1// SPDX-License-Identifier: GPL-2.0
2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4#include <linux/mm.h>
5#include <linux/sched.h>
6#include <linux/sched/mm.h>
7#include <linux/sched/coredump.h>
8#include <linux/mmu_notifier.h>
9#include <linux/rmap.h>
10#include <linux/swap.h>
11#include <linux/mm_inline.h>
12#include <linux/kthread.h>
13#include <linux/khugepaged.h>
14#include <linux/freezer.h>
15#include <linux/mman.h>
16#include <linux/hashtable.h>
17#include <linux/userfaultfd_k.h>
18#include <linux/page_idle.h>
19#include <linux/page_table_check.h>
20#include <linux/rcupdate_wait.h>
21#include <linux/swapops.h>
22#include <linux/shmem_fs.h>
23#include <linux/ksm.h>
24
25#include <asm/tlb.h>
26#include <asm/pgalloc.h>
27#include "internal.h"
28#include "mm_slot.h"
29
30enum scan_result {
31	SCAN_FAIL,
32	SCAN_SUCCEED,
33	SCAN_PMD_NULL,
34	SCAN_PMD_NONE,
35	SCAN_PMD_MAPPED,
36	SCAN_EXCEED_NONE_PTE,
37	SCAN_EXCEED_SWAP_PTE,
38	SCAN_EXCEED_SHARED_PTE,
39	SCAN_PTE_NON_PRESENT,
40	SCAN_PTE_UFFD_WP,
41	SCAN_PTE_MAPPED_HUGEPAGE,
42	SCAN_PAGE_RO,
43	SCAN_LACK_REFERENCED_PAGE,
44	SCAN_PAGE_NULL,
45	SCAN_SCAN_ABORT,
46	SCAN_PAGE_COUNT,
47	SCAN_PAGE_LRU,
48	SCAN_PAGE_LOCK,
49	SCAN_PAGE_ANON,
50	SCAN_PAGE_COMPOUND,
51	SCAN_ANY_PROCESS,
52	SCAN_VMA_NULL,
53	SCAN_VMA_CHECK,
54	SCAN_ADDRESS_RANGE,
55	SCAN_DEL_PAGE_LRU,
56	SCAN_ALLOC_HUGE_PAGE_FAIL,
57	SCAN_CGROUP_CHARGE_FAIL,
58	SCAN_TRUNCATED,
59	SCAN_PAGE_HAS_PRIVATE,
60	SCAN_STORE_FAILED,
61	SCAN_COPY_MC,
62	SCAN_PAGE_FILLED,
63};
64
65#define CREATE_TRACE_POINTS
66#include <trace/events/huge_memory.h>
67
68static struct task_struct *khugepaged_thread __read_mostly;
69static DEFINE_MUTEX(khugepaged_mutex);
70
71/* default scan 8*512 pte (or vmas) every 30 second */
72static unsigned int khugepaged_pages_to_scan __read_mostly;
73static unsigned int khugepaged_pages_collapsed;
74static unsigned int khugepaged_full_scans;
75static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
76/* during fragmentation poll the hugepage allocator once every minute */
77static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
78static unsigned long khugepaged_sleep_expire;
79static DEFINE_SPINLOCK(khugepaged_mm_lock);
80static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
81/*
82 * default collapse hugepages if there is at least one pte mapped like
83 * it would have happened if the vma was large enough during page
84 * fault.
85 *
86 * Note that these are only respected if collapse was initiated by khugepaged.
87 */
88static unsigned int khugepaged_max_ptes_none __read_mostly;
89static unsigned int khugepaged_max_ptes_swap __read_mostly;
90static unsigned int khugepaged_max_ptes_shared __read_mostly;
91
92#define MM_SLOTS_HASH_BITS 10
93static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
94
95static struct kmem_cache *mm_slot_cache __ro_after_init;
96
97struct collapse_control {
98	bool is_khugepaged;
99
100	/* Num pages scanned per node */
101	u32 node_load[MAX_NUMNODES];
102
103	/* nodemask for allocation fallback */
104	nodemask_t alloc_nmask;
105};
106
107/**
108 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
109 * @slot: hash lookup from mm to mm_slot
110 */
111struct khugepaged_mm_slot {
112	struct mm_slot slot;
113};
114
115/**
116 * struct khugepaged_scan - cursor for scanning
117 * @mm_head: the head of the mm list to scan
118 * @mm_slot: the current mm_slot we are scanning
119 * @address: the next address inside that to be scanned
120 *
121 * There is only the one khugepaged_scan instance of this cursor structure.
122 */
123struct khugepaged_scan {
124	struct list_head mm_head;
125	struct khugepaged_mm_slot *mm_slot;
126	unsigned long address;
127};
128
129static struct khugepaged_scan khugepaged_scan = {
130	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
131};
132
133#ifdef CONFIG_SYSFS
134static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
135					 struct kobj_attribute *attr,
136					 char *buf)
137{
138	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
139}
140
141static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
142					  struct kobj_attribute *attr,
143					  const char *buf, size_t count)
144{
145	unsigned int msecs;
146	int err;
147
148	err = kstrtouint(buf, 10, &msecs);
149	if (err)
150		return -EINVAL;
151
152	khugepaged_scan_sleep_millisecs = msecs;
153	khugepaged_sleep_expire = 0;
154	wake_up_interruptible(&khugepaged_wait);
155
156	return count;
157}
158static struct kobj_attribute scan_sleep_millisecs_attr =
159	__ATTR_RW(scan_sleep_millisecs);
160
161static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
162					  struct kobj_attribute *attr,
163					  char *buf)
164{
165	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
166}
167
168static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
169					   struct kobj_attribute *attr,
170					   const char *buf, size_t count)
171{
172	unsigned int msecs;
173	int err;
174
175	err = kstrtouint(buf, 10, &msecs);
176	if (err)
177		return -EINVAL;
178
179	khugepaged_alloc_sleep_millisecs = msecs;
180	khugepaged_sleep_expire = 0;
181	wake_up_interruptible(&khugepaged_wait);
182
183	return count;
184}
185static struct kobj_attribute alloc_sleep_millisecs_attr =
186	__ATTR_RW(alloc_sleep_millisecs);
187
188static ssize_t pages_to_scan_show(struct kobject *kobj,
189				  struct kobj_attribute *attr,
190				  char *buf)
191{
192	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
193}
194static ssize_t pages_to_scan_store(struct kobject *kobj,
195				   struct kobj_attribute *attr,
196				   const char *buf, size_t count)
197{
198	unsigned int pages;
199	int err;
200
201	err = kstrtouint(buf, 10, &pages);
202	if (err || !pages)
203		return -EINVAL;
204
205	khugepaged_pages_to_scan = pages;
206
207	return count;
208}
209static struct kobj_attribute pages_to_scan_attr =
210	__ATTR_RW(pages_to_scan);
211
212static ssize_t pages_collapsed_show(struct kobject *kobj,
213				    struct kobj_attribute *attr,
214				    char *buf)
215{
216	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
217}
218static struct kobj_attribute pages_collapsed_attr =
219	__ATTR_RO(pages_collapsed);
220
221static ssize_t full_scans_show(struct kobject *kobj,
222			       struct kobj_attribute *attr,
223			       char *buf)
224{
225	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
226}
227static struct kobj_attribute full_scans_attr =
228	__ATTR_RO(full_scans);
229
230static ssize_t defrag_show(struct kobject *kobj,
231			   struct kobj_attribute *attr, char *buf)
232{
233	return single_hugepage_flag_show(kobj, attr, buf,
234					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
235}
236static ssize_t defrag_store(struct kobject *kobj,
237			    struct kobj_attribute *attr,
238			    const char *buf, size_t count)
239{
240	return single_hugepage_flag_store(kobj, attr, buf, count,
241				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
242}
243static struct kobj_attribute khugepaged_defrag_attr =
244	__ATTR_RW(defrag);
245
246/*
247 * max_ptes_none controls if khugepaged should collapse hugepages over
248 * any unmapped ptes in turn potentially increasing the memory
249 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
250 * reduce the available free memory in the system as it
251 * runs. Increasing max_ptes_none will instead potentially reduce the
252 * free memory in the system during the khugepaged scan.
253 */
254static ssize_t max_ptes_none_show(struct kobject *kobj,
255				  struct kobj_attribute *attr,
256				  char *buf)
257{
258	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
259}
260static ssize_t max_ptes_none_store(struct kobject *kobj,
261				   struct kobj_attribute *attr,
262				   const char *buf, size_t count)
263{
264	int err;
265	unsigned long max_ptes_none;
266
267	err = kstrtoul(buf, 10, &max_ptes_none);
268	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
269		return -EINVAL;
270
271	khugepaged_max_ptes_none = max_ptes_none;
272
273	return count;
274}
275static struct kobj_attribute khugepaged_max_ptes_none_attr =
276	__ATTR_RW(max_ptes_none);
277
278static ssize_t max_ptes_swap_show(struct kobject *kobj,
279				  struct kobj_attribute *attr,
280				  char *buf)
281{
282	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
283}
284
285static ssize_t max_ptes_swap_store(struct kobject *kobj,
286				   struct kobj_attribute *attr,
287				   const char *buf, size_t count)
288{
289	int err;
290	unsigned long max_ptes_swap;
291
292	err  = kstrtoul(buf, 10, &max_ptes_swap);
293	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
294		return -EINVAL;
295
296	khugepaged_max_ptes_swap = max_ptes_swap;
297
298	return count;
299}
300
301static struct kobj_attribute khugepaged_max_ptes_swap_attr =
302	__ATTR_RW(max_ptes_swap);
303
304static ssize_t max_ptes_shared_show(struct kobject *kobj,
305				    struct kobj_attribute *attr,
306				    char *buf)
307{
308	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
309}
310
311static ssize_t max_ptes_shared_store(struct kobject *kobj,
312				     struct kobj_attribute *attr,
313				     const char *buf, size_t count)
314{
315	int err;
316	unsigned long max_ptes_shared;
317
318	err  = kstrtoul(buf, 10, &max_ptes_shared);
319	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
320		return -EINVAL;
321
322	khugepaged_max_ptes_shared = max_ptes_shared;
323
324	return count;
325}
326
327static struct kobj_attribute khugepaged_max_ptes_shared_attr =
328	__ATTR_RW(max_ptes_shared);
329
330static struct attribute *khugepaged_attr[] = {
331	&khugepaged_defrag_attr.attr,
332	&khugepaged_max_ptes_none_attr.attr,
333	&khugepaged_max_ptes_swap_attr.attr,
334	&khugepaged_max_ptes_shared_attr.attr,
335	&pages_to_scan_attr.attr,
336	&pages_collapsed_attr.attr,
337	&full_scans_attr.attr,
338	&scan_sleep_millisecs_attr.attr,
339	&alloc_sleep_millisecs_attr.attr,
340	NULL,
341};
342
343struct attribute_group khugepaged_attr_group = {
344	.attrs = khugepaged_attr,
345	.name = "khugepaged",
346};
347#endif /* CONFIG_SYSFS */
348
349int hugepage_madvise(struct vm_area_struct *vma,
350		     unsigned long *vm_flags, int advice)
351{
352	switch (advice) {
353	case MADV_HUGEPAGE:
354#ifdef CONFIG_S390
355		/*
356		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
357		 * can't handle this properly after s390_enable_sie, so we simply
358		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
359		 */
360		if (mm_has_pgste(vma->vm_mm))
361			return 0;
362#endif
363		*vm_flags &= ~VM_NOHUGEPAGE;
364		*vm_flags |= VM_HUGEPAGE;
365		/*
366		 * If the vma become good for khugepaged to scan,
367		 * register it here without waiting a page fault that
368		 * may not happen any time soon.
369		 */
370		khugepaged_enter_vma(vma, *vm_flags);
371		break;
372	case MADV_NOHUGEPAGE:
373		*vm_flags &= ~VM_HUGEPAGE;
374		*vm_flags |= VM_NOHUGEPAGE;
375		/*
376		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377		 * this vma even if we leave the mm registered in khugepaged if
378		 * it got registered before VM_NOHUGEPAGE was set.
379		 */
380		break;
381	}
382
383	return 0;
384}
385
386int __init khugepaged_init(void)
387{
388	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
389					  sizeof(struct khugepaged_mm_slot),
390					  __alignof__(struct khugepaged_mm_slot),
391					  0, NULL);
392	if (!mm_slot_cache)
393		return -ENOMEM;
394
395	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
396	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
397	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
398	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
399
400	return 0;
401}
402
403void __init khugepaged_destroy(void)
404{
405	kmem_cache_destroy(mm_slot_cache);
406}
407
408static inline int hpage_collapse_test_exit(struct mm_struct *mm)
409{
410	return atomic_read(&mm->mm_users) == 0;
411}
412
413static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm)
414{
415	return hpage_collapse_test_exit(mm) ||
416	       test_bit(MMF_DISABLE_THP, &mm->flags);
417}
418
419void __khugepaged_enter(struct mm_struct *mm)
420{
421	struct khugepaged_mm_slot *mm_slot;
422	struct mm_slot *slot;
423	int wakeup;
424
425	/* __khugepaged_exit() must not run from under us */
426	VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
427	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags)))
428		return;
429
430	mm_slot = mm_slot_alloc(mm_slot_cache);
431	if (!mm_slot)
432		return;
433
434	slot = &mm_slot->slot;
435
436	spin_lock(&khugepaged_mm_lock);
437	mm_slot_insert(mm_slots_hash, mm, slot);
438	/*
439	 * Insert just behind the scanning cursor, to let the area settle
440	 * down a little.
441	 */
442	wakeup = list_empty(&khugepaged_scan.mm_head);
443	list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
444	spin_unlock(&khugepaged_mm_lock);
445
446	mmgrab(mm);
447	if (wakeup)
448		wake_up_interruptible(&khugepaged_wait);
449}
450
451void khugepaged_enter_vma(struct vm_area_struct *vma,
452			  unsigned long vm_flags)
453{
454	if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
455	    hugepage_flags_enabled()) {
456		if (thp_vma_allowable_order(vma, vm_flags, TVA_ENFORCE_SYSFS,
457					    PMD_ORDER))
458			__khugepaged_enter(vma->vm_mm);
459	}
460}
461
462void __khugepaged_exit(struct mm_struct *mm)
463{
464	struct khugepaged_mm_slot *mm_slot;
465	struct mm_slot *slot;
466	int free = 0;
467
468	spin_lock(&khugepaged_mm_lock);
469	slot = mm_slot_lookup(mm_slots_hash, mm);
470	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
471	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
472		hash_del(&slot->hash);
473		list_del(&slot->mm_node);
474		free = 1;
475	}
476	spin_unlock(&khugepaged_mm_lock);
477
478	if (free) {
479		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
480		mm_slot_free(mm_slot_cache, mm_slot);
481		mmdrop(mm);
482	} else if (mm_slot) {
483		/*
484		 * This is required to serialize against
485		 * hpage_collapse_test_exit() (which is guaranteed to run
486		 * under mmap sem read mode). Stop here (after we return all
487		 * pagetables will be destroyed) until khugepaged has finished
488		 * working on the pagetables under the mmap_lock.
489		 */
490		mmap_write_lock(mm);
491		mmap_write_unlock(mm);
492	}
493}
494
495static void release_pte_folio(struct folio *folio)
496{
497	node_stat_mod_folio(folio,
498			NR_ISOLATED_ANON + folio_is_file_lru(folio),
499			-folio_nr_pages(folio));
500	folio_unlock(folio);
501	folio_putback_lru(folio);
502}
503
504static void release_pte_pages(pte_t *pte, pte_t *_pte,
505		struct list_head *compound_pagelist)
506{
507	struct folio *folio, *tmp;
508
509	while (--_pte >= pte) {
510		pte_t pteval = ptep_get(_pte);
511		unsigned long pfn;
512
513		if (pte_none(pteval))
514			continue;
515		pfn = pte_pfn(pteval);
516		if (is_zero_pfn(pfn))
517			continue;
518		folio = pfn_folio(pfn);
519		if (folio_test_large(folio))
520			continue;
521		release_pte_folio(folio);
522	}
523
524	list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
525		list_del(&folio->lru);
526		release_pte_folio(folio);
527	}
528}
529
530static bool is_refcount_suitable(struct folio *folio)
531{
532	int expected_refcount;
533
534	expected_refcount = folio_mapcount(folio);
535	if (folio_test_swapcache(folio))
536		expected_refcount += folio_nr_pages(folio);
537
538	return folio_ref_count(folio) == expected_refcount;
539}
540
541static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
542					unsigned long address,
543					pte_t *pte,
544					struct collapse_control *cc,
545					struct list_head *compound_pagelist)
546{
547	struct page *page = NULL;
548	struct folio *folio = NULL;
549	pte_t *_pte;
550	int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
551	bool writable = false;
552
553	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
554	     _pte++, address += PAGE_SIZE) {
555		pte_t pteval = ptep_get(_pte);
556		if (pte_none(pteval) || (pte_present(pteval) &&
557				is_zero_pfn(pte_pfn(pteval)))) {
558			++none_or_zero;
559			if (!userfaultfd_armed(vma) &&
560			    (!cc->is_khugepaged ||
561			     none_or_zero <= khugepaged_max_ptes_none)) {
562				continue;
563			} else {
564				result = SCAN_EXCEED_NONE_PTE;
565				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
566				goto out;
567			}
568		}
569		if (!pte_present(pteval)) {
570			result = SCAN_PTE_NON_PRESENT;
571			goto out;
572		}
573		if (pte_uffd_wp(pteval)) {
574			result = SCAN_PTE_UFFD_WP;
575			goto out;
576		}
577		page = vm_normal_page(vma, address, pteval);
578		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
579			result = SCAN_PAGE_NULL;
580			goto out;
581		}
582
583		folio = page_folio(page);
584		VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio);
585
586		/* See hpage_collapse_scan_pmd(). */
587		if (folio_likely_mapped_shared(folio)) {
588			++shared;
589			if (cc->is_khugepaged &&
590			    shared > khugepaged_max_ptes_shared) {
591				result = SCAN_EXCEED_SHARED_PTE;
592				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
593				goto out;
594			}
595		}
596
597		if (folio_test_large(folio)) {
598			struct folio *f;
599
600			/*
601			 * Check if we have dealt with the compound page
602			 * already
603			 */
604			list_for_each_entry(f, compound_pagelist, lru) {
605				if (folio == f)
606					goto next;
607			}
608		}
609
610		/*
611		 * We can do it before isolate_lru_page because the
612		 * page can't be freed from under us. NOTE: PG_lock
613		 * is needed to serialize against split_huge_page
614		 * when invoked from the VM.
615		 */
616		if (!folio_trylock(folio)) {
617			result = SCAN_PAGE_LOCK;
618			goto out;
619		}
620
621		/*
622		 * Check if the page has any GUP (or other external) pins.
623		 *
624		 * The page table that maps the page has been already unlinked
625		 * from the page table tree and this process cannot get
626		 * an additional pin on the page.
627		 *
628		 * New pins can come later if the page is shared across fork,
629		 * but not from this process. The other process cannot write to
630		 * the page, only trigger CoW.
631		 */
632		if (!is_refcount_suitable(folio)) {
633			folio_unlock(folio);
634			result = SCAN_PAGE_COUNT;
635			goto out;
636		}
637
638		/*
639		 * Isolate the page to avoid collapsing an hugepage
640		 * currently in use by the VM.
641		 */
642		if (!folio_isolate_lru(folio)) {
643			folio_unlock(folio);
644			result = SCAN_DEL_PAGE_LRU;
645			goto out;
646		}
647		node_stat_mod_folio(folio,
648				NR_ISOLATED_ANON + folio_is_file_lru(folio),
649				folio_nr_pages(folio));
650		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
651		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
652
653		if (folio_test_large(folio))
654			list_add_tail(&folio->lru, compound_pagelist);
655next:
656		/*
657		 * If collapse was initiated by khugepaged, check that there is
658		 * enough young pte to justify collapsing the page
659		 */
660		if (cc->is_khugepaged &&
661		    (pte_young(pteval) || folio_test_young(folio) ||
662		     folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
663								     address)))
664			referenced++;
665
666		if (pte_write(pteval))
667			writable = true;
668	}
669
670	if (unlikely(!writable)) {
671		result = SCAN_PAGE_RO;
672	} else if (unlikely(cc->is_khugepaged && !referenced)) {
673		result = SCAN_LACK_REFERENCED_PAGE;
674	} else {
675		result = SCAN_SUCCEED;
676		trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
677						    referenced, writable, result);
678		return result;
679	}
680out:
681	release_pte_pages(pte, _pte, compound_pagelist);
682	trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
683					    referenced, writable, result);
684	return result;
685}
686
687static void __collapse_huge_page_copy_succeeded(pte_t *pte,
688						struct vm_area_struct *vma,
689						unsigned long address,
690						spinlock_t *ptl,
691						struct list_head *compound_pagelist)
692{
693	struct folio *src, *tmp;
694	pte_t *_pte;
695	pte_t pteval;
696
697	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
698	     _pte++, address += PAGE_SIZE) {
699		pteval = ptep_get(_pte);
700		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
701			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
702			if (is_zero_pfn(pte_pfn(pteval))) {
703				/*
704				 * ptl mostly unnecessary.
705				 */
706				spin_lock(ptl);
707				ptep_clear(vma->vm_mm, address, _pte);
708				spin_unlock(ptl);
709				ksm_might_unmap_zero_page(vma->vm_mm, pteval);
710			}
711		} else {
712			struct page *src_page = pte_page(pteval);
713
714			src = page_folio(src_page);
715			if (!folio_test_large(src))
716				release_pte_folio(src);
717			/*
718			 * ptl mostly unnecessary, but preempt has to
719			 * be disabled to update the per-cpu stats
720			 * inside folio_remove_rmap_pte().
721			 */
722			spin_lock(ptl);
723			ptep_clear(vma->vm_mm, address, _pte);
724			folio_remove_rmap_pte(src, src_page, vma);
725			spin_unlock(ptl);
726			free_page_and_swap_cache(src_page);
727		}
728	}
729
730	list_for_each_entry_safe(src, tmp, compound_pagelist, lru) {
731		list_del(&src->lru);
732		node_stat_sub_folio(src, NR_ISOLATED_ANON +
733				folio_is_file_lru(src));
734		folio_unlock(src);
735		free_swap_cache(src);
736		folio_putback_lru(src);
737	}
738}
739
740static void __collapse_huge_page_copy_failed(pte_t *pte,
741					     pmd_t *pmd,
742					     pmd_t orig_pmd,
743					     struct vm_area_struct *vma,
744					     struct list_head *compound_pagelist)
745{
746	spinlock_t *pmd_ptl;
747
748	/*
749	 * Re-establish the PMD to point to the original page table
750	 * entry. Restoring PMD needs to be done prior to releasing
751	 * pages. Since pages are still isolated and locked here,
752	 * acquiring anon_vma_lock_write is unnecessary.
753	 */
754	pmd_ptl = pmd_lock(vma->vm_mm, pmd);
755	pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
756	spin_unlock(pmd_ptl);
757	/*
758	 * Release both raw and compound pages isolated
759	 * in __collapse_huge_page_isolate.
760	 */
761	release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
762}
763
764/*
765 * __collapse_huge_page_copy - attempts to copy memory contents from raw
766 * pages to a hugepage. Cleans up the raw pages if copying succeeds;
767 * otherwise restores the original page table and releases isolated raw pages.
768 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
769 *
770 * @pte: starting of the PTEs to copy from
771 * @folio: the new hugepage to copy contents to
772 * @pmd: pointer to the new hugepage's PMD
773 * @orig_pmd: the original raw pages' PMD
774 * @vma: the original raw pages' virtual memory area
775 * @address: starting address to copy
776 * @ptl: lock on raw pages' PTEs
777 * @compound_pagelist: list that stores compound pages
778 */
779static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio,
780		pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma,
781		unsigned long address, spinlock_t *ptl,
782		struct list_head *compound_pagelist)
783{
784	unsigned int i;
785	int result = SCAN_SUCCEED;
786
787	/*
788	 * Copying pages' contents is subject to memory poison at any iteration.
789	 */
790	for (i = 0; i < HPAGE_PMD_NR; i++) {
791		pte_t pteval = ptep_get(pte + i);
792		struct page *page = folio_page(folio, i);
793		unsigned long src_addr = address + i * PAGE_SIZE;
794		struct page *src_page;
795
796		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
797			clear_user_highpage(page, src_addr);
798			continue;
799		}
800		src_page = pte_page(pteval);
801		if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) {
802			result = SCAN_COPY_MC;
803			break;
804		}
805	}
806
807	if (likely(result == SCAN_SUCCEED))
808		__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
809						    compound_pagelist);
810	else
811		__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
812						 compound_pagelist);
813
814	return result;
815}
816
817static void khugepaged_alloc_sleep(void)
818{
819	DEFINE_WAIT(wait);
820
821	add_wait_queue(&khugepaged_wait, &wait);
822	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
823	schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
824	remove_wait_queue(&khugepaged_wait, &wait);
825}
826
827struct collapse_control khugepaged_collapse_control = {
828	.is_khugepaged = true,
829};
830
831static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
832{
833	int i;
834
835	/*
836	 * If node_reclaim_mode is disabled, then no extra effort is made to
837	 * allocate memory locally.
838	 */
839	if (!node_reclaim_enabled())
840		return false;
841
842	/* If there is a count for this node already, it must be acceptable */
843	if (cc->node_load[nid])
844		return false;
845
846	for (i = 0; i < MAX_NUMNODES; i++) {
847		if (!cc->node_load[i])
848			continue;
849		if (node_distance(nid, i) > node_reclaim_distance)
850			return true;
851	}
852	return false;
853}
854
855#define khugepaged_defrag()					\
856	(transparent_hugepage_flags &				\
857	 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
858
859/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
860static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
861{
862	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
863}
864
865#ifdef CONFIG_NUMA
866static int hpage_collapse_find_target_node(struct collapse_control *cc)
867{
868	int nid, target_node = 0, max_value = 0;
869
870	/* find first node with max normal pages hit */
871	for (nid = 0; nid < MAX_NUMNODES; nid++)
872		if (cc->node_load[nid] > max_value) {
873			max_value = cc->node_load[nid];
874			target_node = nid;
875		}
876
877	for_each_online_node(nid) {
878		if (max_value == cc->node_load[nid])
879			node_set(nid, cc->alloc_nmask);
880	}
881
882	return target_node;
883}
884#else
885static int hpage_collapse_find_target_node(struct collapse_control *cc)
886{
887	return 0;
888}
889#endif
890
891/*
892 * If mmap_lock temporarily dropped, revalidate vma
893 * before taking mmap_lock.
894 * Returns enum scan_result value.
895 */
896
897static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
898				   bool expect_anon,
899				   struct vm_area_struct **vmap,
900				   struct collapse_control *cc)
901{
902	struct vm_area_struct *vma;
903	unsigned long tva_flags = cc->is_khugepaged ? TVA_ENFORCE_SYSFS : 0;
904
905	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
906		return SCAN_ANY_PROCESS;
907
908	*vmap = vma = find_vma(mm, address);
909	if (!vma)
910		return SCAN_VMA_NULL;
911
912	if (!thp_vma_suitable_order(vma, address, PMD_ORDER))
913		return SCAN_ADDRESS_RANGE;
914	if (!thp_vma_allowable_order(vma, vma->vm_flags, tva_flags, PMD_ORDER))
915		return SCAN_VMA_CHECK;
916	/*
917	 * Anon VMA expected, the address may be unmapped then
918	 * remapped to file after khugepaged reaquired the mmap_lock.
919	 *
920	 * thp_vma_allowable_order may return true for qualified file
921	 * vmas.
922	 */
923	if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
924		return SCAN_PAGE_ANON;
925	return SCAN_SUCCEED;
926}
927
928static int find_pmd_or_thp_or_none(struct mm_struct *mm,
929				   unsigned long address,
930				   pmd_t **pmd)
931{
932	pmd_t pmde;
933
934	*pmd = mm_find_pmd(mm, address);
935	if (!*pmd)
936		return SCAN_PMD_NULL;
937
938	pmde = pmdp_get_lockless(*pmd);
939	if (pmd_none(pmde))
940		return SCAN_PMD_NONE;
941	if (!pmd_present(pmde))
942		return SCAN_PMD_NULL;
943	if (pmd_trans_huge(pmde))
944		return SCAN_PMD_MAPPED;
945	if (pmd_devmap(pmde))
946		return SCAN_PMD_NULL;
947	if (pmd_bad(pmde))
948		return SCAN_PMD_NULL;
949	return SCAN_SUCCEED;
950}
951
952static int check_pmd_still_valid(struct mm_struct *mm,
953				 unsigned long address,
954				 pmd_t *pmd)
955{
956	pmd_t *new_pmd;
957	int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
958
959	if (result != SCAN_SUCCEED)
960		return result;
961	if (new_pmd != pmd)
962		return SCAN_FAIL;
963	return SCAN_SUCCEED;
964}
965
966/*
967 * Bring missing pages in from swap, to complete THP collapse.
968 * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
969 *
970 * Called and returns without pte mapped or spinlocks held.
971 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
972 */
973static int __collapse_huge_page_swapin(struct mm_struct *mm,
974				       struct vm_area_struct *vma,
975				       unsigned long haddr, pmd_t *pmd,
976				       int referenced)
977{
978	int swapped_in = 0;
979	vm_fault_t ret = 0;
980	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
981	int result;
982	pte_t *pte = NULL;
983	spinlock_t *ptl;
984
985	for (address = haddr; address < end; address += PAGE_SIZE) {
986		struct vm_fault vmf = {
987			.vma = vma,
988			.address = address,
989			.pgoff = linear_page_index(vma, address),
990			.flags = FAULT_FLAG_ALLOW_RETRY,
991			.pmd = pmd,
992		};
993
994		if (!pte++) {
995			pte = pte_offset_map_nolock(mm, pmd, address, &ptl);
996			if (!pte) {
997				mmap_read_unlock(mm);
998				result = SCAN_PMD_NULL;
999				goto out;
1000			}
1001		}
1002
1003		vmf.orig_pte = ptep_get_lockless(pte);
1004		if (!is_swap_pte(vmf.orig_pte))
1005			continue;
1006
1007		vmf.pte = pte;
1008		vmf.ptl = ptl;
1009		ret = do_swap_page(&vmf);
1010		/* Which unmaps pte (after perhaps re-checking the entry) */
1011		pte = NULL;
1012
1013		/*
1014		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1015		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1016		 * we do not retry here and swap entry will remain in pagetable
1017		 * resulting in later failure.
1018		 */
1019		if (ret & VM_FAULT_RETRY) {
1020			/* Likely, but not guaranteed, that page lock failed */
1021			result = SCAN_PAGE_LOCK;
1022			goto out;
1023		}
1024		if (ret & VM_FAULT_ERROR) {
1025			mmap_read_unlock(mm);
1026			result = SCAN_FAIL;
1027			goto out;
1028		}
1029		swapped_in++;
1030	}
1031
1032	if (pte)
1033		pte_unmap(pte);
1034
1035	/* Drain LRU cache to remove extra pin on the swapped in pages */
1036	if (swapped_in)
1037		lru_add_drain();
1038
1039	result = SCAN_SUCCEED;
1040out:
1041	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1042	return result;
1043}
1044
1045static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm,
1046			      struct collapse_control *cc)
1047{
1048	gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1049		     GFP_TRANSHUGE);
1050	int node = hpage_collapse_find_target_node(cc);
1051	struct folio *folio;
1052
1053	folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask);
1054	if (!folio) {
1055		*foliop = NULL;
1056		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1057		return SCAN_ALLOC_HUGE_PAGE_FAIL;
1058	}
1059
1060	count_vm_event(THP_COLLAPSE_ALLOC);
1061	if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1062		folio_put(folio);
1063		*foliop = NULL;
1064		return SCAN_CGROUP_CHARGE_FAIL;
1065	}
1066
1067	count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
1068
1069	*foliop = folio;
1070	return SCAN_SUCCEED;
1071}
1072
1073static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1074			      int referenced, int unmapped,
1075			      struct collapse_control *cc)
1076{
1077	LIST_HEAD(compound_pagelist);
1078	pmd_t *pmd, _pmd;
1079	pte_t *pte;
1080	pgtable_t pgtable;
1081	struct folio *folio;
1082	spinlock_t *pmd_ptl, *pte_ptl;
1083	int result = SCAN_FAIL;
1084	struct vm_area_struct *vma;
1085	struct mmu_notifier_range range;
1086
1087	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1088
1089	/*
1090	 * Before allocating the hugepage, release the mmap_lock read lock.
1091	 * The allocation can take potentially a long time if it involves
1092	 * sync compaction, and we do not need to hold the mmap_lock during
1093	 * that. We will recheck the vma after taking it again in write mode.
1094	 */
1095	mmap_read_unlock(mm);
1096
1097	result = alloc_charge_folio(&folio, mm, cc);
1098	if (result != SCAN_SUCCEED)
1099		goto out_nolock;
1100
1101	mmap_read_lock(mm);
1102	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1103	if (result != SCAN_SUCCEED) {
1104		mmap_read_unlock(mm);
1105		goto out_nolock;
1106	}
1107
1108	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1109	if (result != SCAN_SUCCEED) {
1110		mmap_read_unlock(mm);
1111		goto out_nolock;
1112	}
1113
1114	if (unmapped) {
1115		/*
1116		 * __collapse_huge_page_swapin will return with mmap_lock
1117		 * released when it fails. So we jump out_nolock directly in
1118		 * that case.  Continuing to collapse causes inconsistency.
1119		 */
1120		result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1121						     referenced);
1122		if (result != SCAN_SUCCEED)
1123			goto out_nolock;
1124	}
1125
1126	mmap_read_unlock(mm);
1127	/*
1128	 * Prevent all access to pagetables with the exception of
1129	 * gup_fast later handled by the ptep_clear_flush and the VM
1130	 * handled by the anon_vma lock + PG_lock.
1131	 *
1132	 * UFFDIO_MOVE is prevented to race as well thanks to the
1133	 * mmap_lock.
1134	 */
1135	mmap_write_lock(mm);
1136	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1137	if (result != SCAN_SUCCEED)
1138		goto out_up_write;
1139	/* check if the pmd is still valid */
1140	result = check_pmd_still_valid(mm, address, pmd);
1141	if (result != SCAN_SUCCEED)
1142		goto out_up_write;
1143
1144	vma_start_write(vma);
1145	anon_vma_lock_write(vma->anon_vma);
1146
1147	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1148				address + HPAGE_PMD_SIZE);
1149	mmu_notifier_invalidate_range_start(&range);
1150
1151	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1152	/*
1153	 * This removes any huge TLB entry from the CPU so we won't allow
1154	 * huge and small TLB entries for the same virtual address to
1155	 * avoid the risk of CPU bugs in that area.
1156	 *
1157	 * Parallel GUP-fast is fine since GUP-fast will back off when
1158	 * it detects PMD is changed.
1159	 */
1160	_pmd = pmdp_collapse_flush(vma, address, pmd);
1161	spin_unlock(pmd_ptl);
1162	mmu_notifier_invalidate_range_end(&range);
1163	tlb_remove_table_sync_one();
1164
1165	pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1166	if (pte) {
1167		result = __collapse_huge_page_isolate(vma, address, pte, cc,
1168						      &compound_pagelist);
1169		spin_unlock(pte_ptl);
1170	} else {
1171		result = SCAN_PMD_NULL;
1172	}
1173
1174	if (unlikely(result != SCAN_SUCCEED)) {
1175		if (pte)
1176			pte_unmap(pte);
1177		spin_lock(pmd_ptl);
1178		BUG_ON(!pmd_none(*pmd));
1179		/*
1180		 * We can only use set_pmd_at when establishing
1181		 * hugepmds and never for establishing regular pmds that
1182		 * points to regular pagetables. Use pmd_populate for that
1183		 */
1184		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1185		spin_unlock(pmd_ptl);
1186		anon_vma_unlock_write(vma->anon_vma);
1187		goto out_up_write;
1188	}
1189
1190	/*
1191	 * All pages are isolated and locked so anon_vma rmap
1192	 * can't run anymore.
1193	 */
1194	anon_vma_unlock_write(vma->anon_vma);
1195
1196	result = __collapse_huge_page_copy(pte, folio, pmd, _pmd,
1197					   vma, address, pte_ptl,
1198					   &compound_pagelist);
1199	pte_unmap(pte);
1200	if (unlikely(result != SCAN_SUCCEED))
1201		goto out_up_write;
1202
1203	/*
1204	 * The smp_wmb() inside __folio_mark_uptodate() ensures the
1205	 * copy_huge_page writes become visible before the set_pmd_at()
1206	 * write.
1207	 */
1208	__folio_mark_uptodate(folio);
1209	pgtable = pmd_pgtable(_pmd);
1210
1211	_pmd = mk_huge_pmd(&folio->page, vma->vm_page_prot);
1212	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1213
1214	spin_lock(pmd_ptl);
1215	BUG_ON(!pmd_none(*pmd));
1216	folio_add_new_anon_rmap(folio, vma, address);
1217	folio_add_lru_vma(folio, vma);
1218	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1219	set_pmd_at(mm, address, pmd, _pmd);
1220	update_mmu_cache_pmd(vma, address, pmd);
1221	spin_unlock(pmd_ptl);
1222
1223	folio = NULL;
1224
1225	result = SCAN_SUCCEED;
1226out_up_write:
1227	mmap_write_unlock(mm);
1228out_nolock:
1229	if (folio)
1230		folio_put(folio);
1231	trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1232	return result;
1233}
1234
1235static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1236				   struct vm_area_struct *vma,
1237				   unsigned long address, bool *mmap_locked,
1238				   struct collapse_control *cc)
1239{
1240	pmd_t *pmd;
1241	pte_t *pte, *_pte;
1242	int result = SCAN_FAIL, referenced = 0;
1243	int none_or_zero = 0, shared = 0;
1244	struct page *page = NULL;
1245	struct folio *folio = NULL;
1246	unsigned long _address;
1247	spinlock_t *ptl;
1248	int node = NUMA_NO_NODE, unmapped = 0;
1249	bool writable = false;
1250
1251	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1252
1253	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1254	if (result != SCAN_SUCCEED)
1255		goto out;
1256
1257	memset(cc->node_load, 0, sizeof(cc->node_load));
1258	nodes_clear(cc->alloc_nmask);
1259	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1260	if (!pte) {
1261		result = SCAN_PMD_NULL;
1262		goto out;
1263	}
1264
1265	for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1266	     _pte++, _address += PAGE_SIZE) {
1267		pte_t pteval = ptep_get(_pte);
1268		if (is_swap_pte(pteval)) {
1269			++unmapped;
1270			if (!cc->is_khugepaged ||
1271			    unmapped <= khugepaged_max_ptes_swap) {
1272				/*
1273				 * Always be strict with uffd-wp
1274				 * enabled swap entries.  Please see
1275				 * comment below for pte_uffd_wp().
1276				 */
1277				if (pte_swp_uffd_wp_any(pteval)) {
1278					result = SCAN_PTE_UFFD_WP;
1279					goto out_unmap;
1280				}
1281				continue;
1282			} else {
1283				result = SCAN_EXCEED_SWAP_PTE;
1284				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1285				goto out_unmap;
1286			}
1287		}
1288		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1289			++none_or_zero;
1290			if (!userfaultfd_armed(vma) &&
1291			    (!cc->is_khugepaged ||
1292			     none_or_zero <= khugepaged_max_ptes_none)) {
1293				continue;
1294			} else {
1295				result = SCAN_EXCEED_NONE_PTE;
1296				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1297				goto out_unmap;
1298			}
1299		}
1300		if (pte_uffd_wp(pteval)) {
1301			/*
1302			 * Don't collapse the page if any of the small
1303			 * PTEs are armed with uffd write protection.
1304			 * Here we can also mark the new huge pmd as
1305			 * write protected if any of the small ones is
1306			 * marked but that could bring unknown
1307			 * userfault messages that falls outside of
1308			 * the registered range.  So, just be simple.
1309			 */
1310			result = SCAN_PTE_UFFD_WP;
1311			goto out_unmap;
1312		}
1313		if (pte_write(pteval))
1314			writable = true;
1315
1316		page = vm_normal_page(vma, _address, pteval);
1317		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1318			result = SCAN_PAGE_NULL;
1319			goto out_unmap;
1320		}
1321		folio = page_folio(page);
1322
1323		if (!folio_test_anon(folio)) {
1324			result = SCAN_PAGE_ANON;
1325			goto out_unmap;
1326		}
1327
1328		/*
1329		 * We treat a single page as shared if any part of the THP
1330		 * is shared. "False negatives" from
1331		 * folio_likely_mapped_shared() are not expected to matter
1332		 * much in practice.
1333		 */
1334		if (folio_likely_mapped_shared(folio)) {
1335			++shared;
1336			if (cc->is_khugepaged &&
1337			    shared > khugepaged_max_ptes_shared) {
1338				result = SCAN_EXCEED_SHARED_PTE;
1339				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1340				goto out_unmap;
1341			}
1342		}
1343
1344		/*
1345		 * Record which node the original page is from and save this
1346		 * information to cc->node_load[].
1347		 * Khugepaged will allocate hugepage from the node has the max
1348		 * hit record.
1349		 */
1350		node = folio_nid(folio);
1351		if (hpage_collapse_scan_abort(node, cc)) {
1352			result = SCAN_SCAN_ABORT;
1353			goto out_unmap;
1354		}
1355		cc->node_load[node]++;
1356		if (!folio_test_lru(folio)) {
1357			result = SCAN_PAGE_LRU;
1358			goto out_unmap;
1359		}
1360		if (folio_test_locked(folio)) {
1361			result = SCAN_PAGE_LOCK;
1362			goto out_unmap;
1363		}
1364
1365		/*
1366		 * Check if the page has any GUP (or other external) pins.
1367		 *
1368		 * Here the check may be racy:
1369		 * it may see folio_mapcount() > folio_ref_count().
1370		 * But such case is ephemeral we could always retry collapse
1371		 * later.  However it may report false positive if the page
1372		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1373		 * will be done again later the risk seems low.
1374		 */
1375		if (!is_refcount_suitable(folio)) {
1376			result = SCAN_PAGE_COUNT;
1377			goto out_unmap;
1378		}
1379
1380		/*
1381		 * If collapse was initiated by khugepaged, check that there is
1382		 * enough young pte to justify collapsing the page
1383		 */
1384		if (cc->is_khugepaged &&
1385		    (pte_young(pteval) || folio_test_young(folio) ||
1386		     folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
1387								     address)))
1388			referenced++;
1389	}
1390	if (!writable) {
1391		result = SCAN_PAGE_RO;
1392	} else if (cc->is_khugepaged &&
1393		   (!referenced ||
1394		    (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1395		result = SCAN_LACK_REFERENCED_PAGE;
1396	} else {
1397		result = SCAN_SUCCEED;
1398	}
1399out_unmap:
1400	pte_unmap_unlock(pte, ptl);
1401	if (result == SCAN_SUCCEED) {
1402		result = collapse_huge_page(mm, address, referenced,
1403					    unmapped, cc);
1404		/* collapse_huge_page will return with the mmap_lock released */
1405		*mmap_locked = false;
1406	}
1407out:
1408	trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced,
1409				     none_or_zero, result, unmapped);
1410	return result;
1411}
1412
1413static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1414{
1415	struct mm_slot *slot = &mm_slot->slot;
1416	struct mm_struct *mm = slot->mm;
1417
1418	lockdep_assert_held(&khugepaged_mm_lock);
1419
1420	if (hpage_collapse_test_exit(mm)) {
1421		/* free mm_slot */
1422		hash_del(&slot->hash);
1423		list_del(&slot->mm_node);
1424
1425		/*
1426		 * Not strictly needed because the mm exited already.
1427		 *
1428		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1429		 */
1430
1431		/* khugepaged_mm_lock actually not necessary for the below */
1432		mm_slot_free(mm_slot_cache, mm_slot);
1433		mmdrop(mm);
1434	}
1435}
1436
1437#ifdef CONFIG_SHMEM
1438/* hpage must be locked, and mmap_lock must be held */
1439static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1440			pmd_t *pmdp, struct page *hpage)
1441{
1442	struct vm_fault vmf = {
1443		.vma = vma,
1444		.address = addr,
1445		.flags = 0,
1446		.pmd = pmdp,
1447	};
1448
1449	VM_BUG_ON(!PageTransHuge(hpage));
1450	mmap_assert_locked(vma->vm_mm);
1451
1452	if (do_set_pmd(&vmf, hpage))
1453		return SCAN_FAIL;
1454
1455	get_page(hpage);
1456	return SCAN_SUCCEED;
1457}
1458
1459/**
1460 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1461 * address haddr.
1462 *
1463 * @mm: process address space where collapse happens
1464 * @addr: THP collapse address
1465 * @install_pmd: If a huge PMD should be installed
1466 *
1467 * This function checks whether all the PTEs in the PMD are pointing to the
1468 * right THP. If so, retract the page table so the THP can refault in with
1469 * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1470 */
1471int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1472			    bool install_pmd)
1473{
1474	struct mmu_notifier_range range;
1475	bool notified = false;
1476	unsigned long haddr = addr & HPAGE_PMD_MASK;
1477	struct vm_area_struct *vma = vma_lookup(mm, haddr);
1478	struct folio *folio;
1479	pte_t *start_pte, *pte;
1480	pmd_t *pmd, pgt_pmd;
1481	spinlock_t *pml = NULL, *ptl;
1482	int nr_ptes = 0, result = SCAN_FAIL;
1483	int i;
1484
1485	mmap_assert_locked(mm);
1486
1487	/* First check VMA found, in case page tables are being torn down */
1488	if (!vma || !vma->vm_file ||
1489	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1490		return SCAN_VMA_CHECK;
1491
1492	/* Fast check before locking page if already PMD-mapped */
1493	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1494	if (result == SCAN_PMD_MAPPED)
1495		return result;
1496
1497	/*
1498	 * If we are here, we've succeeded in replacing all the native pages
1499	 * in the page cache with a single hugepage. If a mm were to fault-in
1500	 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1501	 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1502	 * analogously elide sysfs THP settings here.
1503	 */
1504	if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER))
1505		return SCAN_VMA_CHECK;
1506
1507	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1508	if (userfaultfd_wp(vma))
1509		return SCAN_PTE_UFFD_WP;
1510
1511	folio = filemap_lock_folio(vma->vm_file->f_mapping,
1512			       linear_page_index(vma, haddr));
1513	if (IS_ERR(folio))
1514		return SCAN_PAGE_NULL;
1515
1516	if (folio_order(folio) != HPAGE_PMD_ORDER) {
1517		result = SCAN_PAGE_COMPOUND;
1518		goto drop_folio;
1519	}
1520
1521	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1522	switch (result) {
1523	case SCAN_SUCCEED:
1524		break;
1525	case SCAN_PMD_NONE:
1526		/*
1527		 * All pte entries have been removed and pmd cleared.
1528		 * Skip all the pte checks and just update the pmd mapping.
1529		 */
1530		goto maybe_install_pmd;
1531	default:
1532		goto drop_folio;
1533	}
1534
1535	result = SCAN_FAIL;
1536	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1537	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1538		goto drop_folio;
1539
1540	/* step 1: check all mapped PTEs are to the right huge page */
1541	for (i = 0, addr = haddr, pte = start_pte;
1542	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1543		struct page *page;
1544		pte_t ptent = ptep_get(pte);
1545
1546		/* empty pte, skip */
1547		if (pte_none(ptent))
1548			continue;
1549
1550		/* page swapped out, abort */
1551		if (!pte_present(ptent)) {
1552			result = SCAN_PTE_NON_PRESENT;
1553			goto abort;
1554		}
1555
1556		page = vm_normal_page(vma, addr, ptent);
1557		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1558			page = NULL;
1559		/*
1560		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1561		 * page table, but the new page will not be a subpage of hpage.
1562		 */
1563		if (folio_page(folio, i) != page)
1564			goto abort;
1565	}
1566
1567	pte_unmap_unlock(start_pte, ptl);
1568	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1569				haddr, haddr + HPAGE_PMD_SIZE);
1570	mmu_notifier_invalidate_range_start(&range);
1571	notified = true;
1572
1573	/*
1574	 * pmd_lock covers a wider range than ptl, and (if split from mm's
1575	 * page_table_lock) ptl nests inside pml. The less time we hold pml,
1576	 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA
1577	 * inserts a valid as-if-COWed PTE without even looking up page cache.
1578	 * So page lock of folio does not protect from it, so we must not drop
1579	 * ptl before pgt_pmd is removed, so uffd private needs pml taken now.
1580	 */
1581	if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
1582		pml = pmd_lock(mm, pmd);
1583
1584	start_pte = pte_offset_map_nolock(mm, pmd, haddr, &ptl);
1585	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1586		goto abort;
1587	if (!pml)
1588		spin_lock(ptl);
1589	else if (ptl != pml)
1590		spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1591
1592	/* step 2: clear page table and adjust rmap */
1593	for (i = 0, addr = haddr, pte = start_pte;
1594	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1595		struct page *page;
1596		pte_t ptent = ptep_get(pte);
1597
1598		if (pte_none(ptent))
1599			continue;
1600		/*
1601		 * We dropped ptl after the first scan, to do the mmu_notifier:
1602		 * page lock stops more PTEs of the folio being faulted in, but
1603		 * does not stop write faults COWing anon copies from existing
1604		 * PTEs; and does not stop those being swapped out or migrated.
1605		 */
1606		if (!pte_present(ptent)) {
1607			result = SCAN_PTE_NON_PRESENT;
1608			goto abort;
1609		}
1610		page = vm_normal_page(vma, addr, ptent);
1611		if (folio_page(folio, i) != page)
1612			goto abort;
1613
1614		/*
1615		 * Must clear entry, or a racing truncate may re-remove it.
1616		 * TLB flush can be left until pmdp_collapse_flush() does it.
1617		 * PTE dirty? Shmem page is already dirty; file is read-only.
1618		 */
1619		ptep_clear(mm, addr, pte);
1620		folio_remove_rmap_pte(folio, page, vma);
1621		nr_ptes++;
1622	}
1623
1624	pte_unmap(start_pte);
1625	if (!pml)
1626		spin_unlock(ptl);
1627
1628	/* step 3: set proper refcount and mm_counters. */
1629	if (nr_ptes) {
1630		folio_ref_sub(folio, nr_ptes);
1631		add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
1632	}
1633
1634	/* step 4: remove empty page table */
1635	if (!pml) {
1636		pml = pmd_lock(mm, pmd);
1637		if (ptl != pml)
1638			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1639	}
1640	pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1641	pmdp_get_lockless_sync();
1642	if (ptl != pml)
1643		spin_unlock(ptl);
1644	spin_unlock(pml);
1645
1646	mmu_notifier_invalidate_range_end(&range);
1647
1648	mm_dec_nr_ptes(mm);
1649	page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1650	pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1651
1652maybe_install_pmd:
1653	/* step 5: install pmd entry */
1654	result = install_pmd
1655			? set_huge_pmd(vma, haddr, pmd, &folio->page)
1656			: SCAN_SUCCEED;
1657	goto drop_folio;
1658abort:
1659	if (nr_ptes) {
1660		flush_tlb_mm(mm);
1661		folio_ref_sub(folio, nr_ptes);
1662		add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
1663	}
1664	if (start_pte)
1665		pte_unmap_unlock(start_pte, ptl);
1666	if (pml && pml != ptl)
1667		spin_unlock(pml);
1668	if (notified)
1669		mmu_notifier_invalidate_range_end(&range);
1670drop_folio:
1671	folio_unlock(folio);
1672	folio_put(folio);
1673	return result;
1674}
1675
1676static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1677{
1678	struct vm_area_struct *vma;
1679
1680	i_mmap_lock_read(mapping);
1681	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1682		struct mmu_notifier_range range;
1683		struct mm_struct *mm;
1684		unsigned long addr;
1685		pmd_t *pmd, pgt_pmd;
1686		spinlock_t *pml;
1687		spinlock_t *ptl;
1688		bool skipped_uffd = false;
1689
1690		/*
1691		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1692		 * got written to. These VMAs are likely not worth removing
1693		 * page tables from, as PMD-mapping is likely to be split later.
1694		 */
1695		if (READ_ONCE(vma->anon_vma))
1696			continue;
1697
1698		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1699		if (addr & ~HPAGE_PMD_MASK ||
1700		    vma->vm_end < addr + HPAGE_PMD_SIZE)
1701			continue;
1702
1703		mm = vma->vm_mm;
1704		if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1705			continue;
1706
1707		if (hpage_collapse_test_exit(mm))
1708			continue;
1709		/*
1710		 * When a vma is registered with uffd-wp, we cannot recycle
1711		 * the page table because there may be pte markers installed.
1712		 * Other vmas can still have the same file mapped hugely, but
1713		 * skip this one: it will always be mapped in small page size
1714		 * for uffd-wp registered ranges.
1715		 */
1716		if (userfaultfd_wp(vma))
1717			continue;
1718
1719		/* PTEs were notified when unmapped; but now for the PMD? */
1720		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1721					addr, addr + HPAGE_PMD_SIZE);
1722		mmu_notifier_invalidate_range_start(&range);
1723
1724		pml = pmd_lock(mm, pmd);
1725		ptl = pte_lockptr(mm, pmd);
1726		if (ptl != pml)
1727			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1728
1729		/*
1730		 * Huge page lock is still held, so normally the page table
1731		 * must remain empty; and we have already skipped anon_vma
1732		 * and userfaultfd_wp() vmas.  But since the mmap_lock is not
1733		 * held, it is still possible for a racing userfaultfd_ioctl()
1734		 * to have inserted ptes or markers.  Now that we hold ptlock,
1735		 * repeating the anon_vma check protects from one category,
1736		 * and repeating the userfaultfd_wp() check from another.
1737		 */
1738		if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) {
1739			skipped_uffd = true;
1740		} else {
1741			pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1742			pmdp_get_lockless_sync();
1743		}
1744
1745		if (ptl != pml)
1746			spin_unlock(ptl);
1747		spin_unlock(pml);
1748
1749		mmu_notifier_invalidate_range_end(&range);
1750
1751		if (!skipped_uffd) {
1752			mm_dec_nr_ptes(mm);
1753			page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1754			pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1755		}
1756	}
1757	i_mmap_unlock_read(mapping);
1758}
1759
1760/**
1761 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1762 *
1763 * @mm: process address space where collapse happens
1764 * @addr: virtual collapse start address
1765 * @file: file that collapse on
1766 * @start: collapse start address
1767 * @cc: collapse context and scratchpad
1768 *
1769 * Basic scheme is simple, details are more complex:
1770 *  - allocate and lock a new huge page;
1771 *  - scan page cache, locking old pages
1772 *    + swap/gup in pages if necessary;
1773 *  - copy data to new page
1774 *  - handle shmem holes
1775 *    + re-validate that holes weren't filled by someone else
1776 *    + check for userfaultfd
1777 *  - finalize updates to the page cache;
1778 *  - if replacing succeeds:
1779 *    + unlock huge page;
1780 *    + free old pages;
1781 *  - if replacing failed;
1782 *    + unlock old pages
1783 *    + unlock and free huge page;
1784 */
1785static int collapse_file(struct mm_struct *mm, unsigned long addr,
1786			 struct file *file, pgoff_t start,
1787			 struct collapse_control *cc)
1788{
1789	struct address_space *mapping = file->f_mapping;
1790	struct page *dst;
1791	struct folio *folio, *tmp, *new_folio;
1792	pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1793	LIST_HEAD(pagelist);
1794	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1795	int nr_none = 0, result = SCAN_SUCCEED;
1796	bool is_shmem = shmem_file(file);
1797
1798	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1799	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1800
1801	result = alloc_charge_folio(&new_folio, mm, cc);
1802	if (result != SCAN_SUCCEED)
1803		goto out;
1804
1805	__folio_set_locked(new_folio);
1806	if (is_shmem)
1807		__folio_set_swapbacked(new_folio);
1808	new_folio->index = start;
1809	new_folio->mapping = mapping;
1810
1811	/*
1812	 * Ensure we have slots for all the pages in the range.  This is
1813	 * almost certainly a no-op because most of the pages must be present
1814	 */
1815	do {
1816		xas_lock_irq(&xas);
1817		xas_create_range(&xas);
1818		if (!xas_error(&xas))
1819			break;
1820		xas_unlock_irq(&xas);
1821		if (!xas_nomem(&xas, GFP_KERNEL)) {
1822			result = SCAN_FAIL;
1823			goto rollback;
1824		}
1825	} while (1);
1826
1827	for (index = start; index < end; index++) {
1828		xas_set(&xas, index);
1829		folio = xas_load(&xas);
1830
1831		VM_BUG_ON(index != xas.xa_index);
1832		if (is_shmem) {
1833			if (!folio) {
1834				/*
1835				 * Stop if extent has been truncated or
1836				 * hole-punched, and is now completely
1837				 * empty.
1838				 */
1839				if (index == start) {
1840					if (!xas_next_entry(&xas, end - 1)) {
1841						result = SCAN_TRUNCATED;
1842						goto xa_locked;
1843					}
1844				}
1845				nr_none++;
1846				continue;
1847			}
1848
1849			if (xa_is_value(folio) || !folio_test_uptodate(folio)) {
1850				xas_unlock_irq(&xas);
1851				/* swap in or instantiate fallocated page */
1852				if (shmem_get_folio(mapping->host, index,
1853						&folio, SGP_NOALLOC)) {
1854					result = SCAN_FAIL;
1855					goto xa_unlocked;
1856				}
1857				/* drain lru cache to help isolate_lru_page() */
1858				lru_add_drain();
1859			} else if (folio_trylock(folio)) {
1860				folio_get(folio);
1861				xas_unlock_irq(&xas);
1862			} else {
1863				result = SCAN_PAGE_LOCK;
1864				goto xa_locked;
1865			}
1866		} else {	/* !is_shmem */
1867			if (!folio || xa_is_value(folio)) {
1868				xas_unlock_irq(&xas);
1869				page_cache_sync_readahead(mapping, &file->f_ra,
1870							  file, index,
1871							  end - index);
1872				/* drain lru cache to help isolate_lru_page() */
1873				lru_add_drain();
1874				folio = filemap_lock_folio(mapping, index);
1875				if (IS_ERR(folio)) {
1876					result = SCAN_FAIL;
1877					goto xa_unlocked;
1878				}
1879			} else if (folio_test_dirty(folio)) {
1880				/*
1881				 * khugepaged only works on read-only fd,
1882				 * so this page is dirty because it hasn't
1883				 * been flushed since first write. There
1884				 * won't be new dirty pages.
1885				 *
1886				 * Trigger async flush here and hope the
1887				 * writeback is done when khugepaged
1888				 * revisits this page.
1889				 *
1890				 * This is a one-off situation. We are not
1891				 * forcing writeback in loop.
1892				 */
1893				xas_unlock_irq(&xas);
1894				filemap_flush(mapping);
1895				result = SCAN_FAIL;
1896				goto xa_unlocked;
1897			} else if (folio_test_writeback(folio)) {
1898				xas_unlock_irq(&xas);
1899				result = SCAN_FAIL;
1900				goto xa_unlocked;
1901			} else if (folio_trylock(folio)) {
1902				folio_get(folio);
1903				xas_unlock_irq(&xas);
1904			} else {
1905				result = SCAN_PAGE_LOCK;
1906				goto xa_locked;
1907			}
1908		}
1909
1910		/*
1911		 * The folio must be locked, so we can drop the i_pages lock
1912		 * without racing with truncate.
1913		 */
1914		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1915
1916		/* make sure the folio is up to date */
1917		if (unlikely(!folio_test_uptodate(folio))) {
1918			result = SCAN_FAIL;
1919			goto out_unlock;
1920		}
1921
1922		/*
1923		 * If file was truncated then extended, or hole-punched, before
1924		 * we locked the first folio, then a THP might be there already.
1925		 * This will be discovered on the first iteration.
1926		 */
1927		if (folio_test_large(folio)) {
1928			result = folio_order(folio) == HPAGE_PMD_ORDER &&
1929					folio->index == start
1930					/* Maybe PMD-mapped */
1931					? SCAN_PTE_MAPPED_HUGEPAGE
1932					: SCAN_PAGE_COMPOUND;
1933			goto out_unlock;
1934		}
1935
1936		if (folio_mapping(folio) != mapping) {
1937			result = SCAN_TRUNCATED;
1938			goto out_unlock;
1939		}
1940
1941		if (!is_shmem && (folio_test_dirty(folio) ||
1942				  folio_test_writeback(folio))) {
1943			/*
1944			 * khugepaged only works on read-only fd, so this
1945			 * folio is dirty because it hasn't been flushed
1946			 * since first write.
1947			 */
1948			result = SCAN_FAIL;
1949			goto out_unlock;
1950		}
1951
1952		if (!folio_isolate_lru(folio)) {
1953			result = SCAN_DEL_PAGE_LRU;
1954			goto out_unlock;
1955		}
1956
1957		if (!filemap_release_folio(folio, GFP_KERNEL)) {
1958			result = SCAN_PAGE_HAS_PRIVATE;
1959			folio_putback_lru(folio);
1960			goto out_unlock;
1961		}
1962
1963		if (folio_mapped(folio))
1964			try_to_unmap(folio,
1965					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1966
1967		xas_lock_irq(&xas);
1968
1969		VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio);
1970
1971		/*
1972		 * We control three references to the folio:
1973		 *  - we hold a pin on it;
1974		 *  - one reference from page cache;
1975		 *  - one from lru_isolate_folio;
1976		 * If those are the only references, then any new usage
1977		 * of the folio will have to fetch it from the page
1978		 * cache. That requires locking the folio to handle
1979		 * truncate, so any new usage will be blocked until we
1980		 * unlock folio after collapse/during rollback.
1981		 */
1982		if (folio_ref_count(folio) != 3) {
1983			result = SCAN_PAGE_COUNT;
1984			xas_unlock_irq(&xas);
1985			folio_putback_lru(folio);
1986			goto out_unlock;
1987		}
1988
1989		/*
1990		 * Accumulate the folios that are being collapsed.
1991		 */
1992		list_add_tail(&folio->lru, &pagelist);
1993		continue;
1994out_unlock:
1995		folio_unlock(folio);
1996		folio_put(folio);
1997		goto xa_unlocked;
1998	}
1999
2000	if (!is_shmem) {
2001		filemap_nr_thps_inc(mapping);
2002		/*
2003		 * Paired with smp_mb() in do_dentry_open() to ensure
2004		 * i_writecount is up to date and the update to nr_thps is
2005		 * visible. Ensures the page cache will be truncated if the
2006		 * file is opened writable.
2007		 */
2008		smp_mb();
2009		if (inode_is_open_for_write(mapping->host)) {
2010			result = SCAN_FAIL;
2011			filemap_nr_thps_dec(mapping);
2012		}
2013	}
2014
2015xa_locked:
2016	xas_unlock_irq(&xas);
2017xa_unlocked:
2018
2019	/*
2020	 * If collapse is successful, flush must be done now before copying.
2021	 * If collapse is unsuccessful, does flush actually need to be done?
2022	 * Do it anyway, to clear the state.
2023	 */
2024	try_to_unmap_flush();
2025
2026	if (result == SCAN_SUCCEED && nr_none &&
2027	    !shmem_charge(mapping->host, nr_none))
2028		result = SCAN_FAIL;
2029	if (result != SCAN_SUCCEED) {
2030		nr_none = 0;
2031		goto rollback;
2032	}
2033
2034	/*
2035	 * The old folios are locked, so they won't change anymore.
2036	 */
2037	index = start;
2038	dst = folio_page(new_folio, 0);
2039	list_for_each_entry(folio, &pagelist, lru) {
2040		while (index < folio->index) {
2041			clear_highpage(dst);
2042			index++;
2043			dst++;
2044		}
2045		if (copy_mc_highpage(dst, folio_page(folio, 0)) > 0) {
2046			result = SCAN_COPY_MC;
2047			goto rollback;
2048		}
2049		index++;
2050		dst++;
2051	}
2052	while (index < end) {
2053		clear_highpage(dst);
2054		index++;
2055		dst++;
2056	}
2057
2058	if (nr_none) {
2059		struct vm_area_struct *vma;
2060		int nr_none_check = 0;
2061
2062		i_mmap_lock_read(mapping);
2063		xas_lock_irq(&xas);
2064
2065		xas_set(&xas, start);
2066		for (index = start; index < end; index++) {
2067			if (!xas_next(&xas)) {
2068				xas_store(&xas, XA_RETRY_ENTRY);
2069				if (xas_error(&xas)) {
2070					result = SCAN_STORE_FAILED;
2071					goto immap_locked;
2072				}
2073				nr_none_check++;
2074			}
2075		}
2076
2077		if (nr_none != nr_none_check) {
2078			result = SCAN_PAGE_FILLED;
2079			goto immap_locked;
2080		}
2081
2082		/*
2083		 * If userspace observed a missing page in a VMA with
2084		 * a MODE_MISSING userfaultfd, then it might expect a
2085		 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to
2086		 * roll back to avoid suppressing such an event. Since
2087		 * wp/minor userfaultfds don't give userspace any
2088		 * guarantees that the kernel doesn't fill a missing
2089		 * page with a zero page, so they don't matter here.
2090		 *
2091		 * Any userfaultfds registered after this point will
2092		 * not be able to observe any missing pages due to the
2093		 * previously inserted retry entries.
2094		 */
2095		vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2096			if (userfaultfd_missing(vma)) {
2097				result = SCAN_EXCEED_NONE_PTE;
2098				goto immap_locked;
2099			}
2100		}
2101
2102immap_locked:
2103		i_mmap_unlock_read(mapping);
2104		if (result != SCAN_SUCCEED) {
2105			xas_set(&xas, start);
2106			for (index = start; index < end; index++) {
2107				if (xas_next(&xas) == XA_RETRY_ENTRY)
2108					xas_store(&xas, NULL);
2109			}
2110
2111			xas_unlock_irq(&xas);
2112			goto rollback;
2113		}
2114	} else {
2115		xas_lock_irq(&xas);
2116	}
2117
2118	if (is_shmem)
2119		__lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR);
2120	else
2121		__lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR);
2122
2123	if (nr_none) {
2124		__lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none);
2125		/* nr_none is always 0 for non-shmem. */
2126		__lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none);
2127	}
2128
2129	/*
2130	 * Mark new_folio as uptodate before inserting it into the
2131	 * page cache so that it isn't mistaken for an fallocated but
2132	 * unwritten page.
2133	 */
2134	folio_mark_uptodate(new_folio);
2135	folio_ref_add(new_folio, HPAGE_PMD_NR - 1);
2136
2137	if (is_shmem)
2138		folio_mark_dirty(new_folio);
2139	folio_add_lru(new_folio);
2140
2141	/* Join all the small entries into a single multi-index entry. */
2142	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2143	xas_store(&xas, new_folio);
2144	WARN_ON_ONCE(xas_error(&xas));
2145	xas_unlock_irq(&xas);
2146
2147	/*
2148	 * Remove pte page tables, so we can re-fault the page as huge.
2149	 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
2150	 */
2151	retract_page_tables(mapping, start);
2152	if (cc && !cc->is_khugepaged)
2153		result = SCAN_PTE_MAPPED_HUGEPAGE;
2154	folio_unlock(new_folio);
2155
2156	/*
2157	 * The collapse has succeeded, so free the old folios.
2158	 */
2159	list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2160		list_del(&folio->lru);
2161		folio->mapping = NULL;
2162		folio_clear_active(folio);
2163		folio_clear_unevictable(folio);
2164		folio_unlock(folio);
2165		folio_put_refs(folio, 3);
2166	}
2167
2168	goto out;
2169
2170rollback:
2171	/* Something went wrong: roll back page cache changes */
2172	if (nr_none) {
2173		xas_lock_irq(&xas);
2174		mapping->nrpages -= nr_none;
2175		xas_unlock_irq(&xas);
2176		shmem_uncharge(mapping->host, nr_none);
2177	}
2178
2179	list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2180		list_del(&folio->lru);
2181		folio_unlock(folio);
2182		folio_putback_lru(folio);
2183		folio_put(folio);
2184	}
2185	/*
2186	 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
2187	 * file only. This undo is not needed unless failure is
2188	 * due to SCAN_COPY_MC.
2189	 */
2190	if (!is_shmem && result == SCAN_COPY_MC) {
2191		filemap_nr_thps_dec(mapping);
2192		/*
2193		 * Paired with smp_mb() in do_dentry_open() to
2194		 * ensure the update to nr_thps is visible.
2195		 */
2196		smp_mb();
2197	}
2198
2199	new_folio->mapping = NULL;
2200
2201	folio_unlock(new_folio);
2202	folio_put(new_folio);
2203out:
2204	VM_BUG_ON(!list_empty(&pagelist));
2205	trace_mm_khugepaged_collapse_file(mm, new_folio, index, is_shmem, addr, file, HPAGE_PMD_NR, result);
2206	return result;
2207}
2208
2209static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2210				    struct file *file, pgoff_t start,
2211				    struct collapse_control *cc)
2212{
2213	struct folio *folio = NULL;
2214	struct address_space *mapping = file->f_mapping;
2215	XA_STATE(xas, &mapping->i_pages, start);
2216	int present, swap;
2217	int node = NUMA_NO_NODE;
2218	int result = SCAN_SUCCEED;
2219
2220	present = 0;
2221	swap = 0;
2222	memset(cc->node_load, 0, sizeof(cc->node_load));
2223	nodes_clear(cc->alloc_nmask);
2224	rcu_read_lock();
2225	xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) {
2226		if (xas_retry(&xas, folio))
2227			continue;
2228
2229		if (xa_is_value(folio)) {
2230			++swap;
2231			if (cc->is_khugepaged &&
2232			    swap > khugepaged_max_ptes_swap) {
2233				result = SCAN_EXCEED_SWAP_PTE;
2234				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2235				break;
2236			}
2237			continue;
2238		}
2239
2240		/*
2241		 * TODO: khugepaged should compact smaller compound pages
2242		 * into a PMD sized page
2243		 */
2244		if (folio_test_large(folio)) {
2245			result = folio_order(folio) == HPAGE_PMD_ORDER &&
2246					folio->index == start
2247					/* Maybe PMD-mapped */
2248					? SCAN_PTE_MAPPED_HUGEPAGE
2249					: SCAN_PAGE_COMPOUND;
2250			/*
2251			 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2252			 * by the caller won't touch the page cache, and so
2253			 * it's safe to skip LRU and refcount checks before
2254			 * returning.
2255			 */
2256			break;
2257		}
2258
2259		node = folio_nid(folio);
2260		if (hpage_collapse_scan_abort(node, cc)) {
2261			result = SCAN_SCAN_ABORT;
2262			break;
2263		}
2264		cc->node_load[node]++;
2265
2266		if (!folio_test_lru(folio)) {
2267			result = SCAN_PAGE_LRU;
2268			break;
2269		}
2270
2271		if (folio_ref_count(folio) !=
2272		    1 + folio_mapcount(folio) + folio_test_private(folio)) {
2273			result = SCAN_PAGE_COUNT;
2274			break;
2275		}
2276
2277		/*
2278		 * We probably should check if the folio is referenced
2279		 * here, but nobody would transfer pte_young() to
2280		 * folio_test_referenced() for us.  And rmap walk here
2281		 * is just too costly...
2282		 */
2283
2284		present++;
2285
2286		if (need_resched()) {
2287			xas_pause(&xas);
2288			cond_resched_rcu();
2289		}
2290	}
2291	rcu_read_unlock();
2292
2293	if (result == SCAN_SUCCEED) {
2294		if (cc->is_khugepaged &&
2295		    present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2296			result = SCAN_EXCEED_NONE_PTE;
2297			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2298		} else {
2299			result = collapse_file(mm, addr, file, start, cc);
2300		}
2301	}
2302
2303	trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result);
2304	return result;
2305}
2306#else
2307static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2308				    struct file *file, pgoff_t start,
2309				    struct collapse_control *cc)
2310{
2311	BUILD_BUG();
2312}
2313#endif
2314
2315static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2316					    struct collapse_control *cc)
2317	__releases(&khugepaged_mm_lock)
2318	__acquires(&khugepaged_mm_lock)
2319{
2320	struct vma_iterator vmi;
2321	struct khugepaged_mm_slot *mm_slot;
2322	struct mm_slot *slot;
2323	struct mm_struct *mm;
2324	struct vm_area_struct *vma;
2325	int progress = 0;
2326
2327	VM_BUG_ON(!pages);
2328	lockdep_assert_held(&khugepaged_mm_lock);
2329	*result = SCAN_FAIL;
2330
2331	if (khugepaged_scan.mm_slot) {
2332		mm_slot = khugepaged_scan.mm_slot;
2333		slot = &mm_slot->slot;
2334	} else {
2335		slot = list_entry(khugepaged_scan.mm_head.next,
2336				     struct mm_slot, mm_node);
2337		mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2338		khugepaged_scan.address = 0;
2339		khugepaged_scan.mm_slot = mm_slot;
2340	}
2341	spin_unlock(&khugepaged_mm_lock);
2342
2343	mm = slot->mm;
2344	/*
2345	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2346	 * the next mm on the list.
2347	 */
2348	vma = NULL;
2349	if (unlikely(!mmap_read_trylock(mm)))
2350		goto breakouterloop_mmap_lock;
2351
2352	progress++;
2353	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2354		goto breakouterloop;
2355
2356	vma_iter_init(&vmi, mm, khugepaged_scan.address);
2357	for_each_vma(vmi, vma) {
2358		unsigned long hstart, hend;
2359
2360		cond_resched();
2361		if (unlikely(hpage_collapse_test_exit_or_disable(mm))) {
2362			progress++;
2363			break;
2364		}
2365		if (!thp_vma_allowable_order(vma, vma->vm_flags,
2366					TVA_ENFORCE_SYSFS, PMD_ORDER)) {
2367skip:
2368			progress++;
2369			continue;
2370		}
2371		hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2372		hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2373		if (khugepaged_scan.address > hend)
2374			goto skip;
2375		if (khugepaged_scan.address < hstart)
2376			khugepaged_scan.address = hstart;
2377		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2378
2379		while (khugepaged_scan.address < hend) {
2380			bool mmap_locked = true;
2381
2382			cond_resched();
2383			if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2384				goto breakouterloop;
2385
2386			VM_BUG_ON(khugepaged_scan.address < hstart ||
2387				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2388				  hend);
2389			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2390				struct file *file = get_file(vma->vm_file);
2391				pgoff_t pgoff = linear_page_index(vma,
2392						khugepaged_scan.address);
2393
2394				mmap_read_unlock(mm);
2395				mmap_locked = false;
2396				*result = hpage_collapse_scan_file(mm,
2397					khugepaged_scan.address, file, pgoff, cc);
2398				fput(file);
2399				if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2400					mmap_read_lock(mm);
2401					if (hpage_collapse_test_exit_or_disable(mm))
2402						goto breakouterloop;
2403					*result = collapse_pte_mapped_thp(mm,
2404						khugepaged_scan.address, false);
2405					if (*result == SCAN_PMD_MAPPED)
2406						*result = SCAN_SUCCEED;
2407					mmap_read_unlock(mm);
2408				}
2409			} else {
2410				*result = hpage_collapse_scan_pmd(mm, vma,
2411					khugepaged_scan.address, &mmap_locked, cc);
2412			}
2413
2414			if (*result == SCAN_SUCCEED)
2415				++khugepaged_pages_collapsed;
2416
2417			/* move to next address */
2418			khugepaged_scan.address += HPAGE_PMD_SIZE;
2419			progress += HPAGE_PMD_NR;
2420			if (!mmap_locked)
2421				/*
2422				 * We released mmap_lock so break loop.  Note
2423				 * that we drop mmap_lock before all hugepage
2424				 * allocations, so if allocation fails, we are
2425				 * guaranteed to break here and report the
2426				 * correct result back to caller.
2427				 */
2428				goto breakouterloop_mmap_lock;
2429			if (progress >= pages)
2430				goto breakouterloop;
2431		}
2432	}
2433breakouterloop:
2434	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2435breakouterloop_mmap_lock:
2436
2437	spin_lock(&khugepaged_mm_lock);
2438	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2439	/*
2440	 * Release the current mm_slot if this mm is about to die, or
2441	 * if we scanned all vmas of this mm.
2442	 */
2443	if (hpage_collapse_test_exit(mm) || !vma) {
2444		/*
2445		 * Make sure that if mm_users is reaching zero while
2446		 * khugepaged runs here, khugepaged_exit will find
2447		 * mm_slot not pointing to the exiting mm.
2448		 */
2449		if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2450			slot = list_entry(slot->mm_node.next,
2451					  struct mm_slot, mm_node);
2452			khugepaged_scan.mm_slot =
2453				mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2454			khugepaged_scan.address = 0;
2455		} else {
2456			khugepaged_scan.mm_slot = NULL;
2457			khugepaged_full_scans++;
2458		}
2459
2460		collect_mm_slot(mm_slot);
2461	}
2462
2463	return progress;
2464}
2465
2466static int khugepaged_has_work(void)
2467{
2468	return !list_empty(&khugepaged_scan.mm_head) &&
2469		hugepage_flags_enabled();
2470}
2471
2472static int khugepaged_wait_event(void)
2473{
2474	return !list_empty(&khugepaged_scan.mm_head) ||
2475		kthread_should_stop();
2476}
2477
2478static void khugepaged_do_scan(struct collapse_control *cc)
2479{
2480	unsigned int progress = 0, pass_through_head = 0;
2481	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2482	bool wait = true;
2483	int result = SCAN_SUCCEED;
2484
2485	lru_add_drain_all();
2486
2487	while (true) {
2488		cond_resched();
2489
2490		if (unlikely(kthread_should_stop()))
2491			break;
2492
2493		spin_lock(&khugepaged_mm_lock);
2494		if (!khugepaged_scan.mm_slot)
2495			pass_through_head++;
2496		if (khugepaged_has_work() &&
2497		    pass_through_head < 2)
2498			progress += khugepaged_scan_mm_slot(pages - progress,
2499							    &result, cc);
2500		else
2501			progress = pages;
2502		spin_unlock(&khugepaged_mm_lock);
2503
2504		if (progress >= pages)
2505			break;
2506
2507		if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2508			/*
2509			 * If fail to allocate the first time, try to sleep for
2510			 * a while.  When hit again, cancel the scan.
2511			 */
2512			if (!wait)
2513				break;
2514			wait = false;
2515			khugepaged_alloc_sleep();
2516		}
2517	}
2518}
2519
2520static bool khugepaged_should_wakeup(void)
2521{
2522	return kthread_should_stop() ||
2523	       time_after_eq(jiffies, khugepaged_sleep_expire);
2524}
2525
2526static void khugepaged_wait_work(void)
2527{
2528	if (khugepaged_has_work()) {
2529		const unsigned long scan_sleep_jiffies =
2530			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2531
2532		if (!scan_sleep_jiffies)
2533			return;
2534
2535		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2536		wait_event_freezable_timeout(khugepaged_wait,
2537					     khugepaged_should_wakeup(),
2538					     scan_sleep_jiffies);
2539		return;
2540	}
2541
2542	if (hugepage_flags_enabled())
2543		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2544}
2545
2546static int khugepaged(void *none)
2547{
2548	struct khugepaged_mm_slot *mm_slot;
2549
2550	set_freezable();
2551	set_user_nice(current, MAX_NICE);
2552
2553	while (!kthread_should_stop()) {
2554		khugepaged_do_scan(&khugepaged_collapse_control);
2555		khugepaged_wait_work();
2556	}
2557
2558	spin_lock(&khugepaged_mm_lock);
2559	mm_slot = khugepaged_scan.mm_slot;
2560	khugepaged_scan.mm_slot = NULL;
2561	if (mm_slot)
2562		collect_mm_slot(mm_slot);
2563	spin_unlock(&khugepaged_mm_lock);
2564	return 0;
2565}
2566
2567static void set_recommended_min_free_kbytes(void)
2568{
2569	struct zone *zone;
2570	int nr_zones = 0;
2571	unsigned long recommended_min;
2572
2573	if (!hugepage_flags_enabled()) {
2574		calculate_min_free_kbytes();
2575		goto update_wmarks;
2576	}
2577
2578	for_each_populated_zone(zone) {
2579		/*
2580		 * We don't need to worry about fragmentation of
2581		 * ZONE_MOVABLE since it only has movable pages.
2582		 */
2583		if (zone_idx(zone) > gfp_zone(GFP_USER))
2584			continue;
2585
2586		nr_zones++;
2587	}
2588
2589	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2590	recommended_min = pageblock_nr_pages * nr_zones * 2;
2591
2592	/*
2593	 * Make sure that on average at least two pageblocks are almost free
2594	 * of another type, one for a migratetype to fall back to and a
2595	 * second to avoid subsequent fallbacks of other types There are 3
2596	 * MIGRATE_TYPES we care about.
2597	 */
2598	recommended_min += pageblock_nr_pages * nr_zones *
2599			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2600
2601	/* don't ever allow to reserve more than 5% of the lowmem */
2602	recommended_min = min(recommended_min,
2603			      (unsigned long) nr_free_buffer_pages() / 20);
2604	recommended_min <<= (PAGE_SHIFT-10);
2605
2606	if (recommended_min > min_free_kbytes) {
2607		if (user_min_free_kbytes >= 0)
2608			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2609				min_free_kbytes, recommended_min);
2610
2611		min_free_kbytes = recommended_min;
2612	}
2613
2614update_wmarks:
2615	setup_per_zone_wmarks();
2616}
2617
2618int start_stop_khugepaged(void)
2619{
2620	int err = 0;
2621
2622	mutex_lock(&khugepaged_mutex);
2623	if (hugepage_flags_enabled()) {
2624		if (!khugepaged_thread)
2625			khugepaged_thread = kthread_run(khugepaged, NULL,
2626							"khugepaged");
2627		if (IS_ERR(khugepaged_thread)) {
2628			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2629			err = PTR_ERR(khugepaged_thread);
2630			khugepaged_thread = NULL;
2631			goto fail;
2632		}
2633
2634		if (!list_empty(&khugepaged_scan.mm_head))
2635			wake_up_interruptible(&khugepaged_wait);
2636	} else if (khugepaged_thread) {
2637		kthread_stop(khugepaged_thread);
2638		khugepaged_thread = NULL;
2639	}
2640	set_recommended_min_free_kbytes();
2641fail:
2642	mutex_unlock(&khugepaged_mutex);
2643	return err;
2644}
2645
2646void khugepaged_min_free_kbytes_update(void)
2647{
2648	mutex_lock(&khugepaged_mutex);
2649	if (hugepage_flags_enabled() && khugepaged_thread)
2650		set_recommended_min_free_kbytes();
2651	mutex_unlock(&khugepaged_mutex);
2652}
2653
2654bool current_is_khugepaged(void)
2655{
2656	return kthread_func(current) == khugepaged;
2657}
2658
2659static int madvise_collapse_errno(enum scan_result r)
2660{
2661	/*
2662	 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2663	 * actionable feedback to caller, so they may take an appropriate
2664	 * fallback measure depending on the nature of the failure.
2665	 */
2666	switch (r) {
2667	case SCAN_ALLOC_HUGE_PAGE_FAIL:
2668		return -ENOMEM;
2669	case SCAN_CGROUP_CHARGE_FAIL:
2670	case SCAN_EXCEED_NONE_PTE:
2671		return -EBUSY;
2672	/* Resource temporary unavailable - trying again might succeed */
2673	case SCAN_PAGE_COUNT:
2674	case SCAN_PAGE_LOCK:
2675	case SCAN_PAGE_LRU:
2676	case SCAN_DEL_PAGE_LRU:
2677	case SCAN_PAGE_FILLED:
2678		return -EAGAIN;
2679	/*
2680	 * Other: Trying again likely not to succeed / error intrinsic to
2681	 * specified memory range. khugepaged likely won't be able to collapse
2682	 * either.
2683	 */
2684	default:
2685		return -EINVAL;
2686	}
2687}
2688
2689int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2690		     unsigned long start, unsigned long end)
2691{
2692	struct collapse_control *cc;
2693	struct mm_struct *mm = vma->vm_mm;
2694	unsigned long hstart, hend, addr;
2695	int thps = 0, last_fail = SCAN_FAIL;
2696	bool mmap_locked = true;
2697
2698	BUG_ON(vma->vm_start > start);
2699	BUG_ON(vma->vm_end < end);
2700
2701	*prev = vma;
2702
2703	if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER))
2704		return -EINVAL;
2705
2706	cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2707	if (!cc)
2708		return -ENOMEM;
2709	cc->is_khugepaged = false;
2710
2711	mmgrab(mm);
2712	lru_add_drain_all();
2713
2714	hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2715	hend = end & HPAGE_PMD_MASK;
2716
2717	for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2718		int result = SCAN_FAIL;
2719
2720		if (!mmap_locked) {
2721			cond_resched();
2722			mmap_read_lock(mm);
2723			mmap_locked = true;
2724			result = hugepage_vma_revalidate(mm, addr, false, &vma,
2725							 cc);
2726			if (result  != SCAN_SUCCEED) {
2727				last_fail = result;
2728				goto out_nolock;
2729			}
2730
2731			hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2732		}
2733		mmap_assert_locked(mm);
2734		memset(cc->node_load, 0, sizeof(cc->node_load));
2735		nodes_clear(cc->alloc_nmask);
2736		if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2737			struct file *file = get_file(vma->vm_file);
2738			pgoff_t pgoff = linear_page_index(vma, addr);
2739
2740			mmap_read_unlock(mm);
2741			mmap_locked = false;
2742			result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2743							  cc);
2744			fput(file);
2745		} else {
2746			result = hpage_collapse_scan_pmd(mm, vma, addr,
2747							 &mmap_locked, cc);
2748		}
2749		if (!mmap_locked)
2750			*prev = NULL;  /* Tell caller we dropped mmap_lock */
2751
2752handle_result:
2753		switch (result) {
2754		case SCAN_SUCCEED:
2755		case SCAN_PMD_MAPPED:
2756			++thps;
2757			break;
2758		case SCAN_PTE_MAPPED_HUGEPAGE:
2759			BUG_ON(mmap_locked);
2760			BUG_ON(*prev);
2761			mmap_read_lock(mm);
2762			result = collapse_pte_mapped_thp(mm, addr, true);
2763			mmap_read_unlock(mm);
2764			goto handle_result;
2765		/* Whitelisted set of results where continuing OK */
2766		case SCAN_PMD_NULL:
2767		case SCAN_PTE_NON_PRESENT:
2768		case SCAN_PTE_UFFD_WP:
2769		case SCAN_PAGE_RO:
2770		case SCAN_LACK_REFERENCED_PAGE:
2771		case SCAN_PAGE_NULL:
2772		case SCAN_PAGE_COUNT:
2773		case SCAN_PAGE_LOCK:
2774		case SCAN_PAGE_COMPOUND:
2775		case SCAN_PAGE_LRU:
2776		case SCAN_DEL_PAGE_LRU:
2777			last_fail = result;
2778			break;
2779		default:
2780			last_fail = result;
2781			/* Other error, exit */
2782			goto out_maybelock;
2783		}
2784	}
2785
2786out_maybelock:
2787	/* Caller expects us to hold mmap_lock on return */
2788	if (!mmap_locked)
2789		mmap_read_lock(mm);
2790out_nolock:
2791	mmap_assert_locked(mm);
2792	mmdrop(mm);
2793	kfree(cc);
2794
2795	return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2796			: madvise_collapse_errno(last_fail);
2797}
2798