1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/mm/vmstat.c
4 *
5 *  Manages VM statistics
6 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7 *
8 *  zoned VM statistics
9 *  Copyright (C) 2006 Silicon Graphics, Inc.,
10 *		Christoph Lameter <christoph@lameter.com>
11 *  Copyright (C) 2008-2014 Christoph Lameter
12 */
13#include <linux/fs.h>
14#include <linux/mm.h>
15#include <linux/err.h>
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/cpu.h>
19#include <linux/cpumask.h>
20#include <linux/vmstat.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/debugfs.h>
24#include <linux/sched.h>
25#include <linux/math64.h>
26#include <linux/writeback.h>
27#include <linux/compaction.h>
28#include <linux/mm_inline.h>
29#include <linux/page_owner.h>
30#include <linux/sched/isolation.h>
31
32#include "internal.h"
33
34#ifdef CONFIG_NUMA
35int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36
37/* zero numa counters within a zone */
38static void zero_zone_numa_counters(struct zone *zone)
39{
40	int item, cpu;
41
42	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43		atomic_long_set(&zone->vm_numa_event[item], 0);
44		for_each_online_cpu(cpu) {
45			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46						= 0;
47		}
48	}
49}
50
51/* zero numa counters of all the populated zones */
52static void zero_zones_numa_counters(void)
53{
54	struct zone *zone;
55
56	for_each_populated_zone(zone)
57		zero_zone_numa_counters(zone);
58}
59
60/* zero global numa counters */
61static void zero_global_numa_counters(void)
62{
63	int item;
64
65	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66		atomic_long_set(&vm_numa_event[item], 0);
67}
68
69static void invalid_numa_statistics(void)
70{
71	zero_zones_numa_counters();
72	zero_global_numa_counters();
73}
74
75static DEFINE_MUTEX(vm_numa_stat_lock);
76
77int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78		void *buffer, size_t *length, loff_t *ppos)
79{
80	int ret, oldval;
81
82	mutex_lock(&vm_numa_stat_lock);
83	if (write)
84		oldval = sysctl_vm_numa_stat;
85	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86	if (ret || !write)
87		goto out;
88
89	if (oldval == sysctl_vm_numa_stat)
90		goto out;
91	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92		static_branch_enable(&vm_numa_stat_key);
93		pr_info("enable numa statistics\n");
94	} else {
95		static_branch_disable(&vm_numa_stat_key);
96		invalid_numa_statistics();
97		pr_info("disable numa statistics, and clear numa counters\n");
98	}
99
100out:
101	mutex_unlock(&vm_numa_stat_lock);
102	return ret;
103}
104#endif
105
106#ifdef CONFIG_VM_EVENT_COUNTERS
107DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108EXPORT_PER_CPU_SYMBOL(vm_event_states);
109
110static void sum_vm_events(unsigned long *ret)
111{
112	int cpu;
113	int i;
114
115	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116
117	for_each_online_cpu(cpu) {
118		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119
120		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121			ret[i] += this->event[i];
122	}
123}
124
125/*
126 * Accumulate the vm event counters across all CPUs.
127 * The result is unavoidably approximate - it can change
128 * during and after execution of this function.
129*/
130void all_vm_events(unsigned long *ret)
131{
132	cpus_read_lock();
133	sum_vm_events(ret);
134	cpus_read_unlock();
135}
136EXPORT_SYMBOL_GPL(all_vm_events);
137
138/*
139 * Fold the foreign cpu events into our own.
140 *
141 * This is adding to the events on one processor
142 * but keeps the global counts constant.
143 */
144void vm_events_fold_cpu(int cpu)
145{
146	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147	int i;
148
149	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150		count_vm_events(i, fold_state->event[i]);
151		fold_state->event[i] = 0;
152	}
153}
154
155#endif /* CONFIG_VM_EVENT_COUNTERS */
156
157/*
158 * Manage combined zone based / global counters
159 *
160 * vm_stat contains the global counters
161 */
162atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165EXPORT_SYMBOL(vm_zone_stat);
166EXPORT_SYMBOL(vm_node_stat);
167
168#ifdef CONFIG_NUMA
169static void fold_vm_zone_numa_events(struct zone *zone)
170{
171	unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
172	int cpu;
173	enum numa_stat_item item;
174
175	for_each_online_cpu(cpu) {
176		struct per_cpu_zonestat *pzstats;
177
178		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
179		for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
180			zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
181	}
182
183	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
184		zone_numa_event_add(zone_numa_events[item], zone, item);
185}
186
187void fold_vm_numa_events(void)
188{
189	struct zone *zone;
190
191	for_each_populated_zone(zone)
192		fold_vm_zone_numa_events(zone);
193}
194#endif
195
196#ifdef CONFIG_SMP
197
198int calculate_pressure_threshold(struct zone *zone)
199{
200	int threshold;
201	int watermark_distance;
202
203	/*
204	 * As vmstats are not up to date, there is drift between the estimated
205	 * and real values. For high thresholds and a high number of CPUs, it
206	 * is possible for the min watermark to be breached while the estimated
207	 * value looks fine. The pressure threshold is a reduced value such
208	 * that even the maximum amount of drift will not accidentally breach
209	 * the min watermark
210	 */
211	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
212	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
213
214	/*
215	 * Maximum threshold is 125
216	 */
217	threshold = min(125, threshold);
218
219	return threshold;
220}
221
222int calculate_normal_threshold(struct zone *zone)
223{
224	int threshold;
225	int mem;	/* memory in 128 MB units */
226
227	/*
228	 * The threshold scales with the number of processors and the amount
229	 * of memory per zone. More memory means that we can defer updates for
230	 * longer, more processors could lead to more contention.
231 	 * fls() is used to have a cheap way of logarithmic scaling.
232	 *
233	 * Some sample thresholds:
234	 *
235	 * Threshold	Processors	(fls)	Zonesize	fls(mem)+1
236	 * ------------------------------------------------------------------
237	 * 8		1		1	0.9-1 GB	4
238	 * 16		2		2	0.9-1 GB	4
239	 * 20 		2		2	1-2 GB		5
240	 * 24		2		2	2-4 GB		6
241	 * 28		2		2	4-8 GB		7
242	 * 32		2		2	8-16 GB		8
243	 * 4		2		2	<128M		1
244	 * 30		4		3	2-4 GB		5
245	 * 48		4		3	8-16 GB		8
246	 * 32		8		4	1-2 GB		4
247	 * 32		8		4	0.9-1GB		4
248	 * 10		16		5	<128M		1
249	 * 40		16		5	900M		4
250	 * 70		64		7	2-4 GB		5
251	 * 84		64		7	4-8 GB		6
252	 * 108		512		9	4-8 GB		6
253	 * 125		1024		10	8-16 GB		8
254	 * 125		1024		10	16-32 GB	9
255	 */
256
257	mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
258
259	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
260
261	/*
262	 * Maximum threshold is 125
263	 */
264	threshold = min(125, threshold);
265
266	return threshold;
267}
268
269/*
270 * Refresh the thresholds for each zone.
271 */
272void refresh_zone_stat_thresholds(void)
273{
274	struct pglist_data *pgdat;
275	struct zone *zone;
276	int cpu;
277	int threshold;
278
279	/* Zero current pgdat thresholds */
280	for_each_online_pgdat(pgdat) {
281		for_each_online_cpu(cpu) {
282			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
283		}
284	}
285
286	for_each_populated_zone(zone) {
287		struct pglist_data *pgdat = zone->zone_pgdat;
288		unsigned long max_drift, tolerate_drift;
289
290		threshold = calculate_normal_threshold(zone);
291
292		for_each_online_cpu(cpu) {
293			int pgdat_threshold;
294
295			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
296							= threshold;
297
298			/* Base nodestat threshold on the largest populated zone. */
299			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
300			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
301				= max(threshold, pgdat_threshold);
302		}
303
304		/*
305		 * Only set percpu_drift_mark if there is a danger that
306		 * NR_FREE_PAGES reports the low watermark is ok when in fact
307		 * the min watermark could be breached by an allocation
308		 */
309		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
310		max_drift = num_online_cpus() * threshold;
311		if (max_drift > tolerate_drift)
312			zone->percpu_drift_mark = high_wmark_pages(zone) +
313					max_drift;
314	}
315}
316
317void set_pgdat_percpu_threshold(pg_data_t *pgdat,
318				int (*calculate_pressure)(struct zone *))
319{
320	struct zone *zone;
321	int cpu;
322	int threshold;
323	int i;
324
325	for (i = 0; i < pgdat->nr_zones; i++) {
326		zone = &pgdat->node_zones[i];
327		if (!zone->percpu_drift_mark)
328			continue;
329
330		threshold = (*calculate_pressure)(zone);
331		for_each_online_cpu(cpu)
332			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
333							= threshold;
334	}
335}
336
337/*
338 * For use when we know that interrupts are disabled,
339 * or when we know that preemption is disabled and that
340 * particular counter cannot be updated from interrupt context.
341 */
342void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
343			   long delta)
344{
345	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
346	s8 __percpu *p = pcp->vm_stat_diff + item;
347	long x;
348	long t;
349
350	/*
351	 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
352	 * atomicity is provided by IRQs being disabled -- either explicitly
353	 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
354	 * CPU migrations and preemption potentially corrupts a counter so
355	 * disable preemption.
356	 */
357	preempt_disable_nested();
358
359	x = delta + __this_cpu_read(*p);
360
361	t = __this_cpu_read(pcp->stat_threshold);
362
363	if (unlikely(abs(x) > t)) {
364		zone_page_state_add(x, zone, item);
365		x = 0;
366	}
367	__this_cpu_write(*p, x);
368
369	preempt_enable_nested();
370}
371EXPORT_SYMBOL(__mod_zone_page_state);
372
373void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
374				long delta)
375{
376	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
377	s8 __percpu *p = pcp->vm_node_stat_diff + item;
378	long x;
379	long t;
380
381	if (vmstat_item_in_bytes(item)) {
382		/*
383		 * Only cgroups use subpage accounting right now; at
384		 * the global level, these items still change in
385		 * multiples of whole pages. Store them as pages
386		 * internally to keep the per-cpu counters compact.
387		 */
388		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
389		delta >>= PAGE_SHIFT;
390	}
391
392	/* See __mod_node_page_state */
393	preempt_disable_nested();
394
395	x = delta + __this_cpu_read(*p);
396
397	t = __this_cpu_read(pcp->stat_threshold);
398
399	if (unlikely(abs(x) > t)) {
400		node_page_state_add(x, pgdat, item);
401		x = 0;
402	}
403	__this_cpu_write(*p, x);
404
405	preempt_enable_nested();
406}
407EXPORT_SYMBOL(__mod_node_page_state);
408
409/*
410 * Optimized increment and decrement functions.
411 *
412 * These are only for a single page and therefore can take a struct page *
413 * argument instead of struct zone *. This allows the inclusion of the code
414 * generated for page_zone(page) into the optimized functions.
415 *
416 * No overflow check is necessary and therefore the differential can be
417 * incremented or decremented in place which may allow the compilers to
418 * generate better code.
419 * The increment or decrement is known and therefore one boundary check can
420 * be omitted.
421 *
422 * NOTE: These functions are very performance sensitive. Change only
423 * with care.
424 *
425 * Some processors have inc/dec instructions that are atomic vs an interrupt.
426 * However, the code must first determine the differential location in a zone
427 * based on the processor number and then inc/dec the counter. There is no
428 * guarantee without disabling preemption that the processor will not change
429 * in between and therefore the atomicity vs. interrupt cannot be exploited
430 * in a useful way here.
431 */
432void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
433{
434	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
435	s8 __percpu *p = pcp->vm_stat_diff + item;
436	s8 v, t;
437
438	/* See __mod_node_page_state */
439	preempt_disable_nested();
440
441	v = __this_cpu_inc_return(*p);
442	t = __this_cpu_read(pcp->stat_threshold);
443	if (unlikely(v > t)) {
444		s8 overstep = t >> 1;
445
446		zone_page_state_add(v + overstep, zone, item);
447		__this_cpu_write(*p, -overstep);
448	}
449
450	preempt_enable_nested();
451}
452
453void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
454{
455	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
456	s8 __percpu *p = pcp->vm_node_stat_diff + item;
457	s8 v, t;
458
459	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
460
461	/* See __mod_node_page_state */
462	preempt_disable_nested();
463
464	v = __this_cpu_inc_return(*p);
465	t = __this_cpu_read(pcp->stat_threshold);
466	if (unlikely(v > t)) {
467		s8 overstep = t >> 1;
468
469		node_page_state_add(v + overstep, pgdat, item);
470		__this_cpu_write(*p, -overstep);
471	}
472
473	preempt_enable_nested();
474}
475
476void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
477{
478	__inc_zone_state(page_zone(page), item);
479}
480EXPORT_SYMBOL(__inc_zone_page_state);
481
482void __inc_node_page_state(struct page *page, enum node_stat_item item)
483{
484	__inc_node_state(page_pgdat(page), item);
485}
486EXPORT_SYMBOL(__inc_node_page_state);
487
488void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
489{
490	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
491	s8 __percpu *p = pcp->vm_stat_diff + item;
492	s8 v, t;
493
494	/* See __mod_node_page_state */
495	preempt_disable_nested();
496
497	v = __this_cpu_dec_return(*p);
498	t = __this_cpu_read(pcp->stat_threshold);
499	if (unlikely(v < - t)) {
500		s8 overstep = t >> 1;
501
502		zone_page_state_add(v - overstep, zone, item);
503		__this_cpu_write(*p, overstep);
504	}
505
506	preempt_enable_nested();
507}
508
509void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
510{
511	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
512	s8 __percpu *p = pcp->vm_node_stat_diff + item;
513	s8 v, t;
514
515	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
516
517	/* See __mod_node_page_state */
518	preempt_disable_nested();
519
520	v = __this_cpu_dec_return(*p);
521	t = __this_cpu_read(pcp->stat_threshold);
522	if (unlikely(v < - t)) {
523		s8 overstep = t >> 1;
524
525		node_page_state_add(v - overstep, pgdat, item);
526		__this_cpu_write(*p, overstep);
527	}
528
529	preempt_enable_nested();
530}
531
532void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
533{
534	__dec_zone_state(page_zone(page), item);
535}
536EXPORT_SYMBOL(__dec_zone_page_state);
537
538void __dec_node_page_state(struct page *page, enum node_stat_item item)
539{
540	__dec_node_state(page_pgdat(page), item);
541}
542EXPORT_SYMBOL(__dec_node_page_state);
543
544#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
545/*
546 * If we have cmpxchg_local support then we do not need to incur the overhead
547 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
548 *
549 * mod_state() modifies the zone counter state through atomic per cpu
550 * operations.
551 *
552 * Overstep mode specifies how overstep should handled:
553 *     0       No overstepping
554 *     1       Overstepping half of threshold
555 *     -1      Overstepping minus half of threshold
556*/
557static inline void mod_zone_state(struct zone *zone,
558       enum zone_stat_item item, long delta, int overstep_mode)
559{
560	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
561	s8 __percpu *p = pcp->vm_stat_diff + item;
562	long n, t, z;
563	s8 o;
564
565	o = this_cpu_read(*p);
566	do {
567		z = 0;  /* overflow to zone counters */
568
569		/*
570		 * The fetching of the stat_threshold is racy. We may apply
571		 * a counter threshold to the wrong the cpu if we get
572		 * rescheduled while executing here. However, the next
573		 * counter update will apply the threshold again and
574		 * therefore bring the counter under the threshold again.
575		 *
576		 * Most of the time the thresholds are the same anyways
577		 * for all cpus in a zone.
578		 */
579		t = this_cpu_read(pcp->stat_threshold);
580
581		n = delta + (long)o;
582
583		if (abs(n) > t) {
584			int os = overstep_mode * (t >> 1) ;
585
586			/* Overflow must be added to zone counters */
587			z = n + os;
588			n = -os;
589		}
590	} while (!this_cpu_try_cmpxchg(*p, &o, n));
591
592	if (z)
593		zone_page_state_add(z, zone, item);
594}
595
596void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
597			 long delta)
598{
599	mod_zone_state(zone, item, delta, 0);
600}
601EXPORT_SYMBOL(mod_zone_page_state);
602
603void inc_zone_page_state(struct page *page, enum zone_stat_item item)
604{
605	mod_zone_state(page_zone(page), item, 1, 1);
606}
607EXPORT_SYMBOL(inc_zone_page_state);
608
609void dec_zone_page_state(struct page *page, enum zone_stat_item item)
610{
611	mod_zone_state(page_zone(page), item, -1, -1);
612}
613EXPORT_SYMBOL(dec_zone_page_state);
614
615static inline void mod_node_state(struct pglist_data *pgdat,
616       enum node_stat_item item, int delta, int overstep_mode)
617{
618	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
619	s8 __percpu *p = pcp->vm_node_stat_diff + item;
620	long n, t, z;
621	s8 o;
622
623	if (vmstat_item_in_bytes(item)) {
624		/*
625		 * Only cgroups use subpage accounting right now; at
626		 * the global level, these items still change in
627		 * multiples of whole pages. Store them as pages
628		 * internally to keep the per-cpu counters compact.
629		 */
630		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
631		delta >>= PAGE_SHIFT;
632	}
633
634	o = this_cpu_read(*p);
635	do {
636		z = 0;  /* overflow to node counters */
637
638		/*
639		 * The fetching of the stat_threshold is racy. We may apply
640		 * a counter threshold to the wrong the cpu if we get
641		 * rescheduled while executing here. However, the next
642		 * counter update will apply the threshold again and
643		 * therefore bring the counter under the threshold again.
644		 *
645		 * Most of the time the thresholds are the same anyways
646		 * for all cpus in a node.
647		 */
648		t = this_cpu_read(pcp->stat_threshold);
649
650		n = delta + (long)o;
651
652		if (abs(n) > t) {
653			int os = overstep_mode * (t >> 1) ;
654
655			/* Overflow must be added to node counters */
656			z = n + os;
657			n = -os;
658		}
659	} while (!this_cpu_try_cmpxchg(*p, &o, n));
660
661	if (z)
662		node_page_state_add(z, pgdat, item);
663}
664
665void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
666					long delta)
667{
668	mod_node_state(pgdat, item, delta, 0);
669}
670EXPORT_SYMBOL(mod_node_page_state);
671
672void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
673{
674	mod_node_state(pgdat, item, 1, 1);
675}
676
677void inc_node_page_state(struct page *page, enum node_stat_item item)
678{
679	mod_node_state(page_pgdat(page), item, 1, 1);
680}
681EXPORT_SYMBOL(inc_node_page_state);
682
683void dec_node_page_state(struct page *page, enum node_stat_item item)
684{
685	mod_node_state(page_pgdat(page), item, -1, -1);
686}
687EXPORT_SYMBOL(dec_node_page_state);
688#else
689/*
690 * Use interrupt disable to serialize counter updates
691 */
692void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
693			 long delta)
694{
695	unsigned long flags;
696
697	local_irq_save(flags);
698	__mod_zone_page_state(zone, item, delta);
699	local_irq_restore(flags);
700}
701EXPORT_SYMBOL(mod_zone_page_state);
702
703void inc_zone_page_state(struct page *page, enum zone_stat_item item)
704{
705	unsigned long flags;
706	struct zone *zone;
707
708	zone = page_zone(page);
709	local_irq_save(flags);
710	__inc_zone_state(zone, item);
711	local_irq_restore(flags);
712}
713EXPORT_SYMBOL(inc_zone_page_state);
714
715void dec_zone_page_state(struct page *page, enum zone_stat_item item)
716{
717	unsigned long flags;
718
719	local_irq_save(flags);
720	__dec_zone_page_state(page, item);
721	local_irq_restore(flags);
722}
723EXPORT_SYMBOL(dec_zone_page_state);
724
725void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
726{
727	unsigned long flags;
728
729	local_irq_save(flags);
730	__inc_node_state(pgdat, item);
731	local_irq_restore(flags);
732}
733EXPORT_SYMBOL(inc_node_state);
734
735void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
736					long delta)
737{
738	unsigned long flags;
739
740	local_irq_save(flags);
741	__mod_node_page_state(pgdat, item, delta);
742	local_irq_restore(flags);
743}
744EXPORT_SYMBOL(mod_node_page_state);
745
746void inc_node_page_state(struct page *page, enum node_stat_item item)
747{
748	unsigned long flags;
749	struct pglist_data *pgdat;
750
751	pgdat = page_pgdat(page);
752	local_irq_save(flags);
753	__inc_node_state(pgdat, item);
754	local_irq_restore(flags);
755}
756EXPORT_SYMBOL(inc_node_page_state);
757
758void dec_node_page_state(struct page *page, enum node_stat_item item)
759{
760	unsigned long flags;
761
762	local_irq_save(flags);
763	__dec_node_page_state(page, item);
764	local_irq_restore(flags);
765}
766EXPORT_SYMBOL(dec_node_page_state);
767#endif
768
769/*
770 * Fold a differential into the global counters.
771 * Returns the number of counters updated.
772 */
773static int fold_diff(int *zone_diff, int *node_diff)
774{
775	int i;
776	int changes = 0;
777
778	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
779		if (zone_diff[i]) {
780			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
781			changes++;
782	}
783
784	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
785		if (node_diff[i]) {
786			atomic_long_add(node_diff[i], &vm_node_stat[i]);
787			changes++;
788	}
789	return changes;
790}
791
792/*
793 * Update the zone counters for the current cpu.
794 *
795 * Note that refresh_cpu_vm_stats strives to only access
796 * node local memory. The per cpu pagesets on remote zones are placed
797 * in the memory local to the processor using that pageset. So the
798 * loop over all zones will access a series of cachelines local to
799 * the processor.
800 *
801 * The call to zone_page_state_add updates the cachelines with the
802 * statistics in the remote zone struct as well as the global cachelines
803 * with the global counters. These could cause remote node cache line
804 * bouncing and will have to be only done when necessary.
805 *
806 * The function returns the number of global counters updated.
807 */
808static int refresh_cpu_vm_stats(bool do_pagesets)
809{
810	struct pglist_data *pgdat;
811	struct zone *zone;
812	int i;
813	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
814	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
815	int changes = 0;
816
817	for_each_populated_zone(zone) {
818		struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
819		struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
820
821		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
822			int v;
823
824			v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
825			if (v) {
826
827				atomic_long_add(v, &zone->vm_stat[i]);
828				global_zone_diff[i] += v;
829#ifdef CONFIG_NUMA
830				/* 3 seconds idle till flush */
831				__this_cpu_write(pcp->expire, 3);
832#endif
833			}
834		}
835
836		if (do_pagesets) {
837			cond_resched();
838
839			changes += decay_pcp_high(zone, this_cpu_ptr(pcp));
840#ifdef CONFIG_NUMA
841			/*
842			 * Deal with draining the remote pageset of this
843			 * processor
844			 *
845			 * Check if there are pages remaining in this pageset
846			 * if not then there is nothing to expire.
847			 */
848			if (!__this_cpu_read(pcp->expire) ||
849			       !__this_cpu_read(pcp->count))
850				continue;
851
852			/*
853			 * We never drain zones local to this processor.
854			 */
855			if (zone_to_nid(zone) == numa_node_id()) {
856				__this_cpu_write(pcp->expire, 0);
857				continue;
858			}
859
860			if (__this_cpu_dec_return(pcp->expire)) {
861				changes++;
862				continue;
863			}
864
865			if (__this_cpu_read(pcp->count)) {
866				drain_zone_pages(zone, this_cpu_ptr(pcp));
867				changes++;
868			}
869#endif
870		}
871	}
872
873	for_each_online_pgdat(pgdat) {
874		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
875
876		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
877			int v;
878
879			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
880			if (v) {
881				atomic_long_add(v, &pgdat->vm_stat[i]);
882				global_node_diff[i] += v;
883			}
884		}
885	}
886
887	changes += fold_diff(global_zone_diff, global_node_diff);
888	return changes;
889}
890
891/*
892 * Fold the data for an offline cpu into the global array.
893 * There cannot be any access by the offline cpu and therefore
894 * synchronization is simplified.
895 */
896void cpu_vm_stats_fold(int cpu)
897{
898	struct pglist_data *pgdat;
899	struct zone *zone;
900	int i;
901	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
902	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
903
904	for_each_populated_zone(zone) {
905		struct per_cpu_zonestat *pzstats;
906
907		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
908
909		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
910			if (pzstats->vm_stat_diff[i]) {
911				int v;
912
913				v = pzstats->vm_stat_diff[i];
914				pzstats->vm_stat_diff[i] = 0;
915				atomic_long_add(v, &zone->vm_stat[i]);
916				global_zone_diff[i] += v;
917			}
918		}
919#ifdef CONFIG_NUMA
920		for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
921			if (pzstats->vm_numa_event[i]) {
922				unsigned long v;
923
924				v = pzstats->vm_numa_event[i];
925				pzstats->vm_numa_event[i] = 0;
926				zone_numa_event_add(v, zone, i);
927			}
928		}
929#endif
930	}
931
932	for_each_online_pgdat(pgdat) {
933		struct per_cpu_nodestat *p;
934
935		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
936
937		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
938			if (p->vm_node_stat_diff[i]) {
939				int v;
940
941				v = p->vm_node_stat_diff[i];
942				p->vm_node_stat_diff[i] = 0;
943				atomic_long_add(v, &pgdat->vm_stat[i]);
944				global_node_diff[i] += v;
945			}
946	}
947
948	fold_diff(global_zone_diff, global_node_diff);
949}
950
951/*
952 * this is only called if !populated_zone(zone), which implies no other users of
953 * pset->vm_stat_diff[] exist.
954 */
955void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
956{
957	unsigned long v;
958	int i;
959
960	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
961		if (pzstats->vm_stat_diff[i]) {
962			v = pzstats->vm_stat_diff[i];
963			pzstats->vm_stat_diff[i] = 0;
964			zone_page_state_add(v, zone, i);
965		}
966	}
967
968#ifdef CONFIG_NUMA
969	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
970		if (pzstats->vm_numa_event[i]) {
971			v = pzstats->vm_numa_event[i];
972			pzstats->vm_numa_event[i] = 0;
973			zone_numa_event_add(v, zone, i);
974		}
975	}
976#endif
977}
978#endif
979
980#ifdef CONFIG_NUMA
981/*
982 * Determine the per node value of a stat item. This function
983 * is called frequently in a NUMA machine, so try to be as
984 * frugal as possible.
985 */
986unsigned long sum_zone_node_page_state(int node,
987				 enum zone_stat_item item)
988{
989	struct zone *zones = NODE_DATA(node)->node_zones;
990	int i;
991	unsigned long count = 0;
992
993	for (i = 0; i < MAX_NR_ZONES; i++)
994		count += zone_page_state(zones + i, item);
995
996	return count;
997}
998
999/* Determine the per node value of a numa stat item. */
1000unsigned long sum_zone_numa_event_state(int node,
1001				 enum numa_stat_item item)
1002{
1003	struct zone *zones = NODE_DATA(node)->node_zones;
1004	unsigned long count = 0;
1005	int i;
1006
1007	for (i = 0; i < MAX_NR_ZONES; i++)
1008		count += zone_numa_event_state(zones + i, item);
1009
1010	return count;
1011}
1012
1013/*
1014 * Determine the per node value of a stat item.
1015 */
1016unsigned long node_page_state_pages(struct pglist_data *pgdat,
1017				    enum node_stat_item item)
1018{
1019	long x = atomic_long_read(&pgdat->vm_stat[item]);
1020#ifdef CONFIG_SMP
1021	if (x < 0)
1022		x = 0;
1023#endif
1024	return x;
1025}
1026
1027unsigned long node_page_state(struct pglist_data *pgdat,
1028			      enum node_stat_item item)
1029{
1030	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1031
1032	return node_page_state_pages(pgdat, item);
1033}
1034#endif
1035
1036#ifdef CONFIG_COMPACTION
1037
1038struct contig_page_info {
1039	unsigned long free_pages;
1040	unsigned long free_blocks_total;
1041	unsigned long free_blocks_suitable;
1042};
1043
1044/*
1045 * Calculate the number of free pages in a zone, how many contiguous
1046 * pages are free and how many are large enough to satisfy an allocation of
1047 * the target size. Note that this function makes no attempt to estimate
1048 * how many suitable free blocks there *might* be if MOVABLE pages were
1049 * migrated. Calculating that is possible, but expensive and can be
1050 * figured out from userspace
1051 */
1052static void fill_contig_page_info(struct zone *zone,
1053				unsigned int suitable_order,
1054				struct contig_page_info *info)
1055{
1056	unsigned int order;
1057
1058	info->free_pages = 0;
1059	info->free_blocks_total = 0;
1060	info->free_blocks_suitable = 0;
1061
1062	for (order = 0; order < NR_PAGE_ORDERS; order++) {
1063		unsigned long blocks;
1064
1065		/*
1066		 * Count number of free blocks.
1067		 *
1068		 * Access to nr_free is lockless as nr_free is used only for
1069		 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1070		 */
1071		blocks = data_race(zone->free_area[order].nr_free);
1072		info->free_blocks_total += blocks;
1073
1074		/* Count free base pages */
1075		info->free_pages += blocks << order;
1076
1077		/* Count the suitable free blocks */
1078		if (order >= suitable_order)
1079			info->free_blocks_suitable += blocks <<
1080						(order - suitable_order);
1081	}
1082}
1083
1084/*
1085 * A fragmentation index only makes sense if an allocation of a requested
1086 * size would fail. If that is true, the fragmentation index indicates
1087 * whether external fragmentation or a lack of memory was the problem.
1088 * The value can be used to determine if page reclaim or compaction
1089 * should be used
1090 */
1091static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1092{
1093	unsigned long requested = 1UL << order;
1094
1095	if (WARN_ON_ONCE(order > MAX_PAGE_ORDER))
1096		return 0;
1097
1098	if (!info->free_blocks_total)
1099		return 0;
1100
1101	/* Fragmentation index only makes sense when a request would fail */
1102	if (info->free_blocks_suitable)
1103		return -1000;
1104
1105	/*
1106	 * Index is between 0 and 1 so return within 3 decimal places
1107	 *
1108	 * 0 => allocation would fail due to lack of memory
1109	 * 1 => allocation would fail due to fragmentation
1110	 */
1111	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1112}
1113
1114/*
1115 * Calculates external fragmentation within a zone wrt the given order.
1116 * It is defined as the percentage of pages found in blocks of size
1117 * less than 1 << order. It returns values in range [0, 100].
1118 */
1119unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1120{
1121	struct contig_page_info info;
1122
1123	fill_contig_page_info(zone, order, &info);
1124	if (info.free_pages == 0)
1125		return 0;
1126
1127	return div_u64((info.free_pages -
1128			(info.free_blocks_suitable << order)) * 100,
1129			info.free_pages);
1130}
1131
1132/* Same as __fragmentation index but allocs contig_page_info on stack */
1133int fragmentation_index(struct zone *zone, unsigned int order)
1134{
1135	struct contig_page_info info;
1136
1137	fill_contig_page_info(zone, order, &info);
1138	return __fragmentation_index(order, &info);
1139}
1140#endif
1141
1142#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1143    defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1144#ifdef CONFIG_ZONE_DMA
1145#define TEXT_FOR_DMA(xx) xx "_dma",
1146#else
1147#define TEXT_FOR_DMA(xx)
1148#endif
1149
1150#ifdef CONFIG_ZONE_DMA32
1151#define TEXT_FOR_DMA32(xx) xx "_dma32",
1152#else
1153#define TEXT_FOR_DMA32(xx)
1154#endif
1155
1156#ifdef CONFIG_HIGHMEM
1157#define TEXT_FOR_HIGHMEM(xx) xx "_high",
1158#else
1159#define TEXT_FOR_HIGHMEM(xx)
1160#endif
1161
1162#ifdef CONFIG_ZONE_DEVICE
1163#define TEXT_FOR_DEVICE(xx) xx "_device",
1164#else
1165#define TEXT_FOR_DEVICE(xx)
1166#endif
1167
1168#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1169					TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1170					TEXT_FOR_DEVICE(xx)
1171
1172const char * const vmstat_text[] = {
1173	/* enum zone_stat_item counters */
1174	"nr_free_pages",
1175	"nr_zone_inactive_anon",
1176	"nr_zone_active_anon",
1177	"nr_zone_inactive_file",
1178	"nr_zone_active_file",
1179	"nr_zone_unevictable",
1180	"nr_zone_write_pending",
1181	"nr_mlock",
1182	"nr_bounce",
1183#if IS_ENABLED(CONFIG_ZSMALLOC)
1184	"nr_zspages",
1185#endif
1186	"nr_free_cma",
1187#ifdef CONFIG_UNACCEPTED_MEMORY
1188	"nr_unaccepted",
1189#endif
1190
1191	/* enum numa_stat_item counters */
1192#ifdef CONFIG_NUMA
1193	"numa_hit",
1194	"numa_miss",
1195	"numa_foreign",
1196	"numa_interleave",
1197	"numa_local",
1198	"numa_other",
1199#endif
1200
1201	/* enum node_stat_item counters */
1202	"nr_inactive_anon",
1203	"nr_active_anon",
1204	"nr_inactive_file",
1205	"nr_active_file",
1206	"nr_unevictable",
1207	"nr_slab_reclaimable",
1208	"nr_slab_unreclaimable",
1209	"nr_isolated_anon",
1210	"nr_isolated_file",
1211	"workingset_nodes",
1212	"workingset_refault_anon",
1213	"workingset_refault_file",
1214	"workingset_activate_anon",
1215	"workingset_activate_file",
1216	"workingset_restore_anon",
1217	"workingset_restore_file",
1218	"workingset_nodereclaim",
1219	"nr_anon_pages",
1220	"nr_mapped",
1221	"nr_file_pages",
1222	"nr_dirty",
1223	"nr_writeback",
1224	"nr_writeback_temp",
1225	"nr_shmem",
1226	"nr_shmem_hugepages",
1227	"nr_shmem_pmdmapped",
1228	"nr_file_hugepages",
1229	"nr_file_pmdmapped",
1230	"nr_anon_transparent_hugepages",
1231	"nr_vmscan_write",
1232	"nr_vmscan_immediate_reclaim",
1233	"nr_dirtied",
1234	"nr_written",
1235	"nr_throttled_written",
1236	"nr_kernel_misc_reclaimable",
1237	"nr_foll_pin_acquired",
1238	"nr_foll_pin_released",
1239	"nr_kernel_stack",
1240#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1241	"nr_shadow_call_stack",
1242#endif
1243	"nr_page_table_pages",
1244	"nr_sec_page_table_pages",
1245#ifdef CONFIG_IOMMU_SUPPORT
1246	"nr_iommu_pages",
1247#endif
1248#ifdef CONFIG_SWAP
1249	"nr_swapcached",
1250#endif
1251#ifdef CONFIG_NUMA_BALANCING
1252	"pgpromote_success",
1253	"pgpromote_candidate",
1254#endif
1255	"pgdemote_kswapd",
1256	"pgdemote_direct",
1257	"pgdemote_khugepaged",
1258
1259	/* enum writeback_stat_item counters */
1260	"nr_dirty_threshold",
1261	"nr_dirty_background_threshold",
1262
1263#if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1264	/* enum vm_event_item counters */
1265	"pgpgin",
1266	"pgpgout",
1267	"pswpin",
1268	"pswpout",
1269
1270	TEXTS_FOR_ZONES("pgalloc")
1271	TEXTS_FOR_ZONES("allocstall")
1272	TEXTS_FOR_ZONES("pgskip")
1273
1274	"pgfree",
1275	"pgactivate",
1276	"pgdeactivate",
1277	"pglazyfree",
1278
1279	"pgfault",
1280	"pgmajfault",
1281	"pglazyfreed",
1282
1283	"pgrefill",
1284	"pgreuse",
1285	"pgsteal_kswapd",
1286	"pgsteal_direct",
1287	"pgsteal_khugepaged",
1288	"pgscan_kswapd",
1289	"pgscan_direct",
1290	"pgscan_khugepaged",
1291	"pgscan_direct_throttle",
1292	"pgscan_anon",
1293	"pgscan_file",
1294	"pgsteal_anon",
1295	"pgsteal_file",
1296
1297#ifdef CONFIG_NUMA
1298	"zone_reclaim_failed",
1299#endif
1300	"pginodesteal",
1301	"slabs_scanned",
1302	"kswapd_inodesteal",
1303	"kswapd_low_wmark_hit_quickly",
1304	"kswapd_high_wmark_hit_quickly",
1305	"pageoutrun",
1306
1307	"pgrotated",
1308
1309	"drop_pagecache",
1310	"drop_slab",
1311	"oom_kill",
1312
1313#ifdef CONFIG_NUMA_BALANCING
1314	"numa_pte_updates",
1315	"numa_huge_pte_updates",
1316	"numa_hint_faults",
1317	"numa_hint_faults_local",
1318	"numa_pages_migrated",
1319#endif
1320#ifdef CONFIG_MIGRATION
1321	"pgmigrate_success",
1322	"pgmigrate_fail",
1323	"thp_migration_success",
1324	"thp_migration_fail",
1325	"thp_migration_split",
1326#endif
1327#ifdef CONFIG_COMPACTION
1328	"compact_migrate_scanned",
1329	"compact_free_scanned",
1330	"compact_isolated",
1331	"compact_stall",
1332	"compact_fail",
1333	"compact_success",
1334	"compact_daemon_wake",
1335	"compact_daemon_migrate_scanned",
1336	"compact_daemon_free_scanned",
1337#endif
1338
1339#ifdef CONFIG_HUGETLB_PAGE
1340	"htlb_buddy_alloc_success",
1341	"htlb_buddy_alloc_fail",
1342#endif
1343#ifdef CONFIG_CMA
1344	"cma_alloc_success",
1345	"cma_alloc_fail",
1346#endif
1347	"unevictable_pgs_culled",
1348	"unevictable_pgs_scanned",
1349	"unevictable_pgs_rescued",
1350	"unevictable_pgs_mlocked",
1351	"unevictable_pgs_munlocked",
1352	"unevictable_pgs_cleared",
1353	"unevictable_pgs_stranded",
1354
1355#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1356	"thp_fault_alloc",
1357	"thp_fault_fallback",
1358	"thp_fault_fallback_charge",
1359	"thp_collapse_alloc",
1360	"thp_collapse_alloc_failed",
1361	"thp_file_alloc",
1362	"thp_file_fallback",
1363	"thp_file_fallback_charge",
1364	"thp_file_mapped",
1365	"thp_split_page",
1366	"thp_split_page_failed",
1367	"thp_deferred_split_page",
1368	"thp_split_pmd",
1369	"thp_scan_exceed_none_pte",
1370	"thp_scan_exceed_swap_pte",
1371	"thp_scan_exceed_share_pte",
1372#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1373	"thp_split_pud",
1374#endif
1375	"thp_zero_page_alloc",
1376	"thp_zero_page_alloc_failed",
1377	"thp_swpout",
1378	"thp_swpout_fallback",
1379#endif
1380#ifdef CONFIG_MEMORY_BALLOON
1381	"balloon_inflate",
1382	"balloon_deflate",
1383#ifdef CONFIG_BALLOON_COMPACTION
1384	"balloon_migrate",
1385#endif
1386#endif /* CONFIG_MEMORY_BALLOON */
1387#ifdef CONFIG_DEBUG_TLBFLUSH
1388	"nr_tlb_remote_flush",
1389	"nr_tlb_remote_flush_received",
1390	"nr_tlb_local_flush_all",
1391	"nr_tlb_local_flush_one",
1392#endif /* CONFIG_DEBUG_TLBFLUSH */
1393
1394#ifdef CONFIG_SWAP
1395	"swap_ra",
1396	"swap_ra_hit",
1397#ifdef CONFIG_KSM
1398	"ksm_swpin_copy",
1399#endif
1400#endif
1401#ifdef CONFIG_KSM
1402	"cow_ksm",
1403#endif
1404#ifdef CONFIG_ZSWAP
1405	"zswpin",
1406	"zswpout",
1407	"zswpwb",
1408#endif
1409#ifdef CONFIG_X86
1410	"direct_map_level2_splits",
1411	"direct_map_level3_splits",
1412#endif
1413#ifdef CONFIG_PER_VMA_LOCK_STATS
1414	"vma_lock_success",
1415	"vma_lock_abort",
1416	"vma_lock_retry",
1417	"vma_lock_miss",
1418#endif
1419#endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1420};
1421#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1422
1423#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1424     defined(CONFIG_PROC_FS)
1425static void *frag_start(struct seq_file *m, loff_t *pos)
1426{
1427	pg_data_t *pgdat;
1428	loff_t node = *pos;
1429
1430	for (pgdat = first_online_pgdat();
1431	     pgdat && node;
1432	     pgdat = next_online_pgdat(pgdat))
1433		--node;
1434
1435	return pgdat;
1436}
1437
1438static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1439{
1440	pg_data_t *pgdat = (pg_data_t *)arg;
1441
1442	(*pos)++;
1443	return next_online_pgdat(pgdat);
1444}
1445
1446static void frag_stop(struct seq_file *m, void *arg)
1447{
1448}
1449
1450/*
1451 * Walk zones in a node and print using a callback.
1452 * If @assert_populated is true, only use callback for zones that are populated.
1453 */
1454static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1455		bool assert_populated, bool nolock,
1456		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1457{
1458	struct zone *zone;
1459	struct zone *node_zones = pgdat->node_zones;
1460	unsigned long flags;
1461
1462	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1463		if (assert_populated && !populated_zone(zone))
1464			continue;
1465
1466		if (!nolock)
1467			spin_lock_irqsave(&zone->lock, flags);
1468		print(m, pgdat, zone);
1469		if (!nolock)
1470			spin_unlock_irqrestore(&zone->lock, flags);
1471	}
1472}
1473#endif
1474
1475#ifdef CONFIG_PROC_FS
1476static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1477						struct zone *zone)
1478{
1479	int order;
1480
1481	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1482	for (order = 0; order < NR_PAGE_ORDERS; ++order)
1483		/*
1484		 * Access to nr_free is lockless as nr_free is used only for
1485		 * printing purposes. Use data_race to avoid KCSAN warning.
1486		 */
1487		seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1488	seq_putc(m, '\n');
1489}
1490
1491/*
1492 * This walks the free areas for each zone.
1493 */
1494static int frag_show(struct seq_file *m, void *arg)
1495{
1496	pg_data_t *pgdat = (pg_data_t *)arg;
1497	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1498	return 0;
1499}
1500
1501static void pagetypeinfo_showfree_print(struct seq_file *m,
1502					pg_data_t *pgdat, struct zone *zone)
1503{
1504	int order, mtype;
1505
1506	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1507		seq_printf(m, "Node %4d, zone %8s, type %12s ",
1508					pgdat->node_id,
1509					zone->name,
1510					migratetype_names[mtype]);
1511		for (order = 0; order < NR_PAGE_ORDERS; ++order) {
1512			unsigned long freecount = 0;
1513			struct free_area *area;
1514			struct list_head *curr;
1515			bool overflow = false;
1516
1517			area = &(zone->free_area[order]);
1518
1519			list_for_each(curr, &area->free_list[mtype]) {
1520				/*
1521				 * Cap the free_list iteration because it might
1522				 * be really large and we are under a spinlock
1523				 * so a long time spent here could trigger a
1524				 * hard lockup detector. Anyway this is a
1525				 * debugging tool so knowing there is a handful
1526				 * of pages of this order should be more than
1527				 * sufficient.
1528				 */
1529				if (++freecount >= 100000) {
1530					overflow = true;
1531					break;
1532				}
1533			}
1534			seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1535			spin_unlock_irq(&zone->lock);
1536			cond_resched();
1537			spin_lock_irq(&zone->lock);
1538		}
1539		seq_putc(m, '\n');
1540	}
1541}
1542
1543/* Print out the free pages at each order for each migatetype */
1544static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1545{
1546	int order;
1547	pg_data_t *pgdat = (pg_data_t *)arg;
1548
1549	/* Print header */
1550	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1551	for (order = 0; order < NR_PAGE_ORDERS; ++order)
1552		seq_printf(m, "%6d ", order);
1553	seq_putc(m, '\n');
1554
1555	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1556}
1557
1558static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1559					pg_data_t *pgdat, struct zone *zone)
1560{
1561	int mtype;
1562	unsigned long pfn;
1563	unsigned long start_pfn = zone->zone_start_pfn;
1564	unsigned long end_pfn = zone_end_pfn(zone);
1565	unsigned long count[MIGRATE_TYPES] = { 0, };
1566
1567	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1568		struct page *page;
1569
1570		page = pfn_to_online_page(pfn);
1571		if (!page)
1572			continue;
1573
1574		if (page_zone(page) != zone)
1575			continue;
1576
1577		mtype = get_pageblock_migratetype(page);
1578
1579		if (mtype < MIGRATE_TYPES)
1580			count[mtype]++;
1581	}
1582
1583	/* Print counts */
1584	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1585	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1586		seq_printf(m, "%12lu ", count[mtype]);
1587	seq_putc(m, '\n');
1588}
1589
1590/* Print out the number of pageblocks for each migratetype */
1591static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1592{
1593	int mtype;
1594	pg_data_t *pgdat = (pg_data_t *)arg;
1595
1596	seq_printf(m, "\n%-23s", "Number of blocks type ");
1597	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1598		seq_printf(m, "%12s ", migratetype_names[mtype]);
1599	seq_putc(m, '\n');
1600	walk_zones_in_node(m, pgdat, true, false,
1601		pagetypeinfo_showblockcount_print);
1602}
1603
1604/*
1605 * Print out the number of pageblocks for each migratetype that contain pages
1606 * of other types. This gives an indication of how well fallbacks are being
1607 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1608 * to determine what is going on
1609 */
1610static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1611{
1612#ifdef CONFIG_PAGE_OWNER
1613	int mtype;
1614
1615	if (!static_branch_unlikely(&page_owner_inited))
1616		return;
1617
1618	drain_all_pages(NULL);
1619
1620	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1621	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1622		seq_printf(m, "%12s ", migratetype_names[mtype]);
1623	seq_putc(m, '\n');
1624
1625	walk_zones_in_node(m, pgdat, true, true,
1626		pagetypeinfo_showmixedcount_print);
1627#endif /* CONFIG_PAGE_OWNER */
1628}
1629
1630/*
1631 * This prints out statistics in relation to grouping pages by mobility.
1632 * It is expensive to collect so do not constantly read the file.
1633 */
1634static int pagetypeinfo_show(struct seq_file *m, void *arg)
1635{
1636	pg_data_t *pgdat = (pg_data_t *)arg;
1637
1638	/* check memoryless node */
1639	if (!node_state(pgdat->node_id, N_MEMORY))
1640		return 0;
1641
1642	seq_printf(m, "Page block order: %d\n", pageblock_order);
1643	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1644	seq_putc(m, '\n');
1645	pagetypeinfo_showfree(m, pgdat);
1646	pagetypeinfo_showblockcount(m, pgdat);
1647	pagetypeinfo_showmixedcount(m, pgdat);
1648
1649	return 0;
1650}
1651
1652static const struct seq_operations fragmentation_op = {
1653	.start	= frag_start,
1654	.next	= frag_next,
1655	.stop	= frag_stop,
1656	.show	= frag_show,
1657};
1658
1659static const struct seq_operations pagetypeinfo_op = {
1660	.start	= frag_start,
1661	.next	= frag_next,
1662	.stop	= frag_stop,
1663	.show	= pagetypeinfo_show,
1664};
1665
1666static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1667{
1668	int zid;
1669
1670	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1671		struct zone *compare = &pgdat->node_zones[zid];
1672
1673		if (populated_zone(compare))
1674			return zone == compare;
1675	}
1676
1677	return false;
1678}
1679
1680static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1681							struct zone *zone)
1682{
1683	int i;
1684	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1685	if (is_zone_first_populated(pgdat, zone)) {
1686		seq_printf(m, "\n  per-node stats");
1687		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1688			unsigned long pages = node_page_state_pages(pgdat, i);
1689
1690			if (vmstat_item_print_in_thp(i))
1691				pages /= HPAGE_PMD_NR;
1692			seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1693				   pages);
1694		}
1695	}
1696	seq_printf(m,
1697		   "\n  pages free     %lu"
1698		   "\n        boost    %lu"
1699		   "\n        min      %lu"
1700		   "\n        low      %lu"
1701		   "\n        high     %lu"
1702		   "\n        spanned  %lu"
1703		   "\n        present  %lu"
1704		   "\n        managed  %lu"
1705		   "\n        cma      %lu",
1706		   zone_page_state(zone, NR_FREE_PAGES),
1707		   zone->watermark_boost,
1708		   min_wmark_pages(zone),
1709		   low_wmark_pages(zone),
1710		   high_wmark_pages(zone),
1711		   zone->spanned_pages,
1712		   zone->present_pages,
1713		   zone_managed_pages(zone),
1714		   zone_cma_pages(zone));
1715
1716	seq_printf(m,
1717		   "\n        protection: (%ld",
1718		   zone->lowmem_reserve[0]);
1719	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1720		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1721	seq_putc(m, ')');
1722
1723	/* If unpopulated, no other information is useful */
1724	if (!populated_zone(zone)) {
1725		seq_putc(m, '\n');
1726		return;
1727	}
1728
1729	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1730		seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1731			   zone_page_state(zone, i));
1732
1733#ifdef CONFIG_NUMA
1734	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1735		seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1736			   zone_numa_event_state(zone, i));
1737#endif
1738
1739	seq_printf(m, "\n  pagesets");
1740	for_each_online_cpu(i) {
1741		struct per_cpu_pages *pcp;
1742		struct per_cpu_zonestat __maybe_unused *pzstats;
1743
1744		pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1745		seq_printf(m,
1746			   "\n    cpu: %i"
1747			   "\n              count: %i"
1748			   "\n              high:  %i"
1749			   "\n              batch: %i",
1750			   i,
1751			   pcp->count,
1752			   pcp->high,
1753			   pcp->batch);
1754#ifdef CONFIG_SMP
1755		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1756		seq_printf(m, "\n  vm stats threshold: %d",
1757				pzstats->stat_threshold);
1758#endif
1759	}
1760	seq_printf(m,
1761		   "\n  node_unreclaimable:  %u"
1762		   "\n  start_pfn:           %lu",
1763		   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1764		   zone->zone_start_pfn);
1765	seq_putc(m, '\n');
1766}
1767
1768/*
1769 * Output information about zones in @pgdat.  All zones are printed regardless
1770 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1771 * set of all zones and userspace would not be aware of such zones if they are
1772 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1773 */
1774static int zoneinfo_show(struct seq_file *m, void *arg)
1775{
1776	pg_data_t *pgdat = (pg_data_t *)arg;
1777	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1778	return 0;
1779}
1780
1781static const struct seq_operations zoneinfo_op = {
1782	.start	= frag_start, /* iterate over all zones. The same as in
1783			       * fragmentation. */
1784	.next	= frag_next,
1785	.stop	= frag_stop,
1786	.show	= zoneinfo_show,
1787};
1788
1789#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1790			 NR_VM_NUMA_EVENT_ITEMS + \
1791			 NR_VM_NODE_STAT_ITEMS + \
1792			 NR_VM_WRITEBACK_STAT_ITEMS + \
1793			 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1794			  NR_VM_EVENT_ITEMS : 0))
1795
1796static void *vmstat_start(struct seq_file *m, loff_t *pos)
1797{
1798	unsigned long *v;
1799	int i;
1800
1801	if (*pos >= NR_VMSTAT_ITEMS)
1802		return NULL;
1803
1804	BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1805	fold_vm_numa_events();
1806	v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1807	m->private = v;
1808	if (!v)
1809		return ERR_PTR(-ENOMEM);
1810	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1811		v[i] = global_zone_page_state(i);
1812	v += NR_VM_ZONE_STAT_ITEMS;
1813
1814#ifdef CONFIG_NUMA
1815	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1816		v[i] = global_numa_event_state(i);
1817	v += NR_VM_NUMA_EVENT_ITEMS;
1818#endif
1819
1820	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1821		v[i] = global_node_page_state_pages(i);
1822		if (vmstat_item_print_in_thp(i))
1823			v[i] /= HPAGE_PMD_NR;
1824	}
1825	v += NR_VM_NODE_STAT_ITEMS;
1826
1827	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1828			    v + NR_DIRTY_THRESHOLD);
1829	v += NR_VM_WRITEBACK_STAT_ITEMS;
1830
1831#ifdef CONFIG_VM_EVENT_COUNTERS
1832	all_vm_events(v);
1833	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1834	v[PGPGOUT] /= 2;
1835#endif
1836	return (unsigned long *)m->private + *pos;
1837}
1838
1839static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1840{
1841	(*pos)++;
1842	if (*pos >= NR_VMSTAT_ITEMS)
1843		return NULL;
1844	return (unsigned long *)m->private + *pos;
1845}
1846
1847static int vmstat_show(struct seq_file *m, void *arg)
1848{
1849	unsigned long *l = arg;
1850	unsigned long off = l - (unsigned long *)m->private;
1851
1852	seq_puts(m, vmstat_text[off]);
1853	seq_put_decimal_ull(m, " ", *l);
1854	seq_putc(m, '\n');
1855
1856	if (off == NR_VMSTAT_ITEMS - 1) {
1857		/*
1858		 * We've come to the end - add any deprecated counters to avoid
1859		 * breaking userspace which might depend on them being present.
1860		 */
1861		seq_puts(m, "nr_unstable 0\n");
1862	}
1863	return 0;
1864}
1865
1866static void vmstat_stop(struct seq_file *m, void *arg)
1867{
1868	kfree(m->private);
1869	m->private = NULL;
1870}
1871
1872static const struct seq_operations vmstat_op = {
1873	.start	= vmstat_start,
1874	.next	= vmstat_next,
1875	.stop	= vmstat_stop,
1876	.show	= vmstat_show,
1877};
1878#endif /* CONFIG_PROC_FS */
1879
1880#ifdef CONFIG_SMP
1881static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1882int sysctl_stat_interval __read_mostly = HZ;
1883
1884#ifdef CONFIG_PROC_FS
1885static void refresh_vm_stats(struct work_struct *work)
1886{
1887	refresh_cpu_vm_stats(true);
1888}
1889
1890int vmstat_refresh(struct ctl_table *table, int write,
1891		   void *buffer, size_t *lenp, loff_t *ppos)
1892{
1893	long val;
1894	int err;
1895	int i;
1896
1897	/*
1898	 * The regular update, every sysctl_stat_interval, may come later
1899	 * than expected: leaving a significant amount in per_cpu buckets.
1900	 * This is particularly misleading when checking a quantity of HUGE
1901	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1902	 * which can equally be echo'ed to or cat'ted from (by root),
1903	 * can be used to update the stats just before reading them.
1904	 *
1905	 * Oh, and since global_zone_page_state() etc. are so careful to hide
1906	 * transiently negative values, report an error here if any of
1907	 * the stats is negative, so we know to go looking for imbalance.
1908	 */
1909	err = schedule_on_each_cpu(refresh_vm_stats);
1910	if (err)
1911		return err;
1912	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1913		/*
1914		 * Skip checking stats known to go negative occasionally.
1915		 */
1916		switch (i) {
1917		case NR_ZONE_WRITE_PENDING:
1918		case NR_FREE_CMA_PAGES:
1919			continue;
1920		}
1921		val = atomic_long_read(&vm_zone_stat[i]);
1922		if (val < 0) {
1923			pr_warn("%s: %s %ld\n",
1924				__func__, zone_stat_name(i), val);
1925		}
1926	}
1927	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1928		/*
1929		 * Skip checking stats known to go negative occasionally.
1930		 */
1931		switch (i) {
1932		case NR_WRITEBACK:
1933			continue;
1934		}
1935		val = atomic_long_read(&vm_node_stat[i]);
1936		if (val < 0) {
1937			pr_warn("%s: %s %ld\n",
1938				__func__, node_stat_name(i), val);
1939		}
1940	}
1941	if (write)
1942		*ppos += *lenp;
1943	else
1944		*lenp = 0;
1945	return 0;
1946}
1947#endif /* CONFIG_PROC_FS */
1948
1949static void vmstat_update(struct work_struct *w)
1950{
1951	if (refresh_cpu_vm_stats(true)) {
1952		/*
1953		 * Counters were updated so we expect more updates
1954		 * to occur in the future. Keep on running the
1955		 * update worker thread.
1956		 */
1957		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1958				this_cpu_ptr(&vmstat_work),
1959				round_jiffies_relative(sysctl_stat_interval));
1960	}
1961}
1962
1963/*
1964 * Check if the diffs for a certain cpu indicate that
1965 * an update is needed.
1966 */
1967static bool need_update(int cpu)
1968{
1969	pg_data_t *last_pgdat = NULL;
1970	struct zone *zone;
1971
1972	for_each_populated_zone(zone) {
1973		struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1974		struct per_cpu_nodestat *n;
1975
1976		/*
1977		 * The fast way of checking if there are any vmstat diffs.
1978		 */
1979		if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1980			return true;
1981
1982		if (last_pgdat == zone->zone_pgdat)
1983			continue;
1984		last_pgdat = zone->zone_pgdat;
1985		n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1986		if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1987			return true;
1988	}
1989	return false;
1990}
1991
1992/*
1993 * Switch off vmstat processing and then fold all the remaining differentials
1994 * until the diffs stay at zero. The function is used by NOHZ and can only be
1995 * invoked when tick processing is not active.
1996 */
1997void quiet_vmstat(void)
1998{
1999	if (system_state != SYSTEM_RUNNING)
2000		return;
2001
2002	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
2003		return;
2004
2005	if (!need_update(smp_processor_id()))
2006		return;
2007
2008	/*
2009	 * Just refresh counters and do not care about the pending delayed
2010	 * vmstat_update. It doesn't fire that often to matter and canceling
2011	 * it would be too expensive from this path.
2012	 * vmstat_shepherd will take care about that for us.
2013	 */
2014	refresh_cpu_vm_stats(false);
2015}
2016
2017/*
2018 * Shepherd worker thread that checks the
2019 * differentials of processors that have their worker
2020 * threads for vm statistics updates disabled because of
2021 * inactivity.
2022 */
2023static void vmstat_shepherd(struct work_struct *w);
2024
2025static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2026
2027static void vmstat_shepherd(struct work_struct *w)
2028{
2029	int cpu;
2030
2031	cpus_read_lock();
2032	/* Check processors whose vmstat worker threads have been disabled */
2033	for_each_online_cpu(cpu) {
2034		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2035
2036		/*
2037		 * In kernel users of vmstat counters either require the precise value and
2038		 * they are using zone_page_state_snapshot interface or they can live with
2039		 * an imprecision as the regular flushing can happen at arbitrary time and
2040		 * cumulative error can grow (see calculate_normal_threshold).
2041		 *
2042		 * From that POV the regular flushing can be postponed for CPUs that have
2043		 * been isolated from the kernel interference without critical
2044		 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2045		 * for all isolated CPUs to avoid interference with the isolated workload.
2046		 */
2047		if (cpu_is_isolated(cpu))
2048			continue;
2049
2050		if (!delayed_work_pending(dw) && need_update(cpu))
2051			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2052
2053		cond_resched();
2054	}
2055	cpus_read_unlock();
2056
2057	schedule_delayed_work(&shepherd,
2058		round_jiffies_relative(sysctl_stat_interval));
2059}
2060
2061static void __init start_shepherd_timer(void)
2062{
2063	int cpu;
2064
2065	for_each_possible_cpu(cpu)
2066		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2067			vmstat_update);
2068
2069	schedule_delayed_work(&shepherd,
2070		round_jiffies_relative(sysctl_stat_interval));
2071}
2072
2073static void __init init_cpu_node_state(void)
2074{
2075	int node;
2076
2077	for_each_online_node(node) {
2078		if (!cpumask_empty(cpumask_of_node(node)))
2079			node_set_state(node, N_CPU);
2080	}
2081}
2082
2083static int vmstat_cpu_online(unsigned int cpu)
2084{
2085	refresh_zone_stat_thresholds();
2086
2087	if (!node_state(cpu_to_node(cpu), N_CPU)) {
2088		node_set_state(cpu_to_node(cpu), N_CPU);
2089	}
2090
2091	return 0;
2092}
2093
2094static int vmstat_cpu_down_prep(unsigned int cpu)
2095{
2096	cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2097	return 0;
2098}
2099
2100static int vmstat_cpu_dead(unsigned int cpu)
2101{
2102	const struct cpumask *node_cpus;
2103	int node;
2104
2105	node = cpu_to_node(cpu);
2106
2107	refresh_zone_stat_thresholds();
2108	node_cpus = cpumask_of_node(node);
2109	if (!cpumask_empty(node_cpus))
2110		return 0;
2111
2112	node_clear_state(node, N_CPU);
2113
2114	return 0;
2115}
2116
2117#endif
2118
2119struct workqueue_struct *mm_percpu_wq;
2120
2121void __init init_mm_internals(void)
2122{
2123	int ret __maybe_unused;
2124
2125	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2126
2127#ifdef CONFIG_SMP
2128	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2129					NULL, vmstat_cpu_dead);
2130	if (ret < 0)
2131		pr_err("vmstat: failed to register 'dead' hotplug state\n");
2132
2133	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2134					vmstat_cpu_online,
2135					vmstat_cpu_down_prep);
2136	if (ret < 0)
2137		pr_err("vmstat: failed to register 'online' hotplug state\n");
2138
2139	cpus_read_lock();
2140	init_cpu_node_state();
2141	cpus_read_unlock();
2142
2143	start_shepherd_timer();
2144#endif
2145#ifdef CONFIG_PROC_FS
2146	proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2147	proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2148	proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2149	proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2150#endif
2151}
2152
2153#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2154
2155/*
2156 * Return an index indicating how much of the available free memory is
2157 * unusable for an allocation of the requested size.
2158 */
2159static int unusable_free_index(unsigned int order,
2160				struct contig_page_info *info)
2161{
2162	/* No free memory is interpreted as all free memory is unusable */
2163	if (info->free_pages == 0)
2164		return 1000;
2165
2166	/*
2167	 * Index should be a value between 0 and 1. Return a value to 3
2168	 * decimal places.
2169	 *
2170	 * 0 => no fragmentation
2171	 * 1 => high fragmentation
2172	 */
2173	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2174
2175}
2176
2177static void unusable_show_print(struct seq_file *m,
2178					pg_data_t *pgdat, struct zone *zone)
2179{
2180	unsigned int order;
2181	int index;
2182	struct contig_page_info info;
2183
2184	seq_printf(m, "Node %d, zone %8s ",
2185				pgdat->node_id,
2186				zone->name);
2187	for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2188		fill_contig_page_info(zone, order, &info);
2189		index = unusable_free_index(order, &info);
2190		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2191	}
2192
2193	seq_putc(m, '\n');
2194}
2195
2196/*
2197 * Display unusable free space index
2198 *
2199 * The unusable free space index measures how much of the available free
2200 * memory cannot be used to satisfy an allocation of a given size and is a
2201 * value between 0 and 1. The higher the value, the more of free memory is
2202 * unusable and by implication, the worse the external fragmentation is. This
2203 * can be expressed as a percentage by multiplying by 100.
2204 */
2205static int unusable_show(struct seq_file *m, void *arg)
2206{
2207	pg_data_t *pgdat = (pg_data_t *)arg;
2208
2209	/* check memoryless node */
2210	if (!node_state(pgdat->node_id, N_MEMORY))
2211		return 0;
2212
2213	walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2214
2215	return 0;
2216}
2217
2218static const struct seq_operations unusable_sops = {
2219	.start	= frag_start,
2220	.next	= frag_next,
2221	.stop	= frag_stop,
2222	.show	= unusable_show,
2223};
2224
2225DEFINE_SEQ_ATTRIBUTE(unusable);
2226
2227static void extfrag_show_print(struct seq_file *m,
2228					pg_data_t *pgdat, struct zone *zone)
2229{
2230	unsigned int order;
2231	int index;
2232
2233	/* Alloc on stack as interrupts are disabled for zone walk */
2234	struct contig_page_info info;
2235
2236	seq_printf(m, "Node %d, zone %8s ",
2237				pgdat->node_id,
2238				zone->name);
2239	for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2240		fill_contig_page_info(zone, order, &info);
2241		index = __fragmentation_index(order, &info);
2242		seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2243	}
2244
2245	seq_putc(m, '\n');
2246}
2247
2248/*
2249 * Display fragmentation index for orders that allocations would fail for
2250 */
2251static int extfrag_show(struct seq_file *m, void *arg)
2252{
2253	pg_data_t *pgdat = (pg_data_t *)arg;
2254
2255	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2256
2257	return 0;
2258}
2259
2260static const struct seq_operations extfrag_sops = {
2261	.start	= frag_start,
2262	.next	= frag_next,
2263	.stop	= frag_stop,
2264	.show	= extfrag_show,
2265};
2266
2267DEFINE_SEQ_ATTRIBUTE(extfrag);
2268
2269static int __init extfrag_debug_init(void)
2270{
2271	struct dentry *extfrag_debug_root;
2272
2273	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2274
2275	debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2276			    &unusable_fops);
2277
2278	debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2279			    &extfrag_fops);
2280
2281	return 0;
2282}
2283
2284module_init(extfrag_debug_init);
2285#endif
2286