1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
13#include <linux/cache.h>
14#include <linux/compiler.h>
15#include <linux/kfence.h>
16#include <linux/module.h>
17#include <linux/cpu.h>
18#include <linux/uaccess.h>
19#include <linux/seq_file.h>
20#include <linux/dma-mapping.h>
21#include <linux/swiotlb.h>
22#include <linux/proc_fs.h>
23#include <linux/debugfs.h>
24#include <linux/kmemleak.h>
25#include <linux/kasan.h>
26#include <asm/cacheflush.h>
27#include <asm/tlbflush.h>
28#include <asm/page.h>
29#include <linux/memcontrol.h>
30#include <linux/stackdepot.h>
31
32#include "internal.h"
33#include "slab.h"
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/kmem.h>
37
38enum slab_state slab_state;
39LIST_HEAD(slab_caches);
40DEFINE_MUTEX(slab_mutex);
41struct kmem_cache *kmem_cache;
42
43static LIST_HEAD(slab_caches_to_rcu_destroy);
44static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
45static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
46		    slab_caches_to_rcu_destroy_workfn);
47
48/*
49 * Set of flags that will prevent slab merging
50 */
51#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
52		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
53		SLAB_FAILSLAB | SLAB_NO_MERGE)
54
55#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
56			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
57
58/*
59 * Merge control. If this is set then no merging of slab caches will occur.
60 */
61static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
62
63static int __init setup_slab_nomerge(char *str)
64{
65	slab_nomerge = true;
66	return 1;
67}
68
69static int __init setup_slab_merge(char *str)
70{
71	slab_nomerge = false;
72	return 1;
73}
74
75__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
76__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
77
78__setup("slab_nomerge", setup_slab_nomerge);
79__setup("slab_merge", setup_slab_merge);
80
81/*
82 * Determine the size of a slab object
83 */
84unsigned int kmem_cache_size(struct kmem_cache *s)
85{
86	return s->object_size;
87}
88EXPORT_SYMBOL(kmem_cache_size);
89
90#ifdef CONFIG_DEBUG_VM
91static int kmem_cache_sanity_check(const char *name, unsigned int size)
92{
93	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
94		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
95		return -EINVAL;
96	}
97
98	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99	return 0;
100}
101#else
102static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
103{
104	return 0;
105}
106#endif
107
108/*
109 * Figure out what the alignment of the objects will be given a set of
110 * flags, a user specified alignment and the size of the objects.
111 */
112static unsigned int calculate_alignment(slab_flags_t flags,
113		unsigned int align, unsigned int size)
114{
115	/*
116	 * If the user wants hardware cache aligned objects then follow that
117	 * suggestion if the object is sufficiently large.
118	 *
119	 * The hardware cache alignment cannot override the specified
120	 * alignment though. If that is greater then use it.
121	 */
122	if (flags & SLAB_HWCACHE_ALIGN) {
123		unsigned int ralign;
124
125		ralign = cache_line_size();
126		while (size <= ralign / 2)
127			ralign /= 2;
128		align = max(align, ralign);
129	}
130
131	align = max(align, arch_slab_minalign());
132
133	return ALIGN(align, sizeof(void *));
134}
135
136/*
137 * Find a mergeable slab cache
138 */
139int slab_unmergeable(struct kmem_cache *s)
140{
141	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
142		return 1;
143
144	if (s->ctor)
145		return 1;
146
147#ifdef CONFIG_HARDENED_USERCOPY
148	if (s->usersize)
149		return 1;
150#endif
151
152	/*
153	 * We may have set a slab to be unmergeable during bootstrap.
154	 */
155	if (s->refcount < 0)
156		return 1;
157
158	return 0;
159}
160
161struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
162		slab_flags_t flags, const char *name, void (*ctor)(void *))
163{
164	struct kmem_cache *s;
165
166	if (slab_nomerge)
167		return NULL;
168
169	if (ctor)
170		return NULL;
171
172	size = ALIGN(size, sizeof(void *));
173	align = calculate_alignment(flags, align, size);
174	size = ALIGN(size, align);
175	flags = kmem_cache_flags(flags, name);
176
177	if (flags & SLAB_NEVER_MERGE)
178		return NULL;
179
180	list_for_each_entry_reverse(s, &slab_caches, list) {
181		if (slab_unmergeable(s))
182			continue;
183
184		if (size > s->size)
185			continue;
186
187		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
188			continue;
189		/*
190		 * Check if alignment is compatible.
191		 * Courtesy of Adrian Drzewiecki
192		 */
193		if ((s->size & ~(align - 1)) != s->size)
194			continue;
195
196		if (s->size - size >= sizeof(void *))
197			continue;
198
199		return s;
200	}
201	return NULL;
202}
203
204static struct kmem_cache *create_cache(const char *name,
205		unsigned int object_size, unsigned int align,
206		slab_flags_t flags, unsigned int useroffset,
207		unsigned int usersize, void (*ctor)(void *),
208		struct kmem_cache *root_cache)
209{
210	struct kmem_cache *s;
211	int err;
212
213	if (WARN_ON(useroffset + usersize > object_size))
214		useroffset = usersize = 0;
215
216	err = -ENOMEM;
217	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
218	if (!s)
219		goto out;
220
221	s->name = name;
222	s->size = s->object_size = object_size;
223	s->align = align;
224	s->ctor = ctor;
225#ifdef CONFIG_HARDENED_USERCOPY
226	s->useroffset = useroffset;
227	s->usersize = usersize;
228#endif
229
230	err = __kmem_cache_create(s, flags);
231	if (err)
232		goto out_free_cache;
233
234	s->refcount = 1;
235	list_add(&s->list, &slab_caches);
236	return s;
237
238out_free_cache:
239	kmem_cache_free(kmem_cache, s);
240out:
241	return ERR_PTR(err);
242}
243
244/**
245 * kmem_cache_create_usercopy - Create a cache with a region suitable
246 * for copying to userspace
247 * @name: A string which is used in /proc/slabinfo to identify this cache.
248 * @size: The size of objects to be created in this cache.
249 * @align: The required alignment for the objects.
250 * @flags: SLAB flags
251 * @useroffset: Usercopy region offset
252 * @usersize: Usercopy region size
253 * @ctor: A constructor for the objects.
254 *
255 * Cannot be called within a interrupt, but can be interrupted.
256 * The @ctor is run when new pages are allocated by the cache.
257 *
258 * The flags are
259 *
260 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
261 * to catch references to uninitialised memory.
262 *
263 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
264 * for buffer overruns.
265 *
266 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
267 * cacheline.  This can be beneficial if you're counting cycles as closely
268 * as davem.
269 *
270 * Return: a pointer to the cache on success, NULL on failure.
271 */
272struct kmem_cache *
273kmem_cache_create_usercopy(const char *name,
274		  unsigned int size, unsigned int align,
275		  slab_flags_t flags,
276		  unsigned int useroffset, unsigned int usersize,
277		  void (*ctor)(void *))
278{
279	struct kmem_cache *s = NULL;
280	const char *cache_name;
281	int err;
282
283#ifdef CONFIG_SLUB_DEBUG
284	/*
285	 * If no slab_debug was enabled globally, the static key is not yet
286	 * enabled by setup_slub_debug(). Enable it if the cache is being
287	 * created with any of the debugging flags passed explicitly.
288	 * It's also possible that this is the first cache created with
289	 * SLAB_STORE_USER and we should init stack_depot for it.
290	 */
291	if (flags & SLAB_DEBUG_FLAGS)
292		static_branch_enable(&slub_debug_enabled);
293	if (flags & SLAB_STORE_USER)
294		stack_depot_init();
295#endif
296
297	mutex_lock(&slab_mutex);
298
299	err = kmem_cache_sanity_check(name, size);
300	if (err) {
301		goto out_unlock;
302	}
303
304	/* Refuse requests with allocator specific flags */
305	if (flags & ~SLAB_FLAGS_PERMITTED) {
306		err = -EINVAL;
307		goto out_unlock;
308	}
309
310	/*
311	 * Some allocators will constraint the set of valid flags to a subset
312	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
313	 * case, and we'll just provide them with a sanitized version of the
314	 * passed flags.
315	 */
316	flags &= CACHE_CREATE_MASK;
317
318	/* Fail closed on bad usersize of useroffset values. */
319	if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
320	    WARN_ON(!usersize && useroffset) ||
321	    WARN_ON(size < usersize || size - usersize < useroffset))
322		usersize = useroffset = 0;
323
324	if (!usersize)
325		s = __kmem_cache_alias(name, size, align, flags, ctor);
326	if (s)
327		goto out_unlock;
328
329	cache_name = kstrdup_const(name, GFP_KERNEL);
330	if (!cache_name) {
331		err = -ENOMEM;
332		goto out_unlock;
333	}
334
335	s = create_cache(cache_name, size,
336			 calculate_alignment(flags, align, size),
337			 flags, useroffset, usersize, ctor, NULL);
338	if (IS_ERR(s)) {
339		err = PTR_ERR(s);
340		kfree_const(cache_name);
341	}
342
343out_unlock:
344	mutex_unlock(&slab_mutex);
345
346	if (err) {
347		if (flags & SLAB_PANIC)
348			panic("%s: Failed to create slab '%s'. Error %d\n",
349				__func__, name, err);
350		else {
351			pr_warn("%s(%s) failed with error %d\n",
352				__func__, name, err);
353			dump_stack();
354		}
355		return NULL;
356	}
357	return s;
358}
359EXPORT_SYMBOL(kmem_cache_create_usercopy);
360
361/**
362 * kmem_cache_create - Create a cache.
363 * @name: A string which is used in /proc/slabinfo to identify this cache.
364 * @size: The size of objects to be created in this cache.
365 * @align: The required alignment for the objects.
366 * @flags: SLAB flags
367 * @ctor: A constructor for the objects.
368 *
369 * Cannot be called within a interrupt, but can be interrupted.
370 * The @ctor is run when new pages are allocated by the cache.
371 *
372 * The flags are
373 *
374 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
375 * to catch references to uninitialised memory.
376 *
377 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
378 * for buffer overruns.
379 *
380 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
381 * cacheline.  This can be beneficial if you're counting cycles as closely
382 * as davem.
383 *
384 * Return: a pointer to the cache on success, NULL on failure.
385 */
386struct kmem_cache *
387kmem_cache_create(const char *name, unsigned int size, unsigned int align,
388		slab_flags_t flags, void (*ctor)(void *))
389{
390	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
391					  ctor);
392}
393EXPORT_SYMBOL(kmem_cache_create);
394
395#ifdef SLAB_SUPPORTS_SYSFS
396/*
397 * For a given kmem_cache, kmem_cache_destroy() should only be called
398 * once or there will be a use-after-free problem. The actual deletion
399 * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
400 * protection. So they are now done without holding those locks.
401 *
402 * Note that there will be a slight delay in the deletion of sysfs files
403 * if kmem_cache_release() is called indrectly from a work function.
404 */
405static void kmem_cache_release(struct kmem_cache *s)
406{
407	if (slab_state >= FULL) {
408		sysfs_slab_unlink(s);
409		sysfs_slab_release(s);
410	} else {
411		slab_kmem_cache_release(s);
412	}
413}
414#else
415static void kmem_cache_release(struct kmem_cache *s)
416{
417	slab_kmem_cache_release(s);
418}
419#endif
420
421static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
422{
423	LIST_HEAD(to_destroy);
424	struct kmem_cache *s, *s2;
425
426	/*
427	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
428	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
429	 * through RCU and the associated kmem_cache are dereferenced
430	 * while freeing the pages, so the kmem_caches should be freed only
431	 * after the pending RCU operations are finished.  As rcu_barrier()
432	 * is a pretty slow operation, we batch all pending destructions
433	 * asynchronously.
434	 */
435	mutex_lock(&slab_mutex);
436	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
437	mutex_unlock(&slab_mutex);
438
439	if (list_empty(&to_destroy))
440		return;
441
442	rcu_barrier();
443
444	list_for_each_entry_safe(s, s2, &to_destroy, list) {
445		debugfs_slab_release(s);
446		kfence_shutdown_cache(s);
447		kmem_cache_release(s);
448	}
449}
450
451static int shutdown_cache(struct kmem_cache *s)
452{
453	/* free asan quarantined objects */
454	kasan_cache_shutdown(s);
455
456	if (__kmem_cache_shutdown(s) != 0)
457		return -EBUSY;
458
459	list_del(&s->list);
460
461	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
462		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
463		schedule_work(&slab_caches_to_rcu_destroy_work);
464	} else {
465		kfence_shutdown_cache(s);
466		debugfs_slab_release(s);
467	}
468
469	return 0;
470}
471
472void slab_kmem_cache_release(struct kmem_cache *s)
473{
474	__kmem_cache_release(s);
475	kfree_const(s->name);
476	kmem_cache_free(kmem_cache, s);
477}
478
479void kmem_cache_destroy(struct kmem_cache *s)
480{
481	int err = -EBUSY;
482	bool rcu_set;
483
484	if (unlikely(!s) || !kasan_check_byte(s))
485		return;
486
487	cpus_read_lock();
488	mutex_lock(&slab_mutex);
489
490	rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
491
492	s->refcount--;
493	if (s->refcount)
494		goto out_unlock;
495
496	err = shutdown_cache(s);
497	WARN(err, "%s %s: Slab cache still has objects when called from %pS",
498	     __func__, s->name, (void *)_RET_IP_);
499out_unlock:
500	mutex_unlock(&slab_mutex);
501	cpus_read_unlock();
502	if (!err && !rcu_set)
503		kmem_cache_release(s);
504}
505EXPORT_SYMBOL(kmem_cache_destroy);
506
507/**
508 * kmem_cache_shrink - Shrink a cache.
509 * @cachep: The cache to shrink.
510 *
511 * Releases as many slabs as possible for a cache.
512 * To help debugging, a zero exit status indicates all slabs were released.
513 *
514 * Return: %0 if all slabs were released, non-zero otherwise
515 */
516int kmem_cache_shrink(struct kmem_cache *cachep)
517{
518	kasan_cache_shrink(cachep);
519
520	return __kmem_cache_shrink(cachep);
521}
522EXPORT_SYMBOL(kmem_cache_shrink);
523
524bool slab_is_available(void)
525{
526	return slab_state >= UP;
527}
528
529#ifdef CONFIG_PRINTK
530static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
531{
532	if (__kfence_obj_info(kpp, object, slab))
533		return;
534	__kmem_obj_info(kpp, object, slab);
535}
536
537/**
538 * kmem_dump_obj - Print available slab provenance information
539 * @object: slab object for which to find provenance information.
540 *
541 * This function uses pr_cont(), so that the caller is expected to have
542 * printed out whatever preamble is appropriate.  The provenance information
543 * depends on the type of object and on how much debugging is enabled.
544 * For a slab-cache object, the fact that it is a slab object is printed,
545 * and, if available, the slab name, return address, and stack trace from
546 * the allocation and last free path of that object.
547 *
548 * Return: %true if the pointer is to a not-yet-freed object from
549 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
550 * is to an already-freed object, and %false otherwise.
551 */
552bool kmem_dump_obj(void *object)
553{
554	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
555	int i;
556	struct slab *slab;
557	unsigned long ptroffset;
558	struct kmem_obj_info kp = { };
559
560	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
561	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
562		return false;
563	slab = virt_to_slab(object);
564	if (!slab)
565		return false;
566
567	kmem_obj_info(&kp, object, slab);
568	if (kp.kp_slab_cache)
569		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
570	else
571		pr_cont(" slab%s", cp);
572	if (is_kfence_address(object))
573		pr_cont(" (kfence)");
574	if (kp.kp_objp)
575		pr_cont(" start %px", kp.kp_objp);
576	if (kp.kp_data_offset)
577		pr_cont(" data offset %lu", kp.kp_data_offset);
578	if (kp.kp_objp) {
579		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
580		pr_cont(" pointer offset %lu", ptroffset);
581	}
582	if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
583		pr_cont(" size %u", kp.kp_slab_cache->object_size);
584	if (kp.kp_ret)
585		pr_cont(" allocated at %pS\n", kp.kp_ret);
586	else
587		pr_cont("\n");
588	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
589		if (!kp.kp_stack[i])
590			break;
591		pr_info("    %pS\n", kp.kp_stack[i]);
592	}
593
594	if (kp.kp_free_stack[0])
595		pr_cont(" Free path:\n");
596
597	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
598		if (!kp.kp_free_stack[i])
599			break;
600		pr_info("    %pS\n", kp.kp_free_stack[i]);
601	}
602
603	return true;
604}
605EXPORT_SYMBOL_GPL(kmem_dump_obj);
606#endif
607
608/* Create a cache during boot when no slab services are available yet */
609void __init create_boot_cache(struct kmem_cache *s, const char *name,
610		unsigned int size, slab_flags_t flags,
611		unsigned int useroffset, unsigned int usersize)
612{
613	int err;
614	unsigned int align = ARCH_KMALLOC_MINALIGN;
615
616	s->name = name;
617	s->size = s->object_size = size;
618
619	/*
620	 * For power of two sizes, guarantee natural alignment for kmalloc
621	 * caches, regardless of SL*B debugging options.
622	 */
623	if (is_power_of_2(size))
624		align = max(align, size);
625	s->align = calculate_alignment(flags, align, size);
626
627#ifdef CONFIG_HARDENED_USERCOPY
628	s->useroffset = useroffset;
629	s->usersize = usersize;
630#endif
631
632	err = __kmem_cache_create(s, flags);
633
634	if (err)
635		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
636					name, size, err);
637
638	s->refcount = -1;	/* Exempt from merging for now */
639}
640
641static struct kmem_cache *__init create_kmalloc_cache(const char *name,
642						      unsigned int size,
643						      slab_flags_t flags)
644{
645	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
646
647	if (!s)
648		panic("Out of memory when creating slab %s\n", name);
649
650	create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size);
651	list_add(&s->list, &slab_caches);
652	s->refcount = 1;
653	return s;
654}
655
656struct kmem_cache *
657kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
658{ /* initialization for https://llvm.org/pr42570 */ };
659EXPORT_SYMBOL(kmalloc_caches);
660
661#ifdef CONFIG_RANDOM_KMALLOC_CACHES
662unsigned long random_kmalloc_seed __ro_after_init;
663EXPORT_SYMBOL(random_kmalloc_seed);
664#endif
665
666/*
667 * Conversion table for small slabs sizes / 8 to the index in the
668 * kmalloc array. This is necessary for slabs < 192 since we have non power
669 * of two cache sizes there. The size of larger slabs can be determined using
670 * fls.
671 */
672u8 kmalloc_size_index[24] __ro_after_init = {
673	3,	/* 8 */
674	4,	/* 16 */
675	5,	/* 24 */
676	5,	/* 32 */
677	6,	/* 40 */
678	6,	/* 48 */
679	6,	/* 56 */
680	6,	/* 64 */
681	1,	/* 72 */
682	1,	/* 80 */
683	1,	/* 88 */
684	1,	/* 96 */
685	7,	/* 104 */
686	7,	/* 112 */
687	7,	/* 120 */
688	7,	/* 128 */
689	2,	/* 136 */
690	2,	/* 144 */
691	2,	/* 152 */
692	2,	/* 160 */
693	2,	/* 168 */
694	2,	/* 176 */
695	2,	/* 184 */
696	2	/* 192 */
697};
698
699size_t kmalloc_size_roundup(size_t size)
700{
701	if (size && size <= KMALLOC_MAX_CACHE_SIZE) {
702		/*
703		 * The flags don't matter since size_index is common to all.
704		 * Neither does the caller for just getting ->object_size.
705		 */
706		return kmalloc_slab(size, GFP_KERNEL, 0)->object_size;
707	}
708
709	/* Above the smaller buckets, size is a multiple of page size. */
710	if (size && size <= KMALLOC_MAX_SIZE)
711		return PAGE_SIZE << get_order(size);
712
713	/*
714	 * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR
715	 * and very large size - kmalloc() may fail.
716	 */
717	return size;
718
719}
720EXPORT_SYMBOL(kmalloc_size_roundup);
721
722#ifdef CONFIG_ZONE_DMA
723#define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
724#else
725#define KMALLOC_DMA_NAME(sz)
726#endif
727
728#ifdef CONFIG_MEMCG_KMEM
729#define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
730#else
731#define KMALLOC_CGROUP_NAME(sz)
732#endif
733
734#ifndef CONFIG_SLUB_TINY
735#define KMALLOC_RCL_NAME(sz)	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
736#else
737#define KMALLOC_RCL_NAME(sz)
738#endif
739
740#ifdef CONFIG_RANDOM_KMALLOC_CACHES
741#define __KMALLOC_RANDOM_CONCAT(a, b) a ## b
742#define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz)
743#define KMA_RAND_1(sz)                  .name[KMALLOC_RANDOM_START +  1] = "kmalloc-rnd-01-" #sz,
744#define KMA_RAND_2(sz)  KMA_RAND_1(sz)  .name[KMALLOC_RANDOM_START +  2] = "kmalloc-rnd-02-" #sz,
745#define KMA_RAND_3(sz)  KMA_RAND_2(sz)  .name[KMALLOC_RANDOM_START +  3] = "kmalloc-rnd-03-" #sz,
746#define KMA_RAND_4(sz)  KMA_RAND_3(sz)  .name[KMALLOC_RANDOM_START +  4] = "kmalloc-rnd-04-" #sz,
747#define KMA_RAND_5(sz)  KMA_RAND_4(sz)  .name[KMALLOC_RANDOM_START +  5] = "kmalloc-rnd-05-" #sz,
748#define KMA_RAND_6(sz)  KMA_RAND_5(sz)  .name[KMALLOC_RANDOM_START +  6] = "kmalloc-rnd-06-" #sz,
749#define KMA_RAND_7(sz)  KMA_RAND_6(sz)  .name[KMALLOC_RANDOM_START +  7] = "kmalloc-rnd-07-" #sz,
750#define KMA_RAND_8(sz)  KMA_RAND_7(sz)  .name[KMALLOC_RANDOM_START +  8] = "kmalloc-rnd-08-" #sz,
751#define KMA_RAND_9(sz)  KMA_RAND_8(sz)  .name[KMALLOC_RANDOM_START +  9] = "kmalloc-rnd-09-" #sz,
752#define KMA_RAND_10(sz) KMA_RAND_9(sz)  .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz,
753#define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz,
754#define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz,
755#define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz,
756#define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz,
757#define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz,
758#else // CONFIG_RANDOM_KMALLOC_CACHES
759#define KMALLOC_RANDOM_NAME(N, sz)
760#endif
761
762#define INIT_KMALLOC_INFO(__size, __short_size)			\
763{								\
764	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
765	KMALLOC_RCL_NAME(__short_size)				\
766	KMALLOC_CGROUP_NAME(__short_size)			\
767	KMALLOC_DMA_NAME(__short_size)				\
768	KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size)	\
769	.size = __size,						\
770}
771
772/*
773 * kmalloc_info[] is to make slab_debug=,kmalloc-xx option work at boot time.
774 * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
775 * kmalloc-2M.
776 */
777const struct kmalloc_info_struct kmalloc_info[] __initconst = {
778	INIT_KMALLOC_INFO(0, 0),
779	INIT_KMALLOC_INFO(96, 96),
780	INIT_KMALLOC_INFO(192, 192),
781	INIT_KMALLOC_INFO(8, 8),
782	INIT_KMALLOC_INFO(16, 16),
783	INIT_KMALLOC_INFO(32, 32),
784	INIT_KMALLOC_INFO(64, 64),
785	INIT_KMALLOC_INFO(128, 128),
786	INIT_KMALLOC_INFO(256, 256),
787	INIT_KMALLOC_INFO(512, 512),
788	INIT_KMALLOC_INFO(1024, 1k),
789	INIT_KMALLOC_INFO(2048, 2k),
790	INIT_KMALLOC_INFO(4096, 4k),
791	INIT_KMALLOC_INFO(8192, 8k),
792	INIT_KMALLOC_INFO(16384, 16k),
793	INIT_KMALLOC_INFO(32768, 32k),
794	INIT_KMALLOC_INFO(65536, 64k),
795	INIT_KMALLOC_INFO(131072, 128k),
796	INIT_KMALLOC_INFO(262144, 256k),
797	INIT_KMALLOC_INFO(524288, 512k),
798	INIT_KMALLOC_INFO(1048576, 1M),
799	INIT_KMALLOC_INFO(2097152, 2M)
800};
801
802/*
803 * Patch up the size_index table if we have strange large alignment
804 * requirements for the kmalloc array. This is only the case for
805 * MIPS it seems. The standard arches will not generate any code here.
806 *
807 * Largest permitted alignment is 256 bytes due to the way we
808 * handle the index determination for the smaller caches.
809 *
810 * Make sure that nothing crazy happens if someone starts tinkering
811 * around with ARCH_KMALLOC_MINALIGN
812 */
813void __init setup_kmalloc_cache_index_table(void)
814{
815	unsigned int i;
816
817	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
818		!is_power_of_2(KMALLOC_MIN_SIZE));
819
820	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
821		unsigned int elem = size_index_elem(i);
822
823		if (elem >= ARRAY_SIZE(kmalloc_size_index))
824			break;
825		kmalloc_size_index[elem] = KMALLOC_SHIFT_LOW;
826	}
827
828	if (KMALLOC_MIN_SIZE >= 64) {
829		/*
830		 * The 96 byte sized cache is not used if the alignment
831		 * is 64 byte.
832		 */
833		for (i = 64 + 8; i <= 96; i += 8)
834			kmalloc_size_index[size_index_elem(i)] = 7;
835
836	}
837
838	if (KMALLOC_MIN_SIZE >= 128) {
839		/*
840		 * The 192 byte sized cache is not used if the alignment
841		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
842		 * instead.
843		 */
844		for (i = 128 + 8; i <= 192; i += 8)
845			kmalloc_size_index[size_index_elem(i)] = 8;
846	}
847}
848
849static unsigned int __kmalloc_minalign(void)
850{
851	unsigned int minalign = dma_get_cache_alignment();
852
853	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) &&
854	    is_swiotlb_allocated())
855		minalign = ARCH_KMALLOC_MINALIGN;
856
857	return max(minalign, arch_slab_minalign());
858}
859
860static void __init
861new_kmalloc_cache(int idx, enum kmalloc_cache_type type)
862{
863	slab_flags_t flags = 0;
864	unsigned int minalign = __kmalloc_minalign();
865	unsigned int aligned_size = kmalloc_info[idx].size;
866	int aligned_idx = idx;
867
868	if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
869		flags |= SLAB_RECLAIM_ACCOUNT;
870	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
871		if (mem_cgroup_kmem_disabled()) {
872			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
873			return;
874		}
875		flags |= SLAB_ACCOUNT;
876	} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
877		flags |= SLAB_CACHE_DMA;
878	}
879
880#ifdef CONFIG_RANDOM_KMALLOC_CACHES
881	if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END)
882		flags |= SLAB_NO_MERGE;
883#endif
884
885	/*
886	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
887	 * KMALLOC_NORMAL caches.
888	 */
889	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
890		flags |= SLAB_NO_MERGE;
891
892	if (minalign > ARCH_KMALLOC_MINALIGN) {
893		aligned_size = ALIGN(aligned_size, minalign);
894		aligned_idx = __kmalloc_index(aligned_size, false);
895	}
896
897	if (!kmalloc_caches[type][aligned_idx])
898		kmalloc_caches[type][aligned_idx] = create_kmalloc_cache(
899					kmalloc_info[aligned_idx].name[type],
900					aligned_size, flags);
901	if (idx != aligned_idx)
902		kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx];
903}
904
905/*
906 * Create the kmalloc array. Some of the regular kmalloc arrays
907 * may already have been created because they were needed to
908 * enable allocations for slab creation.
909 */
910void __init create_kmalloc_caches(void)
911{
912	int i;
913	enum kmalloc_cache_type type;
914
915	/*
916	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
917	 */
918	for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
919		/* Caches that are NOT of the two-to-the-power-of size. */
920		if (KMALLOC_MIN_SIZE <= 32)
921			new_kmalloc_cache(1, type);
922		if (KMALLOC_MIN_SIZE <= 64)
923			new_kmalloc_cache(2, type);
924
925		/* Caches that are of the two-to-the-power-of size. */
926		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
927			new_kmalloc_cache(i, type);
928	}
929#ifdef CONFIG_RANDOM_KMALLOC_CACHES
930	random_kmalloc_seed = get_random_u64();
931#endif
932
933	/* Kmalloc array is now usable */
934	slab_state = UP;
935}
936
937/**
938 * __ksize -- Report full size of underlying allocation
939 * @object: pointer to the object
940 *
941 * This should only be used internally to query the true size of allocations.
942 * It is not meant to be a way to discover the usable size of an allocation
943 * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
944 * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
945 * and/or FORTIFY_SOURCE.
946 *
947 * Return: size of the actual memory used by @object in bytes
948 */
949size_t __ksize(const void *object)
950{
951	struct folio *folio;
952
953	if (unlikely(object == ZERO_SIZE_PTR))
954		return 0;
955
956	folio = virt_to_folio(object);
957
958	if (unlikely(!folio_test_slab(folio))) {
959		if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
960			return 0;
961		if (WARN_ON(object != folio_address(folio)))
962			return 0;
963		return folio_size(folio);
964	}
965
966#ifdef CONFIG_SLUB_DEBUG
967	skip_orig_size_check(folio_slab(folio)->slab_cache, object);
968#endif
969
970	return slab_ksize(folio_slab(folio)->slab_cache);
971}
972
973gfp_t kmalloc_fix_flags(gfp_t flags)
974{
975	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
976
977	flags &= ~GFP_SLAB_BUG_MASK;
978	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
979			invalid_mask, &invalid_mask, flags, &flags);
980	dump_stack();
981
982	return flags;
983}
984
985#ifdef CONFIG_SLAB_FREELIST_RANDOM
986/* Randomize a generic freelist */
987static void freelist_randomize(unsigned int *list,
988			       unsigned int count)
989{
990	unsigned int rand;
991	unsigned int i;
992
993	for (i = 0; i < count; i++)
994		list[i] = i;
995
996	/* Fisher-Yates shuffle */
997	for (i = count - 1; i > 0; i--) {
998		rand = get_random_u32_below(i + 1);
999		swap(list[i], list[rand]);
1000	}
1001}
1002
1003/* Create a random sequence per cache */
1004int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1005				    gfp_t gfp)
1006{
1007
1008	if (count < 2 || cachep->random_seq)
1009		return 0;
1010
1011	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1012	if (!cachep->random_seq)
1013		return -ENOMEM;
1014
1015	freelist_randomize(cachep->random_seq, count);
1016	return 0;
1017}
1018
1019/* Destroy the per-cache random freelist sequence */
1020void cache_random_seq_destroy(struct kmem_cache *cachep)
1021{
1022	kfree(cachep->random_seq);
1023	cachep->random_seq = NULL;
1024}
1025#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1026
1027#ifdef CONFIG_SLUB_DEBUG
1028#define SLABINFO_RIGHTS (0400)
1029
1030static void print_slabinfo_header(struct seq_file *m)
1031{
1032	/*
1033	 * Output format version, so at least we can change it
1034	 * without _too_ many complaints.
1035	 */
1036	seq_puts(m, "slabinfo - version: 2.1\n");
1037	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1038	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1039	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1040	seq_putc(m, '\n');
1041}
1042
1043static void *slab_start(struct seq_file *m, loff_t *pos)
1044{
1045	mutex_lock(&slab_mutex);
1046	return seq_list_start(&slab_caches, *pos);
1047}
1048
1049static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1050{
1051	return seq_list_next(p, &slab_caches, pos);
1052}
1053
1054static void slab_stop(struct seq_file *m, void *p)
1055{
1056	mutex_unlock(&slab_mutex);
1057}
1058
1059static void cache_show(struct kmem_cache *s, struct seq_file *m)
1060{
1061	struct slabinfo sinfo;
1062
1063	memset(&sinfo, 0, sizeof(sinfo));
1064	get_slabinfo(s, &sinfo);
1065
1066	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1067		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1068		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1069
1070	seq_printf(m, " : tunables %4u %4u %4u",
1071		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1072	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1073		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1074	seq_putc(m, '\n');
1075}
1076
1077static int slab_show(struct seq_file *m, void *p)
1078{
1079	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1080
1081	if (p == slab_caches.next)
1082		print_slabinfo_header(m);
1083	cache_show(s, m);
1084	return 0;
1085}
1086
1087void dump_unreclaimable_slab(void)
1088{
1089	struct kmem_cache *s;
1090	struct slabinfo sinfo;
1091
1092	/*
1093	 * Here acquiring slab_mutex is risky since we don't prefer to get
1094	 * sleep in oom path. But, without mutex hold, it may introduce a
1095	 * risk of crash.
1096	 * Use mutex_trylock to protect the list traverse, dump nothing
1097	 * without acquiring the mutex.
1098	 */
1099	if (!mutex_trylock(&slab_mutex)) {
1100		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1101		return;
1102	}
1103
1104	pr_info("Unreclaimable slab info:\n");
1105	pr_info("Name                      Used          Total\n");
1106
1107	list_for_each_entry(s, &slab_caches, list) {
1108		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1109			continue;
1110
1111		get_slabinfo(s, &sinfo);
1112
1113		if (sinfo.num_objs > 0)
1114			pr_info("%-17s %10luKB %10luKB\n", s->name,
1115				(sinfo.active_objs * s->size) / 1024,
1116				(sinfo.num_objs * s->size) / 1024);
1117	}
1118	mutex_unlock(&slab_mutex);
1119}
1120
1121/*
1122 * slabinfo_op - iterator that generates /proc/slabinfo
1123 *
1124 * Output layout:
1125 * cache-name
1126 * num-active-objs
1127 * total-objs
1128 * object size
1129 * num-active-slabs
1130 * total-slabs
1131 * num-pages-per-slab
1132 * + further values on SMP and with statistics enabled
1133 */
1134static const struct seq_operations slabinfo_op = {
1135	.start = slab_start,
1136	.next = slab_next,
1137	.stop = slab_stop,
1138	.show = slab_show,
1139};
1140
1141static int slabinfo_open(struct inode *inode, struct file *file)
1142{
1143	return seq_open(file, &slabinfo_op);
1144}
1145
1146static const struct proc_ops slabinfo_proc_ops = {
1147	.proc_flags	= PROC_ENTRY_PERMANENT,
1148	.proc_open	= slabinfo_open,
1149	.proc_read	= seq_read,
1150	.proc_lseek	= seq_lseek,
1151	.proc_release	= seq_release,
1152};
1153
1154static int __init slab_proc_init(void)
1155{
1156	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1157	return 0;
1158}
1159module_init(slab_proc_init);
1160
1161#endif /* CONFIG_SLUB_DEBUG */
1162
1163static __always_inline __realloc_size(2) void *
1164__do_krealloc(const void *p, size_t new_size, gfp_t flags)
1165{
1166	void *ret;
1167	size_t ks;
1168
1169	/* Check for double-free before calling ksize. */
1170	if (likely(!ZERO_OR_NULL_PTR(p))) {
1171		if (!kasan_check_byte(p))
1172			return NULL;
1173		ks = ksize(p);
1174	} else
1175		ks = 0;
1176
1177	/* If the object still fits, repoison it precisely. */
1178	if (ks >= new_size) {
1179		p = kasan_krealloc((void *)p, new_size, flags);
1180		return (void *)p;
1181	}
1182
1183	ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
1184	if (ret && p) {
1185		/* Disable KASAN checks as the object's redzone is accessed. */
1186		kasan_disable_current();
1187		memcpy(ret, kasan_reset_tag(p), ks);
1188		kasan_enable_current();
1189	}
1190
1191	return ret;
1192}
1193
1194/**
1195 * krealloc - reallocate memory. The contents will remain unchanged.
1196 * @p: object to reallocate memory for.
1197 * @new_size: how many bytes of memory are required.
1198 * @flags: the type of memory to allocate.
1199 *
1200 * The contents of the object pointed to are preserved up to the
1201 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1202 * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1203 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1204 *
1205 * Return: pointer to the allocated memory or %NULL in case of error
1206 */
1207void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
1208{
1209	void *ret;
1210
1211	if (unlikely(!new_size)) {
1212		kfree(p);
1213		return ZERO_SIZE_PTR;
1214	}
1215
1216	ret = __do_krealloc(p, new_size, flags);
1217	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1218		kfree(p);
1219
1220	return ret;
1221}
1222EXPORT_SYMBOL(krealloc_noprof);
1223
1224/**
1225 * kfree_sensitive - Clear sensitive information in memory before freeing
1226 * @p: object to free memory of
1227 *
1228 * The memory of the object @p points to is zeroed before freed.
1229 * If @p is %NULL, kfree_sensitive() does nothing.
1230 *
1231 * Note: this function zeroes the whole allocated buffer which can be a good
1232 * deal bigger than the requested buffer size passed to kmalloc(). So be
1233 * careful when using this function in performance sensitive code.
1234 */
1235void kfree_sensitive(const void *p)
1236{
1237	size_t ks;
1238	void *mem = (void *)p;
1239
1240	ks = ksize(mem);
1241	if (ks) {
1242		kasan_unpoison_range(mem, ks);
1243		memzero_explicit(mem, ks);
1244	}
1245	kfree(mem);
1246}
1247EXPORT_SYMBOL(kfree_sensitive);
1248
1249size_t ksize(const void *objp)
1250{
1251	/*
1252	 * We need to first check that the pointer to the object is valid.
1253	 * The KASAN report printed from ksize() is more useful, then when
1254	 * it's printed later when the behaviour could be undefined due to
1255	 * a potential use-after-free or double-free.
1256	 *
1257	 * We use kasan_check_byte(), which is supported for the hardware
1258	 * tag-based KASAN mode, unlike kasan_check_read/write().
1259	 *
1260	 * If the pointed to memory is invalid, we return 0 to avoid users of
1261	 * ksize() writing to and potentially corrupting the memory region.
1262	 *
1263	 * We want to perform the check before __ksize(), to avoid potentially
1264	 * crashing in __ksize() due to accessing invalid metadata.
1265	 */
1266	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1267		return 0;
1268
1269	return kfence_ksize(objp) ?: __ksize(objp);
1270}
1271EXPORT_SYMBOL(ksize);
1272
1273/* Tracepoints definitions. */
1274EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1275EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1276EXPORT_TRACEPOINT_SYMBOL(kfree);
1277EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1278
1279