1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		The User Datagram Protocol (UDP).
8 *
9 * Authors:	Ross Biro
10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 *		Hirokazu Takahashi, <taka@valinux.co.jp>
14 *
15 * Fixes:
16 *		Alan Cox	:	verify_area() calls
17 *		Alan Cox	: 	stopped close while in use off icmp
18 *					messages. Not a fix but a botch that
19 *					for udp at least is 'valid'.
20 *		Alan Cox	:	Fixed icmp handling properly
21 *		Alan Cox	: 	Correct error for oversized datagrams
22 *		Alan Cox	:	Tidied select() semantics.
23 *		Alan Cox	:	udp_err() fixed properly, also now
24 *					select and read wake correctly on errors
25 *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26 *		Alan Cox	:	UDP can count its memory
27 *		Alan Cox	:	send to an unknown connection causes
28 *					an ECONNREFUSED off the icmp, but
29 *					does NOT close.
30 *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31 *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32 *					bug no longer crashes it.
33 *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34 *		Alan Cox	:	Uses skb_free_datagram
35 *		Alan Cox	:	Added get/set sockopt support.
36 *		Alan Cox	:	Broadcasting without option set returns EACCES.
37 *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38 *		Alan Cox	:	Use ip_tos and ip_ttl
39 *		Alan Cox	:	SNMP Mibs
40 *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41 *		Matt Dillon	:	UDP length checks.
42 *		Alan Cox	:	Smarter af_inet used properly.
43 *		Alan Cox	:	Use new kernel side addressing.
44 *		Alan Cox	:	Incorrect return on truncated datagram receive.
45 *	Arnt Gulbrandsen 	:	New udp_send and stuff
46 *		Alan Cox	:	Cache last socket
47 *		Alan Cox	:	Route cache
48 *		Jon Peatfield	:	Minor efficiency fix to sendto().
49 *		Mike Shaver	:	RFC1122 checks.
50 *		Alan Cox	:	Nonblocking error fix.
51 *	Willy Konynenberg	:	Transparent proxying support.
52 *		Mike McLagan	:	Routing by source
53 *		David S. Miller	:	New socket lookup architecture.
54 *					Last socket cache retained as it
55 *					does have a high hit rate.
56 *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57 *		Andi Kleen	:	Some cleanups, cache destination entry
58 *					for connect.
59 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60 *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61 *					return ENOTCONN for unconnected sockets (POSIX)
62 *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63 *					bound-to-device socket
64 *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65 *					datagrams.
66 *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67 *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69 *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70 *					a single port at the same time.
71 *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 *	James Chapman		:	Add L2TP encapsulation type.
73 */
74
75#define pr_fmt(fmt) "UDP: " fmt
76
77#include <linux/bpf-cgroup.h>
78#include <linux/uaccess.h>
79#include <asm/ioctls.h>
80#include <linux/memblock.h>
81#include <linux/highmem.h>
82#include <linux/types.h>
83#include <linux/fcntl.h>
84#include <linux/module.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/igmp.h>
88#include <linux/inetdevice.h>
89#include <linux/in.h>
90#include <linux/errno.h>
91#include <linux/timer.h>
92#include <linux/mm.h>
93#include <linux/inet.h>
94#include <linux/netdevice.h>
95#include <linux/slab.h>
96#include <net/tcp_states.h>
97#include <linux/skbuff.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
100#include <net/net_namespace.h>
101#include <net/icmp.h>
102#include <net/inet_hashtables.h>
103#include <net/ip_tunnels.h>
104#include <net/route.h>
105#include <net/checksum.h>
106#include <net/gso.h>
107#include <net/xfrm.h>
108#include <trace/events/udp.h>
109#include <linux/static_key.h>
110#include <linux/btf_ids.h>
111#include <trace/events/skb.h>
112#include <net/busy_poll.h>
113#include "udp_impl.h"
114#include <net/sock_reuseport.h>
115#include <net/addrconf.h>
116#include <net/udp_tunnel.h>
117#include <net/gro.h>
118#if IS_ENABLED(CONFIG_IPV6)
119#include <net/ipv6_stubs.h>
120#endif
121
122struct udp_table udp_table __read_mostly;
123EXPORT_SYMBOL(udp_table);
124
125long sysctl_udp_mem[3] __read_mostly;
126EXPORT_SYMBOL(sysctl_udp_mem);
127
128atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
129EXPORT_SYMBOL(udp_memory_allocated);
130DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132
133#define MAX_UDP_PORTS 65536
134#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135
136static struct udp_table *udp_get_table_prot(struct sock *sk)
137{
138	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139}
140
141static int udp_lib_lport_inuse(struct net *net, __u16 num,
142			       const struct udp_hslot *hslot,
143			       unsigned long *bitmap,
144			       struct sock *sk, unsigned int log)
145{
146	struct sock *sk2;
147	kuid_t uid = sock_i_uid(sk);
148
149	sk_for_each(sk2, &hslot->head) {
150		if (net_eq(sock_net(sk2), net) &&
151		    sk2 != sk &&
152		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156		    inet_rcv_saddr_equal(sk, sk2, true)) {
157			if (sk2->sk_reuseport && sk->sk_reuseport &&
158			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
159			    uid_eq(uid, sock_i_uid(sk2))) {
160				if (!bitmap)
161					return 0;
162			} else {
163				if (!bitmap)
164					return 1;
165				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
166					  bitmap);
167			}
168		}
169	}
170	return 0;
171}
172
173/*
174 * Note: we still hold spinlock of primary hash chain, so no other writer
175 * can insert/delete a socket with local_port == num
176 */
177static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178				struct udp_hslot *hslot2,
179				struct sock *sk)
180{
181	struct sock *sk2;
182	kuid_t uid = sock_i_uid(sk);
183	int res = 0;
184
185	spin_lock(&hslot2->lock);
186	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187		if (net_eq(sock_net(sk2), net) &&
188		    sk2 != sk &&
189		    (udp_sk(sk2)->udp_port_hash == num) &&
190		    (!sk2->sk_reuse || !sk->sk_reuse) &&
191		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193		    inet_rcv_saddr_equal(sk, sk2, true)) {
194			if (sk2->sk_reuseport && sk->sk_reuseport &&
195			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
196			    uid_eq(uid, sock_i_uid(sk2))) {
197				res = 0;
198			} else {
199				res = 1;
200			}
201			break;
202		}
203	}
204	spin_unlock(&hslot2->lock);
205	return res;
206}
207
208static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209{
210	struct net *net = sock_net(sk);
211	kuid_t uid = sock_i_uid(sk);
212	struct sock *sk2;
213
214	sk_for_each(sk2, &hslot->head) {
215		if (net_eq(sock_net(sk2), net) &&
216		    sk2 != sk &&
217		    sk2->sk_family == sk->sk_family &&
218		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222		    inet_rcv_saddr_equal(sk, sk2, false)) {
223			return reuseport_add_sock(sk, sk2,
224						  inet_rcv_saddr_any(sk));
225		}
226	}
227
228	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229}
230
231/**
232 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233 *
234 *  @sk:          socket struct in question
235 *  @snum:        port number to look up
236 *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237 *                   with NULL address
238 */
239int udp_lib_get_port(struct sock *sk, unsigned short snum,
240		     unsigned int hash2_nulladdr)
241{
242	struct udp_table *udptable = udp_get_table_prot(sk);
243	struct udp_hslot *hslot, *hslot2;
244	struct net *net = sock_net(sk);
245	int error = -EADDRINUSE;
246
247	if (!snum) {
248		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249		unsigned short first, last;
250		int low, high, remaining;
251		unsigned int rand;
252
253		inet_sk_get_local_port_range(sk, &low, &high);
254		remaining = (high - low) + 1;
255
256		rand = get_random_u32();
257		first = reciprocal_scale(rand, remaining) + low;
258		/*
259		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260		 */
261		rand = (rand | 1) * (udptable->mask + 1);
262		last = first + udptable->mask + 1;
263		do {
264			hslot = udp_hashslot(udptable, net, first);
265			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266			spin_lock_bh(&hslot->lock);
267			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268					    udptable->log);
269
270			snum = first;
271			/*
272			 * Iterate on all possible values of snum for this hash.
273			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274			 * give us randomization and full range coverage.
275			 */
276			do {
277				if (low <= snum && snum <= high &&
278				    !test_bit(snum >> udptable->log, bitmap) &&
279				    !inet_is_local_reserved_port(net, snum))
280					goto found;
281				snum += rand;
282			} while (snum != first);
283			spin_unlock_bh(&hslot->lock);
284			cond_resched();
285		} while (++first != last);
286		goto fail;
287	} else {
288		hslot = udp_hashslot(udptable, net, snum);
289		spin_lock_bh(&hslot->lock);
290		if (hslot->count > 10) {
291			int exist;
292			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293
294			slot2          &= udptable->mask;
295			hash2_nulladdr &= udptable->mask;
296
297			hslot2 = udp_hashslot2(udptable, slot2);
298			if (hslot->count < hslot2->count)
299				goto scan_primary_hash;
300
301			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302			if (!exist && (hash2_nulladdr != slot2)) {
303				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305							     sk);
306			}
307			if (exist)
308				goto fail_unlock;
309			else
310				goto found;
311		}
312scan_primary_hash:
313		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314			goto fail_unlock;
315	}
316found:
317	inet_sk(sk)->inet_num = snum;
318	udp_sk(sk)->udp_port_hash = snum;
319	udp_sk(sk)->udp_portaddr_hash ^= snum;
320	if (sk_unhashed(sk)) {
321		if (sk->sk_reuseport &&
322		    udp_reuseport_add_sock(sk, hslot)) {
323			inet_sk(sk)->inet_num = 0;
324			udp_sk(sk)->udp_port_hash = 0;
325			udp_sk(sk)->udp_portaddr_hash ^= snum;
326			goto fail_unlock;
327		}
328
329		sk_add_node_rcu(sk, &hslot->head);
330		hslot->count++;
331		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
332
333		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334		spin_lock(&hslot2->lock);
335		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336		    sk->sk_family == AF_INET6)
337			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
338					   &hslot2->head);
339		else
340			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
341					   &hslot2->head);
342		hslot2->count++;
343		spin_unlock(&hslot2->lock);
344	}
345	sock_set_flag(sk, SOCK_RCU_FREE);
346	error = 0;
347fail_unlock:
348	spin_unlock_bh(&hslot->lock);
349fail:
350	return error;
351}
352EXPORT_SYMBOL(udp_lib_get_port);
353
354int udp_v4_get_port(struct sock *sk, unsigned short snum)
355{
356	unsigned int hash2_nulladdr =
357		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358	unsigned int hash2_partial =
359		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
360
361	/* precompute partial secondary hash */
362	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363	return udp_lib_get_port(sk, snum, hash2_nulladdr);
364}
365
366static int compute_score(struct sock *sk, struct net *net,
367			 __be32 saddr, __be16 sport,
368			 __be32 daddr, unsigned short hnum,
369			 int dif, int sdif)
370{
371	int score;
372	struct inet_sock *inet;
373	bool dev_match;
374
375	if (!net_eq(sock_net(sk), net) ||
376	    udp_sk(sk)->udp_port_hash != hnum ||
377	    ipv6_only_sock(sk))
378		return -1;
379
380	if (sk->sk_rcv_saddr != daddr)
381		return -1;
382
383	score = (sk->sk_family == PF_INET) ? 2 : 1;
384
385	inet = inet_sk(sk);
386	if (inet->inet_daddr) {
387		if (inet->inet_daddr != saddr)
388			return -1;
389		score += 4;
390	}
391
392	if (inet->inet_dport) {
393		if (inet->inet_dport != sport)
394			return -1;
395		score += 4;
396	}
397
398	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
399					dif, sdif);
400	if (!dev_match)
401		return -1;
402	if (sk->sk_bound_dev_if)
403		score += 4;
404
405	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
406		score++;
407	return score;
408}
409
410INDIRECT_CALLABLE_SCOPE
411u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
412		const __be32 faddr, const __be16 fport)
413{
414	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
415
416	return __inet_ehashfn(laddr, lport, faddr, fport,
417			      udp_ehash_secret + net_hash_mix(net));
418}
419
420/* called with rcu_read_lock() */
421static struct sock *udp4_lib_lookup2(struct net *net,
422				     __be32 saddr, __be16 sport,
423				     __be32 daddr, unsigned int hnum,
424				     int dif, int sdif,
425				     struct udp_hslot *hslot2,
426				     struct sk_buff *skb)
427{
428	struct sock *sk, *result;
429	int score, badness;
430	bool need_rescore;
431
432	result = NULL;
433	badness = 0;
434	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
435		need_rescore = false;
436rescore:
437		score = compute_score(need_rescore ? result : sk, net, saddr,
438				      sport, daddr, hnum, dif, sdif);
439		if (score > badness) {
440			badness = score;
441
442			if (need_rescore)
443				continue;
444
445			if (sk->sk_state == TCP_ESTABLISHED) {
446				result = sk;
447				continue;
448			}
449
450			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
451						       saddr, sport, daddr, hnum, udp_ehashfn);
452			if (!result) {
453				result = sk;
454				continue;
455			}
456
457			/* Fall back to scoring if group has connections */
458			if (!reuseport_has_conns(sk))
459				return result;
460
461			/* Reuseport logic returned an error, keep original score. */
462			if (IS_ERR(result))
463				continue;
464
465			/* compute_score is too long of a function to be
466			 * inlined, and calling it again here yields
467			 * measureable overhead for some
468			 * workloads. Work around it by jumping
469			 * backwards to rescore 'result'.
470			 */
471			need_rescore = true;
472			goto rescore;
473		}
474	}
475	return result;
476}
477
478/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
479 * harder than this. -DaveM
480 */
481struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
482		__be16 sport, __be32 daddr, __be16 dport, int dif,
483		int sdif, struct udp_table *udptable, struct sk_buff *skb)
484{
485	unsigned short hnum = ntohs(dport);
486	unsigned int hash2, slot2;
487	struct udp_hslot *hslot2;
488	struct sock *result, *sk;
489
490	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
491	slot2 = hash2 & udptable->mask;
492	hslot2 = &udptable->hash2[slot2];
493
494	/* Lookup connected or non-wildcard socket */
495	result = udp4_lib_lookup2(net, saddr, sport,
496				  daddr, hnum, dif, sdif,
497				  hslot2, skb);
498	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
499		goto done;
500
501	/* Lookup redirect from BPF */
502	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
503	    udptable == net->ipv4.udp_table) {
504		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
505					       saddr, sport, daddr, hnum, dif,
506					       udp_ehashfn);
507		if (sk) {
508			result = sk;
509			goto done;
510		}
511	}
512
513	/* Got non-wildcard socket or error on first lookup */
514	if (result)
515		goto done;
516
517	/* Lookup wildcard sockets */
518	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
519	slot2 = hash2 & udptable->mask;
520	hslot2 = &udptable->hash2[slot2];
521
522	result = udp4_lib_lookup2(net, saddr, sport,
523				  htonl(INADDR_ANY), hnum, dif, sdif,
524				  hslot2, skb);
525done:
526	if (IS_ERR(result))
527		return NULL;
528	return result;
529}
530EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
531
532static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
533						 __be16 sport, __be16 dport,
534						 struct udp_table *udptable)
535{
536	const struct iphdr *iph = ip_hdr(skb);
537
538	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
539				 iph->daddr, dport, inet_iif(skb),
540				 inet_sdif(skb), udptable, skb);
541}
542
543struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
544				 __be16 sport, __be16 dport)
545{
546	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
547	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
548	struct net *net = dev_net(skb->dev);
549	int iif, sdif;
550
551	inet_get_iif_sdif(skb, &iif, &sdif);
552
553	return __udp4_lib_lookup(net, iph->saddr, sport,
554				 iph->daddr, dport, iif,
555				 sdif, net->ipv4.udp_table, NULL);
556}
557
558/* Must be called under rcu_read_lock().
559 * Does increment socket refcount.
560 */
561#if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
562struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
563			     __be32 daddr, __be16 dport, int dif)
564{
565	struct sock *sk;
566
567	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
568			       dif, 0, net->ipv4.udp_table, NULL);
569	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
570		sk = NULL;
571	return sk;
572}
573EXPORT_SYMBOL_GPL(udp4_lib_lookup);
574#endif
575
576static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
577				       __be16 loc_port, __be32 loc_addr,
578				       __be16 rmt_port, __be32 rmt_addr,
579				       int dif, int sdif, unsigned short hnum)
580{
581	const struct inet_sock *inet = inet_sk(sk);
582
583	if (!net_eq(sock_net(sk), net) ||
584	    udp_sk(sk)->udp_port_hash != hnum ||
585	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
586	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
587	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
588	    ipv6_only_sock(sk) ||
589	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
590		return false;
591	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
592		return false;
593	return true;
594}
595
596DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
597EXPORT_SYMBOL(udp_encap_needed_key);
598
599#if IS_ENABLED(CONFIG_IPV6)
600DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
601EXPORT_SYMBOL(udpv6_encap_needed_key);
602#endif
603
604void udp_encap_enable(void)
605{
606	static_branch_inc(&udp_encap_needed_key);
607}
608EXPORT_SYMBOL(udp_encap_enable);
609
610void udp_encap_disable(void)
611{
612	static_branch_dec(&udp_encap_needed_key);
613}
614EXPORT_SYMBOL(udp_encap_disable);
615
616/* Handler for tunnels with arbitrary destination ports: no socket lookup, go
617 * through error handlers in encapsulations looking for a match.
618 */
619static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
620{
621	int i;
622
623	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
624		int (*handler)(struct sk_buff *skb, u32 info);
625		const struct ip_tunnel_encap_ops *encap;
626
627		encap = rcu_dereference(iptun_encaps[i]);
628		if (!encap)
629			continue;
630		handler = encap->err_handler;
631		if (handler && !handler(skb, info))
632			return 0;
633	}
634
635	return -ENOENT;
636}
637
638/* Try to match ICMP errors to UDP tunnels by looking up a socket without
639 * reversing source and destination port: this will match tunnels that force the
640 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
641 * lwtunnels might actually break this assumption by being configured with
642 * different destination ports on endpoints, in this case we won't be able to
643 * trace ICMP messages back to them.
644 *
645 * If this doesn't match any socket, probe tunnels with arbitrary destination
646 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
647 * we've sent packets to won't necessarily match the local destination port.
648 *
649 * Then ask the tunnel implementation to match the error against a valid
650 * association.
651 *
652 * Return an error if we can't find a match, the socket if we need further
653 * processing, zero otherwise.
654 */
655static struct sock *__udp4_lib_err_encap(struct net *net,
656					 const struct iphdr *iph,
657					 struct udphdr *uh,
658					 struct udp_table *udptable,
659					 struct sock *sk,
660					 struct sk_buff *skb, u32 info)
661{
662	int (*lookup)(struct sock *sk, struct sk_buff *skb);
663	int network_offset, transport_offset;
664	struct udp_sock *up;
665
666	network_offset = skb_network_offset(skb);
667	transport_offset = skb_transport_offset(skb);
668
669	/* Network header needs to point to the outer IPv4 header inside ICMP */
670	skb_reset_network_header(skb);
671
672	/* Transport header needs to point to the UDP header */
673	skb_set_transport_header(skb, iph->ihl << 2);
674
675	if (sk) {
676		up = udp_sk(sk);
677
678		lookup = READ_ONCE(up->encap_err_lookup);
679		if (lookup && lookup(sk, skb))
680			sk = NULL;
681
682		goto out;
683	}
684
685	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
686			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
687			       udptable, NULL);
688	if (sk) {
689		up = udp_sk(sk);
690
691		lookup = READ_ONCE(up->encap_err_lookup);
692		if (!lookup || lookup(sk, skb))
693			sk = NULL;
694	}
695
696out:
697	if (!sk)
698		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
699
700	skb_set_transport_header(skb, transport_offset);
701	skb_set_network_header(skb, network_offset);
702
703	return sk;
704}
705
706/*
707 * This routine is called by the ICMP module when it gets some
708 * sort of error condition.  If err < 0 then the socket should
709 * be closed and the error returned to the user.  If err > 0
710 * it's just the icmp type << 8 | icmp code.
711 * Header points to the ip header of the error packet. We move
712 * on past this. Then (as it used to claim before adjustment)
713 * header points to the first 8 bytes of the udp header.  We need
714 * to find the appropriate port.
715 */
716
717int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
718{
719	struct inet_sock *inet;
720	const struct iphdr *iph = (const struct iphdr *)skb->data;
721	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
722	const int type = icmp_hdr(skb)->type;
723	const int code = icmp_hdr(skb)->code;
724	bool tunnel = false;
725	struct sock *sk;
726	int harderr;
727	int err;
728	struct net *net = dev_net(skb->dev);
729
730	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
731			       iph->saddr, uh->source, skb->dev->ifindex,
732			       inet_sdif(skb), udptable, NULL);
733
734	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
735		/* No socket for error: try tunnels before discarding */
736		if (static_branch_unlikely(&udp_encap_needed_key)) {
737			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
738						  info);
739			if (!sk)
740				return 0;
741		} else
742			sk = ERR_PTR(-ENOENT);
743
744		if (IS_ERR(sk)) {
745			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
746			return PTR_ERR(sk);
747		}
748
749		tunnel = true;
750	}
751
752	err = 0;
753	harderr = 0;
754	inet = inet_sk(sk);
755
756	switch (type) {
757	default:
758	case ICMP_TIME_EXCEEDED:
759		err = EHOSTUNREACH;
760		break;
761	case ICMP_SOURCE_QUENCH:
762		goto out;
763	case ICMP_PARAMETERPROB:
764		err = EPROTO;
765		harderr = 1;
766		break;
767	case ICMP_DEST_UNREACH:
768		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
769			ipv4_sk_update_pmtu(skb, sk, info);
770			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
771				err = EMSGSIZE;
772				harderr = 1;
773				break;
774			}
775			goto out;
776		}
777		err = EHOSTUNREACH;
778		if (code <= NR_ICMP_UNREACH) {
779			harderr = icmp_err_convert[code].fatal;
780			err = icmp_err_convert[code].errno;
781		}
782		break;
783	case ICMP_REDIRECT:
784		ipv4_sk_redirect(skb, sk);
785		goto out;
786	}
787
788	/*
789	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
790	 *	4.1.3.3.
791	 */
792	if (tunnel) {
793		/* ...not for tunnels though: we don't have a sending socket */
794		if (udp_sk(sk)->encap_err_rcv)
795			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
796						  (u8 *)(uh+1));
797		goto out;
798	}
799	if (!inet_test_bit(RECVERR, sk)) {
800		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
801			goto out;
802	} else
803		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
804
805	sk->sk_err = err;
806	sk_error_report(sk);
807out:
808	return 0;
809}
810
811int udp_err(struct sk_buff *skb, u32 info)
812{
813	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
814}
815
816/*
817 * Throw away all pending data and cancel the corking. Socket is locked.
818 */
819void udp_flush_pending_frames(struct sock *sk)
820{
821	struct udp_sock *up = udp_sk(sk);
822
823	if (up->pending) {
824		up->len = 0;
825		WRITE_ONCE(up->pending, 0);
826		ip_flush_pending_frames(sk);
827	}
828}
829EXPORT_SYMBOL(udp_flush_pending_frames);
830
831/**
832 * 	udp4_hwcsum  -  handle outgoing HW checksumming
833 * 	@skb: 	sk_buff containing the filled-in UDP header
834 * 	        (checksum field must be zeroed out)
835 *	@src:	source IP address
836 *	@dst:	destination IP address
837 */
838void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
839{
840	struct udphdr *uh = udp_hdr(skb);
841	int offset = skb_transport_offset(skb);
842	int len = skb->len - offset;
843	int hlen = len;
844	__wsum csum = 0;
845
846	if (!skb_has_frag_list(skb)) {
847		/*
848		 * Only one fragment on the socket.
849		 */
850		skb->csum_start = skb_transport_header(skb) - skb->head;
851		skb->csum_offset = offsetof(struct udphdr, check);
852		uh->check = ~csum_tcpudp_magic(src, dst, len,
853					       IPPROTO_UDP, 0);
854	} else {
855		struct sk_buff *frags;
856
857		/*
858		 * HW-checksum won't work as there are two or more
859		 * fragments on the socket so that all csums of sk_buffs
860		 * should be together
861		 */
862		skb_walk_frags(skb, frags) {
863			csum = csum_add(csum, frags->csum);
864			hlen -= frags->len;
865		}
866
867		csum = skb_checksum(skb, offset, hlen, csum);
868		skb->ip_summed = CHECKSUM_NONE;
869
870		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
871		if (uh->check == 0)
872			uh->check = CSUM_MANGLED_0;
873	}
874}
875EXPORT_SYMBOL_GPL(udp4_hwcsum);
876
877/* Function to set UDP checksum for an IPv4 UDP packet. This is intended
878 * for the simple case like when setting the checksum for a UDP tunnel.
879 */
880void udp_set_csum(bool nocheck, struct sk_buff *skb,
881		  __be32 saddr, __be32 daddr, int len)
882{
883	struct udphdr *uh = udp_hdr(skb);
884
885	if (nocheck) {
886		uh->check = 0;
887	} else if (skb_is_gso(skb)) {
888		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
889	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
890		uh->check = 0;
891		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
892		if (uh->check == 0)
893			uh->check = CSUM_MANGLED_0;
894	} else {
895		skb->ip_summed = CHECKSUM_PARTIAL;
896		skb->csum_start = skb_transport_header(skb) - skb->head;
897		skb->csum_offset = offsetof(struct udphdr, check);
898		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
899	}
900}
901EXPORT_SYMBOL(udp_set_csum);
902
903static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
904			struct inet_cork *cork)
905{
906	struct sock *sk = skb->sk;
907	struct inet_sock *inet = inet_sk(sk);
908	struct udphdr *uh;
909	int err;
910	int is_udplite = IS_UDPLITE(sk);
911	int offset = skb_transport_offset(skb);
912	int len = skb->len - offset;
913	int datalen = len - sizeof(*uh);
914	__wsum csum = 0;
915
916	/*
917	 * Create a UDP header
918	 */
919	uh = udp_hdr(skb);
920	uh->source = inet->inet_sport;
921	uh->dest = fl4->fl4_dport;
922	uh->len = htons(len);
923	uh->check = 0;
924
925	if (cork->gso_size) {
926		const int hlen = skb_network_header_len(skb) +
927				 sizeof(struct udphdr);
928
929		if (hlen + cork->gso_size > cork->fragsize) {
930			kfree_skb(skb);
931			return -EINVAL;
932		}
933		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
934			kfree_skb(skb);
935			return -EINVAL;
936		}
937		if (sk->sk_no_check_tx) {
938			kfree_skb(skb);
939			return -EINVAL;
940		}
941		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
942		    dst_xfrm(skb_dst(skb))) {
943			kfree_skb(skb);
944			return -EIO;
945		}
946
947		if (datalen > cork->gso_size) {
948			skb_shinfo(skb)->gso_size = cork->gso_size;
949			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
950			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
951								 cork->gso_size);
952		}
953		goto csum_partial;
954	}
955
956	if (is_udplite)  				 /*     UDP-Lite      */
957		csum = udplite_csum(skb);
958
959	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
960
961		skb->ip_summed = CHECKSUM_NONE;
962		goto send;
963
964	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
965csum_partial:
966
967		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
968		goto send;
969
970	} else
971		csum = udp_csum(skb);
972
973	/* add protocol-dependent pseudo-header */
974	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
975				      sk->sk_protocol, csum);
976	if (uh->check == 0)
977		uh->check = CSUM_MANGLED_0;
978
979send:
980	err = ip_send_skb(sock_net(sk), skb);
981	if (err) {
982		if (err == -ENOBUFS &&
983		    !inet_test_bit(RECVERR, sk)) {
984			UDP_INC_STATS(sock_net(sk),
985				      UDP_MIB_SNDBUFERRORS, is_udplite);
986			err = 0;
987		}
988	} else
989		UDP_INC_STATS(sock_net(sk),
990			      UDP_MIB_OUTDATAGRAMS, is_udplite);
991	return err;
992}
993
994/*
995 * Push out all pending data as one UDP datagram. Socket is locked.
996 */
997int udp_push_pending_frames(struct sock *sk)
998{
999	struct udp_sock  *up = udp_sk(sk);
1000	struct inet_sock *inet = inet_sk(sk);
1001	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1002	struct sk_buff *skb;
1003	int err = 0;
1004
1005	skb = ip_finish_skb(sk, fl4);
1006	if (!skb)
1007		goto out;
1008
1009	err = udp_send_skb(skb, fl4, &inet->cork.base);
1010
1011out:
1012	up->len = 0;
1013	WRITE_ONCE(up->pending, 0);
1014	return err;
1015}
1016EXPORT_SYMBOL(udp_push_pending_frames);
1017
1018static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1019{
1020	switch (cmsg->cmsg_type) {
1021	case UDP_SEGMENT:
1022		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1023			return -EINVAL;
1024		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1025		return 0;
1026	default:
1027		return -EINVAL;
1028	}
1029}
1030
1031int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1032{
1033	struct cmsghdr *cmsg;
1034	bool need_ip = false;
1035	int err;
1036
1037	for_each_cmsghdr(cmsg, msg) {
1038		if (!CMSG_OK(msg, cmsg))
1039			return -EINVAL;
1040
1041		if (cmsg->cmsg_level != SOL_UDP) {
1042			need_ip = true;
1043			continue;
1044		}
1045
1046		err = __udp_cmsg_send(cmsg, gso_size);
1047		if (err)
1048			return err;
1049	}
1050
1051	return need_ip;
1052}
1053EXPORT_SYMBOL_GPL(udp_cmsg_send);
1054
1055int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1056{
1057	struct inet_sock *inet = inet_sk(sk);
1058	struct udp_sock *up = udp_sk(sk);
1059	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1060	struct flowi4 fl4_stack;
1061	struct flowi4 *fl4;
1062	int ulen = len;
1063	struct ipcm_cookie ipc;
1064	struct rtable *rt = NULL;
1065	int free = 0;
1066	int connected = 0;
1067	__be32 daddr, faddr, saddr;
1068	u8 tos, scope;
1069	__be16 dport;
1070	int err, is_udplite = IS_UDPLITE(sk);
1071	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1072	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1073	struct sk_buff *skb;
1074	struct ip_options_data opt_copy;
1075	int uc_index;
1076
1077	if (len > 0xFFFF)
1078		return -EMSGSIZE;
1079
1080	/*
1081	 *	Check the flags.
1082	 */
1083
1084	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1085		return -EOPNOTSUPP;
1086
1087	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1088
1089	fl4 = &inet->cork.fl.u.ip4;
1090	if (READ_ONCE(up->pending)) {
1091		/*
1092		 * There are pending frames.
1093		 * The socket lock must be held while it's corked.
1094		 */
1095		lock_sock(sk);
1096		if (likely(up->pending)) {
1097			if (unlikely(up->pending != AF_INET)) {
1098				release_sock(sk);
1099				return -EINVAL;
1100			}
1101			goto do_append_data;
1102		}
1103		release_sock(sk);
1104	}
1105	ulen += sizeof(struct udphdr);
1106
1107	/*
1108	 *	Get and verify the address.
1109	 */
1110	if (usin) {
1111		if (msg->msg_namelen < sizeof(*usin))
1112			return -EINVAL;
1113		if (usin->sin_family != AF_INET) {
1114			if (usin->sin_family != AF_UNSPEC)
1115				return -EAFNOSUPPORT;
1116		}
1117
1118		daddr = usin->sin_addr.s_addr;
1119		dport = usin->sin_port;
1120		if (dport == 0)
1121			return -EINVAL;
1122	} else {
1123		if (sk->sk_state != TCP_ESTABLISHED)
1124			return -EDESTADDRREQ;
1125		daddr = inet->inet_daddr;
1126		dport = inet->inet_dport;
1127		/* Open fast path for connected socket.
1128		   Route will not be used, if at least one option is set.
1129		 */
1130		connected = 1;
1131	}
1132
1133	ipcm_init_sk(&ipc, inet);
1134	ipc.gso_size = READ_ONCE(up->gso_size);
1135
1136	if (msg->msg_controllen) {
1137		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1138		if (err > 0) {
1139			err = ip_cmsg_send(sk, msg, &ipc,
1140					   sk->sk_family == AF_INET6);
1141			connected = 0;
1142		}
1143		if (unlikely(err < 0)) {
1144			kfree(ipc.opt);
1145			return err;
1146		}
1147		if (ipc.opt)
1148			free = 1;
1149	}
1150	if (!ipc.opt) {
1151		struct ip_options_rcu *inet_opt;
1152
1153		rcu_read_lock();
1154		inet_opt = rcu_dereference(inet->inet_opt);
1155		if (inet_opt) {
1156			memcpy(&opt_copy, inet_opt,
1157			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1158			ipc.opt = &opt_copy.opt;
1159		}
1160		rcu_read_unlock();
1161	}
1162
1163	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1164		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1165					    (struct sockaddr *)usin,
1166					    &msg->msg_namelen,
1167					    &ipc.addr);
1168		if (err)
1169			goto out_free;
1170		if (usin) {
1171			if (usin->sin_port == 0) {
1172				/* BPF program set invalid port. Reject it. */
1173				err = -EINVAL;
1174				goto out_free;
1175			}
1176			daddr = usin->sin_addr.s_addr;
1177			dport = usin->sin_port;
1178		}
1179	}
1180
1181	saddr = ipc.addr;
1182	ipc.addr = faddr = daddr;
1183
1184	if (ipc.opt && ipc.opt->opt.srr) {
1185		if (!daddr) {
1186			err = -EINVAL;
1187			goto out_free;
1188		}
1189		faddr = ipc.opt->opt.faddr;
1190		connected = 0;
1191	}
1192	tos = get_rttos(&ipc, inet);
1193	scope = ip_sendmsg_scope(inet, &ipc, msg);
1194	if (scope == RT_SCOPE_LINK)
1195		connected = 0;
1196
1197	uc_index = READ_ONCE(inet->uc_index);
1198	if (ipv4_is_multicast(daddr)) {
1199		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1200			ipc.oif = READ_ONCE(inet->mc_index);
1201		if (!saddr)
1202			saddr = READ_ONCE(inet->mc_addr);
1203		connected = 0;
1204	} else if (!ipc.oif) {
1205		ipc.oif = uc_index;
1206	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1207		/* oif is set, packet is to local broadcast and
1208		 * uc_index is set. oif is most likely set
1209		 * by sk_bound_dev_if. If uc_index != oif check if the
1210		 * oif is an L3 master and uc_index is an L3 slave.
1211		 * If so, we want to allow the send using the uc_index.
1212		 */
1213		if (ipc.oif != uc_index &&
1214		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1215							      uc_index)) {
1216			ipc.oif = uc_index;
1217		}
1218	}
1219
1220	if (connected)
1221		rt = dst_rtable(sk_dst_check(sk, 0));
1222
1223	if (!rt) {
1224		struct net *net = sock_net(sk);
1225		__u8 flow_flags = inet_sk_flowi_flags(sk);
1226
1227		fl4 = &fl4_stack;
1228
1229		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1230				   sk->sk_protocol, flow_flags, faddr, saddr,
1231				   dport, inet->inet_sport, sk->sk_uid);
1232
1233		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1234		rt = ip_route_output_flow(net, fl4, sk);
1235		if (IS_ERR(rt)) {
1236			err = PTR_ERR(rt);
1237			rt = NULL;
1238			if (err == -ENETUNREACH)
1239				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1240			goto out;
1241		}
1242
1243		err = -EACCES;
1244		if ((rt->rt_flags & RTCF_BROADCAST) &&
1245		    !sock_flag(sk, SOCK_BROADCAST))
1246			goto out;
1247		if (connected)
1248			sk_dst_set(sk, dst_clone(&rt->dst));
1249	}
1250
1251	if (msg->msg_flags&MSG_CONFIRM)
1252		goto do_confirm;
1253back_from_confirm:
1254
1255	saddr = fl4->saddr;
1256	if (!ipc.addr)
1257		daddr = ipc.addr = fl4->daddr;
1258
1259	/* Lockless fast path for the non-corking case. */
1260	if (!corkreq) {
1261		struct inet_cork cork;
1262
1263		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1264				  sizeof(struct udphdr), &ipc, &rt,
1265				  &cork, msg->msg_flags);
1266		err = PTR_ERR(skb);
1267		if (!IS_ERR_OR_NULL(skb))
1268			err = udp_send_skb(skb, fl4, &cork);
1269		goto out;
1270	}
1271
1272	lock_sock(sk);
1273	if (unlikely(up->pending)) {
1274		/* The socket is already corked while preparing it. */
1275		/* ... which is an evident application bug. --ANK */
1276		release_sock(sk);
1277
1278		net_dbg_ratelimited("socket already corked\n");
1279		err = -EINVAL;
1280		goto out;
1281	}
1282	/*
1283	 *	Now cork the socket to pend data.
1284	 */
1285	fl4 = &inet->cork.fl.u.ip4;
1286	fl4->daddr = daddr;
1287	fl4->saddr = saddr;
1288	fl4->fl4_dport = dport;
1289	fl4->fl4_sport = inet->inet_sport;
1290	WRITE_ONCE(up->pending, AF_INET);
1291
1292do_append_data:
1293	up->len += ulen;
1294	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1295			     sizeof(struct udphdr), &ipc, &rt,
1296			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1297	if (err)
1298		udp_flush_pending_frames(sk);
1299	else if (!corkreq)
1300		err = udp_push_pending_frames(sk);
1301	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1302		WRITE_ONCE(up->pending, 0);
1303	release_sock(sk);
1304
1305out:
1306	ip_rt_put(rt);
1307out_free:
1308	if (free)
1309		kfree(ipc.opt);
1310	if (!err)
1311		return len;
1312	/*
1313	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1314	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1315	 * we don't have a good statistic (IpOutDiscards but it can be too many
1316	 * things).  We could add another new stat but at least for now that
1317	 * seems like overkill.
1318	 */
1319	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1320		UDP_INC_STATS(sock_net(sk),
1321			      UDP_MIB_SNDBUFERRORS, is_udplite);
1322	}
1323	return err;
1324
1325do_confirm:
1326	if (msg->msg_flags & MSG_PROBE)
1327		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1328	if (!(msg->msg_flags&MSG_PROBE) || len)
1329		goto back_from_confirm;
1330	err = 0;
1331	goto out;
1332}
1333EXPORT_SYMBOL(udp_sendmsg);
1334
1335void udp_splice_eof(struct socket *sock)
1336{
1337	struct sock *sk = sock->sk;
1338	struct udp_sock *up = udp_sk(sk);
1339
1340	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1341		return;
1342
1343	lock_sock(sk);
1344	if (up->pending && !udp_test_bit(CORK, sk))
1345		udp_push_pending_frames(sk);
1346	release_sock(sk);
1347}
1348EXPORT_SYMBOL_GPL(udp_splice_eof);
1349
1350#define UDP_SKB_IS_STATELESS 0x80000000
1351
1352/* all head states (dst, sk, nf conntrack) except skb extensions are
1353 * cleared by udp_rcv().
1354 *
1355 * We need to preserve secpath, if present, to eventually process
1356 * IP_CMSG_PASSSEC at recvmsg() time.
1357 *
1358 * Other extensions can be cleared.
1359 */
1360static bool udp_try_make_stateless(struct sk_buff *skb)
1361{
1362	if (!skb_has_extensions(skb))
1363		return true;
1364
1365	if (!secpath_exists(skb)) {
1366		skb_ext_reset(skb);
1367		return true;
1368	}
1369
1370	return false;
1371}
1372
1373static void udp_set_dev_scratch(struct sk_buff *skb)
1374{
1375	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1376
1377	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1378	scratch->_tsize_state = skb->truesize;
1379#if BITS_PER_LONG == 64
1380	scratch->len = skb->len;
1381	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1382	scratch->is_linear = !skb_is_nonlinear(skb);
1383#endif
1384	if (udp_try_make_stateless(skb))
1385		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1386}
1387
1388static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1389{
1390	/* We come here after udp_lib_checksum_complete() returned 0.
1391	 * This means that __skb_checksum_complete() might have
1392	 * set skb->csum_valid to 1.
1393	 * On 64bit platforms, we can set csum_unnecessary
1394	 * to true, but only if the skb is not shared.
1395	 */
1396#if BITS_PER_LONG == 64
1397	if (!skb_shared(skb))
1398		udp_skb_scratch(skb)->csum_unnecessary = true;
1399#endif
1400}
1401
1402static int udp_skb_truesize(struct sk_buff *skb)
1403{
1404	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1405}
1406
1407static bool udp_skb_has_head_state(struct sk_buff *skb)
1408{
1409	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1410}
1411
1412/* fully reclaim rmem/fwd memory allocated for skb */
1413static void udp_rmem_release(struct sock *sk, int size, int partial,
1414			     bool rx_queue_lock_held)
1415{
1416	struct udp_sock *up = udp_sk(sk);
1417	struct sk_buff_head *sk_queue;
1418	int amt;
1419
1420	if (likely(partial)) {
1421		up->forward_deficit += size;
1422		size = up->forward_deficit;
1423		if (size < READ_ONCE(up->forward_threshold) &&
1424		    !skb_queue_empty(&up->reader_queue))
1425			return;
1426	} else {
1427		size += up->forward_deficit;
1428	}
1429	up->forward_deficit = 0;
1430
1431	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1432	 * if the called don't held it already
1433	 */
1434	sk_queue = &sk->sk_receive_queue;
1435	if (!rx_queue_lock_held)
1436		spin_lock(&sk_queue->lock);
1437
1438
1439	sk_forward_alloc_add(sk, size);
1440	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1441	sk_forward_alloc_add(sk, -amt);
1442
1443	if (amt)
1444		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1445
1446	atomic_sub(size, &sk->sk_rmem_alloc);
1447
1448	/* this can save us from acquiring the rx queue lock on next receive */
1449	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1450
1451	if (!rx_queue_lock_held)
1452		spin_unlock(&sk_queue->lock);
1453}
1454
1455/* Note: called with reader_queue.lock held.
1456 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1457 * This avoids a cache line miss while receive_queue lock is held.
1458 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1459 */
1460void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1461{
1462	prefetch(&skb->data);
1463	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1464}
1465EXPORT_SYMBOL(udp_skb_destructor);
1466
1467/* as above, but the caller held the rx queue lock, too */
1468static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1469{
1470	prefetch(&skb->data);
1471	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1472}
1473
1474/* Idea of busylocks is to let producers grab an extra spinlock
1475 * to relieve pressure on the receive_queue spinlock shared by consumer.
1476 * Under flood, this means that only one producer can be in line
1477 * trying to acquire the receive_queue spinlock.
1478 * These busylock can be allocated on a per cpu manner, instead of a
1479 * per socket one (that would consume a cache line per socket)
1480 */
1481static int udp_busylocks_log __read_mostly;
1482static spinlock_t *udp_busylocks __read_mostly;
1483
1484static spinlock_t *busylock_acquire(void *ptr)
1485{
1486	spinlock_t *busy;
1487
1488	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1489	spin_lock(busy);
1490	return busy;
1491}
1492
1493static void busylock_release(spinlock_t *busy)
1494{
1495	if (busy)
1496		spin_unlock(busy);
1497}
1498
1499static int udp_rmem_schedule(struct sock *sk, int size)
1500{
1501	int delta;
1502
1503	delta = size - sk->sk_forward_alloc;
1504	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1505		return -ENOBUFS;
1506
1507	return 0;
1508}
1509
1510int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1511{
1512	struct sk_buff_head *list = &sk->sk_receive_queue;
1513	int rmem, err = -ENOMEM;
1514	spinlock_t *busy = NULL;
1515	bool becomes_readable;
1516	int size, rcvbuf;
1517
1518	/* Immediately drop when the receive queue is full.
1519	 * Always allow at least one packet.
1520	 */
1521	rmem = atomic_read(&sk->sk_rmem_alloc);
1522	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1523	if (rmem > rcvbuf)
1524		goto drop;
1525
1526	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1527	 * having linear skbs :
1528	 * - Reduce memory overhead and thus increase receive queue capacity
1529	 * - Less cache line misses at copyout() time
1530	 * - Less work at consume_skb() (less alien page frag freeing)
1531	 */
1532	if (rmem > (rcvbuf >> 1)) {
1533		skb_condense(skb);
1534
1535		busy = busylock_acquire(sk);
1536	}
1537	size = skb->truesize;
1538	udp_set_dev_scratch(skb);
1539
1540	atomic_add(size, &sk->sk_rmem_alloc);
1541
1542	spin_lock(&list->lock);
1543	err = udp_rmem_schedule(sk, size);
1544	if (err) {
1545		spin_unlock(&list->lock);
1546		goto uncharge_drop;
1547	}
1548
1549	sk_forward_alloc_add(sk, -size);
1550
1551	/* no need to setup a destructor, we will explicitly release the
1552	 * forward allocated memory on dequeue
1553	 */
1554	sock_skb_set_dropcount(sk, skb);
1555
1556	becomes_readable = skb_queue_empty(list);
1557	__skb_queue_tail(list, skb);
1558	spin_unlock(&list->lock);
1559
1560	if (!sock_flag(sk, SOCK_DEAD)) {
1561		if (becomes_readable ||
1562		    sk->sk_data_ready != sock_def_readable ||
1563		    READ_ONCE(sk->sk_peek_off) >= 0)
1564			INDIRECT_CALL_1(sk->sk_data_ready,
1565					sock_def_readable, sk);
1566		else
1567			sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN);
1568	}
1569	busylock_release(busy);
1570	return 0;
1571
1572uncharge_drop:
1573	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1574
1575drop:
1576	atomic_inc(&sk->sk_drops);
1577	busylock_release(busy);
1578	return err;
1579}
1580EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1581
1582void udp_destruct_common(struct sock *sk)
1583{
1584	/* reclaim completely the forward allocated memory */
1585	struct udp_sock *up = udp_sk(sk);
1586	unsigned int total = 0;
1587	struct sk_buff *skb;
1588
1589	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1590	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1591		total += skb->truesize;
1592		kfree_skb(skb);
1593	}
1594	udp_rmem_release(sk, total, 0, true);
1595}
1596EXPORT_SYMBOL_GPL(udp_destruct_common);
1597
1598static void udp_destruct_sock(struct sock *sk)
1599{
1600	udp_destruct_common(sk);
1601	inet_sock_destruct(sk);
1602}
1603
1604int udp_init_sock(struct sock *sk)
1605{
1606	udp_lib_init_sock(sk);
1607	sk->sk_destruct = udp_destruct_sock;
1608	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1609	return 0;
1610}
1611
1612void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1613{
1614	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1615		sk_peek_offset_bwd(sk, len);
1616
1617	if (!skb_unref(skb))
1618		return;
1619
1620	/* In the more common cases we cleared the head states previously,
1621	 * see __udp_queue_rcv_skb().
1622	 */
1623	if (unlikely(udp_skb_has_head_state(skb)))
1624		skb_release_head_state(skb);
1625	__consume_stateless_skb(skb);
1626}
1627EXPORT_SYMBOL_GPL(skb_consume_udp);
1628
1629static struct sk_buff *__first_packet_length(struct sock *sk,
1630					     struct sk_buff_head *rcvq,
1631					     int *total)
1632{
1633	struct sk_buff *skb;
1634
1635	while ((skb = skb_peek(rcvq)) != NULL) {
1636		if (udp_lib_checksum_complete(skb)) {
1637			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1638					IS_UDPLITE(sk));
1639			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1640					IS_UDPLITE(sk));
1641			atomic_inc(&sk->sk_drops);
1642			__skb_unlink(skb, rcvq);
1643			*total += skb->truesize;
1644			kfree_skb(skb);
1645		} else {
1646			udp_skb_csum_unnecessary_set(skb);
1647			break;
1648		}
1649	}
1650	return skb;
1651}
1652
1653/**
1654 *	first_packet_length	- return length of first packet in receive queue
1655 *	@sk: socket
1656 *
1657 *	Drops all bad checksum frames, until a valid one is found.
1658 *	Returns the length of found skb, or -1 if none is found.
1659 */
1660static int first_packet_length(struct sock *sk)
1661{
1662	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1663	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1664	struct sk_buff *skb;
1665	int total = 0;
1666	int res;
1667
1668	spin_lock_bh(&rcvq->lock);
1669	skb = __first_packet_length(sk, rcvq, &total);
1670	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1671		spin_lock(&sk_queue->lock);
1672		skb_queue_splice_tail_init(sk_queue, rcvq);
1673		spin_unlock(&sk_queue->lock);
1674
1675		skb = __first_packet_length(sk, rcvq, &total);
1676	}
1677	res = skb ? skb->len : -1;
1678	if (total)
1679		udp_rmem_release(sk, total, 1, false);
1680	spin_unlock_bh(&rcvq->lock);
1681	return res;
1682}
1683
1684/*
1685 *	IOCTL requests applicable to the UDP protocol
1686 */
1687
1688int udp_ioctl(struct sock *sk, int cmd, int *karg)
1689{
1690	switch (cmd) {
1691	case SIOCOUTQ:
1692	{
1693		*karg = sk_wmem_alloc_get(sk);
1694		return 0;
1695	}
1696
1697	case SIOCINQ:
1698	{
1699		*karg = max_t(int, 0, first_packet_length(sk));
1700		return 0;
1701	}
1702
1703	default:
1704		return -ENOIOCTLCMD;
1705	}
1706
1707	return 0;
1708}
1709EXPORT_SYMBOL(udp_ioctl);
1710
1711struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1712			       int *off, int *err)
1713{
1714	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1715	struct sk_buff_head *queue;
1716	struct sk_buff *last;
1717	long timeo;
1718	int error;
1719
1720	queue = &udp_sk(sk)->reader_queue;
1721	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1722	do {
1723		struct sk_buff *skb;
1724
1725		error = sock_error(sk);
1726		if (error)
1727			break;
1728
1729		error = -EAGAIN;
1730		do {
1731			spin_lock_bh(&queue->lock);
1732			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1733							err, &last);
1734			if (skb) {
1735				if (!(flags & MSG_PEEK))
1736					udp_skb_destructor(sk, skb);
1737				spin_unlock_bh(&queue->lock);
1738				return skb;
1739			}
1740
1741			if (skb_queue_empty_lockless(sk_queue)) {
1742				spin_unlock_bh(&queue->lock);
1743				goto busy_check;
1744			}
1745
1746			/* refill the reader queue and walk it again
1747			 * keep both queues locked to avoid re-acquiring
1748			 * the sk_receive_queue lock if fwd memory scheduling
1749			 * is needed.
1750			 */
1751			spin_lock(&sk_queue->lock);
1752			skb_queue_splice_tail_init(sk_queue, queue);
1753
1754			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1755							err, &last);
1756			if (skb && !(flags & MSG_PEEK))
1757				udp_skb_dtor_locked(sk, skb);
1758			spin_unlock(&sk_queue->lock);
1759			spin_unlock_bh(&queue->lock);
1760			if (skb)
1761				return skb;
1762
1763busy_check:
1764			if (!sk_can_busy_loop(sk))
1765				break;
1766
1767			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1768		} while (!skb_queue_empty_lockless(sk_queue));
1769
1770		/* sk_queue is empty, reader_queue may contain peeked packets */
1771	} while (timeo &&
1772		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1773					      &error, &timeo,
1774					      (struct sk_buff *)sk_queue));
1775
1776	*err = error;
1777	return NULL;
1778}
1779EXPORT_SYMBOL(__skb_recv_udp);
1780
1781int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1782{
1783	struct sk_buff *skb;
1784	int err;
1785
1786try_again:
1787	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1788	if (!skb)
1789		return err;
1790
1791	if (udp_lib_checksum_complete(skb)) {
1792		int is_udplite = IS_UDPLITE(sk);
1793		struct net *net = sock_net(sk);
1794
1795		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1796		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1797		atomic_inc(&sk->sk_drops);
1798		kfree_skb(skb);
1799		goto try_again;
1800	}
1801
1802	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1803	return recv_actor(sk, skb);
1804}
1805EXPORT_SYMBOL(udp_read_skb);
1806
1807/*
1808 * 	This should be easy, if there is something there we
1809 * 	return it, otherwise we block.
1810 */
1811
1812int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1813		int *addr_len)
1814{
1815	struct inet_sock *inet = inet_sk(sk);
1816	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1817	struct sk_buff *skb;
1818	unsigned int ulen, copied;
1819	int off, err, peeking = flags & MSG_PEEK;
1820	int is_udplite = IS_UDPLITE(sk);
1821	bool checksum_valid = false;
1822
1823	if (flags & MSG_ERRQUEUE)
1824		return ip_recv_error(sk, msg, len, addr_len);
1825
1826try_again:
1827	off = sk_peek_offset(sk, flags);
1828	skb = __skb_recv_udp(sk, flags, &off, &err);
1829	if (!skb)
1830		return err;
1831
1832	ulen = udp_skb_len(skb);
1833	copied = len;
1834	if (copied > ulen - off)
1835		copied = ulen - off;
1836	else if (copied < ulen)
1837		msg->msg_flags |= MSG_TRUNC;
1838
1839	/*
1840	 * If checksum is needed at all, try to do it while copying the
1841	 * data.  If the data is truncated, or if we only want a partial
1842	 * coverage checksum (UDP-Lite), do it before the copy.
1843	 */
1844
1845	if (copied < ulen || peeking ||
1846	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1847		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1848				!__udp_lib_checksum_complete(skb);
1849		if (!checksum_valid)
1850			goto csum_copy_err;
1851	}
1852
1853	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1854		if (udp_skb_is_linear(skb))
1855			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1856		else
1857			err = skb_copy_datagram_msg(skb, off, msg, copied);
1858	} else {
1859		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1860
1861		if (err == -EINVAL)
1862			goto csum_copy_err;
1863	}
1864
1865	if (unlikely(err)) {
1866		if (!peeking) {
1867			atomic_inc(&sk->sk_drops);
1868			UDP_INC_STATS(sock_net(sk),
1869				      UDP_MIB_INERRORS, is_udplite);
1870		}
1871		kfree_skb(skb);
1872		return err;
1873	}
1874
1875	if (!peeking)
1876		UDP_INC_STATS(sock_net(sk),
1877			      UDP_MIB_INDATAGRAMS, is_udplite);
1878
1879	sock_recv_cmsgs(msg, sk, skb);
1880
1881	/* Copy the address. */
1882	if (sin) {
1883		sin->sin_family = AF_INET;
1884		sin->sin_port = udp_hdr(skb)->source;
1885		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1886		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1887		*addr_len = sizeof(*sin);
1888
1889		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1890						      (struct sockaddr *)sin,
1891						      addr_len);
1892	}
1893
1894	if (udp_test_bit(GRO_ENABLED, sk))
1895		udp_cmsg_recv(msg, sk, skb);
1896
1897	if (inet_cmsg_flags(inet))
1898		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1899
1900	err = copied;
1901	if (flags & MSG_TRUNC)
1902		err = ulen;
1903
1904	skb_consume_udp(sk, skb, peeking ? -err : err);
1905	return err;
1906
1907csum_copy_err:
1908	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1909				 udp_skb_destructor)) {
1910		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1911		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1912	}
1913	kfree_skb(skb);
1914
1915	/* starting over for a new packet, but check if we need to yield */
1916	cond_resched();
1917	msg->msg_flags &= ~MSG_TRUNC;
1918	goto try_again;
1919}
1920
1921int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1922{
1923	/* This check is replicated from __ip4_datagram_connect() and
1924	 * intended to prevent BPF program called below from accessing bytes
1925	 * that are out of the bound specified by user in addr_len.
1926	 */
1927	if (addr_len < sizeof(struct sockaddr_in))
1928		return -EINVAL;
1929
1930	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1931}
1932EXPORT_SYMBOL(udp_pre_connect);
1933
1934int __udp_disconnect(struct sock *sk, int flags)
1935{
1936	struct inet_sock *inet = inet_sk(sk);
1937	/*
1938	 *	1003.1g - break association.
1939	 */
1940
1941	sk->sk_state = TCP_CLOSE;
1942	inet->inet_daddr = 0;
1943	inet->inet_dport = 0;
1944	sock_rps_reset_rxhash(sk);
1945	sk->sk_bound_dev_if = 0;
1946	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1947		inet_reset_saddr(sk);
1948		if (sk->sk_prot->rehash &&
1949		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1950			sk->sk_prot->rehash(sk);
1951	}
1952
1953	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1954		sk->sk_prot->unhash(sk);
1955		inet->inet_sport = 0;
1956	}
1957	sk_dst_reset(sk);
1958	return 0;
1959}
1960EXPORT_SYMBOL(__udp_disconnect);
1961
1962int udp_disconnect(struct sock *sk, int flags)
1963{
1964	lock_sock(sk);
1965	__udp_disconnect(sk, flags);
1966	release_sock(sk);
1967	return 0;
1968}
1969EXPORT_SYMBOL(udp_disconnect);
1970
1971void udp_lib_unhash(struct sock *sk)
1972{
1973	if (sk_hashed(sk)) {
1974		struct udp_table *udptable = udp_get_table_prot(sk);
1975		struct udp_hslot *hslot, *hslot2;
1976
1977		hslot  = udp_hashslot(udptable, sock_net(sk),
1978				      udp_sk(sk)->udp_port_hash);
1979		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1980
1981		spin_lock_bh(&hslot->lock);
1982		if (rcu_access_pointer(sk->sk_reuseport_cb))
1983			reuseport_detach_sock(sk);
1984		if (sk_del_node_init_rcu(sk)) {
1985			hslot->count--;
1986			inet_sk(sk)->inet_num = 0;
1987			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1988
1989			spin_lock(&hslot2->lock);
1990			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1991			hslot2->count--;
1992			spin_unlock(&hslot2->lock);
1993		}
1994		spin_unlock_bh(&hslot->lock);
1995	}
1996}
1997EXPORT_SYMBOL(udp_lib_unhash);
1998
1999/*
2000 * inet_rcv_saddr was changed, we must rehash secondary hash
2001 */
2002void udp_lib_rehash(struct sock *sk, u16 newhash)
2003{
2004	if (sk_hashed(sk)) {
2005		struct udp_table *udptable = udp_get_table_prot(sk);
2006		struct udp_hslot *hslot, *hslot2, *nhslot2;
2007
2008		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2009		nhslot2 = udp_hashslot2(udptable, newhash);
2010		udp_sk(sk)->udp_portaddr_hash = newhash;
2011
2012		if (hslot2 != nhslot2 ||
2013		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2014			hslot = udp_hashslot(udptable, sock_net(sk),
2015					     udp_sk(sk)->udp_port_hash);
2016			/* we must lock primary chain too */
2017			spin_lock_bh(&hslot->lock);
2018			if (rcu_access_pointer(sk->sk_reuseport_cb))
2019				reuseport_detach_sock(sk);
2020
2021			if (hslot2 != nhslot2) {
2022				spin_lock(&hslot2->lock);
2023				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2024				hslot2->count--;
2025				spin_unlock(&hslot2->lock);
2026
2027				spin_lock(&nhslot2->lock);
2028				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2029							 &nhslot2->head);
2030				nhslot2->count++;
2031				spin_unlock(&nhslot2->lock);
2032			}
2033
2034			spin_unlock_bh(&hslot->lock);
2035		}
2036	}
2037}
2038EXPORT_SYMBOL(udp_lib_rehash);
2039
2040void udp_v4_rehash(struct sock *sk)
2041{
2042	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2043					  inet_sk(sk)->inet_rcv_saddr,
2044					  inet_sk(sk)->inet_num);
2045	udp_lib_rehash(sk, new_hash);
2046}
2047
2048static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2049{
2050	int rc;
2051
2052	if (inet_sk(sk)->inet_daddr) {
2053		sock_rps_save_rxhash(sk, skb);
2054		sk_mark_napi_id(sk, skb);
2055		sk_incoming_cpu_update(sk);
2056	} else {
2057		sk_mark_napi_id_once(sk, skb);
2058	}
2059
2060	rc = __udp_enqueue_schedule_skb(sk, skb);
2061	if (rc < 0) {
2062		int is_udplite = IS_UDPLITE(sk);
2063		int drop_reason;
2064
2065		/* Note that an ENOMEM error is charged twice */
2066		if (rc == -ENOMEM) {
2067			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2068					is_udplite);
2069			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2070		} else {
2071			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2072				      is_udplite);
2073			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2074		}
2075		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2076		trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2077		kfree_skb_reason(skb, drop_reason);
2078		return -1;
2079	}
2080
2081	return 0;
2082}
2083
2084/* returns:
2085 *  -1: error
2086 *   0: success
2087 *  >0: "udp encap" protocol resubmission
2088 *
2089 * Note that in the success and error cases, the skb is assumed to
2090 * have either been requeued or freed.
2091 */
2092static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2093{
2094	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2095	struct udp_sock *up = udp_sk(sk);
2096	int is_udplite = IS_UDPLITE(sk);
2097
2098	/*
2099	 *	Charge it to the socket, dropping if the queue is full.
2100	 */
2101	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2102		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2103		goto drop;
2104	}
2105	nf_reset_ct(skb);
2106
2107	if (static_branch_unlikely(&udp_encap_needed_key) &&
2108	    READ_ONCE(up->encap_type)) {
2109		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2110
2111		/*
2112		 * This is an encapsulation socket so pass the skb to
2113		 * the socket's udp_encap_rcv() hook. Otherwise, just
2114		 * fall through and pass this up the UDP socket.
2115		 * up->encap_rcv() returns the following value:
2116		 * =0 if skb was successfully passed to the encap
2117		 *    handler or was discarded by it.
2118		 * >0 if skb should be passed on to UDP.
2119		 * <0 if skb should be resubmitted as proto -N
2120		 */
2121
2122		/* if we're overly short, let UDP handle it */
2123		encap_rcv = READ_ONCE(up->encap_rcv);
2124		if (encap_rcv) {
2125			int ret;
2126
2127			/* Verify checksum before giving to encap */
2128			if (udp_lib_checksum_complete(skb))
2129				goto csum_error;
2130
2131			ret = encap_rcv(sk, skb);
2132			if (ret <= 0) {
2133				__UDP_INC_STATS(sock_net(sk),
2134						UDP_MIB_INDATAGRAMS,
2135						is_udplite);
2136				return -ret;
2137			}
2138		}
2139
2140		/* FALLTHROUGH -- it's a UDP Packet */
2141	}
2142
2143	/*
2144	 * 	UDP-Lite specific tests, ignored on UDP sockets
2145	 */
2146	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2147		u16 pcrlen = READ_ONCE(up->pcrlen);
2148
2149		/*
2150		 * MIB statistics other than incrementing the error count are
2151		 * disabled for the following two types of errors: these depend
2152		 * on the application settings, not on the functioning of the
2153		 * protocol stack as such.
2154		 *
2155		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2156		 * way ... to ... at least let the receiving application block
2157		 * delivery of packets with coverage values less than a value
2158		 * provided by the application."
2159		 */
2160		if (pcrlen == 0) {          /* full coverage was set  */
2161			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2162					    UDP_SKB_CB(skb)->cscov, skb->len);
2163			goto drop;
2164		}
2165		/* The next case involves violating the min. coverage requested
2166		 * by the receiver. This is subtle: if receiver wants x and x is
2167		 * greater than the buffersize/MTU then receiver will complain
2168		 * that it wants x while sender emits packets of smaller size y.
2169		 * Therefore the above ...()->partial_cov statement is essential.
2170		 */
2171		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2172			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2173					    UDP_SKB_CB(skb)->cscov, pcrlen);
2174			goto drop;
2175		}
2176	}
2177
2178	prefetch(&sk->sk_rmem_alloc);
2179	if (rcu_access_pointer(sk->sk_filter) &&
2180	    udp_lib_checksum_complete(skb))
2181			goto csum_error;
2182
2183	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2184		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2185		goto drop;
2186	}
2187
2188	udp_csum_pull_header(skb);
2189
2190	ipv4_pktinfo_prepare(sk, skb, true);
2191	return __udp_queue_rcv_skb(sk, skb);
2192
2193csum_error:
2194	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2195	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2196drop:
2197	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2198	atomic_inc(&sk->sk_drops);
2199	kfree_skb_reason(skb, drop_reason);
2200	return -1;
2201}
2202
2203static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2204{
2205	struct sk_buff *next, *segs;
2206	int ret;
2207
2208	if (likely(!udp_unexpected_gso(sk, skb)))
2209		return udp_queue_rcv_one_skb(sk, skb);
2210
2211	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2212	__skb_push(skb, -skb_mac_offset(skb));
2213	segs = udp_rcv_segment(sk, skb, true);
2214	skb_list_walk_safe(segs, skb, next) {
2215		__skb_pull(skb, skb_transport_offset(skb));
2216
2217		udp_post_segment_fix_csum(skb);
2218		ret = udp_queue_rcv_one_skb(sk, skb);
2219		if (ret > 0)
2220			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2221	}
2222	return 0;
2223}
2224
2225/* For TCP sockets, sk_rx_dst is protected by socket lock
2226 * For UDP, we use xchg() to guard against concurrent changes.
2227 */
2228bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2229{
2230	struct dst_entry *old;
2231
2232	if (dst_hold_safe(dst)) {
2233		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2234		dst_release(old);
2235		return old != dst;
2236	}
2237	return false;
2238}
2239EXPORT_SYMBOL(udp_sk_rx_dst_set);
2240
2241/*
2242 *	Multicasts and broadcasts go to each listener.
2243 *
2244 *	Note: called only from the BH handler context.
2245 */
2246static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2247				    struct udphdr  *uh,
2248				    __be32 saddr, __be32 daddr,
2249				    struct udp_table *udptable,
2250				    int proto)
2251{
2252	struct sock *sk, *first = NULL;
2253	unsigned short hnum = ntohs(uh->dest);
2254	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2255	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2256	unsigned int offset = offsetof(typeof(*sk), sk_node);
2257	int dif = skb->dev->ifindex;
2258	int sdif = inet_sdif(skb);
2259	struct hlist_node *node;
2260	struct sk_buff *nskb;
2261
2262	if (use_hash2) {
2263		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2264			    udptable->mask;
2265		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2266start_lookup:
2267		hslot = &udptable->hash2[hash2];
2268		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2269	}
2270
2271	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2272		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2273					 uh->source, saddr, dif, sdif, hnum))
2274			continue;
2275
2276		if (!first) {
2277			first = sk;
2278			continue;
2279		}
2280		nskb = skb_clone(skb, GFP_ATOMIC);
2281
2282		if (unlikely(!nskb)) {
2283			atomic_inc(&sk->sk_drops);
2284			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2285					IS_UDPLITE(sk));
2286			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2287					IS_UDPLITE(sk));
2288			continue;
2289		}
2290		if (udp_queue_rcv_skb(sk, nskb) > 0)
2291			consume_skb(nskb);
2292	}
2293
2294	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2295	if (use_hash2 && hash2 != hash2_any) {
2296		hash2 = hash2_any;
2297		goto start_lookup;
2298	}
2299
2300	if (first) {
2301		if (udp_queue_rcv_skb(first, skb) > 0)
2302			consume_skb(skb);
2303	} else {
2304		kfree_skb(skb);
2305		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2306				proto == IPPROTO_UDPLITE);
2307	}
2308	return 0;
2309}
2310
2311/* Initialize UDP checksum. If exited with zero value (success),
2312 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2313 * Otherwise, csum completion requires checksumming packet body,
2314 * including udp header and folding it to skb->csum.
2315 */
2316static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2317				 int proto)
2318{
2319	int err;
2320
2321	UDP_SKB_CB(skb)->partial_cov = 0;
2322	UDP_SKB_CB(skb)->cscov = skb->len;
2323
2324	if (proto == IPPROTO_UDPLITE) {
2325		err = udplite_checksum_init(skb, uh);
2326		if (err)
2327			return err;
2328
2329		if (UDP_SKB_CB(skb)->partial_cov) {
2330			skb->csum = inet_compute_pseudo(skb, proto);
2331			return 0;
2332		}
2333	}
2334
2335	/* Note, we are only interested in != 0 or == 0, thus the
2336	 * force to int.
2337	 */
2338	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2339							inet_compute_pseudo);
2340	if (err)
2341		return err;
2342
2343	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2344		/* If SW calculated the value, we know it's bad */
2345		if (skb->csum_complete_sw)
2346			return 1;
2347
2348		/* HW says the value is bad. Let's validate that.
2349		 * skb->csum is no longer the full packet checksum,
2350		 * so don't treat it as such.
2351		 */
2352		skb_checksum_complete_unset(skb);
2353	}
2354
2355	return 0;
2356}
2357
2358/* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2359 * return code conversion for ip layer consumption
2360 */
2361static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2362			       struct udphdr *uh)
2363{
2364	int ret;
2365
2366	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2367		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2368
2369	ret = udp_queue_rcv_skb(sk, skb);
2370
2371	/* a return value > 0 means to resubmit the input, but
2372	 * it wants the return to be -protocol, or 0
2373	 */
2374	if (ret > 0)
2375		return -ret;
2376	return 0;
2377}
2378
2379/*
2380 *	All we need to do is get the socket, and then do a checksum.
2381 */
2382
2383int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2384		   int proto)
2385{
2386	struct sock *sk;
2387	struct udphdr *uh;
2388	unsigned short ulen;
2389	struct rtable *rt = skb_rtable(skb);
2390	__be32 saddr, daddr;
2391	struct net *net = dev_net(skb->dev);
2392	bool refcounted;
2393	int drop_reason;
2394
2395	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2396
2397	/*
2398	 *  Validate the packet.
2399	 */
2400	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2401		goto drop;		/* No space for header. */
2402
2403	uh   = udp_hdr(skb);
2404	ulen = ntohs(uh->len);
2405	saddr = ip_hdr(skb)->saddr;
2406	daddr = ip_hdr(skb)->daddr;
2407
2408	if (ulen > skb->len)
2409		goto short_packet;
2410
2411	if (proto == IPPROTO_UDP) {
2412		/* UDP validates ulen. */
2413		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2414			goto short_packet;
2415		uh = udp_hdr(skb);
2416	}
2417
2418	if (udp4_csum_init(skb, uh, proto))
2419		goto csum_error;
2420
2421	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2422			     &refcounted, udp_ehashfn);
2423	if (IS_ERR(sk))
2424		goto no_sk;
2425
2426	if (sk) {
2427		struct dst_entry *dst = skb_dst(skb);
2428		int ret;
2429
2430		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2431			udp_sk_rx_dst_set(sk, dst);
2432
2433		ret = udp_unicast_rcv_skb(sk, skb, uh);
2434		if (refcounted)
2435			sock_put(sk);
2436		return ret;
2437	}
2438
2439	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2440		return __udp4_lib_mcast_deliver(net, skb, uh,
2441						saddr, daddr, udptable, proto);
2442
2443	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2444	if (sk)
2445		return udp_unicast_rcv_skb(sk, skb, uh);
2446no_sk:
2447	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2448		goto drop;
2449	nf_reset_ct(skb);
2450
2451	/* No socket. Drop packet silently, if checksum is wrong */
2452	if (udp_lib_checksum_complete(skb))
2453		goto csum_error;
2454
2455	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2456	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2457	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2458
2459	/*
2460	 * Hmm.  We got an UDP packet to a port to which we
2461	 * don't wanna listen.  Ignore it.
2462	 */
2463	kfree_skb_reason(skb, drop_reason);
2464	return 0;
2465
2466short_packet:
2467	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2468	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2469			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2470			    &saddr, ntohs(uh->source),
2471			    ulen, skb->len,
2472			    &daddr, ntohs(uh->dest));
2473	goto drop;
2474
2475csum_error:
2476	/*
2477	 * RFC1122: OK.  Discards the bad packet silently (as far as
2478	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2479	 */
2480	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2481	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2482			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2483			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2484			    ulen);
2485	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2486drop:
2487	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2488	kfree_skb_reason(skb, drop_reason);
2489	return 0;
2490}
2491
2492/* We can only early demux multicast if there is a single matching socket.
2493 * If more than one socket found returns NULL
2494 */
2495static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2496						  __be16 loc_port, __be32 loc_addr,
2497						  __be16 rmt_port, __be32 rmt_addr,
2498						  int dif, int sdif)
2499{
2500	struct udp_table *udptable = net->ipv4.udp_table;
2501	unsigned short hnum = ntohs(loc_port);
2502	struct sock *sk, *result;
2503	struct udp_hslot *hslot;
2504	unsigned int slot;
2505
2506	slot = udp_hashfn(net, hnum, udptable->mask);
2507	hslot = &udptable->hash[slot];
2508
2509	/* Do not bother scanning a too big list */
2510	if (hslot->count > 10)
2511		return NULL;
2512
2513	result = NULL;
2514	sk_for_each_rcu(sk, &hslot->head) {
2515		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2516					rmt_port, rmt_addr, dif, sdif, hnum)) {
2517			if (result)
2518				return NULL;
2519			result = sk;
2520		}
2521	}
2522
2523	return result;
2524}
2525
2526/* For unicast we should only early demux connected sockets or we can
2527 * break forwarding setups.  The chains here can be long so only check
2528 * if the first socket is an exact match and if not move on.
2529 */
2530static struct sock *__udp4_lib_demux_lookup(struct net *net,
2531					    __be16 loc_port, __be32 loc_addr,
2532					    __be16 rmt_port, __be32 rmt_addr,
2533					    int dif, int sdif)
2534{
2535	struct udp_table *udptable = net->ipv4.udp_table;
2536	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2537	unsigned short hnum = ntohs(loc_port);
2538	unsigned int hash2, slot2;
2539	struct udp_hslot *hslot2;
2540	__portpair ports;
2541	struct sock *sk;
2542
2543	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2544	slot2 = hash2 & udptable->mask;
2545	hslot2 = &udptable->hash2[slot2];
2546	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2547
2548	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2549		if (inet_match(net, sk, acookie, ports, dif, sdif))
2550			return sk;
2551		/* Only check first socket in chain */
2552		break;
2553	}
2554	return NULL;
2555}
2556
2557int udp_v4_early_demux(struct sk_buff *skb)
2558{
2559	struct net *net = dev_net(skb->dev);
2560	struct in_device *in_dev = NULL;
2561	const struct iphdr *iph;
2562	const struct udphdr *uh;
2563	struct sock *sk = NULL;
2564	struct dst_entry *dst;
2565	int dif = skb->dev->ifindex;
2566	int sdif = inet_sdif(skb);
2567	int ours;
2568
2569	/* validate the packet */
2570	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2571		return 0;
2572
2573	iph = ip_hdr(skb);
2574	uh = udp_hdr(skb);
2575
2576	if (skb->pkt_type == PACKET_MULTICAST) {
2577		in_dev = __in_dev_get_rcu(skb->dev);
2578
2579		if (!in_dev)
2580			return 0;
2581
2582		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2583				       iph->protocol);
2584		if (!ours)
2585			return 0;
2586
2587		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2588						   uh->source, iph->saddr,
2589						   dif, sdif);
2590	} else if (skb->pkt_type == PACKET_HOST) {
2591		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2592					     uh->source, iph->saddr, dif, sdif);
2593	}
2594
2595	if (!sk)
2596		return 0;
2597
2598	skb->sk = sk;
2599	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2600	skb->destructor = sock_pfree;
2601	dst = rcu_dereference(sk->sk_rx_dst);
2602
2603	if (dst)
2604		dst = dst_check(dst, 0);
2605	if (dst) {
2606		u32 itag = 0;
2607
2608		/* set noref for now.
2609		 * any place which wants to hold dst has to call
2610		 * dst_hold_safe()
2611		 */
2612		skb_dst_set_noref(skb, dst);
2613
2614		/* for unconnected multicast sockets we need to validate
2615		 * the source on each packet
2616		 */
2617		if (!inet_sk(sk)->inet_daddr && in_dev)
2618			return ip_mc_validate_source(skb, iph->daddr,
2619						     iph->saddr,
2620						     iph->tos & IPTOS_RT_MASK,
2621						     skb->dev, in_dev, &itag);
2622	}
2623	return 0;
2624}
2625
2626int udp_rcv(struct sk_buff *skb)
2627{
2628	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2629}
2630
2631void udp_destroy_sock(struct sock *sk)
2632{
2633	struct udp_sock *up = udp_sk(sk);
2634	bool slow = lock_sock_fast(sk);
2635
2636	/* protects from races with udp_abort() */
2637	sock_set_flag(sk, SOCK_DEAD);
2638	udp_flush_pending_frames(sk);
2639	unlock_sock_fast(sk, slow);
2640	if (static_branch_unlikely(&udp_encap_needed_key)) {
2641		if (up->encap_type) {
2642			void (*encap_destroy)(struct sock *sk);
2643			encap_destroy = READ_ONCE(up->encap_destroy);
2644			if (encap_destroy)
2645				encap_destroy(sk);
2646		}
2647		if (udp_test_bit(ENCAP_ENABLED, sk))
2648			static_branch_dec(&udp_encap_needed_key);
2649	}
2650}
2651
2652static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2653				       struct sock *sk)
2654{
2655#ifdef CONFIG_XFRM
2656	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2657		if (family == AF_INET)
2658			WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2659		else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2660			WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2661	}
2662#endif
2663}
2664
2665/*
2666 *	Socket option code for UDP
2667 */
2668int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2669		       sockptr_t optval, unsigned int optlen,
2670		       int (*push_pending_frames)(struct sock *))
2671{
2672	struct udp_sock *up = udp_sk(sk);
2673	int val, valbool;
2674	int err = 0;
2675	int is_udplite = IS_UDPLITE(sk);
2676
2677	if (level == SOL_SOCKET) {
2678		err = sk_setsockopt(sk, level, optname, optval, optlen);
2679
2680		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2681			sockopt_lock_sock(sk);
2682			/* paired with READ_ONCE in udp_rmem_release() */
2683			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2684			sockopt_release_sock(sk);
2685		}
2686		return err;
2687	}
2688
2689	if (optlen < sizeof(int))
2690		return -EINVAL;
2691
2692	if (copy_from_sockptr(&val, optval, sizeof(val)))
2693		return -EFAULT;
2694
2695	valbool = val ? 1 : 0;
2696
2697	switch (optname) {
2698	case UDP_CORK:
2699		if (val != 0) {
2700			udp_set_bit(CORK, sk);
2701		} else {
2702			udp_clear_bit(CORK, sk);
2703			lock_sock(sk);
2704			push_pending_frames(sk);
2705			release_sock(sk);
2706		}
2707		break;
2708
2709	case UDP_ENCAP:
2710		switch (val) {
2711		case 0:
2712#ifdef CONFIG_XFRM
2713		case UDP_ENCAP_ESPINUDP:
2714			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2715#if IS_ENABLED(CONFIG_IPV6)
2716			if (sk->sk_family == AF_INET6)
2717				WRITE_ONCE(up->encap_rcv,
2718					   ipv6_stub->xfrm6_udp_encap_rcv);
2719			else
2720#endif
2721				WRITE_ONCE(up->encap_rcv,
2722					   xfrm4_udp_encap_rcv);
2723#endif
2724			fallthrough;
2725		case UDP_ENCAP_L2TPINUDP:
2726			WRITE_ONCE(up->encap_type, val);
2727			udp_tunnel_encap_enable(sk);
2728			break;
2729		default:
2730			err = -ENOPROTOOPT;
2731			break;
2732		}
2733		break;
2734
2735	case UDP_NO_CHECK6_TX:
2736		udp_set_no_check6_tx(sk, valbool);
2737		break;
2738
2739	case UDP_NO_CHECK6_RX:
2740		udp_set_no_check6_rx(sk, valbool);
2741		break;
2742
2743	case UDP_SEGMENT:
2744		if (val < 0 || val > USHRT_MAX)
2745			return -EINVAL;
2746		WRITE_ONCE(up->gso_size, val);
2747		break;
2748
2749	case UDP_GRO:
2750
2751		/* when enabling GRO, accept the related GSO packet type */
2752		if (valbool)
2753			udp_tunnel_encap_enable(sk);
2754		udp_assign_bit(GRO_ENABLED, sk, valbool);
2755		udp_assign_bit(ACCEPT_L4, sk, valbool);
2756		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
2757		break;
2758
2759	/*
2760	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2761	 */
2762	/* The sender sets actual checksum coverage length via this option.
2763	 * The case coverage > packet length is handled by send module. */
2764	case UDPLITE_SEND_CSCOV:
2765		if (!is_udplite)         /* Disable the option on UDP sockets */
2766			return -ENOPROTOOPT;
2767		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2768			val = 8;
2769		else if (val > USHRT_MAX)
2770			val = USHRT_MAX;
2771		WRITE_ONCE(up->pcslen, val);
2772		udp_set_bit(UDPLITE_SEND_CC, sk);
2773		break;
2774
2775	/* The receiver specifies a minimum checksum coverage value. To make
2776	 * sense, this should be set to at least 8 (as done below). If zero is
2777	 * used, this again means full checksum coverage.                     */
2778	case UDPLITE_RECV_CSCOV:
2779		if (!is_udplite)         /* Disable the option on UDP sockets */
2780			return -ENOPROTOOPT;
2781		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2782			val = 8;
2783		else if (val > USHRT_MAX)
2784			val = USHRT_MAX;
2785		WRITE_ONCE(up->pcrlen, val);
2786		udp_set_bit(UDPLITE_RECV_CC, sk);
2787		break;
2788
2789	default:
2790		err = -ENOPROTOOPT;
2791		break;
2792	}
2793
2794	return err;
2795}
2796EXPORT_SYMBOL(udp_lib_setsockopt);
2797
2798int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2799		   unsigned int optlen)
2800{
2801	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2802		return udp_lib_setsockopt(sk, level, optname,
2803					  optval, optlen,
2804					  udp_push_pending_frames);
2805	return ip_setsockopt(sk, level, optname, optval, optlen);
2806}
2807
2808int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2809		       char __user *optval, int __user *optlen)
2810{
2811	struct udp_sock *up = udp_sk(sk);
2812	int val, len;
2813
2814	if (get_user(len, optlen))
2815		return -EFAULT;
2816
2817	if (len < 0)
2818		return -EINVAL;
2819
2820	len = min_t(unsigned int, len, sizeof(int));
2821
2822	switch (optname) {
2823	case UDP_CORK:
2824		val = udp_test_bit(CORK, sk);
2825		break;
2826
2827	case UDP_ENCAP:
2828		val = READ_ONCE(up->encap_type);
2829		break;
2830
2831	case UDP_NO_CHECK6_TX:
2832		val = udp_get_no_check6_tx(sk);
2833		break;
2834
2835	case UDP_NO_CHECK6_RX:
2836		val = udp_get_no_check6_rx(sk);
2837		break;
2838
2839	case UDP_SEGMENT:
2840		val = READ_ONCE(up->gso_size);
2841		break;
2842
2843	case UDP_GRO:
2844		val = udp_test_bit(GRO_ENABLED, sk);
2845		break;
2846
2847	/* The following two cannot be changed on UDP sockets, the return is
2848	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2849	case UDPLITE_SEND_CSCOV:
2850		val = READ_ONCE(up->pcslen);
2851		break;
2852
2853	case UDPLITE_RECV_CSCOV:
2854		val = READ_ONCE(up->pcrlen);
2855		break;
2856
2857	default:
2858		return -ENOPROTOOPT;
2859	}
2860
2861	if (put_user(len, optlen))
2862		return -EFAULT;
2863	if (copy_to_user(optval, &val, len))
2864		return -EFAULT;
2865	return 0;
2866}
2867EXPORT_SYMBOL(udp_lib_getsockopt);
2868
2869int udp_getsockopt(struct sock *sk, int level, int optname,
2870		   char __user *optval, int __user *optlen)
2871{
2872	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2873		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2874	return ip_getsockopt(sk, level, optname, optval, optlen);
2875}
2876
2877/**
2878 * 	udp_poll - wait for a UDP event.
2879 *	@file: - file struct
2880 *	@sock: - socket
2881 *	@wait: - poll table
2882 *
2883 *	This is same as datagram poll, except for the special case of
2884 *	blocking sockets. If application is using a blocking fd
2885 *	and a packet with checksum error is in the queue;
2886 *	then it could get return from select indicating data available
2887 *	but then block when reading it. Add special case code
2888 *	to work around these arguably broken applications.
2889 */
2890__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2891{
2892	__poll_t mask = datagram_poll(file, sock, wait);
2893	struct sock *sk = sock->sk;
2894
2895	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2896		mask |= EPOLLIN | EPOLLRDNORM;
2897
2898	/* Check for false positives due to checksum errors */
2899	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2900	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2901		mask &= ~(EPOLLIN | EPOLLRDNORM);
2902
2903	/* psock ingress_msg queue should not contain any bad checksum frames */
2904	if (sk_is_readable(sk))
2905		mask |= EPOLLIN | EPOLLRDNORM;
2906	return mask;
2907
2908}
2909EXPORT_SYMBOL(udp_poll);
2910
2911int udp_abort(struct sock *sk, int err)
2912{
2913	if (!has_current_bpf_ctx())
2914		lock_sock(sk);
2915
2916	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2917	 * with close()
2918	 */
2919	if (sock_flag(sk, SOCK_DEAD))
2920		goto out;
2921
2922	sk->sk_err = err;
2923	sk_error_report(sk);
2924	__udp_disconnect(sk, 0);
2925
2926out:
2927	if (!has_current_bpf_ctx())
2928		release_sock(sk);
2929
2930	return 0;
2931}
2932EXPORT_SYMBOL_GPL(udp_abort);
2933
2934struct proto udp_prot = {
2935	.name			= "UDP",
2936	.owner			= THIS_MODULE,
2937	.close			= udp_lib_close,
2938	.pre_connect		= udp_pre_connect,
2939	.connect		= ip4_datagram_connect,
2940	.disconnect		= udp_disconnect,
2941	.ioctl			= udp_ioctl,
2942	.init			= udp_init_sock,
2943	.destroy		= udp_destroy_sock,
2944	.setsockopt		= udp_setsockopt,
2945	.getsockopt		= udp_getsockopt,
2946	.sendmsg		= udp_sendmsg,
2947	.recvmsg		= udp_recvmsg,
2948	.splice_eof		= udp_splice_eof,
2949	.release_cb		= ip4_datagram_release_cb,
2950	.hash			= udp_lib_hash,
2951	.unhash			= udp_lib_unhash,
2952	.rehash			= udp_v4_rehash,
2953	.get_port		= udp_v4_get_port,
2954	.put_port		= udp_lib_unhash,
2955#ifdef CONFIG_BPF_SYSCALL
2956	.psock_update_sk_prot	= udp_bpf_update_proto,
2957#endif
2958	.memory_allocated	= &udp_memory_allocated,
2959	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2960
2961	.sysctl_mem		= sysctl_udp_mem,
2962	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2963	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2964	.obj_size		= sizeof(struct udp_sock),
2965	.h.udp_table		= NULL,
2966	.diag_destroy		= udp_abort,
2967};
2968EXPORT_SYMBOL(udp_prot);
2969
2970/* ------------------------------------------------------------------------ */
2971#ifdef CONFIG_PROC_FS
2972
2973static unsigned short seq_file_family(const struct seq_file *seq);
2974static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2975{
2976	unsigned short family = seq_file_family(seq);
2977
2978	/* AF_UNSPEC is used as a match all */
2979	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2980		net_eq(sock_net(sk), seq_file_net(seq)));
2981}
2982
2983#ifdef CONFIG_BPF_SYSCALL
2984static const struct seq_operations bpf_iter_udp_seq_ops;
2985#endif
2986static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2987					   struct net *net)
2988{
2989	const struct udp_seq_afinfo *afinfo;
2990
2991#ifdef CONFIG_BPF_SYSCALL
2992	if (seq->op == &bpf_iter_udp_seq_ops)
2993		return net->ipv4.udp_table;
2994#endif
2995
2996	afinfo = pde_data(file_inode(seq->file));
2997	return afinfo->udp_table ? : net->ipv4.udp_table;
2998}
2999
3000static struct sock *udp_get_first(struct seq_file *seq, int start)
3001{
3002	struct udp_iter_state *state = seq->private;
3003	struct net *net = seq_file_net(seq);
3004	struct udp_table *udptable;
3005	struct sock *sk;
3006
3007	udptable = udp_get_table_seq(seq, net);
3008
3009	for (state->bucket = start; state->bucket <= udptable->mask;
3010	     ++state->bucket) {
3011		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3012
3013		if (hlist_empty(&hslot->head))
3014			continue;
3015
3016		spin_lock_bh(&hslot->lock);
3017		sk_for_each(sk, &hslot->head) {
3018			if (seq_sk_match(seq, sk))
3019				goto found;
3020		}
3021		spin_unlock_bh(&hslot->lock);
3022	}
3023	sk = NULL;
3024found:
3025	return sk;
3026}
3027
3028static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3029{
3030	struct udp_iter_state *state = seq->private;
3031	struct net *net = seq_file_net(seq);
3032	struct udp_table *udptable;
3033
3034	do {
3035		sk = sk_next(sk);
3036	} while (sk && !seq_sk_match(seq, sk));
3037
3038	if (!sk) {
3039		udptable = udp_get_table_seq(seq, net);
3040
3041		if (state->bucket <= udptable->mask)
3042			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3043
3044		return udp_get_first(seq, state->bucket + 1);
3045	}
3046	return sk;
3047}
3048
3049static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3050{
3051	struct sock *sk = udp_get_first(seq, 0);
3052
3053	if (sk)
3054		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3055			--pos;
3056	return pos ? NULL : sk;
3057}
3058
3059void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3060{
3061	struct udp_iter_state *state = seq->private;
3062	state->bucket = MAX_UDP_PORTS;
3063
3064	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3065}
3066EXPORT_SYMBOL(udp_seq_start);
3067
3068void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3069{
3070	struct sock *sk;
3071
3072	if (v == SEQ_START_TOKEN)
3073		sk = udp_get_idx(seq, 0);
3074	else
3075		sk = udp_get_next(seq, v);
3076
3077	++*pos;
3078	return sk;
3079}
3080EXPORT_SYMBOL(udp_seq_next);
3081
3082void udp_seq_stop(struct seq_file *seq, void *v)
3083{
3084	struct udp_iter_state *state = seq->private;
3085	struct udp_table *udptable;
3086
3087	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3088
3089	if (state->bucket <= udptable->mask)
3090		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3091}
3092EXPORT_SYMBOL(udp_seq_stop);
3093
3094/* ------------------------------------------------------------------------ */
3095static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3096		int bucket)
3097{
3098	struct inet_sock *inet = inet_sk(sp);
3099	__be32 dest = inet->inet_daddr;
3100	__be32 src  = inet->inet_rcv_saddr;
3101	__u16 destp	  = ntohs(inet->inet_dport);
3102	__u16 srcp	  = ntohs(inet->inet_sport);
3103
3104	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3105		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3106		bucket, src, srcp, dest, destp, sp->sk_state,
3107		sk_wmem_alloc_get(sp),
3108		udp_rqueue_get(sp),
3109		0, 0L, 0,
3110		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3111		0, sock_i_ino(sp),
3112		refcount_read(&sp->sk_refcnt), sp,
3113		atomic_read(&sp->sk_drops));
3114}
3115
3116int udp4_seq_show(struct seq_file *seq, void *v)
3117{
3118	seq_setwidth(seq, 127);
3119	if (v == SEQ_START_TOKEN)
3120		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3121			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3122			   "inode ref pointer drops");
3123	else {
3124		struct udp_iter_state *state = seq->private;
3125
3126		udp4_format_sock(v, seq, state->bucket);
3127	}
3128	seq_pad(seq, '\n');
3129	return 0;
3130}
3131
3132#ifdef CONFIG_BPF_SYSCALL
3133struct bpf_iter__udp {
3134	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3135	__bpf_md_ptr(struct udp_sock *, udp_sk);
3136	uid_t uid __aligned(8);
3137	int bucket __aligned(8);
3138};
3139
3140struct bpf_udp_iter_state {
3141	struct udp_iter_state state;
3142	unsigned int cur_sk;
3143	unsigned int end_sk;
3144	unsigned int max_sk;
3145	int offset;
3146	struct sock **batch;
3147	bool st_bucket_done;
3148};
3149
3150static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3151				      unsigned int new_batch_sz);
3152static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3153{
3154	struct bpf_udp_iter_state *iter = seq->private;
3155	struct udp_iter_state *state = &iter->state;
3156	struct net *net = seq_file_net(seq);
3157	int resume_bucket, resume_offset;
3158	struct udp_table *udptable;
3159	unsigned int batch_sks = 0;
3160	bool resized = false;
3161	struct sock *sk;
3162
3163	resume_bucket = state->bucket;
3164	resume_offset = iter->offset;
3165
3166	/* The current batch is done, so advance the bucket. */
3167	if (iter->st_bucket_done)
3168		state->bucket++;
3169
3170	udptable = udp_get_table_seq(seq, net);
3171
3172again:
3173	/* New batch for the next bucket.
3174	 * Iterate over the hash table to find a bucket with sockets matching
3175	 * the iterator attributes, and return the first matching socket from
3176	 * the bucket. The remaining matched sockets from the bucket are batched
3177	 * before releasing the bucket lock. This allows BPF programs that are
3178	 * called in seq_show to acquire the bucket lock if needed.
3179	 */
3180	iter->cur_sk = 0;
3181	iter->end_sk = 0;
3182	iter->st_bucket_done = false;
3183	batch_sks = 0;
3184
3185	for (; state->bucket <= udptable->mask; state->bucket++) {
3186		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3187
3188		if (hlist_empty(&hslot2->head))
3189			continue;
3190
3191		iter->offset = 0;
3192		spin_lock_bh(&hslot2->lock);
3193		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3194			if (seq_sk_match(seq, sk)) {
3195				/* Resume from the last iterated socket at the
3196				 * offset in the bucket before iterator was stopped.
3197				 */
3198				if (state->bucket == resume_bucket &&
3199				    iter->offset < resume_offset) {
3200					++iter->offset;
3201					continue;
3202				}
3203				if (iter->end_sk < iter->max_sk) {
3204					sock_hold(sk);
3205					iter->batch[iter->end_sk++] = sk;
3206				}
3207				batch_sks++;
3208			}
3209		}
3210		spin_unlock_bh(&hslot2->lock);
3211
3212		if (iter->end_sk)
3213			break;
3214	}
3215
3216	/* All done: no batch made. */
3217	if (!iter->end_sk)
3218		return NULL;
3219
3220	if (iter->end_sk == batch_sks) {
3221		/* Batching is done for the current bucket; return the first
3222		 * socket to be iterated from the batch.
3223		 */
3224		iter->st_bucket_done = true;
3225		goto done;
3226	}
3227	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3228		resized = true;
3229		/* After allocating a larger batch, retry one more time to grab
3230		 * the whole bucket.
3231		 */
3232		goto again;
3233	}
3234done:
3235	return iter->batch[0];
3236}
3237
3238static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3239{
3240	struct bpf_udp_iter_state *iter = seq->private;
3241	struct sock *sk;
3242
3243	/* Whenever seq_next() is called, the iter->cur_sk is
3244	 * done with seq_show(), so unref the iter->cur_sk.
3245	 */
3246	if (iter->cur_sk < iter->end_sk) {
3247		sock_put(iter->batch[iter->cur_sk++]);
3248		++iter->offset;
3249	}
3250
3251	/* After updating iter->cur_sk, check if there are more sockets
3252	 * available in the current bucket batch.
3253	 */
3254	if (iter->cur_sk < iter->end_sk)
3255		sk = iter->batch[iter->cur_sk];
3256	else
3257		/* Prepare a new batch. */
3258		sk = bpf_iter_udp_batch(seq);
3259
3260	++*pos;
3261	return sk;
3262}
3263
3264static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3265{
3266	/* bpf iter does not support lseek, so it always
3267	 * continue from where it was stop()-ped.
3268	 */
3269	if (*pos)
3270		return bpf_iter_udp_batch(seq);
3271
3272	return SEQ_START_TOKEN;
3273}
3274
3275static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3276			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3277{
3278	struct bpf_iter__udp ctx;
3279
3280	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3281	ctx.meta = meta;
3282	ctx.udp_sk = udp_sk;
3283	ctx.uid = uid;
3284	ctx.bucket = bucket;
3285	return bpf_iter_run_prog(prog, &ctx);
3286}
3287
3288static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3289{
3290	struct udp_iter_state *state = seq->private;
3291	struct bpf_iter_meta meta;
3292	struct bpf_prog *prog;
3293	struct sock *sk = v;
3294	uid_t uid;
3295	int ret;
3296
3297	if (v == SEQ_START_TOKEN)
3298		return 0;
3299
3300	lock_sock(sk);
3301
3302	if (unlikely(sk_unhashed(sk))) {
3303		ret = SEQ_SKIP;
3304		goto unlock;
3305	}
3306
3307	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3308	meta.seq = seq;
3309	prog = bpf_iter_get_info(&meta, false);
3310	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3311
3312unlock:
3313	release_sock(sk);
3314	return ret;
3315}
3316
3317static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3318{
3319	while (iter->cur_sk < iter->end_sk)
3320		sock_put(iter->batch[iter->cur_sk++]);
3321}
3322
3323static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3324{
3325	struct bpf_udp_iter_state *iter = seq->private;
3326	struct bpf_iter_meta meta;
3327	struct bpf_prog *prog;
3328
3329	if (!v) {
3330		meta.seq = seq;
3331		prog = bpf_iter_get_info(&meta, true);
3332		if (prog)
3333			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3334	}
3335
3336	if (iter->cur_sk < iter->end_sk) {
3337		bpf_iter_udp_put_batch(iter);
3338		iter->st_bucket_done = false;
3339	}
3340}
3341
3342static const struct seq_operations bpf_iter_udp_seq_ops = {
3343	.start		= bpf_iter_udp_seq_start,
3344	.next		= bpf_iter_udp_seq_next,
3345	.stop		= bpf_iter_udp_seq_stop,
3346	.show		= bpf_iter_udp_seq_show,
3347};
3348#endif
3349
3350static unsigned short seq_file_family(const struct seq_file *seq)
3351{
3352	const struct udp_seq_afinfo *afinfo;
3353
3354#ifdef CONFIG_BPF_SYSCALL
3355	/* BPF iterator: bpf programs to filter sockets. */
3356	if (seq->op == &bpf_iter_udp_seq_ops)
3357		return AF_UNSPEC;
3358#endif
3359
3360	/* Proc fs iterator */
3361	afinfo = pde_data(file_inode(seq->file));
3362	return afinfo->family;
3363}
3364
3365const struct seq_operations udp_seq_ops = {
3366	.start		= udp_seq_start,
3367	.next		= udp_seq_next,
3368	.stop		= udp_seq_stop,
3369	.show		= udp4_seq_show,
3370};
3371EXPORT_SYMBOL(udp_seq_ops);
3372
3373static struct udp_seq_afinfo udp4_seq_afinfo = {
3374	.family		= AF_INET,
3375	.udp_table	= NULL,
3376};
3377
3378static int __net_init udp4_proc_init_net(struct net *net)
3379{
3380	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3381			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3382		return -ENOMEM;
3383	return 0;
3384}
3385
3386static void __net_exit udp4_proc_exit_net(struct net *net)
3387{
3388	remove_proc_entry("udp", net->proc_net);
3389}
3390
3391static struct pernet_operations udp4_net_ops = {
3392	.init = udp4_proc_init_net,
3393	.exit = udp4_proc_exit_net,
3394};
3395
3396int __init udp4_proc_init(void)
3397{
3398	return register_pernet_subsys(&udp4_net_ops);
3399}
3400
3401void udp4_proc_exit(void)
3402{
3403	unregister_pernet_subsys(&udp4_net_ops);
3404}
3405#endif /* CONFIG_PROC_FS */
3406
3407static __initdata unsigned long uhash_entries;
3408static int __init set_uhash_entries(char *str)
3409{
3410	ssize_t ret;
3411
3412	if (!str)
3413		return 0;
3414
3415	ret = kstrtoul(str, 0, &uhash_entries);
3416	if (ret)
3417		return 0;
3418
3419	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3420		uhash_entries = UDP_HTABLE_SIZE_MIN;
3421	return 1;
3422}
3423__setup("uhash_entries=", set_uhash_entries);
3424
3425void __init udp_table_init(struct udp_table *table, const char *name)
3426{
3427	unsigned int i;
3428
3429	table->hash = alloc_large_system_hash(name,
3430					      2 * sizeof(struct udp_hslot),
3431					      uhash_entries,
3432					      21, /* one slot per 2 MB */
3433					      0,
3434					      &table->log,
3435					      &table->mask,
3436					      UDP_HTABLE_SIZE_MIN,
3437					      UDP_HTABLE_SIZE_MAX);
3438
3439	table->hash2 = table->hash + (table->mask + 1);
3440	for (i = 0; i <= table->mask; i++) {
3441		INIT_HLIST_HEAD(&table->hash[i].head);
3442		table->hash[i].count = 0;
3443		spin_lock_init(&table->hash[i].lock);
3444	}
3445	for (i = 0; i <= table->mask; i++) {
3446		INIT_HLIST_HEAD(&table->hash2[i].head);
3447		table->hash2[i].count = 0;
3448		spin_lock_init(&table->hash2[i].lock);
3449	}
3450}
3451
3452u32 udp_flow_hashrnd(void)
3453{
3454	static u32 hashrnd __read_mostly;
3455
3456	net_get_random_once(&hashrnd, sizeof(hashrnd));
3457
3458	return hashrnd;
3459}
3460EXPORT_SYMBOL(udp_flow_hashrnd);
3461
3462static void __net_init udp_sysctl_init(struct net *net)
3463{
3464	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3465	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3466
3467#ifdef CONFIG_NET_L3_MASTER_DEV
3468	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3469#endif
3470}
3471
3472static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3473{
3474	struct udp_table *udptable;
3475	int i;
3476
3477	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3478	if (!udptable)
3479		goto out;
3480
3481	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3482				      GFP_KERNEL_ACCOUNT);
3483	if (!udptable->hash)
3484		goto free_table;
3485
3486	udptable->hash2 = udptable->hash + hash_entries;
3487	udptable->mask = hash_entries - 1;
3488	udptable->log = ilog2(hash_entries);
3489
3490	for (i = 0; i < hash_entries; i++) {
3491		INIT_HLIST_HEAD(&udptable->hash[i].head);
3492		udptable->hash[i].count = 0;
3493		spin_lock_init(&udptable->hash[i].lock);
3494
3495		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3496		udptable->hash2[i].count = 0;
3497		spin_lock_init(&udptable->hash2[i].lock);
3498	}
3499
3500	return udptable;
3501
3502free_table:
3503	kfree(udptable);
3504out:
3505	return NULL;
3506}
3507
3508static void __net_exit udp_pernet_table_free(struct net *net)
3509{
3510	struct udp_table *udptable = net->ipv4.udp_table;
3511
3512	if (udptable == &udp_table)
3513		return;
3514
3515	kvfree(udptable->hash);
3516	kfree(udptable);
3517}
3518
3519static void __net_init udp_set_table(struct net *net)
3520{
3521	struct udp_table *udptable;
3522	unsigned int hash_entries;
3523	struct net *old_net;
3524
3525	if (net_eq(net, &init_net))
3526		goto fallback;
3527
3528	old_net = current->nsproxy->net_ns;
3529	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3530	if (!hash_entries)
3531		goto fallback;
3532
3533	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3534	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3535		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3536	else
3537		hash_entries = roundup_pow_of_two(hash_entries);
3538
3539	udptable = udp_pernet_table_alloc(hash_entries);
3540	if (udptable) {
3541		net->ipv4.udp_table = udptable;
3542	} else {
3543		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3544			"for a netns, fallback to the global one\n",
3545			hash_entries);
3546fallback:
3547		net->ipv4.udp_table = &udp_table;
3548	}
3549}
3550
3551static int __net_init udp_pernet_init(struct net *net)
3552{
3553	udp_sysctl_init(net);
3554	udp_set_table(net);
3555
3556	return 0;
3557}
3558
3559static void __net_exit udp_pernet_exit(struct net *net)
3560{
3561	udp_pernet_table_free(net);
3562}
3563
3564static struct pernet_operations __net_initdata udp_sysctl_ops = {
3565	.init	= udp_pernet_init,
3566	.exit	= udp_pernet_exit,
3567};
3568
3569#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3570DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3571		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3572
3573static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3574				      unsigned int new_batch_sz)
3575{
3576	struct sock **new_batch;
3577
3578	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3579				   GFP_USER | __GFP_NOWARN);
3580	if (!new_batch)
3581		return -ENOMEM;
3582
3583	bpf_iter_udp_put_batch(iter);
3584	kvfree(iter->batch);
3585	iter->batch = new_batch;
3586	iter->max_sk = new_batch_sz;
3587
3588	return 0;
3589}
3590
3591#define INIT_BATCH_SZ 16
3592
3593static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3594{
3595	struct bpf_udp_iter_state *iter = priv_data;
3596	int ret;
3597
3598	ret = bpf_iter_init_seq_net(priv_data, aux);
3599	if (ret)
3600		return ret;
3601
3602	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3603	if (ret)
3604		bpf_iter_fini_seq_net(priv_data);
3605
3606	return ret;
3607}
3608
3609static void bpf_iter_fini_udp(void *priv_data)
3610{
3611	struct bpf_udp_iter_state *iter = priv_data;
3612
3613	bpf_iter_fini_seq_net(priv_data);
3614	kvfree(iter->batch);
3615}
3616
3617static const struct bpf_iter_seq_info udp_seq_info = {
3618	.seq_ops		= &bpf_iter_udp_seq_ops,
3619	.init_seq_private	= bpf_iter_init_udp,
3620	.fini_seq_private	= bpf_iter_fini_udp,
3621	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3622};
3623
3624static struct bpf_iter_reg udp_reg_info = {
3625	.target			= "udp",
3626	.ctx_arg_info_size	= 1,
3627	.ctx_arg_info		= {
3628		{ offsetof(struct bpf_iter__udp, udp_sk),
3629		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3630	},
3631	.seq_info		= &udp_seq_info,
3632};
3633
3634static void __init bpf_iter_register(void)
3635{
3636	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3637	if (bpf_iter_reg_target(&udp_reg_info))
3638		pr_warn("Warning: could not register bpf iterator udp\n");
3639}
3640#endif
3641
3642void __init udp_init(void)
3643{
3644	unsigned long limit;
3645	unsigned int i;
3646
3647	udp_table_init(&udp_table, "UDP");
3648	limit = nr_free_buffer_pages() / 8;
3649	limit = max(limit, 128UL);
3650	sysctl_udp_mem[0] = limit / 4 * 3;
3651	sysctl_udp_mem[1] = limit;
3652	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3653
3654	/* 16 spinlocks per cpu */
3655	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3656	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3657				GFP_KERNEL);
3658	if (!udp_busylocks)
3659		panic("UDP: failed to alloc udp_busylocks\n");
3660	for (i = 0; i < (1U << udp_busylocks_log); i++)
3661		spin_lock_init(udp_busylocks + i);
3662
3663	if (register_pernet_subsys(&udp_sysctl_ops))
3664		panic("UDP: failed to init sysctl parameters.\n");
3665
3666#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3667	bpf_iter_register();
3668#endif
3669}
3670