan->orig_flags | bw_flags |
2581			      map_regdom_flags(reg_rule->flags);
2582	else
2583		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2584
2585	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2586	chan->max_reg_power = chan->max_power =
2587		(int) MBM_TO_DBM(power_rule->max_eirp);
2588
2589	if (chan->flags & IEEE80211_CHAN_RADAR) {
2590		if (reg_rule->dfs_cac_ms)
2591			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2592		else
2593			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2594	}
2595
2596	if (chan->flags & IEEE80211_CHAN_PSD)
2597		chan->psd = reg_rule->psd;
2598
2599	chan->max_power = chan->max_reg_power;
2600}
2601
2602static void handle_band_custom(struct wiphy *wiphy,
2603			       struct ieee80211_supported_band *sband,
2604			       const struct ieee80211_regdomain *regd)
2605{
2606	unsigned int i;
2607
2608	if (!sband)
2609		return;
2610
2611	/*
2612	 * We currently assume that you always want at least 20 MHz,
2613	 * otherwise channel 12 might get enabled if this rule is
2614	 * compatible to US, which permits 2402 - 2472 MHz.
2615	 */
2616	for (i = 0; i < sband->n_channels; i++)
2617		handle_channel_custom(wiphy, &sband->channels[i], regd,
2618				      MHZ_TO_KHZ(20));
2619}
2620
2621/* Used by drivers prior to wiphy registration */
2622void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2623				   const struct ieee80211_regdomain *regd)
2624{
2625	const struct ieee80211_regdomain *new_regd, *tmp;
2626	enum nl80211_band band;
2627	unsigned int bands_set = 0;
2628
2629	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2630	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2631	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2632
2633	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2634		if (!wiphy->bands[band])
2635			continue;
2636		handle_band_custom(wiphy, wiphy->bands[band], regd);
2637		bands_set++;
2638	}
2639
2640	/*
2641	 * no point in calling this if it won't have any effect
2642	 * on your device's supported bands.
2643	 */
2644	WARN_ON(!bands_set);
2645	new_regd = reg_copy_regd(regd);
2646	if (IS_ERR(new_regd))
2647		return;
2648
2649	rtnl_lock();
2650	wiphy_lock(wiphy);
2651
2652	tmp = get_wiphy_regdom(wiphy);
2653	rcu_assign_pointer(wiphy->regd, new_regd);
2654	rcu_free_regdom(tmp);
2655
2656	wiphy_unlock(wiphy);
2657	rtnl_unlock();
2658}
2659EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2660
2661static void reg_set_request_processed(void)
2662{
2663	bool need_more_processing = false;
2664	struct regulatory_request *lr = get_last_request();
2665
2666	lr->processed = true;
2667
2668	spin_lock(&reg_requests_lock);
2669	if (!list_empty(&reg_requests_list))
2670		need_more_processing = true;
2671	spin_unlock(&reg_requests_lock);
2672
2673	cancel_crda_timeout();
2674
2675	if (need_more_processing)
2676		schedule_work(&reg_work);
2677}
2678
2679/**
2680 * reg_process_hint_core - process core regulatory requests
2681 * @core_request: a pending core regulatory request
2682 *
2683 * The wireless subsystem can use this function to process
2684 * a regulatory request issued by the regulatory core.
2685 *
2686 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2687 *	hint was processed or ignored
2688 */
2689static enum reg_request_treatment
2690reg_process_hint_core(struct regulatory_request *core_request)
2691{
2692	if (reg_query_database(core_request)) {
2693		core_request->intersect = false;
2694		core_request->processed = false;
2695		reg_update_last_request(core_request);
2696		return REG_REQ_OK;
2697	}
2698
2699	return REG_REQ_IGNORE;
2700}
2701
2702static enum reg_request_treatment
2703__reg_process_hint_user(struct regulatory_request *user_request)
2704{
2705	struct regulatory_request *lr = get_last_request();
2706
2707	if (reg_request_cell_base(user_request))
2708		return reg_ignore_cell_hint(user_request);
2709
2710	if (reg_request_cell_base(lr))
2711		return REG_REQ_IGNORE;
2712
2713	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2714		return REG_REQ_INTERSECT;
2715	/*
2716	 * If the user knows better the user should set the regdom
2717	 * to their country before the IE is picked up
2718	 */
2719	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2720	    lr->intersect)
2721		return REG_REQ_IGNORE;
2722	/*
2723	 * Process user requests only after previous user/driver/core
2724	 * requests have been processed
2725	 */
2726	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2727	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2728	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2729	    regdom_changes(lr->alpha2))
2730		return REG_REQ_IGNORE;
2731
2732	if (!regdom_changes(user_request->alpha2))
2733		return REG_REQ_ALREADY_SET;
2734
2735	return REG_REQ_OK;
2736}
2737
2738/**
2739 * reg_process_hint_user - process user regulatory requests
2740 * @user_request: a pending user regulatory request
2741 *
2742 * The wireless subsystem can use this function to process
2743 * a regulatory request initiated by userspace.
2744 *
2745 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2746 *	hint was processed or ignored
2747 */
2748static enum reg_request_treatment
2749reg_process_hint_user(struct regulatory_request *user_request)
2750{
2751	enum reg_request_treatment treatment;
2752
2753	treatment = __reg_process_hint_user(user_request);
2754	if (treatment == REG_REQ_IGNORE ||
2755	    treatment == REG_REQ_ALREADY_SET)
2756		return REG_REQ_IGNORE;
2757
2758	user_request->intersect = treatment == REG_REQ_INTERSECT;
2759	user_request->processed = false;
2760
2761	if (reg_query_database(user_request)) {
2762		reg_update_last_request(user_request);
2763		user_alpha2[0] = user_request->alpha2[0];
2764		user_alpha2[1] = user_request->alpha2[1];
2765		return REG_REQ_OK;
2766	}
2767
2768	return REG_REQ_IGNORE;
2769}
2770
2771static enum reg_request_treatment
2772__reg_process_hint_driver(struct regulatory_request *driver_request)
2773{
2774	struct regulatory_request *lr = get_last_request();
2775
2776	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2777		if (regdom_changes(driver_request->alpha2))
2778			return REG_REQ_OK;
2779		return REG_REQ_ALREADY_SET;
2780	}
2781
2782	/*
2783	 * This would happen if you unplug and plug your card
2784	 * back in or if you add a new device for which the previously
2785	 * loaded card also agrees on the regulatory domain.
2786	 */
2787	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2788	    !regdom_changes(driver_request->alpha2))
2789		return REG_REQ_ALREADY_SET;
2790
2791	return REG_REQ_INTERSECT;
2792}
2793
2794/**
2795 * reg_process_hint_driver - process driver regulatory requests
2796 * @wiphy: the wireless device for the regulatory request
2797 * @driver_request: a pending driver regulatory request
2798 *
2799 * The wireless subsystem can use this function to process
2800 * a regulatory request issued by an 802.11 driver.
2801 *
2802 * Returns: one of the different reg request treatment values.
2803 */
2804static enum reg_request_treatment
2805reg_process_hint_driver(struct wiphy *wiphy,
2806			struct regulatory_request *driver_request)
2807{
2808	const struct ieee80211_regdomain *regd, *tmp;
2809	enum reg_request_treatment treatment;
2810
2811	treatment = __reg_process_hint_driver(driver_request);
2812
2813	switch (treatment) {
2814	case REG_REQ_OK:
2815		break;
2816	case REG_REQ_IGNORE:
2817		return REG_REQ_IGNORE;
2818	case REG_REQ_INTERSECT:
2819	case REG_REQ_ALREADY_SET:
2820		regd = reg_copy_regd(get_cfg80211_regdom());
2821		if (IS_ERR(regd))
2822			return REG_REQ_IGNORE;
2823
2824		tmp = get_wiphy_regdom(wiphy);
2825		ASSERT_RTNL();
2826		wiphy_lock(wiphy);
2827		rcu_assign_pointer(wiphy->regd, regd);
2828		wiphy_unlock(wiphy);
2829		rcu_free_regdom(tmp);
2830	}
2831
2832
2833	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2834	driver_request->processed = false;
2835
2836	/*
2837	 * Since CRDA will not be called in this case as we already
2838	 * have applied the requested regulatory domain before we just
2839	 * inform userspace we have processed the request
2840	 */
2841	if (treatment == REG_REQ_ALREADY_SET) {
2842		nl80211_send_reg_change_event(driver_request);
2843		reg_update_last_request(driver_request);
2844		reg_set_request_processed();
2845		return REG_REQ_ALREADY_SET;
2846	}
2847
2848	if (reg_query_database(driver_request)) {
2849		reg_update_last_request(driver_request);
2850		return REG_REQ_OK;
2851	}
2852
2853	return REG_REQ_IGNORE;
2854}
2855
2856static enum reg_request_treatment
2857__reg_process_hint_country_ie(struct wiphy *wiphy,
2858			      struct regulatory_request *country_ie_request)
2859{
2860	struct wiphy *last_wiphy = NULL;
2861	struct regulatory_request *lr = get_last_request();
2862
2863	if (reg_request_cell_base(lr)) {
2864		/* Trust a Cell base station over the AP's country IE */
2865		if (regdom_changes(country_ie_request->alpha2))
2866			return REG_REQ_IGNORE;
2867		return REG_REQ_ALREADY_SET;
2868	} else {
2869		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2870			return REG_REQ_IGNORE;
2871	}
2872
2873	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2874		return -EINVAL;
2875
2876	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2877		return REG_REQ_OK;
2878
2879	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2880
2881	if (last_wiphy != wiphy) {
2882		/*
2883		 * Two cards with two APs claiming different
2884		 * Country IE alpha2s. We could
2885		 * intersect them, but that seems unlikely
2886		 * to be correct. Reject second one for now.
2887		 */
2888		if (regdom_changes(country_ie_request->alpha2))
2889			return REG_REQ_IGNORE;
2890		return REG_REQ_ALREADY_SET;
2891	}
2892
2893	if (regdom_changes(country_ie_request->alpha2))
2894		return REG_REQ_OK;
2895	return REG_REQ_ALREADY_SET;
2896}
2897
2898/**
2899 * reg_process_hint_country_ie - process regulatory requests from country IEs
2900 * @wiphy: the wireless device for the regulatory request
2901 * @country_ie_request: a regulatory request from a country IE
2902 *
2903 * The wireless subsystem can use this function to process
2904 * a regulatory request issued by a country Information Element.
2905 *
2906 * Returns: one of the different reg request treatment values.
2907 */
2908static enum reg_request_treatment
2909reg_process_hint_country_ie(struct wiphy *wiphy,
2910			    struct regulatory_request *country_ie_request)
2911{
2912	enum reg_request_treatment treatment;
2913
2914	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2915
2916	switch (treatment) {
2917	case REG_REQ_OK:
2918		break;
2919	case REG_REQ_IGNORE:
2920		return REG_REQ_IGNORE;
2921	case REG_REQ_ALREADY_SET:
2922		reg_free_request(country_ie_request);
2923		return REG_REQ_ALREADY_SET;
2924	case REG_REQ_INTERSECT:
2925		/*
2926		 * This doesn't happen yet, not sure we
2927		 * ever want to support it for this case.
2928		 */
2929		WARN_ONCE(1, "Unexpected intersection for country elements");
2930		return REG_REQ_IGNORE;
2931	}
2932
2933	country_ie_request->intersect = false;
2934	country_ie_request->processed = false;
2935
2936	if (reg_query_database(country_ie_request)) {
2937		reg_update_last_request(country_ie_request);
2938		return REG_REQ_OK;
2939	}
2940
2941	return REG_REQ_IGNORE;
2942}
2943
2944bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2945{
2946	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2947	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2948	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2949	bool dfs_domain_same;
2950
2951	rcu_read_lock();
2952
2953	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2954	wiphy1_regd = rcu_dereference(wiphy1->regd);
2955	if (!wiphy1_regd)
2956		wiphy1_regd = cfg80211_regd;
2957
2958	wiphy2_regd = rcu_dereference(wiphy2->regd);
2959	if (!wiphy2_regd)
2960		wiphy2_regd = cfg80211_regd;
2961
2962	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2963
2964	rcu_read_unlock();
2965
2966	return dfs_domain_same;
2967}
2968
2969static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2970				    struct ieee80211_channel *src_chan)
2971{
2972	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2973	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2974		return;
2975
2976	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2977	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2978		return;
2979
2980	if (src_chan->center_freq == dst_chan->center_freq &&
2981	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2982		dst_chan->dfs_state = src_chan->dfs_state;
2983		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2984	}
2985}
2986
2987static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2988				       struct wiphy *src_wiphy)
2989{
2990	struct ieee80211_supported_band *src_sband, *dst_sband;
2991	struct ieee80211_channel *src_chan, *dst_chan;
2992	int i, j, band;
2993
2994	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2995		return;
2996
2997	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2998		dst_sband = dst_wiphy->bands[band];
2999		src_sband = src_wiphy->bands[band];
3000		if (!dst_sband || !src_sband)
3001			continue;
3002
3003		for (i = 0; i < dst_sband->n_channels; i++) {
3004			dst_chan = &dst_sband->channels[i];
3005			for (j = 0; j < src_sband->n_channels; j++) {
3006				src_chan = &src_sband->channels[j];
3007				reg_copy_dfs_chan_state(dst_chan, src_chan);
3008			}
3009		}
3010	}
3011}
3012
3013static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3014{
3015	struct cfg80211_registered_device *rdev;
3016
3017	ASSERT_RTNL();
3018
3019	for_each_rdev(rdev) {
3020		if (wiphy == &rdev->wiphy)
3021			continue;
3022		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3023	}
3024}
3025
3026/* This processes *all* regulatory hints */
3027static void reg_process_hint(struct regulatory_request *reg_request)
3028{
3029	struct wiphy *wiphy = NULL;
3030	enum reg_request_treatment treatment;
3031	enum nl80211_reg_initiator initiator = reg_request->initiator;
3032
3033	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3034		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3035
3036	switch (initiator) {
3037	case NL80211_REGDOM_SET_BY_CORE:
3038		treatment = reg_process_hint_core(reg_request);
3039		break;
3040	case NL80211_REGDOM_SET_BY_USER:
3041		treatment = reg_process_hint_user(reg_request);
3042		break;
3043	case NL80211_REGDOM_SET_BY_DRIVER:
3044		if (!wiphy)
3045			goto out_free;
3046		treatment = reg_process_hint_driver(wiphy, reg_request);
3047		break;
3048	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3049		if (!wiphy)
3050			goto out_free;
3051		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3052		break;
3053	default:
3054		WARN(1, "invalid initiator %d\n", initiator);
3055		goto out_free;
3056	}
3057
3058	if (treatment == REG_REQ_IGNORE)
3059		goto out_free;
3060
3061	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3062	     "unexpected treatment value %d\n", treatment);
3063
3064	/* This is required so that the orig_* parameters are saved.
3065	 * NOTE: treatment must be set for any case that reaches here!
3066	 */
3067	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3068	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3069		wiphy_update_regulatory(wiphy, initiator);
3070		wiphy_all_share_dfs_chan_state(wiphy);
3071		reg_check_channels();
3072	}
3073
3074	return;
3075
3076out_free:
3077	reg_free_request(reg_request);
3078}
3079
3080static void notify_self_managed_wiphys(struct regulatory_request *request)
3081{
3082	struct cfg80211_registered_device *rdev;
3083	struct wiphy *wiphy;
3084
3085	for_each_rdev(rdev) {
3086		wiphy = &rdev->wiphy;
3087		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3088		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3089			reg_call_notifier(wiphy, request);
3090	}
3091}
3092
3093/*
3094 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3095 * Regulatory hints come on a first come first serve basis and we
3096 * must process each one atomically.
3097 */
3098static void reg_process_pending_hints(void)
3099{
3100	struct regulatory_request *reg_request, *lr;
3101
3102	lr = get_last_request();
3103
3104	/* When last_request->processed becomes true this will be rescheduled */
3105	if (lr && !lr->processed) {
3106		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3107		return;
3108	}
3109
3110	spin_lock(&reg_requests_lock);
3111
3112	if (list_empty(&reg_requests_list)) {
3113		spin_unlock(&reg_requests_lock);
3114		return;
3115	}
3116
3117	reg_request = list_first_entry(&reg_requests_list,
3118				       struct regulatory_request,
3119				       list);
3120	list_del_init(&reg_request->list);
3121
3122	spin_unlock(&reg_requests_lock);
3123
3124	notify_self_managed_wiphys(reg_request);
3125
3126	reg_process_hint(reg_request);
3127
3128	lr = get_last_request();
3129
3130	spin_lock(&reg_requests_lock);
3131	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3132		schedule_work(&reg_work);
3133	spin_unlock(&reg_requests_lock);
3134}
3135
3136/* Processes beacon hints -- this has nothing to do with country IEs */
3137static void reg_process_pending_beacon_hints(void)
3138{
3139	struct cfg80211_registered_device *rdev;
3140	struct reg_beacon *pending_beacon, *tmp;
3141
3142	/* This goes through the _pending_ beacon list */
3143	spin_lock_bh(&reg_pending_beacons_lock);
3144
3145	list_for_each_entry_safe(pending_beacon, tmp,
3146				 &reg_pending_beacons, list) {
3147		list_del_init(&pending_beacon->list);
3148
3149		/* Applies the beacon hint to current wiphys */
3150		for_each_rdev(rdev)
3151			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3152
3153		/* Remembers the beacon hint for new wiphys or reg changes */
3154		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3155	}
3156
3157	spin_unlock_bh(&reg_pending_beacons_lock);
3158}
3159
3160static void reg_process_self_managed_hint(struct wiphy *wiphy)
3161{
3162	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3163	const struct ieee80211_regdomain *tmp;
3164	const struct ieee80211_regdomain *regd;
3165	enum nl80211_band band;
3166	struct regulatory_request request = {};
3167
3168	ASSERT_RTNL();
3169	lockdep_assert_wiphy(wiphy);
3170
3171	spin_lock(&reg_requests_lock);
3172	regd = rdev->requested_regd;
3173	rdev->requested_regd = NULL;
3174	spin_unlock(&reg_requests_lock);
3175
3176	if (!regd)
3177		return;
3178
3179	tmp = get_wiphy_regdom(wiphy);
3180	rcu_assign_pointer(wiphy->regd, regd);
3181	rcu_free_regdom(tmp);
3182
3183	for (band = 0; band < NUM_NL80211_BANDS; band++)
3184		handle_band_custom(wiphy, wiphy->bands[band], regd);
3185
3186	reg_process_ht_flags(wiphy);
3187
3188	request.wiphy_idx = get_wiphy_idx(wiphy);
3189	request.alpha2[0] = regd->alpha2[0];
3190	request.alpha2[1] = regd->alpha2[1];
3191	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3192
3193	if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3194		reg_call_notifier(wiphy, &request);
3195
3196	nl80211_send_wiphy_reg_change_event(&request);
3197}
3198
3199static void reg_process_self_managed_hints(void)
3200{
3201	struct cfg80211_registered_device *rdev;
3202
3203	ASSERT_RTNL();
3204
3205	for_each_rdev(rdev) {
3206		wiphy_lock(&rdev->wiphy);
3207		reg_process_self_managed_hint(&rdev->wiphy);
3208		wiphy_unlock(&rdev->wiphy);
3209	}
3210
3211	reg_check_channels();
3212}
3213
3214static void reg_todo(struct work_struct *work)
3215{
3216	rtnl_lock();
3217	reg_process_pending_hints();
3218	reg_process_pending_beacon_hints();
3219	reg_process_self_managed_hints();
3220	rtnl_unlock();
3221}
3222
3223static void queue_regulatory_request(struct regulatory_request *request)
3224{
3225	request->alpha2[0] = toupper(request->alpha2[0]);
3226	request->alpha2[1] = toupper(request->alpha2[1]);
3227
3228	spin_lock(&reg_requests_lock);
3229	list_add_tail(&request->list, &reg_requests_list);
3230	spin_unlock(&reg_requests_lock);
3231
3232	schedule_work(&reg_work);
3233}
3234
3235/*
3236 * Core regulatory hint -- happens during cfg80211_init()
3237 * and when we restore regulatory settings.
3238 */
3239static int regulatory_hint_core(const char *alpha2)
3240{
3241	struct regulatory_request *request;
3242
3243	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3244	if (!request)
3245		return -ENOMEM;
3246
3247	request->alpha2[0] = alpha2[0];
3248	request->alpha2[1] = alpha2[1];
3249	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3250	request->wiphy_idx = WIPHY_IDX_INVALID;
3251
3252	queue_regulatory_request(request);
3253
3254	return 0;
3255}
3256
3257/* User hints */
3258int regulatory_hint_user(const char *alpha2,
3259			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3260{
3261	struct regulatory_request *request;
3262
3263	if (WARN_ON(!alpha2))
3264		return -EINVAL;
3265
3266	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3267		return -EINVAL;
3268
3269	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3270	if (!request)
3271		return -ENOMEM;
3272
3273	request->wiphy_idx = WIPHY_IDX_INVALID;
3274	request->alpha2[0] = alpha2[0];
3275	request->alpha2[1] = alpha2[1];
3276	request->initiator = NL80211_REGDOM_SET_BY_USER;
3277	request->user_reg_hint_type = user_reg_hint_type;
3278
3279	/* Allow calling CRDA again */
3280	reset_crda_timeouts();
3281
3282	queue_regulatory_request(request);
3283
3284	return 0;
3285}
3286
3287void regulatory_hint_indoor(bool is_indoor, u32 portid)
3288{
3289	spin_lock(&reg_indoor_lock);
3290
3291	/* It is possible that more than one user space process is trying to
3292	 * configure the indoor setting. To handle such cases, clear the indoor
3293	 * setting in case that some process does not think that the device
3294	 * is operating in an indoor environment. In addition, if a user space
3295	 * process indicates that it is controlling the indoor setting, save its
3296	 * portid, i.e., make it the owner.
3297	 */
3298	reg_is_indoor = is_indoor;
3299	if (reg_is_indoor) {
3300		if (!reg_is_indoor_portid)
3301			reg_is_indoor_portid = portid;
3302	} else {
3303		reg_is_indoor_portid = 0;
3304	}
3305
3306	spin_unlock(&reg_indoor_lock);
3307
3308	if (!is_indoor)
3309		reg_check_channels();
3310}
3311
3312void regulatory_netlink_notify(u32 portid)
3313{
3314	spin_lock(&reg_indoor_lock);
3315
3316	if (reg_is_indoor_portid != portid) {
3317		spin_unlock(&reg_indoor_lock);
3318		return;
3319	}
3320
3321	reg_is_indoor = false;
3322	reg_is_indoor_portid = 0;
3323
3324	spin_unlock(&reg_indoor_lock);
3325
3326	reg_check_channels();
3327}
3328
3329/* Driver hints */
3330int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3331{
3332	struct regulatory_request *request;
3333
3334	if (WARN_ON(!alpha2 || !wiphy))
3335		return -EINVAL;
3336
3337	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3338
3339	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3340	if (!request)
3341		return -ENOMEM;
3342
3343	request->wiphy_idx = get_wiphy_idx(wiphy);
3344
3345	request->alpha2[0] = alpha2[0];
3346	request->alpha2[1] = alpha2[1];
3347	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3348
3349	/* Allow calling CRDA again */
3350	reset_crda_timeouts();
3351
3352	queue_regulatory_request(request);
3353
3354	return 0;
3355}
3356EXPORT_SYMBOL(regulatory_hint);
3357
3358void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3359				const u8 *country_ie, u8 country_ie_len)
3360{
3361	char alpha2[2];
3362	enum environment_cap env = ENVIRON_ANY;
3363	struct regulatory_request *request = NULL, *lr;
3364
3365	/* IE len must be evenly divisible by 2 */
3366	if (country_ie_len & 0x01)
3367		return;
3368
3369	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3370		return;
3371
3372	request = kzalloc(sizeof(*request), GFP_KERNEL);
3373	if (!request)
3374		return;
3375
3376	alpha2[0] = country_ie[0];
3377	alpha2[1] = country_ie[1];
3378
3379	if (country_ie[2] == 'I')
3380		env = ENVIRON_INDOOR;
3381	else if (country_ie[2] == 'O')
3382		env = ENVIRON_OUTDOOR;
3383
3384	rcu_read_lock();
3385	lr = get_last_request();
3386
3387	if (unlikely(!lr))
3388		goto out;
3389
3390	/*
3391	 * We will run this only upon a successful connection on cfg80211.
3392	 * We leave conflict resolution to the workqueue, where can hold
3393	 * the RTNL.
3394	 */
3395	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3396	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3397		goto out;
3398
3399	request->wiphy_idx = get_wiphy_idx(wiphy);
3400	request->alpha2[0] = alpha2[0];
3401	request->alpha2[1] = alpha2[1];
3402	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3403	request->country_ie_env = env;
3404
3405	/* Allow calling CRDA again */
3406	reset_crda_timeouts();
3407
3408	queue_regulatory_request(request);
3409	request = NULL;
3410out:
3411	kfree(request);
3412	rcu_read_unlock();
3413}
3414
3415static void restore_alpha2(char *alpha2, bool reset_user)
3416{
3417	/* indicates there is no alpha2 to consider for restoration */
3418	alpha2[0] = '9';
3419	alpha2[1] = '7';
3420
3421	/* The user setting has precedence over the module parameter */
3422	if (is_user_regdom_saved()) {
3423		/* Unless we're asked to ignore it and reset it */
3424		if (reset_user) {
3425			pr_debug("Restoring regulatory settings including user preference\n");
3426			user_alpha2[0] = '9';
3427			user_alpha2[1] = '7';
3428
3429			/*
3430			 * If we're ignoring user settings, we still need to
3431			 * check the module parameter to ensure we put things
3432			 * back as they were for a full restore.
3433			 */
3434			if (!is_world_regdom(ieee80211_regdom)) {
3435				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3436					 ieee80211_regdom[0], ieee80211_regdom[1]);
3437				alpha2[0] = ieee80211_regdom[0];
3438				alpha2[1] = ieee80211_regdom[1];
3439			}
3440		} else {
3441			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3442				 user_alpha2[0], user_alpha2[1]);
3443			alpha2[0] = user_alpha2[0];
3444			alpha2[1] = user_alpha2[1];
3445		}
3446	} else if (!is_world_regdom(ieee80211_regdom)) {
3447		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3448			 ieee80211_regdom[0], ieee80211_regdom[1]);
3449		alpha2[0] = ieee80211_regdom[0];
3450		alpha2[1] = ieee80211_regdom[1];
3451	} else
3452		pr_debug("Restoring regulatory settings\n");
3453}
3454
3455static void restore_custom_reg_settings(struct wiphy *wiphy)
3456{
3457	struct ieee80211_supported_band *sband;
3458	enum nl80211_band band;
3459	struct ieee80211_channel *chan;
3460	int i;
3461
3462	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3463		sband = wiphy->bands[band];
3464		if (!sband)
3465			continue;
3466		for (i = 0; i < sband->n_channels; i++) {
3467			chan = &sband->channels[i];
3468			chan->flags = chan->orig_flags;
3469			chan->max_antenna_gain = chan->orig_mag;
3470			chan->max_power = chan->orig_mpwr;
3471			chan->beacon_found = false;
3472		}
3473	}
3474}
3475
3476/*
3477 * Restoring regulatory settings involves ignoring any
3478 * possibly stale country IE information and user regulatory
3479 * settings if so desired, this includes any beacon hints
3480 * learned as we could have traveled outside to another country
3481 * after disconnection. To restore regulatory settings we do
3482 * exactly what we did at bootup:
3483 *
3484 *   - send a core regulatory hint
3485 *   - send a user regulatory hint if applicable
3486 *
3487 * Device drivers that send a regulatory hint for a specific country
3488 * keep their own regulatory domain on wiphy->regd so that does
3489 * not need to be remembered.
3490 */
3491static void restore_regulatory_settings(bool reset_user, bool cached)
3492{
3493	char alpha2[2];
3494	char world_alpha2[2];
3495	struct reg_beacon *reg_beacon, *btmp;
3496	LIST_HEAD(tmp_reg_req_list);
3497	struct cfg80211_registered_device *rdev;
3498
3499	ASSERT_RTNL();
3500
3501	/*
3502	 * Clear the indoor setting in case that it is not controlled by user
3503	 * space, as otherwise there is no guarantee that the device is still
3504	 * operating in an indoor environment.
3505	 */
3506	spin_lock(&reg_indoor_lock);
3507	if (reg_is_indoor && !reg_is_indoor_portid) {
3508		reg_is_indoor = false;
3509		reg_check_channels();
3510	}
3511	spin_unlock(&reg_indoor_lock);
3512
3513	reset_regdomains(true, &world_regdom);
3514	restore_alpha2(alpha2, reset_user);
3515
3516	/*
3517	 * If there's any pending requests we simply
3518	 * stash them to a temporary pending queue and
3519	 * add then after we've restored regulatory
3520	 * settings.
3521	 */
3522	spin_lock(&reg_requests_lock);
3523	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3524	spin_unlock(&reg_requests_lock);
3525
3526	/* Clear beacon hints */
3527	spin_lock_bh(&reg_pending_beacons_lock);
3528	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3529		list_del(&reg_beacon->list);
3530		kfree(reg_beacon);
3531	}
3532	spin_unlock_bh(&reg_pending_beacons_lock);
3533
3534	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3535		list_del(&reg_beacon->list);
3536		kfree(reg_beacon);
3537	}
3538
3539	/* First restore to the basic regulatory settings */
3540	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3541	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3542
3543	for_each_rdev(rdev) {
3544		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3545			continue;
3546		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3547			restore_custom_reg_settings(&rdev->wiphy);
3548	}
3549
3550	if (cached && (!is_an_alpha2(alpha2) ||
3551		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3552		reset_regdomains(false, cfg80211_world_regdom);
3553		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3554		print_regdomain(get_cfg80211_regdom());
3555		nl80211_send_reg_change_event(&core_request_world);
3556		reg_set_request_processed();
3557
3558		if (is_an_alpha2(alpha2) &&
3559		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3560			struct regulatory_request *ureq;
3561
3562			spin_lock(&reg_requests_lock);
3563			ureq = list_last_entry(&reg_requests_list,
3564					       struct regulatory_request,
3565					       list);
3566			list_del(&ureq->list);
3567			spin_unlock(&reg_requests_lock);
3568
3569			notify_self_managed_wiphys(ureq);
3570			reg_update_last_request(ureq);
3571			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3572				   REGD_SOURCE_CACHED);
3573		}
3574	} else {
3575		regulatory_hint_core(world_alpha2);
3576
3577		/*
3578		 * This restores the ieee80211_regdom module parameter
3579		 * preference or the last user requested regulatory
3580		 * settings, user regulatory settings takes precedence.
3581		 */
3582		if (is_an_alpha2(alpha2))
3583			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3584	}
3585
3586	spin_lock(&reg_requests_lock);
3587	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3588	spin_unlock(&reg_requests_lock);
3589
3590	pr_debug("Kicking the queue\n");
3591
3592	schedule_work(&reg_work);
3593}
3594
3595static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3596{
3597	struct cfg80211_registered_device *rdev;
3598	struct wireless_dev *wdev;
3599
3600	for_each_rdev(rdev) {
3601		wiphy_lock(&rdev->wiphy);
3602		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3603			if (!(wdev->wiphy->regulatory_flags & flag)) {
3604				wiphy_unlock(&rdev->wiphy);
3605				return false;
3606			}
3607		}
3608		wiphy_unlock(&rdev->wiphy);
3609	}
3610
3611	return true;
3612}
3613
3614void regulatory_hint_disconnect(void)
3615{
3616	/* Restore of regulatory settings is not required when wiphy(s)
3617	 * ignore IE from connected access point but clearance of beacon hints
3618	 * is required when wiphy(s) supports beacon hints.
3619	 */
3620	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3621		struct reg_beacon *reg_beacon, *btmp;
3622
3623		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3624			return;
3625
3626		spin_lock_bh(&reg_pending_beacons_lock);
3627		list_for_each_entry_safe(reg_beacon, btmp,
3628					 &reg_pending_beacons, list) {
3629			list_del(&reg_beacon->list);
3630			kfree(reg_beacon);
3631		}
3632		spin_unlock_bh(&reg_pending_beacons_lock);
3633
3634		list_for_each_entry_safe(reg_beacon, btmp,
3635					 &reg_beacon_list, list) {
3636			list_del(&reg_beacon->list);
3637			kfree(reg_beacon);
3638		}
3639
3640		return;
3641	}
3642
3643	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3644	restore_regulatory_settings(false, true);
3645}
3646
3647static bool freq_is_chan_12_13_14(u32 freq)
3648{
3649	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3650	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3651	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3652		return true;
3653	return false;
3654}
3655
3656static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3657{
3658	struct reg_beacon *pending_beacon;
3659
3660	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3661		if (ieee80211_channel_equal(beacon_chan,
3662					    &pending_beacon->chan))
3663			return true;
3664	return false;
3665}
3666
3667void regulatory_hint_found_beacon(struct wiphy *wiphy,
3668				  struct ieee80211_channel *beacon_chan,
3669				  gfp_t gfp)
3670{
3671	struct reg_beacon *reg_beacon;
3672	bool processing;
3673
3674	if (beacon_chan->beacon_found ||
3675	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3676	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3677	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3678		return;
3679
3680	spin_lock_bh(&reg_pending_beacons_lock);
3681	processing = pending_reg_beacon(beacon_chan);
3682	spin_unlock_bh(&reg_pending_beacons_lock);
3683
3684	if (processing)
3685		return;
3686
3687	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3688	if (!reg_beacon)
3689		return;
3690
3691	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3692		 beacon_chan->center_freq, beacon_chan->freq_offset,
3693		 ieee80211_freq_khz_to_channel(
3694			 ieee80211_channel_to_khz(beacon_chan)),
3695		 wiphy_name(wiphy));
3696
3697	memcpy(&reg_beacon->chan, beacon_chan,
3698	       sizeof(struct ieee80211_channel));
3699
3700	/*
3701	 * Since we can be called from BH or and non-BH context
3702	 * we must use spin_lock_bh()
3703	 */
3704	spin_lock_bh(&reg_pending_beacons_lock);
3705	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3706	spin_unlock_bh(&reg_pending_beacons_lock);
3707
3708	schedule_work(&reg_work);
3709}
3710
3711static void print_rd_rules(const struct ieee80211_regdomain *rd)
3712{
3713	unsigned int i;
3714	const struct ieee80211_reg_rule *reg_rule = NULL;
3715	const struct ieee80211_freq_range *freq_range = NULL;
3716	const struct ieee80211_power_rule *power_rule = NULL;
3717	char bw[32], cac_time[32];
3718
3719	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3720
3721	for (i = 0; i < rd->n_reg_rules; i++) {
3722		reg_rule = &rd->reg_rules[i];
3723		freq_range = &reg_rule->freq_range;
3724		power_rule = &reg_rule->power_rule;
3725
3726		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3727			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3728				 freq_range->max_bandwidth_khz,
3729				 reg_get_max_bandwidth(rd, reg_rule));
3730		else
3731			snprintf(bw, sizeof(bw), "%d KHz",
3732				 freq_range->max_bandwidth_khz);
3733
3734		if (reg_rule->flags & NL80211_RRF_DFS)
3735			scnprintf(cac_time, sizeof(cac_time), "%u s",
3736				  reg_rule->dfs_cac_ms/1000);
3737		else
3738			scnprintf(cac_time, sizeof(cac_time), "N/A");
3739
3740
3741		/*
3742		 * There may not be documentation for max antenna gain
3743		 * in certain regions
3744		 */
3745		if (power_rule->max_antenna_gain)
3746			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3747				freq_range->start_freq_khz,
3748				freq_range->end_freq_khz,
3749				bw,
3750				power_rule->max_antenna_gain,
3751				power_rule->max_eirp,
3752				cac_time);
3753		else
3754			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3755				freq_range->start_freq_khz,
3756				freq_range->end_freq_khz,
3757				bw,
3758				power_rule->max_eirp,
3759				cac_time);
3760	}
3761}
3762
3763bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3764{
3765	switch (dfs_region) {
3766	case NL80211_DFS_UNSET:
3767	case NL80211_DFS_FCC:
3768	case NL80211_DFS_ETSI:
3769	case NL80211_DFS_JP:
3770		return true;
3771	default:
3772		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3773		return false;
3774	}
3775}
3776
3777static void print_regdomain(const struct ieee80211_regdomain *rd)
3778{
3779	struct regulatory_request *lr = get_last_request();
3780
3781	if (is_intersected_alpha2(rd->alpha2)) {
3782		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3783			struct cfg80211_registered_device *rdev;
3784			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3785			if (rdev) {
3786				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3787					rdev->country_ie_alpha2[0],
3788					rdev->country_ie_alpha2[1]);
3789			} else
3790				pr_debug("Current regulatory domain intersected:\n");
3791		} else
3792			pr_debug("Current regulatory domain intersected:\n");
3793	} else if (is_world_regdom(rd->alpha2)) {
3794		pr_debug("World regulatory domain updated:\n");
3795	} else {
3796		if (is_unknown_alpha2(rd->alpha2))
3797			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3798		else {
3799			if (reg_request_cell_base(lr))
3800				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3801					rd->alpha2[0], rd->alpha2[1]);
3802			else
3803				pr_debug("Regulatory domain changed to country: %c%c\n",
3804					rd->alpha2[0], rd->alpha2[1]);
3805		}
3806	}
3807
3808	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3809	print_rd_rules(rd);
3810}
3811
3812static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3813{
3814	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3815	print_rd_rules(rd);
3816}
3817
3818static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3819{
3820	if (!is_world_regdom(rd->alpha2))
3821		return -EINVAL;
3822	update_world_regdomain(rd);
3823	return 0;
3824}
3825
3826static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3827			   struct regulatory_request *user_request)
3828{
3829	const struct ieee80211_regdomain *intersected_rd = NULL;
3830
3831	if (!regdom_changes(rd->alpha2))
3832		return -EALREADY;
3833
3834	if (!is_valid_rd(rd)) {
3835		pr_err("Invalid regulatory domain detected: %c%c\n",
3836		       rd->alpha2[0], rd->alpha2[1]);
3837		print_regdomain_info(rd);
3838		return -EINVAL;
3839	}
3840
3841	if (!user_request->intersect) {
3842		reset_regdomains(false, rd);
3843		return 0;
3844	}
3845
3846	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3847	if (!intersected_rd)
3848		return -EINVAL;
3849
3850	kfree(rd);
3851	rd = NULL;
3852	reset_regdomains(false, intersected_rd);
3853
3854	return 0;
3855}
3856
3857static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3858			     struct regulatory_request *driver_request)
3859{
3860	const struct ieee80211_regdomain *regd;
3861	const struct ieee80211_regdomain *intersected_rd = NULL;
3862	const struct ieee80211_regdomain *tmp = NULL;
3863	struct wiphy *request_wiphy;
3864
3865	if (is_world_regdom(rd->alpha2))
3866		return -EINVAL;
3867
3868	if (!regdom_changes(rd->alpha2))
3869		return -EALREADY;
3870
3871	if (!is_valid_rd(rd)) {
3872		pr_err("Invalid regulatory domain detected: %c%c\n",
3873		       rd->alpha2[0], rd->alpha2[1]);
3874		print_regdomain_info(rd);
3875		return -EINVAL;
3876	}
3877
3878	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3879	if (!request_wiphy)
3880		return -ENODEV;
3881
3882	if (!driver_request->intersect) {
3883		ASSERT_RTNL();
3884		wiphy_lock(request_wiphy);
3885		if (request_wiphy->regd)
3886			tmp = get_wiphy_regdom(request_wiphy);
3887
3888		regd = reg_copy_regd(rd);
3889		if (IS_ERR(regd)) {
3890			wiphy_unlock(request_wiphy);
3891			return PTR_ERR(regd);
3892		}
3893
3894		rcu_assign_pointer(request_wiphy->regd, regd);
3895		rcu_free_regdom(tmp);
3896		wiphy_unlock(request_wiphy);
3897		reset_regdomains(false, rd);
3898		return 0;
3899	}
3900
3901	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3902	if (!intersected_rd)
3903		return -EINVAL;
3904
3905	/*
3906	 * We can trash what CRDA provided now.
3907	 * However if a driver requested this specific regulatory
3908	 * domain we keep it for its private use
3909	 */
3910	tmp = get_wiphy_regdom(request_wiphy);
3911	rcu_assign_pointer(request_wiphy->regd, rd);
3912	rcu_free_regdom(tmp);
3913
3914	rd = NULL;
3915
3916	reset_regdomains(false, intersected_rd);
3917
3918	return 0;
3919}
3920
3921static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3922				 struct regulatory_request *country_ie_request)
3923{
3924	struct wiphy *request_wiphy;
3925
3926	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3927	    !is_unknown_alpha2(rd->alpha2))
3928		return -EINVAL;
3929
3930	/*
3931	 * Lets only bother proceeding on the same alpha2 if the current
3932	 * rd is non static (it means CRDA was present and was used last)
3933	 * and the pending request came in from a country IE
3934	 */
3935
3936	if (!is_valid_rd(rd)) {
3937		pr_err("Invalid regulatory domain detected: %c%c\n",
3938		       rd->alpha2[0], rd->alpha2[1]);
3939		print_regdomain_info(rd);
3940		return -EINVAL;
3941	}
3942
3943	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3944	if (!request_wiphy)
3945		return -ENODEV;
3946
3947	if (country_ie_request->intersect)
3948		return -EINVAL;
3949
3950	reset_regdomains(false, rd);
3951	return 0;
3952}
3953
3954/*
3955 * Use this call to set the current regulatory domain. Conflicts with
3956 * multiple drivers can be ironed out later. Caller must've already
3957 * kmalloc'd the rd structure.
3958 */
3959int set_regdom(const struct ieee80211_regdomain *rd,
3960	       enum ieee80211_regd_source regd_src)
3961{
3962	struct regulatory_request *lr;
3963	bool user_reset = false;
3964	int r;
3965
3966	if (IS_ERR_OR_NULL(rd))
3967		return -ENODATA;
3968
3969	if (!reg_is_valid_request(rd->alpha2)) {
3970		kfree(rd);
3971		return -EINVAL;
3972	}
3973
3974	if (regd_src == REGD_SOURCE_CRDA)
3975		reset_crda_timeouts();
3976
3977	lr = get_last_request();
3978
3979	/* Note that this doesn't update the wiphys, this is done below */
3980	switch (lr->initiator) {
3981	case NL80211_REGDOM_SET_BY_CORE:
3982		r = reg_set_rd_core(rd);
3983		break;
3984	case NL80211_REGDOM_SET_BY_USER:
3985		cfg80211_save_user_regdom(rd);
3986		r = reg_set_rd_user(rd, lr);
3987		user_reset = true;
3988		break;
3989	case NL80211_REGDOM_SET_BY_DRIVER:
3990		r = reg_set_rd_driver(rd, lr);
3991		break;
3992	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3993		r = reg_set_rd_country_ie(rd, lr);
3994		break;
3995	default:
3996		WARN(1, "invalid initiator %d\n", lr->initiator);
3997		kfree(rd);
3998		return -EINVAL;
3999	}
4000
4001	if (r) {
4002		switch (r) {
4003		case -EALREADY:
4004			reg_set_request_processed();
4005			break;
4006		default:
4007			/* Back to world regulatory in case of errors */
4008			restore_regulatory_settings(user_reset, false);
4009		}
4010
4011		kfree(rd);
4012		return r;
4013	}
4014
4015	/* This would make this whole thing pointless */
4016	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4017		return -EINVAL;
4018
4019	/* update all wiphys now with the new established regulatory domain */
4020	update_all_wiphy_regulatory(lr->initiator);
4021
4022	print_regdomain(get_cfg80211_regdom());
4023
4024	nl80211_send_reg_change_event(lr);
4025
4026	reg_set_request_processed();
4027
4028	return 0;
4029}
4030
4031static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4032				       struct ieee80211_regdomain *rd)
4033{
4034	const struct ieee80211_regdomain *regd;
4035	const struct ieee80211_regdomain *prev_regd;
4036	struct cfg80211_registered_device *rdev;
4037
4038	if (WARN_ON(!wiphy || !rd))
4039		return -EINVAL;
4040
4041	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4042		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4043		return -EPERM;
4044
4045	if (WARN(!is_valid_rd(rd),
4046		 "Invalid regulatory domain detected: %c%c\n",
4047		 rd->alpha2[0], rd->alpha2[1])) {
4048		print_regdomain_info(rd);
4049		return -EINVAL;
4050	}
4051
4052	regd = reg_copy_regd(rd);
4053	if (IS_ERR(regd))
4054		return PTR_ERR(regd);
4055
4056	rdev = wiphy_to_rdev(wiphy);
4057
4058	spin_lock(&reg_requests_lock);
4059	prev_regd = rdev->requested_regd;
4060	rdev->requested_regd = regd;
4061	spin_unlock(&reg_requests_lock);
4062
4063	kfree(prev_regd);
4064	return 0;
4065}
4066
4067int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4068			      struct ieee80211_regdomain *rd)
4069{
4070	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4071
4072	if (ret)
4073		return ret;
4074
4075	schedule_work(&reg_work);
4076	return 0;
4077}
4078EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4079
4080int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4081				   struct ieee80211_regdomain *rd)
4082{
4083	int ret;
4084
4085	ASSERT_RTNL();
4086
4087	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4088	if (ret)
4089		return ret;
4090
4091	/* process the request immediately */
4092	reg_process_self_managed_hint(wiphy);
4093	reg_check_channels();
4094	return 0;
4095}
4096EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4097
4098void wiphy_regulatory_register(struct wiphy *wiphy)
4099{
4100	struct regulatory_request *lr = get_last_request();
4101
4102	/* self-managed devices ignore beacon hints and country IE */
4103	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4104		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4105					   REGULATORY_COUNTRY_IE_IGNORE;
4106
4107		/*
4108		 * The last request may have been received before this
4109		 * registration call. Call the driver notifier if
4110		 * initiator is USER.
4111		 */
4112		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4113			reg_call_notifier(wiphy, lr);
4114	}
4115
4116	if (!reg_dev_ignore_cell_hint(wiphy))
4117		reg_num_devs_support_basehint++;
4118
4119	wiphy_update_regulatory(wiphy, lr->initiator);
4120	wiphy_all_share_dfs_chan_state(wiphy);
4121	reg_process_self_managed_hints();
4122}
4123
4124void wiphy_regulatory_deregister(struct wiphy *wiphy)
4125{
4126	struct wiphy *request_wiphy = NULL;
4127	struct regulatory_request *lr;
4128
4129	lr = get_last_request();
4130
4131	if (!reg_dev_ignore_cell_hint(wiphy))
4132		reg_num_devs_support_basehint--;
4133
4134	rcu_free_regdom(get_wiphy_regdom(wiphy));
4135	RCU_INIT_POINTER(wiphy->regd, NULL);
4136
4137	if (lr)
4138		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4139
4140	if (!request_wiphy || request_wiphy != wiphy)
4141		return;
4142
4143	lr->wiphy_idx = WIPHY_IDX_INVALID;
4144	lr->country_ie_env = ENVIRON_ANY;
4145}
4146
4147/*
4148 * See FCC notices for UNII band definitions
4149 *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4150 *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4151 */
4152int cfg80211_get_unii(int freq)
4153{
4154	/* UNII-1 */
4155	if (freq >= 5150 && freq <= 5250)
4156		return 0;
4157
4158	/* UNII-2A */
4159	if (freq > 5250 && freq <= 5350)
4160		return 1;
4161
4162	/* UNII-2B */
4163	if (freq > 5350 && freq <= 5470)
4164		return 2;
4165
4166	/* UNII-2C */
4167	if (freq > 5470 && freq <= 5725)
4168		return 3;
4169
4170	/* UNII-3 */
4171	if (freq > 5725 && freq <= 5825)
4172		return 4;
4173
4174	/* UNII-5 */
4175	if (freq > 5925 && freq <= 6425)
4176		return 5;
4177
4178	/* UNII-6 */
4179	if (freq > 6425 && freq <= 6525)
4180		return 6;
4181
4182	/* UNII-7 */
4183	if (freq > 6525 && freq <= 6875)
4184		return 7;
4185
4186	/* UNII-8 */
4187	if (freq > 6875 && freq <= 7125)
4188		return 8;
4189
4190	return -EINVAL;
4191}
4192
4193bool regulatory_indoor_allowed(void)
4194{
4195	return reg_is_indoor;
4196}
4197
4198bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4199{
4200	const struct ieee80211_regdomain *regd = NULL;
4201	const struct ieee80211_regdomain *wiphy_regd = NULL;
4202	bool pre_cac_allowed = false;
4203
4204	rcu_read_lock();
4205
4206	regd = rcu_dereference(cfg80211_regdomain);
4207	wiphy_regd = rcu_dereference(wiphy->regd);
4208	if (!wiphy_regd) {
4209		if (regd->dfs_region == NL80211_DFS_ETSI)
4210			pre_cac_allowed = true;
4211
4212		rcu_read_unlock();
4213
4214		return pre_cac_allowed;
4215	}
4216
4217	if (regd->dfs_region == wiphy_regd->dfs_region &&
4218	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4219		pre_cac_allowed = true;
4220
4221	rcu_read_unlock();
4222
4223	return pre_cac_allowed;
4224}
4225EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4226
4227static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4228{
4229	struct wireless_dev *wdev;
4230	/* If we finished CAC or received radar, we should end any
4231	 * CAC running on the same channels.
4232	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4233	 * either all channels are available - those the CAC_FINISHED
4234	 * event has effected another wdev state, or there is a channel
4235	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4236	 * event has effected another wdev state.
4237	 * In both cases we should end the CAC on the wdev.
4238	 */
4239	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4240		struct cfg80211_chan_def *chandef;
4241
4242		if (!wdev->cac_started)
4243			continue;
4244
4245		/* FIXME: radar detection is tied to link 0 for now */
4246		chandef = wdev_chandef(wdev, 0);
4247		if (!chandef)
4248			continue;
4249
4250		if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4251			rdev_end_cac(rdev, wdev->netdev);
4252	}
4253}
4254
4255void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4256				    struct cfg80211_chan_def *chandef,
4257				    enum nl80211_dfs_state dfs_state,
4258				    enum nl80211_radar_event event)
4259{
4260	struct cfg80211_registered_device *rdev;
4261
4262	ASSERT_RTNL();
4263
4264	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4265		return;
4266
4267	for_each_rdev(rdev) {
4268		if (wiphy == &rdev->wiphy)
4269			continue;
4270
4271		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4272			continue;
4273
4274		if (!ieee80211_get_channel(&rdev->wiphy,
4275					   chandef->chan->center_freq))
4276			continue;
4277
4278		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4279
4280		if (event == NL80211_RADAR_DETECTED ||
4281		    event == NL80211_RADAR_CAC_FINISHED) {
4282			cfg80211_sched_dfs_chan_update(rdev);
4283			cfg80211_check_and_end_cac(rdev);
4284		}
4285
4286		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4287	}
4288}
4289
4290static int __init regulatory_init_db(void)
4291{
4292	int err;
4293
4294	/*
4295	 * It's possible that - due to other bugs/issues - cfg80211
4296	 * never called regulatory_init() below, or that it failed;
4297	 * in that case, don't try to do any further work here as
4298	 * it's doomed to lead to crashes.
4299	 */
4300	if (IS_ERR_OR_NULL(reg_pdev))
4301		return -EINVAL;
4302
4303	err = load_builtin_regdb_keys();
4304	if (err) {
4305		platform_device_unregister(reg_pdev);
4306		return err;
4307	}
4308
4309	/* We always try to get an update for the static regdomain */
4310	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4311	if (err) {
4312		if (err == -ENOMEM) {
4313			platform_device_unregister(reg_pdev);
4314			return err;
4315		}
4316		/*
4317		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4318		 * memory which is handled and propagated appropriately above
4319		 * but it can also fail during a netlink_broadcast() or during
4320		 * early boot for call_usermodehelper(). For now treat these
4321		 * errors as non-fatal.
4322		 */
4323		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4324	}
4325
4326	/*
4327	 * Finally, if the user set the module parameter treat it
4328	 * as a user hint.
4329	 */
4330	if (!is_world_regdom(ieee80211_regdom))
4331		regulatory_hint_user(ieee80211_regdom,
4332				     NL80211_USER_REG_HINT_USER);
4333
4334	return 0;
4335}
4336#ifndef MODULE
4337late_initcall(regulatory_init_db);
4338#endif
4339
4340int __init regulatory_init(void)
4341{
4342	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4343	if (IS_ERR(reg_pdev))
4344		return PTR_ERR(reg_pdev);
4345
4346	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4347
4348	user_alpha2[0] = '9';
4349	user_alpha2[1] = '7';
4350
4351#ifdef MODULE
4352	return regulatory_init_db();
4353#else
4354	return 0;
4355#endif
4356}
4357
4358void regulatory_exit(void)
4359{
4360	struct regulatory_request *reg_request, *tmp;
4361	struct reg_beacon *reg_beacon, *btmp;
4362
4363	cancel_work_sync(&reg_work);
4364	cancel_crda_timeout_sync();
4365	cancel_delayed_work_sync(&reg_check_chans);
4366
4367	/* Lock to suppress warnings */
4368	rtnl_lock();
4369	reset_regdomains(true, NULL);
4370	rtnl_unlock();
4371
4372	dev_set_uevent_suppress(&reg_pdev->dev, true);
4373
4374	platform_device_unregister(reg_pdev);
4375
4376	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4377		list_del(&reg_beacon->list);
4378		kfree(reg_beacon);
4379	}
4380
4381	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4382		list_del(&reg_beacon->list);
4383		kfree(reg_beacon);
4384	}
4385
4386	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4387		list_del(&reg_request->list);
4388		kfree(reg_request);
4389	}
4390
4391	if (!IS_ERR_OR_NULL(regdb))
4392		kfree(regdb);
4393	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4394		kfree(cfg80211_user_regdom);
4395
4396	free_regdb_keyring();
4397}
4398