1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/sched/mm.h>
23#include <linux/mmdebug.h>
24#include <linux/sched/signal.h>
25#include <linux/rmap.h>
26#include <linux/string_helpers.h>
27#include <linux/swap.h>
28#include <linux/swapops.h>
29#include <linux/jhash.h>
30#include <linux/numa.h>
31#include <linux/llist.h>
32#include <linux/cma.h>
33#include <linux/migrate.h>
34#include <linux/nospec.h>
35#include <linux/delayacct.h>
36#include <linux/memory.h>
37#include <linux/mm_inline.h>
38#include <linux/padata.h>
39
40#include <asm/page.h>
41#include <asm/pgalloc.h>
42#include <asm/tlb.h>
43
44#include <linux/io.h>
45#include <linux/hugetlb.h>
46#include <linux/hugetlb_cgroup.h>
47#include <linux/node.h>
48#include <linux/page_owner.h>
49#include "internal.h"
50#include "hugetlb_vmemmap.h"
51
52int hugetlb_max_hstate __read_mostly;
53unsigned int default_hstate_idx;
54struct hstate hstates[HUGE_MAX_HSTATE];
55
56#ifdef CONFIG_CMA
57static struct cma *hugetlb_cma[MAX_NUMNODES];
58static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
60{
61	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
62				1 << order);
63}
64#else
65static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
66{
67	return false;
68}
69#endif
70static unsigned long hugetlb_cma_size __initdata;
71
72__initdata struct list_head huge_boot_pages[MAX_NUMNODES];
73
74/* for command line parsing */
75static struct hstate * __initdata parsed_hstate;
76static unsigned long __initdata default_hstate_max_huge_pages;
77static bool __initdata parsed_valid_hugepagesz = true;
78static bool __initdata parsed_default_hugepagesz;
79static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80
81/*
82 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
83 * free_huge_pages, and surplus_huge_pages.
84 */
85DEFINE_SPINLOCK(hugetlb_lock);
86
87/*
88 * Serializes faults on the same logical page.  This is used to
89 * prevent spurious OOMs when the hugepage pool is fully utilized.
90 */
91static int num_fault_mutexes;
92struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
93
94/* Forward declaration */
95static int hugetlb_acct_memory(struct hstate *h, long delta);
96static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
97static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
98static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
99static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
100		unsigned long start, unsigned long end);
101static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
102
103static inline bool subpool_is_free(struct hugepage_subpool *spool)
104{
105	if (spool->count)
106		return false;
107	if (spool->max_hpages != -1)
108		return spool->used_hpages == 0;
109	if (spool->min_hpages != -1)
110		return spool->rsv_hpages == spool->min_hpages;
111
112	return true;
113}
114
115static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
116						unsigned long irq_flags)
117{
118	spin_unlock_irqrestore(&spool->lock, irq_flags);
119
120	/* If no pages are used, and no other handles to the subpool
121	 * remain, give up any reservations based on minimum size and
122	 * free the subpool */
123	if (subpool_is_free(spool)) {
124		if (spool->min_hpages != -1)
125			hugetlb_acct_memory(spool->hstate,
126						-spool->min_hpages);
127		kfree(spool);
128	}
129}
130
131struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
132						long min_hpages)
133{
134	struct hugepage_subpool *spool;
135
136	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
137	if (!spool)
138		return NULL;
139
140	spin_lock_init(&spool->lock);
141	spool->count = 1;
142	spool->max_hpages = max_hpages;
143	spool->hstate = h;
144	spool->min_hpages = min_hpages;
145
146	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147		kfree(spool);
148		return NULL;
149	}
150	spool->rsv_hpages = min_hpages;
151
152	return spool;
153}
154
155void hugepage_put_subpool(struct hugepage_subpool *spool)
156{
157	unsigned long flags;
158
159	spin_lock_irqsave(&spool->lock, flags);
160	BUG_ON(!spool->count);
161	spool->count--;
162	unlock_or_release_subpool(spool, flags);
163}
164
165/*
166 * Subpool accounting for allocating and reserving pages.
167 * Return -ENOMEM if there are not enough resources to satisfy the
168 * request.  Otherwise, return the number of pages by which the
169 * global pools must be adjusted (upward).  The returned value may
170 * only be different than the passed value (delta) in the case where
171 * a subpool minimum size must be maintained.
172 */
173static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
174				      long delta)
175{
176	long ret = delta;
177
178	if (!spool)
179		return ret;
180
181	spin_lock_irq(&spool->lock);
182
183	if (spool->max_hpages != -1) {		/* maximum size accounting */
184		if ((spool->used_hpages + delta) <= spool->max_hpages)
185			spool->used_hpages += delta;
186		else {
187			ret = -ENOMEM;
188			goto unlock_ret;
189		}
190	}
191
192	/* minimum size accounting */
193	if (spool->min_hpages != -1 && spool->rsv_hpages) {
194		if (delta > spool->rsv_hpages) {
195			/*
196			 * Asking for more reserves than those already taken on
197			 * behalf of subpool.  Return difference.
198			 */
199			ret = delta - spool->rsv_hpages;
200			spool->rsv_hpages = 0;
201		} else {
202			ret = 0;	/* reserves already accounted for */
203			spool->rsv_hpages -= delta;
204		}
205	}
206
207unlock_ret:
208	spin_unlock_irq(&spool->lock);
209	return ret;
210}
211
212/*
213 * Subpool accounting for freeing and unreserving pages.
214 * Return the number of global page reservations that must be dropped.
215 * The return value may only be different than the passed value (delta)
216 * in the case where a subpool minimum size must be maintained.
217 */
218static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
219				       long delta)
220{
221	long ret = delta;
222	unsigned long flags;
223
224	if (!spool)
225		return delta;
226
227	spin_lock_irqsave(&spool->lock, flags);
228
229	if (spool->max_hpages != -1)		/* maximum size accounting */
230		spool->used_hpages -= delta;
231
232	 /* minimum size accounting */
233	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
234		if (spool->rsv_hpages + delta <= spool->min_hpages)
235			ret = 0;
236		else
237			ret = spool->rsv_hpages + delta - spool->min_hpages;
238
239		spool->rsv_hpages += delta;
240		if (spool->rsv_hpages > spool->min_hpages)
241			spool->rsv_hpages = spool->min_hpages;
242	}
243
244	/*
245	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
246	 * quota reference, free it now.
247	 */
248	unlock_or_release_subpool(spool, flags);
249
250	return ret;
251}
252
253static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
254{
255	return HUGETLBFS_SB(inode->i_sb)->spool;
256}
257
258static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
259{
260	return subpool_inode(file_inode(vma->vm_file));
261}
262
263/*
264 * hugetlb vma_lock helper routines
265 */
266void hugetlb_vma_lock_read(struct vm_area_struct *vma)
267{
268	if (__vma_shareable_lock(vma)) {
269		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
270
271		down_read(&vma_lock->rw_sema);
272	} else if (__vma_private_lock(vma)) {
273		struct resv_map *resv_map = vma_resv_map(vma);
274
275		down_read(&resv_map->rw_sema);
276	}
277}
278
279void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
280{
281	if (__vma_shareable_lock(vma)) {
282		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
283
284		up_read(&vma_lock->rw_sema);
285	} else if (__vma_private_lock(vma)) {
286		struct resv_map *resv_map = vma_resv_map(vma);
287
288		up_read(&resv_map->rw_sema);
289	}
290}
291
292void hugetlb_vma_lock_write(struct vm_area_struct *vma)
293{
294	if (__vma_shareable_lock(vma)) {
295		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
296
297		down_write(&vma_lock->rw_sema);
298	} else if (__vma_private_lock(vma)) {
299		struct resv_map *resv_map = vma_resv_map(vma);
300
301		down_write(&resv_map->rw_sema);
302	}
303}
304
305void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
306{
307	if (__vma_shareable_lock(vma)) {
308		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
309
310		up_write(&vma_lock->rw_sema);
311	} else if (__vma_private_lock(vma)) {
312		struct resv_map *resv_map = vma_resv_map(vma);
313
314		up_write(&resv_map->rw_sema);
315	}
316}
317
318int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
319{
320
321	if (__vma_shareable_lock(vma)) {
322		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
323
324		return down_write_trylock(&vma_lock->rw_sema);
325	} else if (__vma_private_lock(vma)) {
326		struct resv_map *resv_map = vma_resv_map(vma);
327
328		return down_write_trylock(&resv_map->rw_sema);
329	}
330
331	return 1;
332}
333
334void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
335{
336	if (__vma_shareable_lock(vma)) {
337		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
338
339		lockdep_assert_held(&vma_lock->rw_sema);
340	} else if (__vma_private_lock(vma)) {
341		struct resv_map *resv_map = vma_resv_map(vma);
342
343		lockdep_assert_held(&resv_map->rw_sema);
344	}
345}
346
347void hugetlb_vma_lock_release(struct kref *kref)
348{
349	struct hugetlb_vma_lock *vma_lock = container_of(kref,
350			struct hugetlb_vma_lock, refs);
351
352	kfree(vma_lock);
353}
354
355static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
356{
357	struct vm_area_struct *vma = vma_lock->vma;
358
359	/*
360	 * vma_lock structure may or not be released as a result of put,
361	 * it certainly will no longer be attached to vma so clear pointer.
362	 * Semaphore synchronizes access to vma_lock->vma field.
363	 */
364	vma_lock->vma = NULL;
365	vma->vm_private_data = NULL;
366	up_write(&vma_lock->rw_sema);
367	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
368}
369
370static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
371{
372	if (__vma_shareable_lock(vma)) {
373		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
374
375		__hugetlb_vma_unlock_write_put(vma_lock);
376	} else if (__vma_private_lock(vma)) {
377		struct resv_map *resv_map = vma_resv_map(vma);
378
379		/* no free for anon vmas, but still need to unlock */
380		up_write(&resv_map->rw_sema);
381	}
382}
383
384static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
385{
386	/*
387	 * Only present in sharable vmas.
388	 */
389	if (!vma || !__vma_shareable_lock(vma))
390		return;
391
392	if (vma->vm_private_data) {
393		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
394
395		down_write(&vma_lock->rw_sema);
396		__hugetlb_vma_unlock_write_put(vma_lock);
397	}
398}
399
400static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
401{
402	struct hugetlb_vma_lock *vma_lock;
403
404	/* Only establish in (flags) sharable vmas */
405	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
406		return;
407
408	/* Should never get here with non-NULL vm_private_data */
409	if (vma->vm_private_data)
410		return;
411
412	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
413	if (!vma_lock) {
414		/*
415		 * If we can not allocate structure, then vma can not
416		 * participate in pmd sharing.  This is only a possible
417		 * performance enhancement and memory saving issue.
418		 * However, the lock is also used to synchronize page
419		 * faults with truncation.  If the lock is not present,
420		 * unlikely races could leave pages in a file past i_size
421		 * until the file is removed.  Warn in the unlikely case of
422		 * allocation failure.
423		 */
424		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
425		return;
426	}
427
428	kref_init(&vma_lock->refs);
429	init_rwsem(&vma_lock->rw_sema);
430	vma_lock->vma = vma;
431	vma->vm_private_data = vma_lock;
432}
433
434/* Helper that removes a struct file_region from the resv_map cache and returns
435 * it for use.
436 */
437static struct file_region *
438get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
439{
440	struct file_region *nrg;
441
442	VM_BUG_ON(resv->region_cache_count <= 0);
443
444	resv->region_cache_count--;
445	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
446	list_del(&nrg->link);
447
448	nrg->from = from;
449	nrg->to = to;
450
451	return nrg;
452}
453
454static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
455					      struct file_region *rg)
456{
457#ifdef CONFIG_CGROUP_HUGETLB
458	nrg->reservation_counter = rg->reservation_counter;
459	nrg->css = rg->css;
460	if (rg->css)
461		css_get(rg->css);
462#endif
463}
464
465/* Helper that records hugetlb_cgroup uncharge info. */
466static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
467						struct hstate *h,
468						struct resv_map *resv,
469						struct file_region *nrg)
470{
471#ifdef CONFIG_CGROUP_HUGETLB
472	if (h_cg) {
473		nrg->reservation_counter =
474			&h_cg->rsvd_hugepage[hstate_index(h)];
475		nrg->css = &h_cg->css;
476		/*
477		 * The caller will hold exactly one h_cg->css reference for the
478		 * whole contiguous reservation region. But this area might be
479		 * scattered when there are already some file_regions reside in
480		 * it. As a result, many file_regions may share only one css
481		 * reference. In order to ensure that one file_region must hold
482		 * exactly one h_cg->css reference, we should do css_get for
483		 * each file_region and leave the reference held by caller
484		 * untouched.
485		 */
486		css_get(&h_cg->css);
487		if (!resv->pages_per_hpage)
488			resv->pages_per_hpage = pages_per_huge_page(h);
489		/* pages_per_hpage should be the same for all entries in
490		 * a resv_map.
491		 */
492		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
493	} else {
494		nrg->reservation_counter = NULL;
495		nrg->css = NULL;
496	}
497#endif
498}
499
500static void put_uncharge_info(struct file_region *rg)
501{
502#ifdef CONFIG_CGROUP_HUGETLB
503	if (rg->css)
504		css_put(rg->css);
505#endif
506}
507
508static bool has_same_uncharge_info(struct file_region *rg,
509				   struct file_region *org)
510{
511#ifdef CONFIG_CGROUP_HUGETLB
512	return rg->reservation_counter == org->reservation_counter &&
513	       rg->css == org->css;
514
515#else
516	return true;
517#endif
518}
519
520static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
521{
522	struct file_region *nrg, *prg;
523
524	prg = list_prev_entry(rg, link);
525	if (&prg->link != &resv->regions && prg->to == rg->from &&
526	    has_same_uncharge_info(prg, rg)) {
527		prg->to = rg->to;
528
529		list_del(&rg->link);
530		put_uncharge_info(rg);
531		kfree(rg);
532
533		rg = prg;
534	}
535
536	nrg = list_next_entry(rg, link);
537	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
538	    has_same_uncharge_info(nrg, rg)) {
539		nrg->from = rg->from;
540
541		list_del(&rg->link);
542		put_uncharge_info(rg);
543		kfree(rg);
544	}
545}
546
547static inline long
548hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
549		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
550		     long *regions_needed)
551{
552	struct file_region *nrg;
553
554	if (!regions_needed) {
555		nrg = get_file_region_entry_from_cache(map, from, to);
556		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
557		list_add(&nrg->link, rg);
558		coalesce_file_region(map, nrg);
559	} else
560		*regions_needed += 1;
561
562	return to - from;
563}
564
565/*
566 * Must be called with resv->lock held.
567 *
568 * Calling this with regions_needed != NULL will count the number of pages
569 * to be added but will not modify the linked list. And regions_needed will
570 * indicate the number of file_regions needed in the cache to carry out to add
571 * the regions for this range.
572 */
573static long add_reservation_in_range(struct resv_map *resv, long f, long t,
574				     struct hugetlb_cgroup *h_cg,
575				     struct hstate *h, long *regions_needed)
576{
577	long add = 0;
578	struct list_head *head = &resv->regions;
579	long last_accounted_offset = f;
580	struct file_region *iter, *trg = NULL;
581	struct list_head *rg = NULL;
582
583	if (regions_needed)
584		*regions_needed = 0;
585
586	/* In this loop, we essentially handle an entry for the range
587	 * [last_accounted_offset, iter->from), at every iteration, with some
588	 * bounds checking.
589	 */
590	list_for_each_entry_safe(iter, trg, head, link) {
591		/* Skip irrelevant regions that start before our range. */
592		if (iter->from < f) {
593			/* If this region ends after the last accounted offset,
594			 * then we need to update last_accounted_offset.
595			 */
596			if (iter->to > last_accounted_offset)
597				last_accounted_offset = iter->to;
598			continue;
599		}
600
601		/* When we find a region that starts beyond our range, we've
602		 * finished.
603		 */
604		if (iter->from >= t) {
605			rg = iter->link.prev;
606			break;
607		}
608
609		/* Add an entry for last_accounted_offset -> iter->from, and
610		 * update last_accounted_offset.
611		 */
612		if (iter->from > last_accounted_offset)
613			add += hugetlb_resv_map_add(resv, iter->link.prev,
614						    last_accounted_offset,
615						    iter->from, h, h_cg,
616						    regions_needed);
617
618		last_accounted_offset = iter->to;
619	}
620
621	/* Handle the case where our range extends beyond
622	 * last_accounted_offset.
623	 */
624	if (!rg)
625		rg = head->prev;
626	if (last_accounted_offset < t)
627		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
628					    t, h, h_cg, regions_needed);
629
630	return add;
631}
632
633/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
634 */
635static int allocate_file_region_entries(struct resv_map *resv,
636					int regions_needed)
637	__must_hold(&resv->lock)
638{
639	LIST_HEAD(allocated_regions);
640	int to_allocate = 0, i = 0;
641	struct file_region *trg = NULL, *rg = NULL;
642
643	VM_BUG_ON(regions_needed < 0);
644
645	/*
646	 * Check for sufficient descriptors in the cache to accommodate
647	 * the number of in progress add operations plus regions_needed.
648	 *
649	 * This is a while loop because when we drop the lock, some other call
650	 * to region_add or region_del may have consumed some region_entries,
651	 * so we keep looping here until we finally have enough entries for
652	 * (adds_in_progress + regions_needed).
653	 */
654	while (resv->region_cache_count <
655	       (resv->adds_in_progress + regions_needed)) {
656		to_allocate = resv->adds_in_progress + regions_needed -
657			      resv->region_cache_count;
658
659		/* At this point, we should have enough entries in the cache
660		 * for all the existing adds_in_progress. We should only be
661		 * needing to allocate for regions_needed.
662		 */
663		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
664
665		spin_unlock(&resv->lock);
666		for (i = 0; i < to_allocate; i++) {
667			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
668			if (!trg)
669				goto out_of_memory;
670			list_add(&trg->link, &allocated_regions);
671		}
672
673		spin_lock(&resv->lock);
674
675		list_splice(&allocated_regions, &resv->region_cache);
676		resv->region_cache_count += to_allocate;
677	}
678
679	return 0;
680
681out_of_memory:
682	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
683		list_del(&rg->link);
684		kfree(rg);
685	}
686	return -ENOMEM;
687}
688
689/*
690 * Add the huge page range represented by [f, t) to the reserve
691 * map.  Regions will be taken from the cache to fill in this range.
692 * Sufficient regions should exist in the cache due to the previous
693 * call to region_chg with the same range, but in some cases the cache will not
694 * have sufficient entries due to races with other code doing region_add or
695 * region_del.  The extra needed entries will be allocated.
696 *
697 * regions_needed is the out value provided by a previous call to region_chg.
698 *
699 * Return the number of new huge pages added to the map.  This number is greater
700 * than or equal to zero.  If file_region entries needed to be allocated for
701 * this operation and we were not able to allocate, it returns -ENOMEM.
702 * region_add of regions of length 1 never allocate file_regions and cannot
703 * fail; region_chg will always allocate at least 1 entry and a region_add for
704 * 1 page will only require at most 1 entry.
705 */
706static long region_add(struct resv_map *resv, long f, long t,
707		       long in_regions_needed, struct hstate *h,
708		       struct hugetlb_cgroup *h_cg)
709{
710	long add = 0, actual_regions_needed = 0;
711
712	spin_lock(&resv->lock);
713retry:
714
715	/* Count how many regions are actually needed to execute this add. */
716	add_reservation_in_range(resv, f, t, NULL, NULL,
717				 &actual_regions_needed);
718
719	/*
720	 * Check for sufficient descriptors in the cache to accommodate
721	 * this add operation. Note that actual_regions_needed may be greater
722	 * than in_regions_needed, as the resv_map may have been modified since
723	 * the region_chg call. In this case, we need to make sure that we
724	 * allocate extra entries, such that we have enough for all the
725	 * existing adds_in_progress, plus the excess needed for this
726	 * operation.
727	 */
728	if (actual_regions_needed > in_regions_needed &&
729	    resv->region_cache_count <
730		    resv->adds_in_progress +
731			    (actual_regions_needed - in_regions_needed)) {
732		/* region_add operation of range 1 should never need to
733		 * allocate file_region entries.
734		 */
735		VM_BUG_ON(t - f <= 1);
736
737		if (allocate_file_region_entries(
738			    resv, actual_regions_needed - in_regions_needed)) {
739			return -ENOMEM;
740		}
741
742		goto retry;
743	}
744
745	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
746
747	resv->adds_in_progress -= in_regions_needed;
748
749	spin_unlock(&resv->lock);
750	return add;
751}
752
753/*
754 * Examine the existing reserve map and determine how many
755 * huge pages in the specified range [f, t) are NOT currently
756 * represented.  This routine is called before a subsequent
757 * call to region_add that will actually modify the reserve
758 * map to add the specified range [f, t).  region_chg does
759 * not change the number of huge pages represented by the
760 * map.  A number of new file_region structures is added to the cache as a
761 * placeholder, for the subsequent region_add call to use. At least 1
762 * file_region structure is added.
763 *
764 * out_regions_needed is the number of regions added to the
765 * resv->adds_in_progress.  This value needs to be provided to a follow up call
766 * to region_add or region_abort for proper accounting.
767 *
768 * Returns the number of huge pages that need to be added to the existing
769 * reservation map for the range [f, t).  This number is greater or equal to
770 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
771 * is needed and can not be allocated.
772 */
773static long region_chg(struct resv_map *resv, long f, long t,
774		       long *out_regions_needed)
775{
776	long chg = 0;
777
778	spin_lock(&resv->lock);
779
780	/* Count how many hugepages in this range are NOT represented. */
781	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
782				       out_regions_needed);
783
784	if (*out_regions_needed == 0)
785		*out_regions_needed = 1;
786
787	if (allocate_file_region_entries(resv, *out_regions_needed))
788		return -ENOMEM;
789
790	resv->adds_in_progress += *out_regions_needed;
791
792	spin_unlock(&resv->lock);
793	return chg;
794}
795
796/*
797 * Abort the in progress add operation.  The adds_in_progress field
798 * of the resv_map keeps track of the operations in progress between
799 * calls to region_chg and region_add.  Operations are sometimes
800 * aborted after the call to region_chg.  In such cases, region_abort
801 * is called to decrement the adds_in_progress counter. regions_needed
802 * is the value returned by the region_chg call, it is used to decrement
803 * the adds_in_progress counter.
804 *
805 * NOTE: The range arguments [f, t) are not needed or used in this
806 * routine.  They are kept to make reading the calling code easier as
807 * arguments will match the associated region_chg call.
808 */
809static void region_abort(struct resv_map *resv, long f, long t,
810			 long regions_needed)
811{
812	spin_lock(&resv->lock);
813	VM_BUG_ON(!resv->region_cache_count);
814	resv->adds_in_progress -= regions_needed;
815	spin_unlock(&resv->lock);
816}
817
818/*
819 * Delete the specified range [f, t) from the reserve map.  If the
820 * t parameter is LONG_MAX, this indicates that ALL regions after f
821 * should be deleted.  Locate the regions which intersect [f, t)
822 * and either trim, delete or split the existing regions.
823 *
824 * Returns the number of huge pages deleted from the reserve map.
825 * In the normal case, the return value is zero or more.  In the
826 * case where a region must be split, a new region descriptor must
827 * be allocated.  If the allocation fails, -ENOMEM will be returned.
828 * NOTE: If the parameter t == LONG_MAX, then we will never split
829 * a region and possibly return -ENOMEM.  Callers specifying
830 * t == LONG_MAX do not need to check for -ENOMEM error.
831 */
832static long region_del(struct resv_map *resv, long f, long t)
833{
834	struct list_head *head = &resv->regions;
835	struct file_region *rg, *trg;
836	struct file_region *nrg = NULL;
837	long del = 0;
838
839retry:
840	spin_lock(&resv->lock);
841	list_for_each_entry_safe(rg, trg, head, link) {
842		/*
843		 * Skip regions before the range to be deleted.  file_region
844		 * ranges are normally of the form [from, to).  However, there
845		 * may be a "placeholder" entry in the map which is of the form
846		 * (from, to) with from == to.  Check for placeholder entries
847		 * at the beginning of the range to be deleted.
848		 */
849		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
850			continue;
851
852		if (rg->from >= t)
853			break;
854
855		if (f > rg->from && t < rg->to) { /* Must split region */
856			/*
857			 * Check for an entry in the cache before dropping
858			 * lock and attempting allocation.
859			 */
860			if (!nrg &&
861			    resv->region_cache_count > resv->adds_in_progress) {
862				nrg = list_first_entry(&resv->region_cache,
863							struct file_region,
864							link);
865				list_del(&nrg->link);
866				resv->region_cache_count--;
867			}
868
869			if (!nrg) {
870				spin_unlock(&resv->lock);
871				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
872				if (!nrg)
873					return -ENOMEM;
874				goto retry;
875			}
876
877			del += t - f;
878			hugetlb_cgroup_uncharge_file_region(
879				resv, rg, t - f, false);
880
881			/* New entry for end of split region */
882			nrg->from = t;
883			nrg->to = rg->to;
884
885			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
886
887			INIT_LIST_HEAD(&nrg->link);
888
889			/* Original entry is trimmed */
890			rg->to = f;
891
892			list_add(&nrg->link, &rg->link);
893			nrg = NULL;
894			break;
895		}
896
897		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
898			del += rg->to - rg->from;
899			hugetlb_cgroup_uncharge_file_region(resv, rg,
900							    rg->to - rg->from, true);
901			list_del(&rg->link);
902			kfree(rg);
903			continue;
904		}
905
906		if (f <= rg->from) {	/* Trim beginning of region */
907			hugetlb_cgroup_uncharge_file_region(resv, rg,
908							    t - rg->from, false);
909
910			del += t - rg->from;
911			rg->from = t;
912		} else {		/* Trim end of region */
913			hugetlb_cgroup_uncharge_file_region(resv, rg,
914							    rg->to - f, false);
915
916			del += rg->to - f;
917			rg->to = f;
918		}
919	}
920
921	spin_unlock(&resv->lock);
922	kfree(nrg);
923	return del;
924}
925
926/*
927 * A rare out of memory error was encountered which prevented removal of
928 * the reserve map region for a page.  The huge page itself was free'ed
929 * and removed from the page cache.  This routine will adjust the subpool
930 * usage count, and the global reserve count if needed.  By incrementing
931 * these counts, the reserve map entry which could not be deleted will
932 * appear as a "reserved" entry instead of simply dangling with incorrect
933 * counts.
934 */
935void hugetlb_fix_reserve_counts(struct inode *inode)
936{
937	struct hugepage_subpool *spool = subpool_inode(inode);
938	long rsv_adjust;
939	bool reserved = false;
940
941	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
942	if (rsv_adjust > 0) {
943		struct hstate *h = hstate_inode(inode);
944
945		if (!hugetlb_acct_memory(h, 1))
946			reserved = true;
947	} else if (!rsv_adjust) {
948		reserved = true;
949	}
950
951	if (!reserved)
952		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
953}
954
955/*
956 * Count and return the number of huge pages in the reserve map
957 * that intersect with the range [f, t).
958 */
959static long region_count(struct resv_map *resv, long f, long t)
960{
961	struct list_head *head = &resv->regions;
962	struct file_region *rg;
963	long chg = 0;
964
965	spin_lock(&resv->lock);
966	/* Locate each segment we overlap with, and count that overlap. */
967	list_for_each_entry(rg, head, link) {
968		long seg_from;
969		long seg_to;
970
971		if (rg->to <= f)
972			continue;
973		if (rg->from >= t)
974			break;
975
976		seg_from = max(rg->from, f);
977		seg_to = min(rg->to, t);
978
979		chg += seg_to - seg_from;
980	}
981	spin_unlock(&resv->lock);
982
983	return chg;
984}
985
986/*
987 * Convert the address within this vma to the page offset within
988 * the mapping, huge page units here.
989 */
990static pgoff_t vma_hugecache_offset(struct hstate *h,
991			struct vm_area_struct *vma, unsigned long address)
992{
993	return ((address - vma->vm_start) >> huge_page_shift(h)) +
994			(vma->vm_pgoff >> huge_page_order(h));
995}
996
997/**
998 * vma_kernel_pagesize - Page size granularity for this VMA.
999 * @vma: The user mapping.
1000 *
1001 * Folios in this VMA will be aligned to, and at least the size of the
1002 * number of bytes returned by this function.
1003 *
1004 * Return: The default size of the folios allocated when backing a VMA.
1005 */
1006unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1007{
1008	if (vma->vm_ops && vma->vm_ops->pagesize)
1009		return vma->vm_ops->pagesize(vma);
1010	return PAGE_SIZE;
1011}
1012EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1013
1014/*
1015 * Return the page size being used by the MMU to back a VMA. In the majority
1016 * of cases, the page size used by the kernel matches the MMU size. On
1017 * architectures where it differs, an architecture-specific 'strong'
1018 * version of this symbol is required.
1019 */
1020__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1021{
1022	return vma_kernel_pagesize(vma);
1023}
1024
1025/*
1026 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1027 * bits of the reservation map pointer, which are always clear due to
1028 * alignment.
1029 */
1030#define HPAGE_RESV_OWNER    (1UL << 0)
1031#define HPAGE_RESV_UNMAPPED (1UL << 1)
1032#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1033
1034/*
1035 * These helpers are used to track how many pages are reserved for
1036 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1037 * is guaranteed to have their future faults succeed.
1038 *
1039 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1040 * the reserve counters are updated with the hugetlb_lock held. It is safe
1041 * to reset the VMA at fork() time as it is not in use yet and there is no
1042 * chance of the global counters getting corrupted as a result of the values.
1043 *
1044 * The private mapping reservation is represented in a subtly different
1045 * manner to a shared mapping.  A shared mapping has a region map associated
1046 * with the underlying file, this region map represents the backing file
1047 * pages which have ever had a reservation assigned which this persists even
1048 * after the page is instantiated.  A private mapping has a region map
1049 * associated with the original mmap which is attached to all VMAs which
1050 * reference it, this region map represents those offsets which have consumed
1051 * reservation ie. where pages have been instantiated.
1052 */
1053static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1054{
1055	return (unsigned long)vma->vm_private_data;
1056}
1057
1058static void set_vma_private_data(struct vm_area_struct *vma,
1059							unsigned long value)
1060{
1061	vma->vm_private_data = (void *)value;
1062}
1063
1064static void
1065resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1066					  struct hugetlb_cgroup *h_cg,
1067					  struct hstate *h)
1068{
1069#ifdef CONFIG_CGROUP_HUGETLB
1070	if (!h_cg || !h) {
1071		resv_map->reservation_counter = NULL;
1072		resv_map->pages_per_hpage = 0;
1073		resv_map->css = NULL;
1074	} else {
1075		resv_map->reservation_counter =
1076			&h_cg->rsvd_hugepage[hstate_index(h)];
1077		resv_map->pages_per_hpage = pages_per_huge_page(h);
1078		resv_map->css = &h_cg->css;
1079	}
1080#endif
1081}
1082
1083struct resv_map *resv_map_alloc(void)
1084{
1085	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1086	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1087
1088	if (!resv_map || !rg) {
1089		kfree(resv_map);
1090		kfree(rg);
1091		return NULL;
1092	}
1093
1094	kref_init(&resv_map->refs);
1095	spin_lock_init(&resv_map->lock);
1096	INIT_LIST_HEAD(&resv_map->regions);
1097	init_rwsem(&resv_map->rw_sema);
1098
1099	resv_map->adds_in_progress = 0;
1100	/*
1101	 * Initialize these to 0. On shared mappings, 0's here indicate these
1102	 * fields don't do cgroup accounting. On private mappings, these will be
1103	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1104	 * reservations are to be un-charged from here.
1105	 */
1106	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1107
1108	INIT_LIST_HEAD(&resv_map->region_cache);
1109	list_add(&rg->link, &resv_map->region_cache);
1110	resv_map->region_cache_count = 1;
1111
1112	return resv_map;
1113}
1114
1115void resv_map_release(struct kref *ref)
1116{
1117	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1118	struct list_head *head = &resv_map->region_cache;
1119	struct file_region *rg, *trg;
1120
1121	/* Clear out any active regions before we release the map. */
1122	region_del(resv_map, 0, LONG_MAX);
1123
1124	/* ... and any entries left in the cache */
1125	list_for_each_entry_safe(rg, trg, head, link) {
1126		list_del(&rg->link);
1127		kfree(rg);
1128	}
1129
1130	VM_BUG_ON(resv_map->adds_in_progress);
1131
1132	kfree(resv_map);
1133}
1134
1135static inline struct resv_map *inode_resv_map(struct inode *inode)
1136{
1137	/*
1138	 * At inode evict time, i_mapping may not point to the original
1139	 * address space within the inode.  This original address space
1140	 * contains the pointer to the resv_map.  So, always use the
1141	 * address space embedded within the inode.
1142	 * The VERY common case is inode->mapping == &inode->i_data but,
1143	 * this may not be true for device special inodes.
1144	 */
1145	return (struct resv_map *)(&inode->i_data)->i_private_data;
1146}
1147
1148static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1149{
1150	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151	if (vma->vm_flags & VM_MAYSHARE) {
1152		struct address_space *mapping = vma->vm_file->f_mapping;
1153		struct inode *inode = mapping->host;
1154
1155		return inode_resv_map(inode);
1156
1157	} else {
1158		return (struct resv_map *)(get_vma_private_data(vma) &
1159							~HPAGE_RESV_MASK);
1160	}
1161}
1162
1163static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1164{
1165	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1166	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1167
1168	set_vma_private_data(vma, (unsigned long)map);
1169}
1170
1171static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1172{
1173	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1174	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1175
1176	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1177}
1178
1179static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1180{
1181	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1182
1183	return (get_vma_private_data(vma) & flag) != 0;
1184}
1185
1186bool __vma_private_lock(struct vm_area_struct *vma)
1187{
1188	return !(vma->vm_flags & VM_MAYSHARE) &&
1189		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1190		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1191}
1192
1193void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1194{
1195	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1196	/*
1197	 * Clear vm_private_data
1198	 * - For shared mappings this is a per-vma semaphore that may be
1199	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1200	 *   Before clearing, make sure pointer is not associated with vma
1201	 *   as this will leak the structure.  This is the case when called
1202	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1203	 *   been called to allocate a new structure.
1204	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1205	 *   not apply to children.  Faults generated by the children are
1206	 *   not guaranteed to succeed, even if read-only.
1207	 */
1208	if (vma->vm_flags & VM_MAYSHARE) {
1209		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1210
1211		if (vma_lock && vma_lock->vma != vma)
1212			vma->vm_private_data = NULL;
1213	} else
1214		vma->vm_private_data = NULL;
1215}
1216
1217/*
1218 * Reset and decrement one ref on hugepage private reservation.
1219 * Called with mm->mmap_lock writer semaphore held.
1220 * This function should be only used by move_vma() and operate on
1221 * same sized vma. It should never come here with last ref on the
1222 * reservation.
1223 */
1224void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1225{
1226	/*
1227	 * Clear the old hugetlb private page reservation.
1228	 * It has already been transferred to new_vma.
1229	 *
1230	 * During a mremap() operation of a hugetlb vma we call move_vma()
1231	 * which copies vma into new_vma and unmaps vma. After the copy
1232	 * operation both new_vma and vma share a reference to the resv_map
1233	 * struct, and at that point vma is about to be unmapped. We don't
1234	 * want to return the reservation to the pool at unmap of vma because
1235	 * the reservation still lives on in new_vma, so simply decrement the
1236	 * ref here and remove the resv_map reference from this vma.
1237	 */
1238	struct resv_map *reservations = vma_resv_map(vma);
1239
1240	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1241		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1242		kref_put(&reservations->refs, resv_map_release);
1243	}
1244
1245	hugetlb_dup_vma_private(vma);
1246}
1247
1248/* Returns true if the VMA has associated reserve pages */
1249static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1250{
1251	if (vma->vm_flags & VM_NORESERVE) {
1252		/*
1253		 * This address is already reserved by other process(chg == 0),
1254		 * so, we should decrement reserved count. Without decrementing,
1255		 * reserve count remains after releasing inode, because this
1256		 * allocated page will go into page cache and is regarded as
1257		 * coming from reserved pool in releasing step.  Currently, we
1258		 * don't have any other solution to deal with this situation
1259		 * properly, so add work-around here.
1260		 */
1261		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1262			return true;
1263		else
1264			return false;
1265	}
1266
1267	/* Shared mappings always use reserves */
1268	if (vma->vm_flags & VM_MAYSHARE) {
1269		/*
1270		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1271		 * be a region map for all pages.  The only situation where
1272		 * there is no region map is if a hole was punched via
1273		 * fallocate.  In this case, there really are no reserves to
1274		 * use.  This situation is indicated if chg != 0.
1275		 */
1276		if (chg)
1277			return false;
1278		else
1279			return true;
1280	}
1281
1282	/*
1283	 * Only the process that called mmap() has reserves for
1284	 * private mappings.
1285	 */
1286	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1287		/*
1288		 * Like the shared case above, a hole punch or truncate
1289		 * could have been performed on the private mapping.
1290		 * Examine the value of chg to determine if reserves
1291		 * actually exist or were previously consumed.
1292		 * Very Subtle - The value of chg comes from a previous
1293		 * call to vma_needs_reserves().  The reserve map for
1294		 * private mappings has different (opposite) semantics
1295		 * than that of shared mappings.  vma_needs_reserves()
1296		 * has already taken this difference in semantics into
1297		 * account.  Therefore, the meaning of chg is the same
1298		 * as in the shared case above.  Code could easily be
1299		 * combined, but keeping it separate draws attention to
1300		 * subtle differences.
1301		 */
1302		if (chg)
1303			return false;
1304		else
1305			return true;
1306	}
1307
1308	return false;
1309}
1310
1311static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1312{
1313	int nid = folio_nid(folio);
1314
1315	lockdep_assert_held(&hugetlb_lock);
1316	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1317
1318	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1319	h->free_huge_pages++;
1320	h->free_huge_pages_node[nid]++;
1321	folio_set_hugetlb_freed(folio);
1322}
1323
1324static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1325								int nid)
1326{
1327	struct folio *folio;
1328	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1329
1330	lockdep_assert_held(&hugetlb_lock);
1331	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1332		if (pin && !folio_is_longterm_pinnable(folio))
1333			continue;
1334
1335		if (folio_test_hwpoison(folio))
1336			continue;
1337
1338		list_move(&folio->lru, &h->hugepage_activelist);
1339		folio_ref_unfreeze(folio, 1);
1340		folio_clear_hugetlb_freed(folio);
1341		h->free_huge_pages--;
1342		h->free_huge_pages_node[nid]--;
1343		return folio;
1344	}
1345
1346	return NULL;
1347}
1348
1349static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1350							int nid, nodemask_t *nmask)
1351{
1352	unsigned int cpuset_mems_cookie;
1353	struct zonelist *zonelist;
1354	struct zone *zone;
1355	struct zoneref *z;
1356	int node = NUMA_NO_NODE;
1357
1358	zonelist = node_zonelist(nid, gfp_mask);
1359
1360retry_cpuset:
1361	cpuset_mems_cookie = read_mems_allowed_begin();
1362	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1363		struct folio *folio;
1364
1365		if (!cpuset_zone_allowed(zone, gfp_mask))
1366			continue;
1367		/*
1368		 * no need to ask again on the same node. Pool is node rather than
1369		 * zone aware
1370		 */
1371		if (zone_to_nid(zone) == node)
1372			continue;
1373		node = zone_to_nid(zone);
1374
1375		folio = dequeue_hugetlb_folio_node_exact(h, node);
1376		if (folio)
1377			return folio;
1378	}
1379	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1380		goto retry_cpuset;
1381
1382	return NULL;
1383}
1384
1385static unsigned long available_huge_pages(struct hstate *h)
1386{
1387	return h->free_huge_pages - h->resv_huge_pages;
1388}
1389
1390static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1391				struct vm_area_struct *vma,
1392				unsigned long address, int avoid_reserve,
1393				long chg)
1394{
1395	struct folio *folio = NULL;
1396	struct mempolicy *mpol;
1397	gfp_t gfp_mask;
1398	nodemask_t *nodemask;
1399	int nid;
1400
1401	/*
1402	 * A child process with MAP_PRIVATE mappings created by their parent
1403	 * have no page reserves. This check ensures that reservations are
1404	 * not "stolen". The child may still get SIGKILLed
1405	 */
1406	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1407		goto err;
1408
1409	/* If reserves cannot be used, ensure enough pages are in the pool */
1410	if (avoid_reserve && !available_huge_pages(h))
1411		goto err;
1412
1413	gfp_mask = htlb_alloc_mask(h);
1414	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1415
1416	if (mpol_is_preferred_many(mpol)) {
1417		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1418							nid, nodemask);
1419
1420		/* Fallback to all nodes if page==NULL */
1421		nodemask = NULL;
1422	}
1423
1424	if (!folio)
1425		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1426							nid, nodemask);
1427
1428	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1429		folio_set_hugetlb_restore_reserve(folio);
1430		h->resv_huge_pages--;
1431	}
1432
1433	mpol_cond_put(mpol);
1434	return folio;
1435
1436err:
1437	return NULL;
1438}
1439
1440/*
1441 * common helper functions for hstate_next_node_to_{alloc|free}.
1442 * We may have allocated or freed a huge page based on a different
1443 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1444 * be outside of *nodes_allowed.  Ensure that we use an allowed
1445 * node for alloc or free.
1446 */
1447static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1448{
1449	nid = next_node_in(nid, *nodes_allowed);
1450	VM_BUG_ON(nid >= MAX_NUMNODES);
1451
1452	return nid;
1453}
1454
1455static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1456{
1457	if (!node_isset(nid, *nodes_allowed))
1458		nid = next_node_allowed(nid, nodes_allowed);
1459	return nid;
1460}
1461
1462/*
1463 * returns the previously saved node ["this node"] from which to
1464 * allocate a persistent huge page for the pool and advance the
1465 * next node from which to allocate, handling wrap at end of node
1466 * mask.
1467 */
1468static int hstate_next_node_to_alloc(int *next_node,
1469					nodemask_t *nodes_allowed)
1470{
1471	int nid;
1472
1473	VM_BUG_ON(!nodes_allowed);
1474
1475	nid = get_valid_node_allowed(*next_node, nodes_allowed);
1476	*next_node = next_node_allowed(nid, nodes_allowed);
1477
1478	return nid;
1479}
1480
1481/*
1482 * helper for remove_pool_hugetlb_folio() - return the previously saved
1483 * node ["this node"] from which to free a huge page.  Advance the
1484 * next node id whether or not we find a free huge page to free so
1485 * that the next attempt to free addresses the next node.
1486 */
1487static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1488{
1489	int nid;
1490
1491	VM_BUG_ON(!nodes_allowed);
1492
1493	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1494	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1495
1496	return nid;
1497}
1498
1499#define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)		\
1500	for (nr_nodes = nodes_weight(*mask);				\
1501		nr_nodes > 0 &&						\
1502		((node = hstate_next_node_to_alloc(next_node, mask)) || 1);	\
1503		nr_nodes--)
1504
1505#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1506	for (nr_nodes = nodes_weight(*mask);				\
1507		nr_nodes > 0 &&						\
1508		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1509		nr_nodes--)
1510
1511/* used to demote non-gigantic_huge pages as well */
1512static void __destroy_compound_gigantic_folio(struct folio *folio,
1513					unsigned int order, bool demote)
1514{
1515	int i;
1516	int nr_pages = 1 << order;
1517	struct page *p;
1518
1519	atomic_set(&folio->_entire_mapcount, 0);
1520	atomic_set(&folio->_large_mapcount, 0);
1521	atomic_set(&folio->_pincount, 0);
1522
1523	for (i = 1; i < nr_pages; i++) {
1524		p = folio_page(folio, i);
1525		p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1526		p->mapping = NULL;
1527		clear_compound_head(p);
1528		if (!demote)
1529			set_page_refcounted(p);
1530	}
1531
1532	__folio_clear_head(folio);
1533}
1534
1535static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1536					unsigned int order)
1537{
1538	__destroy_compound_gigantic_folio(folio, order, true);
1539}
1540
1541#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1542static void destroy_compound_gigantic_folio(struct folio *folio,
1543					unsigned int order)
1544{
1545	__destroy_compound_gigantic_folio(folio, order, false);
1546}
1547
1548static void free_gigantic_folio(struct folio *folio, unsigned int order)
1549{
1550	/*
1551	 * If the page isn't allocated using the cma allocator,
1552	 * cma_release() returns false.
1553	 */
1554#ifdef CONFIG_CMA
1555	int nid = folio_nid(folio);
1556
1557	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1558		return;
1559#endif
1560
1561	free_contig_range(folio_pfn(folio), 1 << order);
1562}
1563
1564#ifdef CONFIG_CONTIG_ALLOC
1565static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1566		int nid, nodemask_t *nodemask)
1567{
1568	struct page *page;
1569	unsigned long nr_pages = pages_per_huge_page(h);
1570	if (nid == NUMA_NO_NODE)
1571		nid = numa_mem_id();
1572
1573#ifdef CONFIG_CMA
1574	{
1575		int node;
1576
1577		if (hugetlb_cma[nid]) {
1578			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1579					huge_page_order(h), true);
1580			if (page)
1581				return page_folio(page);
1582		}
1583
1584		if (!(gfp_mask & __GFP_THISNODE)) {
1585			for_each_node_mask(node, *nodemask) {
1586				if (node == nid || !hugetlb_cma[node])
1587					continue;
1588
1589				page = cma_alloc(hugetlb_cma[node], nr_pages,
1590						huge_page_order(h), true);
1591				if (page)
1592					return page_folio(page);
1593			}
1594		}
1595	}
1596#endif
1597
1598	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1599	return page ? page_folio(page) : NULL;
1600}
1601
1602#else /* !CONFIG_CONTIG_ALLOC */
1603static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1604					int nid, nodemask_t *nodemask)
1605{
1606	return NULL;
1607}
1608#endif /* CONFIG_CONTIG_ALLOC */
1609
1610#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1611static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1612					int nid, nodemask_t *nodemask)
1613{
1614	return NULL;
1615}
1616static inline void free_gigantic_folio(struct folio *folio,
1617						unsigned int order) { }
1618static inline void destroy_compound_gigantic_folio(struct folio *folio,
1619						unsigned int order) { }
1620#endif
1621
1622/*
1623 * Remove hugetlb folio from lists.
1624 * If vmemmap exists for the folio, clear the hugetlb flag so that the
1625 * folio appears as just a compound page.  Otherwise, wait until after
1626 * allocating vmemmap to clear the flag.
1627 *
1628 * A reference is held on the folio, except in the case of demote.
1629 *
1630 * Must be called with hugetlb lock held.
1631 */
1632static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1633							bool adjust_surplus,
1634							bool demote)
1635{
1636	int nid = folio_nid(folio);
1637
1638	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1639	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1640
1641	lockdep_assert_held(&hugetlb_lock);
1642	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1643		return;
1644
1645	list_del(&folio->lru);
1646
1647	if (folio_test_hugetlb_freed(folio)) {
1648		h->free_huge_pages--;
1649		h->free_huge_pages_node[nid]--;
1650	}
1651	if (adjust_surplus) {
1652		h->surplus_huge_pages--;
1653		h->surplus_huge_pages_node[nid]--;
1654	}
1655
1656	/*
1657	 * We can only clear the hugetlb flag after allocating vmemmap
1658	 * pages.  Otherwise, someone (memory error handling) may try to write
1659	 * to tail struct pages.
1660	 */
1661	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1662		__folio_clear_hugetlb(folio);
1663
1664	 /*
1665	  * In the case of demote we do not ref count the page as it will soon
1666	  * be turned into a page of smaller size.
1667	 */
1668	if (!demote)
1669		folio_ref_unfreeze(folio, 1);
1670
1671	h->nr_huge_pages--;
1672	h->nr_huge_pages_node[nid]--;
1673}
1674
1675static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1676							bool adjust_surplus)
1677{
1678	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1679}
1680
1681static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1682							bool adjust_surplus)
1683{
1684	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1685}
1686
1687static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1688			     bool adjust_surplus)
1689{
1690	int zeroed;
1691	int nid = folio_nid(folio);
1692
1693	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1694
1695	lockdep_assert_held(&hugetlb_lock);
1696
1697	INIT_LIST_HEAD(&folio->lru);
1698	h->nr_huge_pages++;
1699	h->nr_huge_pages_node[nid]++;
1700
1701	if (adjust_surplus) {
1702		h->surplus_huge_pages++;
1703		h->surplus_huge_pages_node[nid]++;
1704	}
1705
1706	__folio_set_hugetlb(folio);
1707	folio_change_private(folio, NULL);
1708	/*
1709	 * We have to set hugetlb_vmemmap_optimized again as above
1710	 * folio_change_private(folio, NULL) cleared it.
1711	 */
1712	folio_set_hugetlb_vmemmap_optimized(folio);
1713
1714	/*
1715	 * This folio is about to be managed by the hugetlb allocator and
1716	 * should have no users.  Drop our reference, and check for others
1717	 * just in case.
1718	 */
1719	zeroed = folio_put_testzero(folio);
1720	if (unlikely(!zeroed))
1721		/*
1722		 * It is VERY unlikely soneone else has taken a ref
1723		 * on the folio.  In this case, we simply return as
1724		 * free_huge_folio() will be called when this other ref
1725		 * is dropped.
1726		 */
1727		return;
1728
1729	arch_clear_hugetlb_flags(folio);
1730	enqueue_hugetlb_folio(h, folio);
1731}
1732
1733static void __update_and_free_hugetlb_folio(struct hstate *h,
1734						struct folio *folio)
1735{
1736	bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1737
1738	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1739		return;
1740
1741	/*
1742	 * If we don't know which subpages are hwpoisoned, we can't free
1743	 * the hugepage, so it's leaked intentionally.
1744	 */
1745	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1746		return;
1747
1748	/*
1749	 * If folio is not vmemmap optimized (!clear_flag), then the folio
1750	 * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1751	 * can only be passed hugetlb pages and will BUG otherwise.
1752	 */
1753	if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1754		spin_lock_irq(&hugetlb_lock);
1755		/*
1756		 * If we cannot allocate vmemmap pages, just refuse to free the
1757		 * page and put the page back on the hugetlb free list and treat
1758		 * as a surplus page.
1759		 */
1760		add_hugetlb_folio(h, folio, true);
1761		spin_unlock_irq(&hugetlb_lock);
1762		return;
1763	}
1764
1765	/*
1766	 * Move PageHWPoison flag from head page to the raw error pages,
1767	 * which makes any healthy subpages reusable.
1768	 */
1769	if (unlikely(folio_test_hwpoison(folio)))
1770		folio_clear_hugetlb_hwpoison(folio);
1771
1772	/*
1773	 * If vmemmap pages were allocated above, then we need to clear the
1774	 * hugetlb flag under the hugetlb lock.
1775	 */
1776	if (folio_test_hugetlb(folio)) {
1777		spin_lock_irq(&hugetlb_lock);
1778		__folio_clear_hugetlb(folio);
1779		spin_unlock_irq(&hugetlb_lock);
1780	}
1781
1782	/*
1783	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1784	 * need to be given back to CMA in free_gigantic_folio.
1785	 */
1786	if (hstate_is_gigantic(h) ||
1787	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1788		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1789		free_gigantic_folio(folio, huge_page_order(h));
1790	} else {
1791		INIT_LIST_HEAD(&folio->_deferred_list);
1792		folio_put(folio);
1793	}
1794}
1795
1796/*
1797 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1798 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1799 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1800 * the vmemmap pages.
1801 *
1802 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1803 * freed and frees them one-by-one. As the page->mapping pointer is going
1804 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1805 * structure of a lockless linked list of huge pages to be freed.
1806 */
1807static LLIST_HEAD(hpage_freelist);
1808
1809static void free_hpage_workfn(struct work_struct *work)
1810{
1811	struct llist_node *node;
1812
1813	node = llist_del_all(&hpage_freelist);
1814
1815	while (node) {
1816		struct folio *folio;
1817		struct hstate *h;
1818
1819		folio = container_of((struct address_space **)node,
1820				     struct folio, mapping);
1821		node = node->next;
1822		folio->mapping = NULL;
1823		/*
1824		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1825		 * folio_hstate() is going to trigger because a previous call to
1826		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1827		 * not use folio_hstate() directly.
1828		 */
1829		h = size_to_hstate(folio_size(folio));
1830
1831		__update_and_free_hugetlb_folio(h, folio);
1832
1833		cond_resched();
1834	}
1835}
1836static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1837
1838static inline void flush_free_hpage_work(struct hstate *h)
1839{
1840	if (hugetlb_vmemmap_optimizable(h))
1841		flush_work(&free_hpage_work);
1842}
1843
1844static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1845				 bool atomic)
1846{
1847	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1848		__update_and_free_hugetlb_folio(h, folio);
1849		return;
1850	}
1851
1852	/*
1853	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1854	 *
1855	 * Only call schedule_work() if hpage_freelist is previously
1856	 * empty. Otherwise, schedule_work() had been called but the workfn
1857	 * hasn't retrieved the list yet.
1858	 */
1859	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1860		schedule_work(&free_hpage_work);
1861}
1862
1863static void bulk_vmemmap_restore_error(struct hstate *h,
1864					struct list_head *folio_list,
1865					struct list_head *non_hvo_folios)
1866{
1867	struct folio *folio, *t_folio;
1868
1869	if (!list_empty(non_hvo_folios)) {
1870		/*
1871		 * Free any restored hugetlb pages so that restore of the
1872		 * entire list can be retried.
1873		 * The idea is that in the common case of ENOMEM errors freeing
1874		 * hugetlb pages with vmemmap we will free up memory so that we
1875		 * can allocate vmemmap for more hugetlb pages.
1876		 */
1877		list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1878			list_del(&folio->lru);
1879			spin_lock_irq(&hugetlb_lock);
1880			__folio_clear_hugetlb(folio);
1881			spin_unlock_irq(&hugetlb_lock);
1882			update_and_free_hugetlb_folio(h, folio, false);
1883			cond_resched();
1884		}
1885	} else {
1886		/*
1887		 * In the case where there are no folios which can be
1888		 * immediately freed, we loop through the list trying to restore
1889		 * vmemmap individually in the hope that someone elsewhere may
1890		 * have done something to cause success (such as freeing some
1891		 * memory).  If unable to restore a hugetlb page, the hugetlb
1892		 * page is made a surplus page and removed from the list.
1893		 * If are able to restore vmemmap and free one hugetlb page, we
1894		 * quit processing the list to retry the bulk operation.
1895		 */
1896		list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1897			if (hugetlb_vmemmap_restore_folio(h, folio)) {
1898				list_del(&folio->lru);
1899				spin_lock_irq(&hugetlb_lock);
1900				add_hugetlb_folio(h, folio, true);
1901				spin_unlock_irq(&hugetlb_lock);
1902			} else {
1903				list_del(&folio->lru);
1904				spin_lock_irq(&hugetlb_lock);
1905				__folio_clear_hugetlb(folio);
1906				spin_unlock_irq(&hugetlb_lock);
1907				update_and_free_hugetlb_folio(h, folio, false);
1908				cond_resched();
1909				break;
1910			}
1911	}
1912}
1913
1914static void update_and_free_pages_bulk(struct hstate *h,
1915						struct list_head *folio_list)
1916{
1917	long ret;
1918	struct folio *folio, *t_folio;
1919	LIST_HEAD(non_hvo_folios);
1920
1921	/*
1922	 * First allocate required vmemmmap (if necessary) for all folios.
1923	 * Carefully handle errors and free up any available hugetlb pages
1924	 * in an effort to make forward progress.
1925	 */
1926retry:
1927	ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1928	if (ret < 0) {
1929		bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1930		goto retry;
1931	}
1932
1933	/*
1934	 * At this point, list should be empty, ret should be >= 0 and there
1935	 * should only be pages on the non_hvo_folios list.
1936	 * Do note that the non_hvo_folios list could be empty.
1937	 * Without HVO enabled, ret will be 0 and there is no need to call
1938	 * __folio_clear_hugetlb as this was done previously.
1939	 */
1940	VM_WARN_ON(!list_empty(folio_list));
1941	VM_WARN_ON(ret < 0);
1942	if (!list_empty(&non_hvo_folios) && ret) {
1943		spin_lock_irq(&hugetlb_lock);
1944		list_for_each_entry(folio, &non_hvo_folios, lru)
1945			__folio_clear_hugetlb(folio);
1946		spin_unlock_irq(&hugetlb_lock);
1947	}
1948
1949	list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1950		update_and_free_hugetlb_folio(h, folio, false);
1951		cond_resched();
1952	}
1953}
1954
1955struct hstate *size_to_hstate(unsigned long size)
1956{
1957	struct hstate *h;
1958
1959	for_each_hstate(h) {
1960		if (huge_page_size(h) == size)
1961			return h;
1962	}
1963	return NULL;
1964}
1965
1966void free_huge_folio(struct folio *folio)
1967{
1968	/*
1969	 * Can't pass hstate in here because it is called from the
1970	 * generic mm code.
1971	 */
1972	struct hstate *h = folio_hstate(folio);
1973	int nid = folio_nid(folio);
1974	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1975	bool restore_reserve;
1976	unsigned long flags;
1977
1978	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1979	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1980
1981	hugetlb_set_folio_subpool(folio, NULL);
1982	if (folio_test_anon(folio))
1983		__ClearPageAnonExclusive(&folio->page);
1984	folio->mapping = NULL;
1985	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1986	folio_clear_hugetlb_restore_reserve(folio);
1987
1988	/*
1989	 * If HPageRestoreReserve was set on page, page allocation consumed a
1990	 * reservation.  If the page was associated with a subpool, there
1991	 * would have been a page reserved in the subpool before allocation
1992	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1993	 * reservation, do not call hugepage_subpool_put_pages() as this will
1994	 * remove the reserved page from the subpool.
1995	 */
1996	if (!restore_reserve) {
1997		/*
1998		 * A return code of zero implies that the subpool will be
1999		 * under its minimum size if the reservation is not restored
2000		 * after page is free.  Therefore, force restore_reserve
2001		 * operation.
2002		 */
2003		if (hugepage_subpool_put_pages(spool, 1) == 0)
2004			restore_reserve = true;
2005	}
2006
2007	spin_lock_irqsave(&hugetlb_lock, flags);
2008	folio_clear_hugetlb_migratable(folio);
2009	hugetlb_cgroup_uncharge_folio(hstate_index(h),
2010				     pages_per_huge_page(h), folio);
2011	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
2012					  pages_per_huge_page(h), folio);
2013	mem_cgroup_uncharge(folio);
2014	if (restore_reserve)
2015		h->resv_huge_pages++;
2016
2017	if (folio_test_hugetlb_temporary(folio)) {
2018		remove_hugetlb_folio(h, folio, false);
2019		spin_unlock_irqrestore(&hugetlb_lock, flags);
2020		update_and_free_hugetlb_folio(h, folio, true);
2021	} else if (h->surplus_huge_pages_node[nid]) {
2022		/* remove the page from active list */
2023		remove_hugetlb_folio(h, folio, true);
2024		spin_unlock_irqrestore(&hugetlb_lock, flags);
2025		update_and_free_hugetlb_folio(h, folio, true);
2026	} else {
2027		arch_clear_hugetlb_flags(folio);
2028		enqueue_hugetlb_folio(h, folio);
2029		spin_unlock_irqrestore(&hugetlb_lock, flags);
2030	}
2031}
2032
2033/*
2034 * Must be called with the hugetlb lock held
2035 */
2036static void __prep_account_new_huge_page(struct hstate *h, int nid)
2037{
2038	lockdep_assert_held(&hugetlb_lock);
2039	h->nr_huge_pages++;
2040	h->nr_huge_pages_node[nid]++;
2041}
2042
2043static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2044{
2045	__folio_set_hugetlb(folio);
2046	INIT_LIST_HEAD(&folio->lru);
2047	hugetlb_set_folio_subpool(folio, NULL);
2048	set_hugetlb_cgroup(folio, NULL);
2049	set_hugetlb_cgroup_rsvd(folio, NULL);
2050}
2051
2052static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2053{
2054	init_new_hugetlb_folio(h, folio);
2055	hugetlb_vmemmap_optimize_folio(h, folio);
2056}
2057
2058static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2059{
2060	__prep_new_hugetlb_folio(h, folio);
2061	spin_lock_irq(&hugetlb_lock);
2062	__prep_account_new_huge_page(h, nid);
2063	spin_unlock_irq(&hugetlb_lock);
2064}
2065
2066static bool __prep_compound_gigantic_folio(struct folio *folio,
2067					unsigned int order, bool demote)
2068{
2069	int i, j;
2070	int nr_pages = 1 << order;
2071	struct page *p;
2072
2073	__folio_clear_reserved(folio);
2074	for (i = 0; i < nr_pages; i++) {
2075		p = folio_page(folio, i);
2076
2077		/*
2078		 * For gigantic hugepages allocated through bootmem at
2079		 * boot, it's safer to be consistent with the not-gigantic
2080		 * hugepages and clear the PG_reserved bit from all tail pages
2081		 * too.  Otherwise drivers using get_user_pages() to access tail
2082		 * pages may get the reference counting wrong if they see
2083		 * PG_reserved set on a tail page (despite the head page not
2084		 * having PG_reserved set).  Enforcing this consistency between
2085		 * head and tail pages allows drivers to optimize away a check
2086		 * on the head page when they need know if put_page() is needed
2087		 * after get_user_pages().
2088		 */
2089		if (i != 0)	/* head page cleared above */
2090			__ClearPageReserved(p);
2091		/*
2092		 * Subtle and very unlikely
2093		 *
2094		 * Gigantic 'page allocators' such as memblock or cma will
2095		 * return a set of pages with each page ref counted.  We need
2096		 * to turn this set of pages into a compound page with tail
2097		 * page ref counts set to zero.  Code such as speculative page
2098		 * cache adding could take a ref on a 'to be' tail page.
2099		 * We need to respect any increased ref count, and only set
2100		 * the ref count to zero if count is currently 1.  If count
2101		 * is not 1, we return an error.  An error return indicates
2102		 * the set of pages can not be converted to a gigantic page.
2103		 * The caller who allocated the pages should then discard the
2104		 * pages using the appropriate free interface.
2105		 *
2106		 * In the case of demote, the ref count will be zero.
2107		 */
2108		if (!demote) {
2109			if (!page_ref_freeze(p, 1)) {
2110				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2111				goto out_error;
2112			}
2113		} else {
2114			VM_BUG_ON_PAGE(page_count(p), p);
2115		}
2116		if (i != 0)
2117			set_compound_head(p, &folio->page);
2118	}
2119	__folio_set_head(folio);
2120	/* we rely on prep_new_hugetlb_folio to set the hugetlb flag */
2121	folio_set_order(folio, order);
2122	atomic_set(&folio->_entire_mapcount, -1);
2123	atomic_set(&folio->_large_mapcount, -1);
2124	atomic_set(&folio->_pincount, 0);
2125	return true;
2126
2127out_error:
2128	/* undo page modifications made above */
2129	for (j = 0; j < i; j++) {
2130		p = folio_page(folio, j);
2131		if (j != 0)
2132			clear_compound_head(p);
2133		set_page_refcounted(p);
2134	}
2135	/* need to clear PG_reserved on remaining tail pages  */
2136	for (; j < nr_pages; j++) {
2137		p = folio_page(folio, j);
2138		__ClearPageReserved(p);
2139	}
2140	return false;
2141}
2142
2143static bool prep_compound_gigantic_folio(struct folio *folio,
2144							unsigned int order)
2145{
2146	return __prep_compound_gigantic_folio(folio, order, false);
2147}
2148
2149static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2150							unsigned int order)
2151{
2152	return __prep_compound_gigantic_folio(folio, order, true);
2153}
2154
2155/*
2156 * Find and lock address space (mapping) in write mode.
2157 *
2158 * Upon entry, the folio is locked which means that folio_mapping() is
2159 * stable.  Due to locking order, we can only trylock_write.  If we can
2160 * not get the lock, simply return NULL to caller.
2161 */
2162struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
2163{
2164	struct address_space *mapping = folio_mapping(folio);
2165
2166	if (!mapping)
2167		return mapping;
2168
2169	if (i_mmap_trylock_write(mapping))
2170		return mapping;
2171
2172	return NULL;
2173}
2174
2175static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2176		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2177		nodemask_t *node_alloc_noretry)
2178{
2179	int order = huge_page_order(h);
2180	struct folio *folio;
2181	bool alloc_try_hard = true;
2182	bool retry = true;
2183
2184	/*
2185	 * By default we always try hard to allocate the folio with
2186	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating folios in
2187	 * a loop (to adjust global huge page counts) and previous allocation
2188	 * failed, do not continue to try hard on the same node.  Use the
2189	 * node_alloc_noretry bitmap to manage this state information.
2190	 */
2191	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2192		alloc_try_hard = false;
2193	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2194	if (alloc_try_hard)
2195		gfp_mask |= __GFP_RETRY_MAYFAIL;
2196	if (nid == NUMA_NO_NODE)
2197		nid = numa_mem_id();
2198retry:
2199	folio = __folio_alloc(gfp_mask, order, nid, nmask);
2200
2201	if (folio && !folio_ref_freeze(folio, 1)) {
2202		folio_put(folio);
2203		if (retry) {	/* retry once */
2204			retry = false;
2205			goto retry;
2206		}
2207		/* WOW!  twice in a row. */
2208		pr_warn("HugeTLB unexpected inflated folio ref count\n");
2209		folio = NULL;
2210	}
2211
2212	/*
2213	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
2214	 * folio this indicates an overall state change.  Clear bit so
2215	 * that we resume normal 'try hard' allocations.
2216	 */
2217	if (node_alloc_noretry && folio && !alloc_try_hard)
2218		node_clear(nid, *node_alloc_noretry);
2219
2220	/*
2221	 * If we tried hard to get a folio but failed, set bit so that
2222	 * subsequent attempts will not try as hard until there is an
2223	 * overall state change.
2224	 */
2225	if (node_alloc_noretry && !folio && alloc_try_hard)
2226		node_set(nid, *node_alloc_noretry);
2227
2228	if (!folio) {
2229		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2230		return NULL;
2231	}
2232
2233	__count_vm_event(HTLB_BUDDY_PGALLOC);
2234	return folio;
2235}
2236
2237static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2238				gfp_t gfp_mask, int nid, nodemask_t *nmask,
2239				nodemask_t *node_alloc_noretry)
2240{
2241	struct folio *folio;
2242	bool retry = false;
2243
2244retry:
2245	if (hstate_is_gigantic(h))
2246		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2247	else
2248		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2249				nid, nmask, node_alloc_noretry);
2250	if (!folio)
2251		return NULL;
2252
2253	if (hstate_is_gigantic(h)) {
2254		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2255			/*
2256			 * Rare failure to convert pages to compound page.
2257			 * Free pages and try again - ONCE!
2258			 */
2259			free_gigantic_folio(folio, huge_page_order(h));
2260			if (!retry) {
2261				retry = true;
2262				goto retry;
2263			}
2264			return NULL;
2265		}
2266	}
2267
2268	return folio;
2269}
2270
2271static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2272		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2273		nodemask_t *node_alloc_noretry)
2274{
2275	struct folio *folio;
2276
2277	folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2278						node_alloc_noretry);
2279	if (folio)
2280		init_new_hugetlb_folio(h, folio);
2281	return folio;
2282}
2283
2284/*
2285 * Common helper to allocate a fresh hugetlb page. All specific allocators
2286 * should use this function to get new hugetlb pages
2287 *
2288 * Note that returned page is 'frozen':  ref count of head page and all tail
2289 * pages is zero.
2290 */
2291static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2292		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2293		nodemask_t *node_alloc_noretry)
2294{
2295	struct folio *folio;
2296
2297	folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2298						node_alloc_noretry);
2299	if (!folio)
2300		return NULL;
2301
2302	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2303	return folio;
2304}
2305
2306static void prep_and_add_allocated_folios(struct hstate *h,
2307					struct list_head *folio_list)
2308{
2309	unsigned long flags;
2310	struct folio *folio, *tmp_f;
2311
2312	/* Send list for bulk vmemmap optimization processing */
2313	hugetlb_vmemmap_optimize_folios(h, folio_list);
2314
2315	/* Add all new pool pages to free lists in one lock cycle */
2316	spin_lock_irqsave(&hugetlb_lock, flags);
2317	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2318		__prep_account_new_huge_page(h, folio_nid(folio));
2319		enqueue_hugetlb_folio(h, folio);
2320	}
2321	spin_unlock_irqrestore(&hugetlb_lock, flags);
2322}
2323
2324/*
2325 * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2326 * will later be added to the appropriate hugetlb pool.
2327 */
2328static struct folio *alloc_pool_huge_folio(struct hstate *h,
2329					nodemask_t *nodes_allowed,
2330					nodemask_t *node_alloc_noretry,
2331					int *next_node)
2332{
2333	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2334	int nr_nodes, node;
2335
2336	for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2337		struct folio *folio;
2338
2339		folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2340					nodes_allowed, node_alloc_noretry);
2341		if (folio)
2342			return folio;
2343	}
2344
2345	return NULL;
2346}
2347
2348/*
2349 * Remove huge page from pool from next node to free.  Attempt to keep
2350 * persistent huge pages more or less balanced over allowed nodes.
2351 * This routine only 'removes' the hugetlb page.  The caller must make
2352 * an additional call to free the page to low level allocators.
2353 * Called with hugetlb_lock locked.
2354 */
2355static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2356		nodemask_t *nodes_allowed, bool acct_surplus)
2357{
2358	int nr_nodes, node;
2359	struct folio *folio = NULL;
2360
2361	lockdep_assert_held(&hugetlb_lock);
2362	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2363		/*
2364		 * If we're returning unused surplus pages, only examine
2365		 * nodes with surplus pages.
2366		 */
2367		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2368		    !list_empty(&h->hugepage_freelists[node])) {
2369			folio = list_entry(h->hugepage_freelists[node].next,
2370					  struct folio, lru);
2371			remove_hugetlb_folio(h, folio, acct_surplus);
2372			break;
2373		}
2374	}
2375
2376	return folio;
2377}
2378
2379/*
2380 * Dissolve a given free hugetlb folio into free buddy pages. This function
2381 * does nothing for in-use hugetlb folios and non-hugetlb folios.
2382 * This function returns values like below:
2383 *
2384 *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2385 *           when the system is under memory pressure and the feature of
2386 *           freeing unused vmemmap pages associated with each hugetlb page
2387 *           is enabled.
2388 *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2389 *           (allocated or reserved.)
2390 *       0:  successfully dissolved free hugepages or the page is not a
2391 *           hugepage (considered as already dissolved)
2392 */
2393int dissolve_free_hugetlb_folio(struct folio *folio)
2394{
2395	int rc = -EBUSY;
2396
2397retry:
2398	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2399	if (!folio_test_hugetlb(folio))
2400		return 0;
2401
2402	spin_lock_irq(&hugetlb_lock);
2403	if (!folio_test_hugetlb(folio)) {
2404		rc = 0;
2405		goto out;
2406	}
2407
2408	if (!folio_ref_count(folio)) {
2409		struct hstate *h = folio_hstate(folio);
2410		if (!available_huge_pages(h))
2411			goto out;
2412
2413		/*
2414		 * We should make sure that the page is already on the free list
2415		 * when it is dissolved.
2416		 */
2417		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2418			spin_unlock_irq(&hugetlb_lock);
2419			cond_resched();
2420
2421			/*
2422			 * Theoretically, we should return -EBUSY when we
2423			 * encounter this race. In fact, we have a chance
2424			 * to successfully dissolve the page if we do a
2425			 * retry. Because the race window is quite small.
2426			 * If we seize this opportunity, it is an optimization
2427			 * for increasing the success rate of dissolving page.
2428			 */
2429			goto retry;
2430		}
2431
2432		remove_hugetlb_folio(h, folio, false);
2433		h->max_huge_pages--;
2434		spin_unlock_irq(&hugetlb_lock);
2435
2436		/*
2437		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2438		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2439		 * free the page if it can not allocate required vmemmap.  We
2440		 * need to adjust max_huge_pages if the page is not freed.
2441		 * Attempt to allocate vmemmmap here so that we can take
2442		 * appropriate action on failure.
2443		 *
2444		 * The folio_test_hugetlb check here is because
2445		 * remove_hugetlb_folio will clear hugetlb folio flag for
2446		 * non-vmemmap optimized hugetlb folios.
2447		 */
2448		if (folio_test_hugetlb(folio)) {
2449			rc = hugetlb_vmemmap_restore_folio(h, folio);
2450			if (rc) {
2451				spin_lock_irq(&hugetlb_lock);
2452				add_hugetlb_folio(h, folio, false);
2453				h->max_huge_pages++;
2454				goto out;
2455			}
2456		} else
2457			rc = 0;
2458
2459		update_and_free_hugetlb_folio(h, folio, false);
2460		return rc;
2461	}
2462out:
2463	spin_unlock_irq(&hugetlb_lock);
2464	return rc;
2465}
2466
2467/*
2468 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2469 * make specified memory blocks removable from the system.
2470 * Note that this will dissolve a free gigantic hugepage completely, if any
2471 * part of it lies within the given range.
2472 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2473 * free hugetlb folios that were dissolved before that error are lost.
2474 */
2475int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2476{
2477	unsigned long pfn;
2478	struct folio *folio;
2479	int rc = 0;
2480	unsigned int order;
2481	struct hstate *h;
2482
2483	if (!hugepages_supported())
2484		return rc;
2485
2486	order = huge_page_order(&default_hstate);
2487	for_each_hstate(h)
2488		order = min(order, huge_page_order(h));
2489
2490	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2491		folio = pfn_folio(pfn);
2492		rc = dissolve_free_hugetlb_folio(folio);
2493		if (rc)
2494			break;
2495	}
2496
2497	return rc;
2498}
2499
2500/*
2501 * Allocates a fresh surplus page from the page allocator.
2502 */
2503static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2504				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2505{
2506	struct folio *folio = NULL;
2507
2508	if (hstate_is_gigantic(h))
2509		return NULL;
2510
2511	spin_lock_irq(&hugetlb_lock);
2512	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2513		goto out_unlock;
2514	spin_unlock_irq(&hugetlb_lock);
2515
2516	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2517	if (!folio)
2518		return NULL;
2519
2520	spin_lock_irq(&hugetlb_lock);
2521	/*
2522	 * We could have raced with the pool size change.
2523	 * Double check that and simply deallocate the new page
2524	 * if we would end up overcommiting the surpluses. Abuse
2525	 * temporary page to workaround the nasty free_huge_folio
2526	 * codeflow
2527	 */
2528	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2529		folio_set_hugetlb_temporary(folio);
2530		spin_unlock_irq(&hugetlb_lock);
2531		free_huge_folio(folio);
2532		return NULL;
2533	}
2534
2535	h->surplus_huge_pages++;
2536	h->surplus_huge_pages_node[folio_nid(folio)]++;
2537
2538out_unlock:
2539	spin_unlock_irq(&hugetlb_lock);
2540
2541	return folio;
2542}
2543
2544static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2545				     int nid, nodemask_t *nmask)
2546{
2547	struct folio *folio;
2548
2549	if (hstate_is_gigantic(h))
2550		return NULL;
2551
2552	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2553	if (!folio)
2554		return NULL;
2555
2556	/* fresh huge pages are frozen */
2557	folio_ref_unfreeze(folio, 1);
2558	/*
2559	 * We do not account these pages as surplus because they are only
2560	 * temporary and will be released properly on the last reference
2561	 */
2562	folio_set_hugetlb_temporary(folio);
2563
2564	return folio;
2565}
2566
2567/*
2568 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2569 */
2570static
2571struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2572		struct vm_area_struct *vma, unsigned long addr)
2573{
2574	struct folio *folio = NULL;
2575	struct mempolicy *mpol;
2576	gfp_t gfp_mask = htlb_alloc_mask(h);
2577	int nid;
2578	nodemask_t *nodemask;
2579
2580	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2581	if (mpol_is_preferred_many(mpol)) {
2582		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2583
2584		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2585		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2586
2587		/* Fallback to all nodes if page==NULL */
2588		nodemask = NULL;
2589	}
2590
2591	if (!folio)
2592		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2593	mpol_cond_put(mpol);
2594	return folio;
2595}
2596
2597/* folio migration callback function */
2598struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2599		nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2600{
2601	spin_lock_irq(&hugetlb_lock);
2602	if (available_huge_pages(h)) {
2603		struct folio *folio;
2604
2605		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2606						preferred_nid, nmask);
2607		if (folio) {
2608			spin_unlock_irq(&hugetlb_lock);
2609			return folio;
2610		}
2611	}
2612	spin_unlock_irq(&hugetlb_lock);
2613
2614	/* We cannot fallback to other nodes, as we could break the per-node pool. */
2615	if (!allow_alloc_fallback)
2616		gfp_mask |= __GFP_THISNODE;
2617
2618	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2619}
2620
2621/*
2622 * Increase the hugetlb pool such that it can accommodate a reservation
2623 * of size 'delta'.
2624 */
2625static int gather_surplus_pages(struct hstate *h, long delta)
2626	__must_hold(&hugetlb_lock)
2627{
2628	LIST_HEAD(surplus_list);
2629	struct folio *folio, *tmp;
2630	int ret;
2631	long i;
2632	long needed, allocated;
2633	bool alloc_ok = true;
2634
2635	lockdep_assert_held(&hugetlb_lock);
2636	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2637	if (needed <= 0) {
2638		h->resv_huge_pages += delta;
2639		return 0;
2640	}
2641
2642	allocated = 0;
2643
2644	ret = -ENOMEM;
2645retry:
2646	spin_unlock_irq(&hugetlb_lock);
2647	for (i = 0; i < needed; i++) {
2648		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2649				NUMA_NO_NODE, NULL);
2650		if (!folio) {
2651			alloc_ok = false;
2652			break;
2653		}
2654		list_add(&folio->lru, &surplus_list);
2655		cond_resched();
2656	}
2657	allocated += i;
2658
2659	/*
2660	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2661	 * because either resv_huge_pages or free_huge_pages may have changed.
2662	 */
2663	spin_lock_irq(&hugetlb_lock);
2664	needed = (h->resv_huge_pages + delta) -
2665			(h->free_huge_pages + allocated);
2666	if (needed > 0) {
2667		if (alloc_ok)
2668			goto retry;
2669		/*
2670		 * We were not able to allocate enough pages to
2671		 * satisfy the entire reservation so we free what
2672		 * we've allocated so far.
2673		 */
2674		goto free;
2675	}
2676	/*
2677	 * The surplus_list now contains _at_least_ the number of extra pages
2678	 * needed to accommodate the reservation.  Add the appropriate number
2679	 * of pages to the hugetlb pool and free the extras back to the buddy
2680	 * allocator.  Commit the entire reservation here to prevent another
2681	 * process from stealing the pages as they are added to the pool but
2682	 * before they are reserved.
2683	 */
2684	needed += allocated;
2685	h->resv_huge_pages += delta;
2686	ret = 0;
2687
2688	/* Free the needed pages to the hugetlb pool */
2689	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2690		if ((--needed) < 0)
2691			break;
2692		/* Add the page to the hugetlb allocator */
2693		enqueue_hugetlb_folio(h, folio);
2694	}
2695free:
2696	spin_unlock_irq(&hugetlb_lock);
2697
2698	/*
2699	 * Free unnecessary surplus pages to the buddy allocator.
2700	 * Pages have no ref count, call free_huge_folio directly.
2701	 */
2702	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2703		free_huge_folio(folio);
2704	spin_lock_irq(&hugetlb_lock);
2705
2706	return ret;
2707}
2708
2709/*
2710 * This routine has two main purposes:
2711 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2712 *    in unused_resv_pages.  This corresponds to the prior adjustments made
2713 *    to the associated reservation map.
2714 * 2) Free any unused surplus pages that may have been allocated to satisfy
2715 *    the reservation.  As many as unused_resv_pages may be freed.
2716 */
2717static void return_unused_surplus_pages(struct hstate *h,
2718					unsigned long unused_resv_pages)
2719{
2720	unsigned long nr_pages;
2721	LIST_HEAD(page_list);
2722
2723	lockdep_assert_held(&hugetlb_lock);
2724	/* Uncommit the reservation */
2725	h->resv_huge_pages -= unused_resv_pages;
2726
2727	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2728		goto out;
2729
2730	/*
2731	 * Part (or even all) of the reservation could have been backed
2732	 * by pre-allocated pages. Only free surplus pages.
2733	 */
2734	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2735
2736	/*
2737	 * We want to release as many surplus pages as possible, spread
2738	 * evenly across all nodes with memory. Iterate across these nodes
2739	 * until we can no longer free unreserved surplus pages. This occurs
2740	 * when the nodes with surplus pages have no free pages.
2741	 * remove_pool_hugetlb_folio() will balance the freed pages across the
2742	 * on-line nodes with memory and will handle the hstate accounting.
2743	 */
2744	while (nr_pages--) {
2745		struct folio *folio;
2746
2747		folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2748		if (!folio)
2749			goto out;
2750
2751		list_add(&folio->lru, &page_list);
2752	}
2753
2754out:
2755	spin_unlock_irq(&hugetlb_lock);
2756	update_and_free_pages_bulk(h, &page_list);
2757	spin_lock_irq(&hugetlb_lock);
2758}
2759
2760
2761/*
2762 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2763 * are used by the huge page allocation routines to manage reservations.
2764 *
2765 * vma_needs_reservation is called to determine if the huge page at addr
2766 * within the vma has an associated reservation.  If a reservation is
2767 * needed, the value 1 is returned.  The caller is then responsible for
2768 * managing the global reservation and subpool usage counts.  After
2769 * the huge page has been allocated, vma_commit_reservation is called
2770 * to add the page to the reservation map.  If the page allocation fails,
2771 * the reservation must be ended instead of committed.  vma_end_reservation
2772 * is called in such cases.
2773 *
2774 * In the normal case, vma_commit_reservation returns the same value
2775 * as the preceding vma_needs_reservation call.  The only time this
2776 * is not the case is if a reserve map was changed between calls.  It
2777 * is the responsibility of the caller to notice the difference and
2778 * take appropriate action.
2779 *
2780 * vma_add_reservation is used in error paths where a reservation must
2781 * be restored when a newly allocated huge page must be freed.  It is
2782 * to be called after calling vma_needs_reservation to determine if a
2783 * reservation exists.
2784 *
2785 * vma_del_reservation is used in error paths where an entry in the reserve
2786 * map was created during huge page allocation and must be removed.  It is to
2787 * be called after calling vma_needs_reservation to determine if a reservation
2788 * exists.
2789 */
2790enum vma_resv_mode {
2791	VMA_NEEDS_RESV,
2792	VMA_COMMIT_RESV,
2793	VMA_END_RESV,
2794	VMA_ADD_RESV,
2795	VMA_DEL_RESV,
2796};
2797static long __vma_reservation_common(struct hstate *h,
2798				struct vm_area_struct *vma, unsigned long addr,
2799				enum vma_resv_mode mode)
2800{
2801	struct resv_map *resv;
2802	pgoff_t idx;
2803	long ret;
2804	long dummy_out_regions_needed;
2805
2806	resv = vma_resv_map(vma);
2807	if (!resv)
2808		return 1;
2809
2810	idx = vma_hugecache_offset(h, vma, addr);
2811	switch (mode) {
2812	case VMA_NEEDS_RESV:
2813		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2814		/* We assume that vma_reservation_* routines always operate on
2815		 * 1 page, and that adding to resv map a 1 page entry can only
2816		 * ever require 1 region.
2817		 */
2818		VM_BUG_ON(dummy_out_regions_needed != 1);
2819		break;
2820	case VMA_COMMIT_RESV:
2821		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2822		/* region_add calls of range 1 should never fail. */
2823		VM_BUG_ON(ret < 0);
2824		break;
2825	case VMA_END_RESV:
2826		region_abort(resv, idx, idx + 1, 1);
2827		ret = 0;
2828		break;
2829	case VMA_ADD_RESV:
2830		if (vma->vm_flags & VM_MAYSHARE) {
2831			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2832			/* region_add calls of range 1 should never fail. */
2833			VM_BUG_ON(ret < 0);
2834		} else {
2835			region_abort(resv, idx, idx + 1, 1);
2836			ret = region_del(resv, idx, idx + 1);
2837		}
2838		break;
2839	case VMA_DEL_RESV:
2840		if (vma->vm_flags & VM_MAYSHARE) {
2841			region_abort(resv, idx, idx + 1, 1);
2842			ret = region_del(resv, idx, idx + 1);
2843		} else {
2844			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2845			/* region_add calls of range 1 should never fail. */
2846			VM_BUG_ON(ret < 0);
2847		}
2848		break;
2849	default:
2850		BUG();
2851	}
2852
2853	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2854		return ret;
2855	/*
2856	 * We know private mapping must have HPAGE_RESV_OWNER set.
2857	 *
2858	 * In most cases, reserves always exist for private mappings.
2859	 * However, a file associated with mapping could have been
2860	 * hole punched or truncated after reserves were consumed.
2861	 * As subsequent fault on such a range will not use reserves.
2862	 * Subtle - The reserve map for private mappings has the
2863	 * opposite meaning than that of shared mappings.  If NO
2864	 * entry is in the reserve map, it means a reservation exists.
2865	 * If an entry exists in the reserve map, it means the
2866	 * reservation has already been consumed.  As a result, the
2867	 * return value of this routine is the opposite of the
2868	 * value returned from reserve map manipulation routines above.
2869	 */
2870	if (ret > 0)
2871		return 0;
2872	if (ret == 0)
2873		return 1;
2874	return ret;
2875}
2876
2877static long vma_needs_reservation(struct hstate *h,
2878			struct vm_area_struct *vma, unsigned long addr)
2879{
2880	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2881}
2882
2883static long vma_commit_reservation(struct hstate *h,
2884			struct vm_area_struct *vma, unsigned long addr)
2885{
2886	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2887}
2888
2889static void vma_end_reservation(struct hstate *h,
2890			struct vm_area_struct *vma, unsigned long addr)
2891{
2892	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2893}
2894
2895static long vma_add_reservation(struct hstate *h,
2896			struct vm_area_struct *vma, unsigned long addr)
2897{
2898	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2899}
2900
2901static long vma_del_reservation(struct hstate *h,
2902			struct vm_area_struct *vma, unsigned long addr)
2903{
2904	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2905}
2906
2907/*
2908 * This routine is called to restore reservation information on error paths.
2909 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2910 * and the hugetlb mutex should remain held when calling this routine.
2911 *
2912 * It handles two specific cases:
2913 * 1) A reservation was in place and the folio consumed the reservation.
2914 *    hugetlb_restore_reserve is set in the folio.
2915 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2916 *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2917 *
2918 * In case 1, free_huge_folio later in the error path will increment the
2919 * global reserve count.  But, free_huge_folio does not have enough context
2920 * to adjust the reservation map.  This case deals primarily with private
2921 * mappings.  Adjust the reserve map here to be consistent with global
2922 * reserve count adjustments to be made by free_huge_folio.  Make sure the
2923 * reserve map indicates there is a reservation present.
2924 *
2925 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2926 */
2927void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2928			unsigned long address, struct folio *folio)
2929{
2930	long rc = vma_needs_reservation(h, vma, address);
2931
2932	if (folio_test_hugetlb_restore_reserve(folio)) {
2933		if (unlikely(rc < 0))
2934			/*
2935			 * Rare out of memory condition in reserve map
2936			 * manipulation.  Clear hugetlb_restore_reserve so
2937			 * that global reserve count will not be incremented
2938			 * by free_huge_folio.  This will make it appear
2939			 * as though the reservation for this folio was
2940			 * consumed.  This may prevent the task from
2941			 * faulting in the folio at a later time.  This
2942			 * is better than inconsistent global huge page
2943			 * accounting of reserve counts.
2944			 */
2945			folio_clear_hugetlb_restore_reserve(folio);
2946		else if (rc)
2947			(void)vma_add_reservation(h, vma, address);
2948		else
2949			vma_end_reservation(h, vma, address);
2950	} else {
2951		if (!rc) {
2952			/*
2953			 * This indicates there is an entry in the reserve map
2954			 * not added by alloc_hugetlb_folio.  We know it was added
2955			 * before the alloc_hugetlb_folio call, otherwise
2956			 * hugetlb_restore_reserve would be set on the folio.
2957			 * Remove the entry so that a subsequent allocation
2958			 * does not consume a reservation.
2959			 */
2960			rc = vma_del_reservation(h, vma, address);
2961			if (rc < 0)
2962				/*
2963				 * VERY rare out of memory condition.  Since
2964				 * we can not delete the entry, set
2965				 * hugetlb_restore_reserve so that the reserve
2966				 * count will be incremented when the folio
2967				 * is freed.  This reserve will be consumed
2968				 * on a subsequent allocation.
2969				 */
2970				folio_set_hugetlb_restore_reserve(folio);
2971		} else if (rc < 0) {
2972			/*
2973			 * Rare out of memory condition from
2974			 * vma_needs_reservation call.  Memory allocation is
2975			 * only attempted if a new entry is needed.  Therefore,
2976			 * this implies there is not an entry in the
2977			 * reserve map.
2978			 *
2979			 * For shared mappings, no entry in the map indicates
2980			 * no reservation.  We are done.
2981			 */
2982			if (!(vma->vm_flags & VM_MAYSHARE))
2983				/*
2984				 * For private mappings, no entry indicates
2985				 * a reservation is present.  Since we can
2986				 * not add an entry, set hugetlb_restore_reserve
2987				 * on the folio so reserve count will be
2988				 * incremented when freed.  This reserve will
2989				 * be consumed on a subsequent allocation.
2990				 */
2991				folio_set_hugetlb_restore_reserve(folio);
2992		} else
2993			/*
2994			 * No reservation present, do nothing
2995			 */
2996			 vma_end_reservation(h, vma, address);
2997	}
2998}
2999
3000/*
3001 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
3002 * the old one
3003 * @h: struct hstate old page belongs to
3004 * @old_folio: Old folio to dissolve
3005 * @list: List to isolate the page in case we need to
3006 * Returns 0 on success, otherwise negated error.
3007 */
3008static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3009			struct folio *old_folio, struct list_head *list)
3010{
3011	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3012	int nid = folio_nid(old_folio);
3013	struct folio *new_folio = NULL;
3014	int ret = 0;
3015
3016retry:
3017	spin_lock_irq(&hugetlb_lock);
3018	if (!folio_test_hugetlb(old_folio)) {
3019		/*
3020		 * Freed from under us. Drop new_folio too.
3021		 */
3022		goto free_new;
3023	} else if (folio_ref_count(old_folio)) {
3024		bool isolated;
3025
3026		/*
3027		 * Someone has grabbed the folio, try to isolate it here.
3028		 * Fail with -EBUSY if not possible.
3029		 */
3030		spin_unlock_irq(&hugetlb_lock);
3031		isolated = isolate_hugetlb(old_folio, list);
3032		ret = isolated ? 0 : -EBUSY;
3033		spin_lock_irq(&hugetlb_lock);
3034		goto free_new;
3035	} else if (!folio_test_hugetlb_freed(old_folio)) {
3036		/*
3037		 * Folio's refcount is 0 but it has not been enqueued in the
3038		 * freelist yet. Race window is small, so we can succeed here if
3039		 * we retry.
3040		 */
3041		spin_unlock_irq(&hugetlb_lock);
3042		cond_resched();
3043		goto retry;
3044	} else {
3045		if (!new_folio) {
3046			spin_unlock_irq(&hugetlb_lock);
3047			new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
3048							      NULL, NULL);
3049			if (!new_folio)
3050				return -ENOMEM;
3051			__prep_new_hugetlb_folio(h, new_folio);
3052			goto retry;
3053		}
3054
3055		/*
3056		 * Ok, old_folio is still a genuine free hugepage. Remove it from
3057		 * the freelist and decrease the counters. These will be
3058		 * incremented again when calling __prep_account_new_huge_page()
3059		 * and enqueue_hugetlb_folio() for new_folio. The counters will
3060		 * remain stable since this happens under the lock.
3061		 */
3062		remove_hugetlb_folio(h, old_folio, false);
3063
3064		/*
3065		 * Ref count on new_folio is already zero as it was dropped
3066		 * earlier.  It can be directly added to the pool free list.
3067		 */
3068		__prep_account_new_huge_page(h, nid);
3069		enqueue_hugetlb_folio(h, new_folio);
3070
3071		/*
3072		 * Folio has been replaced, we can safely free the old one.
3073		 */
3074		spin_unlock_irq(&hugetlb_lock);
3075		update_and_free_hugetlb_folio(h, old_folio, false);
3076	}
3077
3078	return ret;
3079
3080free_new:
3081	spin_unlock_irq(&hugetlb_lock);
3082	if (new_folio) {
3083		/* Folio has a zero ref count, but needs a ref to be freed */
3084		folio_ref_unfreeze(new_folio, 1);
3085		update_and_free_hugetlb_folio(h, new_folio, false);
3086	}
3087
3088	return ret;
3089}
3090
3091int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3092{
3093	struct hstate *h;
3094	struct folio *folio = page_folio(page);
3095	int ret = -EBUSY;
3096
3097	/*
3098	 * The page might have been dissolved from under our feet, so make sure
3099	 * to carefully check the state under the lock.
3100	 * Return success when racing as if we dissolved the page ourselves.
3101	 */
3102	spin_lock_irq(&hugetlb_lock);
3103	if (folio_test_hugetlb(folio)) {
3104		h = folio_hstate(folio);
3105	} else {
3106		spin_unlock_irq(&hugetlb_lock);
3107		return 0;
3108	}
3109	spin_unlock_irq(&hugetlb_lock);
3110
3111	/*
3112	 * Fence off gigantic pages as there is a cyclic dependency between
3113	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3114	 * of bailing out right away without further retrying.
3115	 */
3116	if (hstate_is_gigantic(h))
3117		return -ENOMEM;
3118
3119	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3120		ret = 0;
3121	else if (!folio_ref_count(folio))
3122		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3123
3124	return ret;
3125}
3126
3127struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3128				    unsigned long addr, int avoid_reserve)
3129{
3130	struct hugepage_subpool *spool = subpool_vma(vma);
3131	struct hstate *h = hstate_vma(vma);
3132	struct folio *folio;
3133	long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3134	long gbl_chg;
3135	int memcg_charge_ret, ret, idx;
3136	struct hugetlb_cgroup *h_cg = NULL;
3137	struct mem_cgroup *memcg;
3138	bool deferred_reserve;
3139	gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3140
3141	memcg = get_mem_cgroup_from_current();
3142	memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3143	if (memcg_charge_ret == -ENOMEM) {
3144		mem_cgroup_put(memcg);
3145		return ERR_PTR(-ENOMEM);
3146	}
3147
3148	idx = hstate_index(h);
3149	/*
3150	 * Examine the region/reserve map to determine if the process
3151	 * has a reservation for the page to be allocated.  A return
3152	 * code of zero indicates a reservation exists (no change).
3153	 */
3154	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3155	if (map_chg < 0) {
3156		if (!memcg_charge_ret)
3157			mem_cgroup_cancel_charge(memcg, nr_pages);
3158		mem_cgroup_put(memcg);
3159		return ERR_PTR(-ENOMEM);
3160	}
3161
3162	/*
3163	 * Processes that did not create the mapping will have no
3164	 * reserves as indicated by the region/reserve map. Check
3165	 * that the allocation will not exceed the subpool limit.
3166	 * Allocations for MAP_NORESERVE mappings also need to be
3167	 * checked against any subpool limit.
3168	 */
3169	if (map_chg || avoid_reserve) {
3170		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3171		if (gbl_chg < 0)
3172			goto out_end_reservation;
3173
3174		/*
3175		 * Even though there was no reservation in the region/reserve
3176		 * map, there could be reservations associated with the
3177		 * subpool that can be used.  This would be indicated if the
3178		 * return value of hugepage_subpool_get_pages() is zero.
3179		 * However, if avoid_reserve is specified we still avoid even
3180		 * the subpool reservations.
3181		 */
3182		if (avoid_reserve)
3183			gbl_chg = 1;
3184	}
3185
3186	/* If this allocation is not consuming a reservation, charge it now.
3187	 */
3188	deferred_reserve = map_chg || avoid_reserve;
3189	if (deferred_reserve) {
3190		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3191			idx, pages_per_huge_page(h), &h_cg);
3192		if (ret)
3193			goto out_subpool_put;
3194	}
3195
3196	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3197	if (ret)
3198		goto out_uncharge_cgroup_reservation;
3199
3200	spin_lock_irq(&hugetlb_lock);
3201	/*
3202	 * glb_chg is passed to indicate whether or not a page must be taken
3203	 * from the global free pool (global change).  gbl_chg == 0 indicates
3204	 * a reservation exists for the allocation.
3205	 */
3206	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3207	if (!folio) {
3208		spin_unlock_irq(&hugetlb_lock);
3209		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3210		if (!folio)
3211			goto out_uncharge_cgroup;
3212		spin_lock_irq(&hugetlb_lock);
3213		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3214			folio_set_hugetlb_restore_reserve(folio);
3215			h->resv_huge_pages--;
3216		}
3217		list_add(&folio->lru, &h->hugepage_activelist);
3218		folio_ref_unfreeze(folio, 1);
3219		/* Fall through */
3220	}
3221
3222	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3223	/* If allocation is not consuming a reservation, also store the
3224	 * hugetlb_cgroup pointer on the page.
3225	 */
3226	if (deferred_reserve) {
3227		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3228						  h_cg, folio);
3229	}
3230
3231	spin_unlock_irq(&hugetlb_lock);
3232
3233	hugetlb_set_folio_subpool(folio, spool);
3234
3235	map_commit = vma_commit_reservation(h, vma, addr);
3236	if (unlikely(map_chg > map_commit)) {
3237		/*
3238		 * The page was added to the reservation map between
3239		 * vma_needs_reservation and vma_commit_reservation.
3240		 * This indicates a race with hugetlb_reserve_pages.
3241		 * Adjust for the subpool count incremented above AND
3242		 * in hugetlb_reserve_pages for the same page.  Also,
3243		 * the reservation count added in hugetlb_reserve_pages
3244		 * no longer applies.
3245		 */
3246		long rsv_adjust;
3247
3248		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3249		hugetlb_acct_memory(h, -rsv_adjust);
3250		if (deferred_reserve) {
3251			spin_lock_irq(&hugetlb_lock);
3252			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3253					pages_per_huge_page(h), folio);
3254			spin_unlock_irq(&hugetlb_lock);
3255		}
3256	}
3257
3258	if (!memcg_charge_ret)
3259		mem_cgroup_commit_charge(folio, memcg);
3260	mem_cgroup_put(memcg);
3261
3262	return folio;
3263
3264out_uncharge_cgroup:
3265	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3266out_uncharge_cgroup_reservation:
3267	if (deferred_reserve)
3268		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3269						    h_cg);
3270out_subpool_put:
3271	if (map_chg || avoid_reserve)
3272		hugepage_subpool_put_pages(spool, 1);
3273out_end_reservation:
3274	vma_end_reservation(h, vma, addr);
3275	if (!memcg_charge_ret)
3276		mem_cgroup_cancel_charge(memcg, nr_pages);
3277	mem_cgroup_put(memcg);
3278	return ERR_PTR(-ENOSPC);
3279}
3280
3281int alloc_bootmem_huge_page(struct hstate *h, int nid)
3282	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3283int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3284{
3285	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3286	int nr_nodes, node = nid;
3287
3288	/* do node specific alloc */
3289	if (nid != NUMA_NO_NODE) {
3290		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3291				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3292		if (!m)
3293			return 0;
3294		goto found;
3295	}
3296	/* allocate from next node when distributing huge pages */
3297	for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3298		m = memblock_alloc_try_nid_raw(
3299				huge_page_size(h), huge_page_size(h),
3300				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3301		/*
3302		 * Use the beginning of the huge page to store the
3303		 * huge_bootmem_page struct (until gather_bootmem
3304		 * puts them into the mem_map).
3305		 */
3306		if (!m)
3307			return 0;
3308		goto found;
3309	}
3310
3311found:
3312
3313	/*
3314	 * Only initialize the head struct page in memmap_init_reserved_pages,
3315	 * rest of the struct pages will be initialized by the HugeTLB
3316	 * subsystem itself.
3317	 * The head struct page is used to get folio information by the HugeTLB
3318	 * subsystem like zone id and node id.
3319	 */
3320	memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3321		huge_page_size(h) - PAGE_SIZE);
3322	/* Put them into a private list first because mem_map is not up yet */
3323	INIT_LIST_HEAD(&m->list);
3324	list_add(&m->list, &huge_boot_pages[node]);
3325	m->hstate = h;
3326	return 1;
3327}
3328
3329/* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3330static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3331					unsigned long start_page_number,
3332					unsigned long end_page_number)
3333{
3334	enum zone_type zone = zone_idx(folio_zone(folio));
3335	int nid = folio_nid(folio);
3336	unsigned long head_pfn = folio_pfn(folio);
3337	unsigned long pfn, end_pfn = head_pfn + end_page_number;
3338	int ret;
3339
3340	for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3341		struct page *page = pfn_to_page(pfn);
3342
3343		__init_single_page(page, pfn, zone, nid);
3344		prep_compound_tail((struct page *)folio, pfn - head_pfn);
3345		ret = page_ref_freeze(page, 1);
3346		VM_BUG_ON(!ret);
3347	}
3348}
3349
3350static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3351					      struct hstate *h,
3352					      unsigned long nr_pages)
3353{
3354	int ret;
3355
3356	/* Prepare folio head */
3357	__folio_clear_reserved(folio);
3358	__folio_set_head(folio);
3359	ret = folio_ref_freeze(folio, 1);
3360	VM_BUG_ON(!ret);
3361	/* Initialize the necessary tail struct pages */
3362	hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3363	prep_compound_head((struct page *)folio, huge_page_order(h));
3364}
3365
3366static void __init prep_and_add_bootmem_folios(struct hstate *h,
3367					struct list_head *folio_list)
3368{
3369	unsigned long flags;
3370	struct folio *folio, *tmp_f;
3371
3372	/* Send list for bulk vmemmap optimization processing */
3373	hugetlb_vmemmap_optimize_folios(h, folio_list);
3374
3375	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3376		if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3377			/*
3378			 * If HVO fails, initialize all tail struct pages
3379			 * We do not worry about potential long lock hold
3380			 * time as this is early in boot and there should
3381			 * be no contention.
3382			 */
3383			hugetlb_folio_init_tail_vmemmap(folio,
3384					HUGETLB_VMEMMAP_RESERVE_PAGES,
3385					pages_per_huge_page(h));
3386		}
3387		/* Subdivide locks to achieve better parallel performance */
3388		spin_lock_irqsave(&hugetlb_lock, flags);
3389		__prep_account_new_huge_page(h, folio_nid(folio));
3390		enqueue_hugetlb_folio(h, folio);
3391		spin_unlock_irqrestore(&hugetlb_lock, flags);
3392	}
3393}
3394
3395/*
3396 * Put bootmem huge pages into the standard lists after mem_map is up.
3397 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3398 */
3399static void __init gather_bootmem_prealloc_node(unsigned long nid)
3400{
3401	LIST_HEAD(folio_list);
3402	struct huge_bootmem_page *m;
3403	struct hstate *h = NULL, *prev_h = NULL;
3404
3405	list_for_each_entry(m, &huge_boot_pages[nid], list) {
3406		struct page *page = virt_to_page(m);
3407		struct folio *folio = (void *)page;
3408
3409		h = m->hstate;
3410		/*
3411		 * It is possible to have multiple huge page sizes (hstates)
3412		 * in this list.  If so, process each size separately.
3413		 */
3414		if (h != prev_h && prev_h != NULL)
3415			prep_and_add_bootmem_folios(prev_h, &folio_list);
3416		prev_h = h;
3417
3418		VM_BUG_ON(!hstate_is_gigantic(h));
3419		WARN_ON(folio_ref_count(folio) != 1);
3420
3421		hugetlb_folio_init_vmemmap(folio, h,
3422					   HUGETLB_VMEMMAP_RESERVE_PAGES);
3423		init_new_hugetlb_folio(h, folio);
3424		list_add(&folio->lru, &folio_list);
3425
3426		/*
3427		 * We need to restore the 'stolen' pages to totalram_pages
3428		 * in order to fix confusing memory reports from free(1) and
3429		 * other side-effects, like CommitLimit going negative.
3430		 */
3431		adjust_managed_page_count(page, pages_per_huge_page(h));
3432		cond_resched();
3433	}
3434
3435	prep_and_add_bootmem_folios(h, &folio_list);
3436}
3437
3438static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3439						    unsigned long end, void *arg)
3440{
3441	int nid;
3442
3443	for (nid = start; nid < end; nid++)
3444		gather_bootmem_prealloc_node(nid);
3445}
3446
3447static void __init gather_bootmem_prealloc(void)
3448{
3449	struct padata_mt_job job = {
3450		.thread_fn	= gather_bootmem_prealloc_parallel,
3451		.fn_arg		= NULL,
3452		.start		= 0,
3453		.size		= num_node_state(N_MEMORY),
3454		.align		= 1,
3455		.min_chunk	= 1,
3456		.max_threads	= num_node_state(N_MEMORY),
3457		.numa_aware	= true,
3458	};
3459
3460	padata_do_multithreaded(&job);
3461}
3462
3463static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3464{
3465	unsigned long i;
3466	char buf[32];
3467
3468	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3469		if (hstate_is_gigantic(h)) {
3470			if (!alloc_bootmem_huge_page(h, nid))
3471				break;
3472		} else {
3473			struct folio *folio;
3474			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3475
3476			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3477					&node_states[N_MEMORY], NULL);
3478			if (!folio)
3479				break;
3480			free_huge_folio(folio); /* free it into the hugepage allocator */
3481		}
3482		cond_resched();
3483	}
3484	if (i == h->max_huge_pages_node[nid])
3485		return;
3486
3487	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3488	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3489		h->max_huge_pages_node[nid], buf, nid, i);
3490	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3491	h->max_huge_pages_node[nid] = i;
3492}
3493
3494static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3495{
3496	int i;
3497	bool node_specific_alloc = false;
3498
3499	for_each_online_node(i) {
3500		if (h->max_huge_pages_node[i] > 0) {
3501			hugetlb_hstate_alloc_pages_onenode(h, i);
3502			node_specific_alloc = true;
3503		}
3504	}
3505
3506	return node_specific_alloc;
3507}
3508
3509static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3510{
3511	if (allocated < h->max_huge_pages) {
3512		char buf[32];
3513
3514		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3515		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3516			h->max_huge_pages, buf, allocated);
3517		h->max_huge_pages = allocated;
3518	}
3519}
3520
3521static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3522{
3523	struct hstate *h = (struct hstate *)arg;
3524	int i, num = end - start;
3525	nodemask_t node_alloc_noretry;
3526	LIST_HEAD(folio_list);
3527	int next_node = first_online_node;
3528
3529	/* Bit mask controlling how hard we retry per-node allocations.*/
3530	nodes_clear(node_alloc_noretry);
3531
3532	for (i = 0; i < num; ++i) {
3533		struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3534						&node_alloc_noretry, &next_node);
3535		if (!folio)
3536			break;
3537
3538		list_move(&folio->lru, &folio_list);
3539		cond_resched();
3540	}
3541
3542	prep_and_add_allocated_folios(h, &folio_list);
3543}
3544
3545static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3546{
3547	unsigned long i;
3548
3549	for (i = 0; i < h->max_huge_pages; ++i) {
3550		if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3551			break;
3552		cond_resched();
3553	}
3554
3555	return i;
3556}
3557
3558static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3559{
3560	struct padata_mt_job job = {
3561		.fn_arg		= h,
3562		.align		= 1,
3563		.numa_aware	= true
3564	};
3565
3566	job.thread_fn	= hugetlb_pages_alloc_boot_node;
3567	job.start	= 0;
3568	job.size	= h->max_huge_pages;
3569
3570	/*
3571	 * job.max_threads is twice the num_node_state(N_MEMORY),
3572	 *
3573	 * Tests below indicate that a multiplier of 2 significantly improves
3574	 * performance, and although larger values also provide improvements,
3575	 * the gains are marginal.
3576	 *
3577	 * Therefore, choosing 2 as the multiplier strikes a good balance between
3578	 * enhancing parallel processing capabilities and maintaining efficient
3579	 * resource management.
3580	 *
3581	 * +------------+-------+-------+-------+-------+-------+
3582	 * | multiplier |   1   |   2   |   3   |   4   |   5   |
3583	 * +------------+-------+-------+-------+-------+-------+
3584	 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3585	 * | 2T   4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3586	 * | 50G  2node | 71ms  | 44ms  | 37ms  | 30ms  | 31ms  |
3587	 * +------------+-------+-------+-------+-------+-------+
3588	 */
3589	job.max_threads	= num_node_state(N_MEMORY) * 2;
3590	job.min_chunk	= h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3591	padata_do_multithreaded(&job);
3592
3593	return h->nr_huge_pages;
3594}
3595
3596/*
3597 * NOTE: this routine is called in different contexts for gigantic and
3598 * non-gigantic pages.
3599 * - For gigantic pages, this is called early in the boot process and
3600 *   pages are allocated from memblock allocated or something similar.
3601 *   Gigantic pages are actually added to pools later with the routine
3602 *   gather_bootmem_prealloc.
3603 * - For non-gigantic pages, this is called later in the boot process after
3604 *   all of mm is up and functional.  Pages are allocated from buddy and
3605 *   then added to hugetlb pools.
3606 */
3607static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3608{
3609	unsigned long allocated;
3610	static bool initialized __initdata;
3611
3612	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3613	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3614		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3615		return;
3616	}
3617
3618	/* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3619	if (!initialized) {
3620		int i = 0;
3621
3622		for (i = 0; i < MAX_NUMNODES; i++)
3623			INIT_LIST_HEAD(&huge_boot_pages[i]);
3624		initialized = true;
3625	}
3626
3627	/* do node specific alloc */
3628	if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3629		return;
3630
3631	/* below will do all node balanced alloc */
3632	if (hstate_is_gigantic(h))
3633		allocated = hugetlb_gigantic_pages_alloc_boot(h);
3634	else
3635		allocated = hugetlb_pages_alloc_boot(h);
3636
3637	hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3638}
3639
3640static void __init hugetlb_init_hstates(void)
3641{
3642	struct hstate *h, *h2;
3643
3644	for_each_hstate(h) {
3645		/* oversize hugepages were init'ed in early boot */
3646		if (!hstate_is_gigantic(h))
3647			hugetlb_hstate_alloc_pages(h);
3648
3649		/*
3650		 * Set demote order for each hstate.  Note that
3651		 * h->demote_order is initially 0.
3652		 * - We can not demote gigantic pages if runtime freeing
3653		 *   is not supported, so skip this.
3654		 * - If CMA allocation is possible, we can not demote
3655		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3656		 */
3657		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3658			continue;
3659		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3660			continue;
3661		for_each_hstate(h2) {
3662			if (h2 == h)
3663				continue;
3664			if (h2->order < h->order &&
3665			    h2->order > h->demote_order)
3666				h->demote_order = h2->order;
3667		}
3668	}
3669}
3670
3671static void __init report_hugepages(void)
3672{
3673	struct hstate *h;
3674
3675	for_each_hstate(h) {
3676		char buf[32];
3677
3678		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3679		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3680			buf, h->free_huge_pages);
3681		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3682			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3683	}
3684}
3685
3686#ifdef CONFIG_HIGHMEM
3687static void try_to_free_low(struct hstate *h, unsigned long count,
3688						nodemask_t *nodes_allowed)
3689{
3690	int i;
3691	LIST_HEAD(page_list);
3692
3693	lockdep_assert_held(&hugetlb_lock);
3694	if (hstate_is_gigantic(h))
3695		return;
3696
3697	/*
3698	 * Collect pages to be freed on a list, and free after dropping lock
3699	 */
3700	for_each_node_mask(i, *nodes_allowed) {
3701		struct folio *folio, *next;
3702		struct list_head *freel = &h->hugepage_freelists[i];
3703		list_for_each_entry_safe(folio, next, freel, lru) {
3704			if (count >= h->nr_huge_pages)
3705				goto out;
3706			if (folio_test_highmem(folio))
3707				continue;
3708			remove_hugetlb_folio(h, folio, false);
3709			list_add(&folio->lru, &page_list);
3710		}
3711	}
3712
3713out:
3714	spin_unlock_irq(&hugetlb_lock);
3715	update_and_free_pages_bulk(h, &page_list);
3716	spin_lock_irq(&hugetlb_lock);
3717}
3718#else
3719static inline void try_to_free_low(struct hstate *h, unsigned long count,
3720						nodemask_t *nodes_allowed)
3721{
3722}
3723#endif
3724
3725/*
3726 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3727 * balanced by operating on them in a round-robin fashion.
3728 * Returns 1 if an adjustment was made.
3729 */
3730static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3731				int delta)
3732{
3733	int nr_nodes, node;
3734
3735	lockdep_assert_held(&hugetlb_lock);
3736	VM_BUG_ON(delta != -1 && delta != 1);
3737
3738	if (delta < 0) {
3739		for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3740			if (h->surplus_huge_pages_node[node])
3741				goto found;
3742		}
3743	} else {
3744		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3745			if (h->surplus_huge_pages_node[node] <
3746					h->nr_huge_pages_node[node])
3747				goto found;
3748		}
3749	}
3750	return 0;
3751
3752found:
3753	h->surplus_huge_pages += delta;
3754	h->surplus_huge_pages_node[node] += delta;
3755	return 1;
3756}
3757
3758#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3759static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3760			      nodemask_t *nodes_allowed)
3761{
3762	unsigned long min_count;
3763	unsigned long allocated;
3764	struct folio *folio;
3765	LIST_HEAD(page_list);
3766	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3767
3768	/*
3769	 * Bit mask controlling how hard we retry per-node allocations.
3770	 * If we can not allocate the bit mask, do not attempt to allocate
3771	 * the requested huge pages.
3772	 */
3773	if (node_alloc_noretry)
3774		nodes_clear(*node_alloc_noretry);
3775	else
3776		return -ENOMEM;
3777
3778	/*
3779	 * resize_lock mutex prevents concurrent adjustments to number of
3780	 * pages in hstate via the proc/sysfs interfaces.
3781	 */
3782	mutex_lock(&h->resize_lock);
3783	flush_free_hpage_work(h);
3784	spin_lock_irq(&hugetlb_lock);
3785
3786	/*
3787	 * Check for a node specific request.
3788	 * Changing node specific huge page count may require a corresponding
3789	 * change to the global count.  In any case, the passed node mask
3790	 * (nodes_allowed) will restrict alloc/free to the specified node.
3791	 */
3792	if (nid != NUMA_NO_NODE) {
3793		unsigned long old_count = count;
3794
3795		count += persistent_huge_pages(h) -
3796			 (h->nr_huge_pages_node[nid] -
3797			  h->surplus_huge_pages_node[nid]);
3798		/*
3799		 * User may have specified a large count value which caused the
3800		 * above calculation to overflow.  In this case, they wanted
3801		 * to allocate as many huge pages as possible.  Set count to
3802		 * largest possible value to align with their intention.
3803		 */
3804		if (count < old_count)
3805			count = ULONG_MAX;
3806	}
3807
3808	/*
3809	 * Gigantic pages runtime allocation depend on the capability for large
3810	 * page range allocation.
3811	 * If the system does not provide this feature, return an error when
3812	 * the user tries to allocate gigantic pages but let the user free the
3813	 * boottime allocated gigantic pages.
3814	 */
3815	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3816		if (count > persistent_huge_pages(h)) {
3817			spin_unlock_irq(&hugetlb_lock);
3818			mutex_unlock(&h->resize_lock);
3819			NODEMASK_FREE(node_alloc_noretry);
3820			return -EINVAL;
3821		}
3822		/* Fall through to decrease pool */
3823	}
3824
3825	/*
3826	 * Increase the pool size
3827	 * First take pages out of surplus state.  Then make up the
3828	 * remaining difference by allocating fresh huge pages.
3829	 *
3830	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3831	 * to convert a surplus huge page to a normal huge page. That is
3832	 * not critical, though, it just means the overall size of the
3833	 * pool might be one hugepage larger than it needs to be, but
3834	 * within all the constraints specified by the sysctls.
3835	 */
3836	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3837		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3838			break;
3839	}
3840
3841	allocated = 0;
3842	while (count > (persistent_huge_pages(h) + allocated)) {
3843		/*
3844		 * If this allocation races such that we no longer need the
3845		 * page, free_huge_folio will handle it by freeing the page
3846		 * and reducing the surplus.
3847		 */
3848		spin_unlock_irq(&hugetlb_lock);
3849
3850		/* yield cpu to avoid soft lockup */
3851		cond_resched();
3852
3853		folio = alloc_pool_huge_folio(h, nodes_allowed,
3854						node_alloc_noretry,
3855						&h->next_nid_to_alloc);
3856		if (!folio) {
3857			prep_and_add_allocated_folios(h, &page_list);
3858			spin_lock_irq(&hugetlb_lock);
3859			goto out;
3860		}
3861
3862		list_add(&folio->lru, &page_list);
3863		allocated++;
3864
3865		/* Bail for signals. Probably ctrl-c from user */
3866		if (signal_pending(current)) {
3867			prep_and_add_allocated_folios(h, &page_list);
3868			spin_lock_irq(&hugetlb_lock);
3869			goto out;
3870		}
3871
3872		spin_lock_irq(&hugetlb_lock);
3873	}
3874
3875	/* Add allocated pages to the pool */
3876	if (!list_empty(&page_list)) {
3877		spin_unlock_irq(&hugetlb_lock);
3878		prep_and_add_allocated_folios(h, &page_list);
3879		spin_lock_irq(&hugetlb_lock);
3880	}
3881
3882	/*
3883	 * Decrease the pool size
3884	 * First return free pages to the buddy allocator (being careful
3885	 * to keep enough around to satisfy reservations).  Then place
3886	 * pages into surplus state as needed so the pool will shrink
3887	 * to the desired size as pages become free.
3888	 *
3889	 * By placing pages into the surplus state independent of the
3890	 * overcommit value, we are allowing the surplus pool size to
3891	 * exceed overcommit. There are few sane options here. Since
3892	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3893	 * though, we'll note that we're not allowed to exceed surplus
3894	 * and won't grow the pool anywhere else. Not until one of the
3895	 * sysctls are changed, or the surplus pages go out of use.
3896	 */
3897	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3898	min_count = max(count, min_count);
3899	try_to_free_low(h, min_count, nodes_allowed);
3900
3901	/*
3902	 * Collect pages to be removed on list without dropping lock
3903	 */
3904	while (min_count < persistent_huge_pages(h)) {
3905		folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3906		if (!folio)
3907			break;
3908
3909		list_add(&folio->lru, &page_list);
3910	}
3911	/* free the pages after dropping lock */
3912	spin_unlock_irq(&hugetlb_lock);
3913	update_and_free_pages_bulk(h, &page_list);
3914	flush_free_hpage_work(h);
3915	spin_lock_irq(&hugetlb_lock);
3916
3917	while (count < persistent_huge_pages(h)) {
3918		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3919			break;
3920	}
3921out:
3922	h->max_huge_pages = persistent_huge_pages(h);
3923	spin_unlock_irq(&hugetlb_lock);
3924	mutex_unlock(&h->resize_lock);
3925
3926	NODEMASK_FREE(node_alloc_noretry);
3927
3928	return 0;
3929}
3930
3931static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3932{
3933	int i, nid = folio_nid(folio);
3934	struct hstate *target_hstate;
3935	struct page *subpage;
3936	struct folio *inner_folio;
3937	int rc = 0;
3938
3939	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3940
3941	remove_hugetlb_folio_for_demote(h, folio, false);
3942	spin_unlock_irq(&hugetlb_lock);
3943
3944	/*
3945	 * If vmemmap already existed for folio, the remove routine above would
3946	 * have cleared the hugetlb folio flag.  Hence the folio is technically
3947	 * no longer a hugetlb folio.  hugetlb_vmemmap_restore_folio can only be
3948	 * passed hugetlb folios and will BUG otherwise.
3949	 */
3950	if (folio_test_hugetlb(folio)) {
3951		rc = hugetlb_vmemmap_restore_folio(h, folio);
3952		if (rc) {
3953			/* Allocation of vmemmmap failed, we can not demote folio */
3954			spin_lock_irq(&hugetlb_lock);
3955			folio_ref_unfreeze(folio, 1);
3956			add_hugetlb_folio(h, folio, false);
3957			return rc;
3958		}
3959	}
3960
3961	/*
3962	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3963	 * sizes as it will not ref count folios.
3964	 */
3965	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3966
3967	/*
3968	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3969	 * Without the mutex, pages added to target hstate could be marked
3970	 * as surplus.
3971	 *
3972	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3973	 * use the convention of always taking larger size hstate mutex first.
3974	 */
3975	mutex_lock(&target_hstate->resize_lock);
3976	for (i = 0; i < pages_per_huge_page(h);
3977				i += pages_per_huge_page(target_hstate)) {
3978		subpage = folio_page(folio, i);
3979		inner_folio = page_folio(subpage);
3980		if (hstate_is_gigantic(target_hstate))
3981			prep_compound_gigantic_folio_for_demote(inner_folio,
3982							target_hstate->order);
3983		else
3984			prep_compound_page(subpage, target_hstate->order);
3985		folio_change_private(inner_folio, NULL);
3986		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3987		free_huge_folio(inner_folio);
3988	}
3989	mutex_unlock(&target_hstate->resize_lock);
3990
3991	spin_lock_irq(&hugetlb_lock);
3992
3993	/*
3994	 * Not absolutely necessary, but for consistency update max_huge_pages
3995	 * based on pool changes for the demoted page.
3996	 */
3997	h->max_huge_pages--;
3998	target_hstate->max_huge_pages +=
3999		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
4000
4001	return rc;
4002}
4003
4004static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
4005	__must_hold(&hugetlb_lock)
4006{
4007	int nr_nodes, node;
4008	struct folio *folio;
4009
4010	lockdep_assert_held(&hugetlb_lock);
4011
4012	/* We should never get here if no demote order */
4013	if (!h->demote_order) {
4014		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4015		return -EINVAL;		/* internal error */
4016	}
4017
4018	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
4019		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
4020			if (folio_test_hwpoison(folio))
4021				continue;
4022			return demote_free_hugetlb_folio(h, folio);
4023		}
4024	}
4025
4026	/*
4027	 * Only way to get here is if all pages on free lists are poisoned.
4028	 * Return -EBUSY so that caller will not retry.
4029	 */
4030	return -EBUSY;
4031}
4032
4033#define HSTATE_ATTR_RO(_name) \
4034	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4035
4036#define HSTATE_ATTR_WO(_name) \
4037	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4038
4039#define HSTATE_ATTR(_name) \
4040	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4041
4042static struct kobject *hugepages_kobj;
4043static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4044
4045static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4046
4047static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4048{
4049	int i;
4050
4051	for (i = 0; i < HUGE_MAX_HSTATE; i++)
4052		if (hstate_kobjs[i] == kobj) {
4053			if (nidp)
4054				*nidp = NUMA_NO_NODE;
4055			return &hstates[i];
4056		}
4057
4058	return kobj_to_node_hstate(kobj, nidp);
4059}
4060
4061static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4062					struct kobj_attribute *attr, char *buf)
4063{
4064	struct hstate *h;
4065	unsigned long nr_huge_pages;
4066	int nid;
4067
4068	h = kobj_to_hstate(kobj, &nid);
4069	if (nid == NUMA_NO_NODE)
4070		nr_huge_pages = h->nr_huge_pages;
4071	else
4072		nr_huge_pages = h->nr_huge_pages_node[nid];
4073
4074	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4075}
4076
4077static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4078					   struct hstate *h, int nid,
4079					   unsigned long count, size_t len)
4080{
4081	int err;
4082	nodemask_t nodes_allowed, *n_mask;
4083
4084	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4085		return -EINVAL;
4086
4087	if (nid == NUMA_NO_NODE) {
4088		/*
4089		 * global hstate attribute
4090		 */
4091		if (!(obey_mempolicy &&
4092				init_nodemask_of_mempolicy(&nodes_allowed)))
4093			n_mask = &node_states[N_MEMORY];
4094		else
4095			n_mask = &nodes_allowed;
4096	} else {
4097		/*
4098		 * Node specific request.  count adjustment happens in
4099		 * set_max_huge_pages() after acquiring hugetlb_lock.
4100		 */
4101		init_nodemask_of_node(&nodes_allowed, nid);
4102		n_mask = &nodes_allowed;
4103	}
4104
4105	err = set_max_huge_pages(h, count, nid, n_mask);
4106
4107	return err ? err : len;
4108}
4109
4110static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4111					 struct kobject *kobj, const char *buf,
4112					 size_t len)
4113{
4114	struct hstate *h;
4115	unsigned long count;
4116	int nid;
4117	int err;
4118
4119	err = kstrtoul(buf, 10, &count);
4120	if (err)
4121		return err;
4122
4123	h = kobj_to_hstate(kobj, &nid);
4124	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4125}
4126
4127static ssize_t nr_hugepages_show(struct kobject *kobj,
4128				       struct kobj_attribute *attr, char *buf)
4129{
4130	return nr_hugepages_show_common(kobj, attr, buf);
4131}
4132
4133static ssize_t nr_hugepages_store(struct kobject *kobj,
4134	       struct kobj_attribute *attr, const char *buf, size_t len)
4135{
4136	return nr_hugepages_store_common(false, kobj, buf, len);
4137}
4138HSTATE_ATTR(nr_hugepages);
4139
4140#ifdef CONFIG_NUMA
4141
4142/*
4143 * hstate attribute for optionally mempolicy-based constraint on persistent
4144 * huge page alloc/free.
4145 */
4146static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4147					   struct kobj_attribute *attr,
4148					   char *buf)
4149{
4150	return nr_hugepages_show_common(kobj, attr, buf);
4151}
4152
4153static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4154	       struct kobj_attribute *attr, const char *buf, size_t len)
4155{
4156	return nr_hugepages_store_common(true, kobj, buf, len);
4157}
4158HSTATE_ATTR(nr_hugepages_mempolicy);
4159#endif
4160
4161
4162static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4163					struct kobj_attribute *attr, char *buf)
4164{
4165	struct hstate *h = kobj_to_hstate(kobj, NULL);
4166	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4167}
4168
4169static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4170		struct kobj_attribute *attr, const char *buf, size_t count)
4171{
4172	int err;
4173	unsigned long input;
4174	struct hstate *h = kobj_to_hstate(kobj, NULL);
4175
4176	if (hstate_is_gigantic(h))
4177		return -EINVAL;
4178
4179	err = kstrtoul(buf, 10, &input);
4180	if (err)
4181		return err;
4182
4183	spin_lock_irq(&hugetlb_lock);
4184	h->nr_overcommit_huge_pages = input;
4185	spin_unlock_irq(&hugetlb_lock);
4186
4187	return count;
4188}
4189HSTATE_ATTR(nr_overcommit_hugepages);
4190
4191static ssize_t free_hugepages_show(struct kobject *kobj,
4192					struct kobj_attribute *attr, char *buf)
4193{
4194	struct hstate *h;
4195	unsigned long free_huge_pages;
4196	int nid;
4197
4198	h = kobj_to_hstate(kobj, &nid);
4199	if (nid == NUMA_NO_NODE)
4200		free_huge_pages = h->free_huge_pages;
4201	else
4202		free_huge_pages = h->free_huge_pages_node[nid];
4203
4204	return sysfs_emit(buf, "%lu\n", free_huge_pages);
4205}
4206HSTATE_ATTR_RO(free_hugepages);
4207
4208static ssize_t resv_hugepages_show(struct kobject *kobj,
4209					struct kobj_attribute *attr, char *buf)
4210{
4211	struct hstate *h = kobj_to_hstate(kobj, NULL);
4212	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4213}
4214HSTATE_ATTR_RO(resv_hugepages);
4215
4216static ssize_t surplus_hugepages_show(struct kobject *kobj,
4217					struct kobj_attribute *attr, char *buf)
4218{
4219	struct hstate *h;
4220	unsigned long surplus_huge_pages;
4221	int nid;
4222
4223	h = kobj_to_hstate(kobj, &nid);
4224	if (nid == NUMA_NO_NODE)
4225		surplus_huge_pages = h->surplus_huge_pages;
4226	else
4227		surplus_huge_pages = h->surplus_huge_pages_node[nid];
4228
4229	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4230}
4231HSTATE_ATTR_RO(surplus_hugepages);
4232
4233static ssize_t demote_store(struct kobject *kobj,
4234	       struct kobj_attribute *attr, const char *buf, size_t len)
4235{
4236	unsigned long nr_demote;
4237	unsigned long nr_available;
4238	nodemask_t nodes_allowed, *n_mask;
4239	struct hstate *h;
4240	int err;
4241	int nid;
4242
4243	err = kstrtoul(buf, 10, &nr_demote);
4244	if (err)
4245		return err;
4246	h = kobj_to_hstate(kobj, &nid);
4247
4248	if (nid != NUMA_NO_NODE) {
4249		init_nodemask_of_node(&nodes_allowed, nid);
4250		n_mask = &nodes_allowed;
4251	} else {
4252		n_mask = &node_states[N_MEMORY];
4253	}
4254
4255	/* Synchronize with other sysfs operations modifying huge pages */
4256	mutex_lock(&h->resize_lock);
4257	spin_lock_irq(&hugetlb_lock);
4258
4259	while (nr_demote) {
4260		/*
4261		 * Check for available pages to demote each time thorough the
4262		 * loop as demote_pool_huge_page will drop hugetlb_lock.
4263		 */
4264		if (nid != NUMA_NO_NODE)
4265			nr_available = h->free_huge_pages_node[nid];
4266		else
4267			nr_available = h->free_huge_pages;
4268		nr_available -= h->resv_huge_pages;
4269		if (!nr_available)
4270			break;
4271
4272		err = demote_pool_huge_page(h, n_mask);
4273		if (err)
4274			break;
4275
4276		nr_demote--;
4277	}
4278
4279	spin_unlock_irq(&hugetlb_lock);
4280	mutex_unlock(&h->resize_lock);
4281
4282	if (err)
4283		return err;
4284	return len;
4285}
4286HSTATE_ATTR_WO(demote);
4287
4288static ssize_t demote_size_show(struct kobject *kobj,
4289					struct kobj_attribute *attr, char *buf)
4290{
4291	struct hstate *h = kobj_to_hstate(kobj, NULL);
4292	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4293
4294	return sysfs_emit(buf, "%lukB\n", demote_size);
4295}
4296
4297static ssize_t demote_size_store(struct kobject *kobj,
4298					struct kobj_attribute *attr,
4299					const char *buf, size_t count)
4300{
4301	struct hstate *h, *demote_hstate;
4302	unsigned long demote_size;
4303	unsigned int demote_order;
4304
4305	demote_size = (unsigned long)memparse(buf, NULL);
4306
4307	demote_hstate = size_to_hstate(demote_size);
4308	if (!demote_hstate)
4309		return -EINVAL;
4310	demote_order = demote_hstate->order;
4311	if (demote_order < HUGETLB_PAGE_ORDER)
4312		return -EINVAL;
4313
4314	/* demote order must be smaller than hstate order */
4315	h = kobj_to_hstate(kobj, NULL);
4316	if (demote_order >= h->order)
4317		return -EINVAL;
4318
4319	/* resize_lock synchronizes access to demote size and writes */
4320	mutex_lock(&h->resize_lock);
4321	h->demote_order = demote_order;
4322	mutex_unlock(&h->resize_lock);
4323
4324	return count;
4325}
4326HSTATE_ATTR(demote_size);
4327
4328static struct attribute *hstate_attrs[] = {
4329	&nr_hugepages_attr.attr,
4330	&nr_overcommit_hugepages_attr.attr,
4331	&free_hugepages_attr.attr,
4332	&resv_hugepages_attr.attr,
4333	&surplus_hugepages_attr.attr,
4334#ifdef CONFIG_NUMA
4335	&nr_hugepages_mempolicy_attr.attr,
4336#endif
4337	NULL,
4338};
4339
4340static const struct attribute_group hstate_attr_group = {
4341	.attrs = hstate_attrs,
4342};
4343
4344static struct attribute *hstate_demote_attrs[] = {
4345	&demote_size_attr.attr,
4346	&demote_attr.attr,
4347	NULL,
4348};
4349
4350static const struct attribute_group hstate_demote_attr_group = {
4351	.attrs = hstate_demote_attrs,
4352};
4353
4354static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4355				    struct kobject **hstate_kobjs,
4356				    const struct attribute_group *hstate_attr_group)
4357{
4358	int retval;
4359	int hi = hstate_index(h);
4360
4361	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4362	if (!hstate_kobjs[hi])
4363		return -ENOMEM;
4364
4365	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4366	if (retval) {
4367		kobject_put(hstate_kobjs[hi]);
4368		hstate_kobjs[hi] = NULL;
4369		return retval;
4370	}
4371
4372	if (h->demote_order) {
4373		retval = sysfs_create_group(hstate_kobjs[hi],
4374					    &hstate_demote_attr_group);
4375		if (retval) {
4376			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4377			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4378			kobject_put(hstate_kobjs[hi]);
4379			hstate_kobjs[hi] = NULL;
4380			return retval;
4381		}
4382	}
4383
4384	return 0;
4385}
4386
4387#ifdef CONFIG_NUMA
4388static bool hugetlb_sysfs_initialized __ro_after_init;
4389
4390/*
4391 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4392 * with node devices in node_devices[] using a parallel array.  The array
4393 * index of a node device or _hstate == node id.
4394 * This is here to avoid any static dependency of the node device driver, in
4395 * the base kernel, on the hugetlb module.
4396 */
4397struct node_hstate {
4398	struct kobject		*hugepages_kobj;
4399	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4400};
4401static struct node_hstate node_hstates[MAX_NUMNODES];
4402
4403/*
4404 * A subset of global hstate attributes for node devices
4405 */
4406static struct attribute *per_node_hstate_attrs[] = {
4407	&nr_hugepages_attr.attr,
4408	&free_hugepages_attr.attr,
4409	&surplus_hugepages_attr.attr,
4410	NULL,
4411};
4412
4413static const struct attribute_group per_node_hstate_attr_group = {
4414	.attrs = per_node_hstate_attrs,
4415};
4416
4417/*
4418 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4419 * Returns node id via non-NULL nidp.
4420 */
4421static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4422{
4423	int nid;
4424
4425	for (nid = 0; nid < nr_node_ids; nid++) {
4426		struct node_hstate *nhs = &node_hstates[nid];
4427		int i;
4428		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4429			if (nhs->hstate_kobjs[i] == kobj) {
4430				if (nidp)
4431					*nidp = nid;
4432				return &hstates[i];
4433			}
4434	}
4435
4436	BUG();
4437	return NULL;
4438}
4439
4440/*
4441 * Unregister hstate attributes from a single node device.
4442 * No-op if no hstate attributes attached.
4443 */
4444void hugetlb_unregister_node(struct node *node)
4445{
4446	struct hstate *h;
4447	struct node_hstate *nhs = &node_hstates[node->dev.id];
4448
4449	if (!nhs->hugepages_kobj)
4450		return;		/* no hstate attributes */
4451
4452	for_each_hstate(h) {
4453		int idx = hstate_index(h);
4454		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4455
4456		if (!hstate_kobj)
4457			continue;
4458		if (h->demote_order)
4459			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4460		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4461		kobject_put(hstate_kobj);
4462		nhs->hstate_kobjs[idx] = NULL;
4463	}
4464
4465	kobject_put(nhs->hugepages_kobj);
4466	nhs->hugepages_kobj = NULL;
4467}
4468
4469
4470/*
4471 * Register hstate attributes for a single node device.
4472 * No-op if attributes already registered.
4473 */
4474void hugetlb_register_node(struct node *node)
4475{
4476	struct hstate *h;
4477	struct node_hstate *nhs = &node_hstates[node->dev.id];
4478	int err;
4479
4480	if (!hugetlb_sysfs_initialized)
4481		return;
4482
4483	if (nhs->hugepages_kobj)
4484		return;		/* already allocated */
4485
4486	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4487							&node->dev.kobj);
4488	if (!nhs->hugepages_kobj)
4489		return;
4490
4491	for_each_hstate(h) {
4492		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4493						nhs->hstate_kobjs,
4494						&per_node_hstate_attr_group);
4495		if (err) {
4496			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4497				h->name, node->dev.id);
4498			hugetlb_unregister_node(node);
4499			break;
4500		}
4501	}
4502}
4503
4504/*
4505 * hugetlb init time:  register hstate attributes for all registered node
4506 * devices of nodes that have memory.  All on-line nodes should have
4507 * registered their associated device by this time.
4508 */
4509static void __init hugetlb_register_all_nodes(void)
4510{
4511	int nid;
4512
4513	for_each_online_node(nid)
4514		hugetlb_register_node(node_devices[nid]);
4515}
4516#else	/* !CONFIG_NUMA */
4517
4518static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4519{
4520	BUG();
4521	if (nidp)
4522		*nidp = -1;
4523	return NULL;
4524}
4525
4526static void hugetlb_register_all_nodes(void) { }
4527
4528#endif
4529
4530#ifdef CONFIG_CMA
4531static void __init hugetlb_cma_check(void);
4532#else
4533static inline __init void hugetlb_cma_check(void)
4534{
4535}
4536#endif
4537
4538static void __init hugetlb_sysfs_init(void)
4539{
4540	struct hstate *h;
4541	int err;
4542
4543	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4544	if (!hugepages_kobj)
4545		return;
4546
4547	for_each_hstate(h) {
4548		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4549					 hstate_kobjs, &hstate_attr_group);
4550		if (err)
4551			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4552	}
4553
4554#ifdef CONFIG_NUMA
4555	hugetlb_sysfs_initialized = true;
4556#endif
4557	hugetlb_register_all_nodes();
4558}
4559
4560#ifdef CONFIG_SYSCTL
4561static void hugetlb_sysctl_init(void);
4562#else
4563static inline void hugetlb_sysctl_init(void) { }
4564#endif
4565
4566static int __init hugetlb_init(void)
4567{
4568	int i;
4569
4570	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4571			__NR_HPAGEFLAGS);
4572
4573	if (!hugepages_supported()) {
4574		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4575			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4576		return 0;
4577	}
4578
4579	/*
4580	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4581	 * architectures depend on setup being done here.
4582	 */
4583	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4584	if (!parsed_default_hugepagesz) {
4585		/*
4586		 * If we did not parse a default huge page size, set
4587		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4588		 * number of huge pages for this default size was implicitly
4589		 * specified, set that here as well.
4590		 * Note that the implicit setting will overwrite an explicit
4591		 * setting.  A warning will be printed in this case.
4592		 */
4593		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4594		if (default_hstate_max_huge_pages) {
4595			if (default_hstate.max_huge_pages) {
4596				char buf[32];
4597
4598				string_get_size(huge_page_size(&default_hstate),
4599					1, STRING_UNITS_2, buf, 32);
4600				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4601					default_hstate.max_huge_pages, buf);
4602				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4603					default_hstate_max_huge_pages);
4604			}
4605			default_hstate.max_huge_pages =
4606				default_hstate_max_huge_pages;
4607
4608			for_each_online_node(i)
4609				default_hstate.max_huge_pages_node[i] =
4610					default_hugepages_in_node[i];
4611		}
4612	}
4613
4614	hugetlb_cma_check();
4615	hugetlb_init_hstates();
4616	gather_bootmem_prealloc();
4617	report_hugepages();
4618
4619	hugetlb_sysfs_init();
4620	hugetlb_cgroup_file_init();
4621	hugetlb_sysctl_init();
4622
4623#ifdef CONFIG_SMP
4624	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4625#else
4626	num_fault_mutexes = 1;
4627#endif
4628	hugetlb_fault_mutex_table =
4629		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4630			      GFP_KERNEL);
4631	BUG_ON(!hugetlb_fault_mutex_table);
4632
4633	for (i = 0; i < num_fault_mutexes; i++)
4634		mutex_init(&hugetlb_fault_mutex_table[i]);
4635	return 0;
4636}
4637subsys_initcall(hugetlb_init);
4638
4639/* Overwritten by architectures with more huge page sizes */
4640bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4641{
4642	return size == HPAGE_SIZE;
4643}
4644
4645void __init hugetlb_add_hstate(unsigned int order)
4646{
4647	struct hstate *h;
4648	unsigned long i;
4649
4650	if (size_to_hstate(PAGE_SIZE << order)) {
4651		return;
4652	}
4653	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4654	BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4655	h = &hstates[hugetlb_max_hstate++];
4656	mutex_init(&h->resize_lock);
4657	h->order = order;
4658	h->mask = ~(huge_page_size(h) - 1);
4659	for (i = 0; i < MAX_NUMNODES; ++i)
4660		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4661	INIT_LIST_HEAD(&h->hugepage_activelist);
4662	h->next_nid_to_alloc = first_memory_node;
4663	h->next_nid_to_free = first_memory_node;
4664	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4665					huge_page_size(h)/SZ_1K);
4666
4667	parsed_hstate = h;
4668}
4669
4670bool __init __weak hugetlb_node_alloc_supported(void)
4671{
4672	return true;
4673}
4674
4675static void __init hugepages_clear_pages_in_node(void)
4676{
4677	if (!hugetlb_max_hstate) {
4678		default_hstate_max_huge_pages = 0;
4679		memset(default_hugepages_in_node, 0,
4680			sizeof(default_hugepages_in_node));
4681	} else {
4682		parsed_hstate->max_huge_pages = 0;
4683		memset(parsed_hstate->max_huge_pages_node, 0,
4684			sizeof(parsed_hstate->max_huge_pages_node));
4685	}
4686}
4687
4688/*
4689 * hugepages command line processing
4690 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4691 * specification.  If not, ignore the hugepages value.  hugepages can also
4692 * be the first huge page command line  option in which case it implicitly
4693 * specifies the number of huge pages for the default size.
4694 */
4695static int __init hugepages_setup(char *s)
4696{
4697	unsigned long *mhp;
4698	static unsigned long *last_mhp;
4699	int node = NUMA_NO_NODE;
4700	int count;
4701	unsigned long tmp;
4702	char *p = s;
4703
4704	if (!parsed_valid_hugepagesz) {
4705		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4706		parsed_valid_hugepagesz = true;
4707		return 1;
4708	}
4709
4710	/*
4711	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4712	 * yet, so this hugepages= parameter goes to the "default hstate".
4713	 * Otherwise, it goes with the previously parsed hugepagesz or
4714	 * default_hugepagesz.
4715	 */
4716	else if (!hugetlb_max_hstate)
4717		mhp = &default_hstate_max_huge_pages;
4718	else
4719		mhp = &parsed_hstate->max_huge_pages;
4720
4721	if (mhp == last_mhp) {
4722		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4723		return 1;
4724	}
4725
4726	while (*p) {
4727		count = 0;
4728		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4729			goto invalid;
4730		/* Parameter is node format */
4731		if (p[count] == ':') {
4732			if (!hugetlb_node_alloc_supported()) {
4733				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4734				return 1;
4735			}
4736			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4737				goto invalid;
4738			node = array_index_nospec(tmp, MAX_NUMNODES);
4739			p += count + 1;
4740			/* Parse hugepages */
4741			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4742				goto invalid;
4743			if (!hugetlb_max_hstate)
4744				default_hugepages_in_node[node] = tmp;
4745			else
4746				parsed_hstate->max_huge_pages_node[node] = tmp;
4747			*mhp += tmp;
4748			/* Go to parse next node*/
4749			if (p[count] == ',')
4750				p += count + 1;
4751			else
4752				break;
4753		} else {
4754			if (p != s)
4755				goto invalid;
4756			*mhp = tmp;
4757			break;
4758		}
4759	}
4760
4761	/*
4762	 * Global state is always initialized later in hugetlb_init.
4763	 * But we need to allocate gigantic hstates here early to still
4764	 * use the bootmem allocator.
4765	 */
4766	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4767		hugetlb_hstate_alloc_pages(parsed_hstate);
4768
4769	last_mhp = mhp;
4770
4771	return 1;
4772
4773invalid:
4774	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4775	hugepages_clear_pages_in_node();
4776	return 1;
4777}
4778__setup("hugepages=", hugepages_setup);
4779
4780/*
4781 * hugepagesz command line processing
4782 * A specific huge page size can only be specified once with hugepagesz.
4783 * hugepagesz is followed by hugepages on the command line.  The global
4784 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4785 * hugepagesz argument was valid.
4786 */
4787static int __init hugepagesz_setup(char *s)
4788{
4789	unsigned long size;
4790	struct hstate *h;
4791
4792	parsed_valid_hugepagesz = false;
4793	size = (unsigned long)memparse(s, NULL);
4794
4795	if (!arch_hugetlb_valid_size(size)) {
4796		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4797		return 1;
4798	}
4799
4800	h = size_to_hstate(size);
4801	if (h) {
4802		/*
4803		 * hstate for this size already exists.  This is normally
4804		 * an error, but is allowed if the existing hstate is the
4805		 * default hstate.  More specifically, it is only allowed if
4806		 * the number of huge pages for the default hstate was not
4807		 * previously specified.
4808		 */
4809		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4810		    default_hstate.max_huge_pages) {
4811			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4812			return 1;
4813		}
4814
4815		/*
4816		 * No need to call hugetlb_add_hstate() as hstate already
4817		 * exists.  But, do set parsed_hstate so that a following
4818		 * hugepages= parameter will be applied to this hstate.
4819		 */
4820		parsed_hstate = h;
4821		parsed_valid_hugepagesz = true;
4822		return 1;
4823	}
4824
4825	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4826	parsed_valid_hugepagesz = true;
4827	return 1;
4828}
4829__setup("hugepagesz=", hugepagesz_setup);
4830
4831/*
4832 * default_hugepagesz command line input
4833 * Only one instance of default_hugepagesz allowed on command line.
4834 */
4835static int __init default_hugepagesz_setup(char *s)
4836{
4837	unsigned long size;
4838	int i;
4839
4840	parsed_valid_hugepagesz = false;
4841	if (parsed_default_hugepagesz) {
4842		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4843		return 1;
4844	}
4845
4846	size = (unsigned long)memparse(s, NULL);
4847
4848	if (!arch_hugetlb_valid_size(size)) {
4849		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4850		return 1;
4851	}
4852
4853	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4854	parsed_valid_hugepagesz = true;
4855	parsed_default_hugepagesz = true;
4856	default_hstate_idx = hstate_index(size_to_hstate(size));
4857
4858	/*
4859	 * The number of default huge pages (for this size) could have been
4860	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4861	 * then default_hstate_max_huge_pages is set.  If the default huge
4862	 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4863	 * allocated here from bootmem allocator.
4864	 */
4865	if (default_hstate_max_huge_pages) {
4866		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4867		for_each_online_node(i)
4868			default_hstate.max_huge_pages_node[i] =
4869				default_hugepages_in_node[i];
4870		if (hstate_is_gigantic(&default_hstate))
4871			hugetlb_hstate_alloc_pages(&default_hstate);
4872		default_hstate_max_huge_pages = 0;
4873	}
4874
4875	return 1;
4876}
4877__setup("default_hugepagesz=", default_hugepagesz_setup);
4878
4879static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4880{
4881#ifdef CONFIG_NUMA
4882	struct mempolicy *mpol = get_task_policy(current);
4883
4884	/*
4885	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4886	 * (from policy_nodemask) specifically for hugetlb case
4887	 */
4888	if (mpol->mode == MPOL_BIND &&
4889		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4890		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4891		return &mpol->nodes;
4892#endif
4893	return NULL;
4894}
4895
4896static unsigned int allowed_mems_nr(struct hstate *h)
4897{
4898	int node;
4899	unsigned int nr = 0;
4900	nodemask_t *mbind_nodemask;
4901	unsigned int *array = h->free_huge_pages_node;
4902	gfp_t gfp_mask = htlb_alloc_mask(h);
4903
4904	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4905	for_each_node_mask(node, cpuset_current_mems_allowed) {
4906		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4907			nr += array[node];
4908	}
4909
4910	return nr;
4911}
4912
4913#ifdef CONFIG_SYSCTL
4914static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4915					  void *buffer, size_t *length,
4916					  loff_t *ppos, unsigned long *out)
4917{
4918	struct ctl_table dup_table;
4919
4920	/*
4921	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4922	 * can duplicate the @table and alter the duplicate of it.
4923	 */
4924	dup_table = *table;
4925	dup_table.data = out;
4926
4927	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4928}
4929
4930static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4931			 struct ctl_table *table, int write,
4932			 void *buffer, size_t *length, loff_t *ppos)
4933{
4934	struct hstate *h = &default_hstate;
4935	unsigned long tmp = h->max_huge_pages;
4936	int ret;
4937
4938	if (!hugepages_supported())
4939		return -EOPNOTSUPP;
4940
4941	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4942					     &tmp);
4943	if (ret)
4944		goto out;
4945
4946	if (write)
4947		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4948						  NUMA_NO_NODE, tmp, *length);
4949out:
4950	return ret;
4951}
4952
4953static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4954			  void *buffer, size_t *length, loff_t *ppos)
4955{
4956
4957	return hugetlb_sysctl_handler_common(false, table, write,
4958							buffer, length, ppos);
4959}
4960
4961#ifdef CONFIG_NUMA
4962static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4963			  void *buffer, size_t *length, loff_t *ppos)
4964{
4965	return hugetlb_sysctl_handler_common(true, table, write,
4966							buffer, length, ppos);
4967}
4968#endif /* CONFIG_NUMA */
4969
4970static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4971		void *buffer, size_t *length, loff_t *ppos)
4972{
4973	struct hstate *h = &default_hstate;
4974	unsigned long tmp;
4975	int ret;
4976
4977	if (!hugepages_supported())
4978		return -EOPNOTSUPP;
4979
4980	tmp = h->nr_overcommit_huge_pages;
4981
4982	if (write && hstate_is_gigantic(h))
4983		return -EINVAL;
4984
4985	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4986					     &tmp);
4987	if (ret)
4988		goto out;
4989
4990	if (write) {
4991		spin_lock_irq(&hugetlb_lock);
4992		h->nr_overcommit_huge_pages = tmp;
4993		spin_unlock_irq(&hugetlb_lock);
4994	}
4995out:
4996	return ret;
4997}
4998
4999static struct ctl_table hugetlb_table[] = {
5000	{
5001		.procname	= "nr_hugepages",
5002		.data		= NULL,
5003		.maxlen		= sizeof(unsigned long),
5004		.mode		= 0644,
5005		.proc_handler	= hugetlb_sysctl_handler,
5006	},
5007#ifdef CONFIG_NUMA
5008	{
5009		.procname       = "nr_hugepages_mempolicy",
5010		.data           = NULL,
5011		.maxlen         = sizeof(unsigned long),
5012		.mode           = 0644,
5013		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
5014	},
5015#endif
5016	{
5017		.procname	= "hugetlb_shm_group",
5018		.data		= &sysctl_hugetlb_shm_group,
5019		.maxlen		= sizeof(gid_t),
5020		.mode		= 0644,
5021		.proc_handler	= proc_dointvec,
5022	},
5023	{
5024		.procname	= "nr_overcommit_hugepages",
5025		.data		= NULL,
5026		.maxlen		= sizeof(unsigned long),
5027		.mode		= 0644,
5028		.proc_handler	= hugetlb_overcommit_handler,
5029	},
5030};
5031
5032static void hugetlb_sysctl_init(void)
5033{
5034	register_sysctl_init("vm", hugetlb_table);
5035}
5036#endif /* CONFIG_SYSCTL */
5037
5038void hugetlb_report_meminfo(struct seq_file *m)
5039{
5040	struct hstate *h;
5041	unsigned long total = 0;
5042
5043	if (!hugepages_supported())
5044		return;
5045
5046	for_each_hstate(h) {
5047		unsigned long count = h->nr_huge_pages;
5048
5049		total += huge_page_size(h) * count;
5050
5051		if (h == &default_hstate)
5052			seq_printf(m,
5053				   "HugePages_Total:   %5lu\n"
5054				   "HugePages_Free:    %5lu\n"
5055				   "HugePages_Rsvd:    %5lu\n"
5056				   "HugePages_Surp:    %5lu\n"
5057				   "Hugepagesize:   %8lu kB\n",
5058				   count,
5059				   h->free_huge_pages,
5060				   h->resv_huge_pages,
5061				   h->surplus_huge_pages,
5062				   huge_page_size(h) / SZ_1K);
5063	}
5064
5065	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
5066}
5067
5068int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5069{
5070	struct hstate *h = &default_hstate;
5071
5072	if (!hugepages_supported())
5073		return 0;
5074
5075	return sysfs_emit_at(buf, len,
5076			     "Node %d HugePages_Total: %5u\n"
5077			     "Node %d HugePages_Free:  %5u\n"
5078			     "Node %d HugePages_Surp:  %5u\n",
5079			     nid, h->nr_huge_pages_node[nid],
5080			     nid, h->free_huge_pages_node[nid],
5081			     nid, h->surplus_huge_pages_node[nid]);
5082}
5083
5084void hugetlb_show_meminfo_node(int nid)
5085{
5086	struct hstate *h;
5087
5088	if (!hugepages_supported())
5089		return;
5090
5091	for_each_hstate(h)
5092		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5093			nid,
5094			h->nr_huge_pages_node[nid],
5095			h->free_huge_pages_node[nid],
5096			h->surplus_huge_pages_node[nid],
5097			huge_page_size(h) / SZ_1K);
5098}
5099
5100void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5101{
5102	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5103		   K(atomic_long_read(&mm->hugetlb_usage)));
5104}
5105
5106/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5107unsigned long hugetlb_total_pages(void)
5108{
5109	struct hstate *h;
5110	unsigned long nr_total_pages = 0;
5111
5112	for_each_hstate(h)
5113		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5114	return nr_total_pages;
5115}
5116
5117static int hugetlb_acct_memory(struct hstate *h, long delta)
5118{
5119	int ret = -ENOMEM;
5120
5121	if (!delta)
5122		return 0;
5123
5124	spin_lock_irq(&hugetlb_lock);
5125	/*
5126	 * When cpuset is configured, it breaks the strict hugetlb page
5127	 * reservation as the accounting is done on a global variable. Such
5128	 * reservation is completely rubbish in the presence of cpuset because
5129	 * the reservation is not checked against page availability for the
5130	 * current cpuset. Application can still potentially OOM'ed by kernel
5131	 * with lack of free htlb page in cpuset that the task is in.
5132	 * Attempt to enforce strict accounting with cpuset is almost
5133	 * impossible (or too ugly) because cpuset is too fluid that
5134	 * task or memory node can be dynamically moved between cpusets.
5135	 *
5136	 * The change of semantics for shared hugetlb mapping with cpuset is
5137	 * undesirable. However, in order to preserve some of the semantics,
5138	 * we fall back to check against current free page availability as
5139	 * a best attempt and hopefully to minimize the impact of changing
5140	 * semantics that cpuset has.
5141	 *
5142	 * Apart from cpuset, we also have memory policy mechanism that
5143	 * also determines from which node the kernel will allocate memory
5144	 * in a NUMA system. So similar to cpuset, we also should consider
5145	 * the memory policy of the current task. Similar to the description
5146	 * above.
5147	 */
5148	if (delta > 0) {
5149		if (gather_surplus_pages(h, delta) < 0)
5150			goto out;
5151
5152		if (delta > allowed_mems_nr(h)) {
5153			return_unused_surplus_pages(h, delta);
5154			goto out;
5155		}
5156	}
5157
5158	ret = 0;
5159	if (delta < 0)
5160		return_unused_surplus_pages(h, (unsigned long) -delta);
5161
5162out:
5163	spin_unlock_irq(&hugetlb_lock);
5164	return ret;
5165}
5166
5167static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5168{
5169	struct resv_map *resv = vma_resv_map(vma);
5170
5171	/*
5172	 * HPAGE_RESV_OWNER indicates a private mapping.
5173	 * This new VMA should share its siblings reservation map if present.
5174	 * The VMA will only ever have a valid reservation map pointer where
5175	 * it is being copied for another still existing VMA.  As that VMA
5176	 * has a reference to the reservation map it cannot disappear until
5177	 * after this open call completes.  It is therefore safe to take a
5178	 * new reference here without additional locking.
5179	 */
5180	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5181		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5182		kref_get(&resv->refs);
5183	}
5184
5185	/*
5186	 * vma_lock structure for sharable mappings is vma specific.
5187	 * Clear old pointer (if copied via vm_area_dup) and allocate
5188	 * new structure.  Before clearing, make sure vma_lock is not
5189	 * for this vma.
5190	 */
5191	if (vma->vm_flags & VM_MAYSHARE) {
5192		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5193
5194		if (vma_lock) {
5195			if (vma_lock->vma != vma) {
5196				vma->vm_private_data = NULL;
5197				hugetlb_vma_lock_alloc(vma);
5198			} else
5199				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5200		} else
5201			hugetlb_vma_lock_alloc(vma);
5202	}
5203}
5204
5205static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5206{
5207	struct hstate *h = hstate_vma(vma);
5208	struct resv_map *resv;
5209	struct hugepage_subpool *spool = subpool_vma(vma);
5210	unsigned long reserve, start, end;
5211	long gbl_reserve;
5212
5213	hugetlb_vma_lock_free(vma);
5214
5215	resv = vma_resv_map(vma);
5216	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5217		return;
5218
5219	start = vma_hugecache_offset(h, vma, vma->vm_start);
5220	end = vma_hugecache_offset(h, vma, vma->vm_end);
5221
5222	reserve = (end - start) - region_count(resv, start, end);
5223	hugetlb_cgroup_uncharge_counter(resv, start, end);
5224	if (reserve) {
5225		/*
5226		 * Decrement reserve counts.  The global reserve count may be
5227		 * adjusted if the subpool has a minimum size.
5228		 */
5229		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5230		hugetlb_acct_memory(h, -gbl_reserve);
5231	}
5232
5233	kref_put(&resv->refs, resv_map_release);
5234}
5235
5236static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5237{
5238	if (addr & ~(huge_page_mask(hstate_vma(vma))))
5239		return -EINVAL;
5240
5241	/*
5242	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5243	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5244	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5245	 */
5246	if (addr & ~PUD_MASK) {
5247		/*
5248		 * hugetlb_vm_op_split is called right before we attempt to
5249		 * split the VMA. We will need to unshare PMDs in the old and
5250		 * new VMAs, so let's unshare before we split.
5251		 */
5252		unsigned long floor = addr & PUD_MASK;
5253		unsigned long ceil = floor + PUD_SIZE;
5254
5255		if (floor >= vma->vm_start && ceil <= vma->vm_end)
5256			hugetlb_unshare_pmds(vma, floor, ceil);
5257	}
5258
5259	return 0;
5260}
5261
5262static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5263{
5264	return huge_page_size(hstate_vma(vma));
5265}
5266
5267/*
5268 * We cannot handle pagefaults against hugetlb pages at all.  They cause
5269 * handle_mm_fault() to try to instantiate regular-sized pages in the
5270 * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5271 * this far.
5272 */
5273static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5274{
5275	BUG();
5276	return 0;
5277}
5278
5279/*
5280 * When a new function is introduced to vm_operations_struct and added
5281 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5282 * This is because under System V memory model, mappings created via
5283 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5284 * their original vm_ops are overwritten with shm_vm_ops.
5285 */
5286const struct vm_operations_struct hugetlb_vm_ops = {
5287	.fault = hugetlb_vm_op_fault,
5288	.open = hugetlb_vm_op_open,
5289	.close = hugetlb_vm_op_close,
5290	.may_split = hugetlb_vm_op_split,
5291	.pagesize = hugetlb_vm_op_pagesize,
5292};
5293
5294static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5295				int writable)
5296{
5297	pte_t entry;
5298	unsigned int shift = huge_page_shift(hstate_vma(vma));
5299
5300	if (writable) {
5301		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5302					 vma->vm_page_prot)));
5303	} else {
5304		entry = huge_pte_wrprotect(mk_huge_pte(page,
5305					   vma->vm_page_prot));
5306	}
5307	entry = pte_mkyoung(entry);
5308	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5309
5310	return entry;
5311}
5312
5313static void set_huge_ptep_writable(struct vm_area_struct *vma,
5314				   unsigned long address, pte_t *ptep)
5315{
5316	pte_t entry;
5317
5318	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
5319	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5320		update_mmu_cache(vma, address, ptep);
5321}
5322
5323bool is_hugetlb_entry_migration(pte_t pte)
5324{
5325	swp_entry_t swp;
5326
5327	if (huge_pte_none(pte) || pte_present(pte))
5328		return false;
5329	swp = pte_to_swp_entry(pte);
5330	if (is_migration_entry(swp))
5331		return true;
5332	else
5333		return false;
5334}
5335
5336bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5337{
5338	swp_entry_t swp;
5339
5340	if (huge_pte_none(pte) || pte_present(pte))
5341		return false;
5342	swp = pte_to_swp_entry(pte);
5343	if (is_hwpoison_entry(swp))
5344		return true;
5345	else
5346		return false;
5347}
5348
5349static void
5350hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5351		      struct folio *new_folio, pte_t old, unsigned long sz)
5352{
5353	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5354
5355	__folio_mark_uptodate(new_folio);
5356	hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5357	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5358		newpte = huge_pte_mkuffd_wp(newpte);
5359	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5360	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5361	folio_set_hugetlb_migratable(new_folio);
5362}
5363
5364int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5365			    struct vm_area_struct *dst_vma,
5366			    struct vm_area_struct *src_vma)
5367{
5368	pte_t *src_pte, *dst_pte, entry;
5369	struct folio *pte_folio;
5370	unsigned long addr;
5371	bool cow = is_cow_mapping(src_vma->vm_flags);
5372	struct hstate *h = hstate_vma(src_vma);
5373	unsigned long sz = huge_page_size(h);
5374	unsigned long npages = pages_per_huge_page(h);
5375	struct mmu_notifier_range range;
5376	unsigned long last_addr_mask;
5377	int ret = 0;
5378
5379	if (cow) {
5380		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5381					src_vma->vm_start,
5382					src_vma->vm_end);
5383		mmu_notifier_invalidate_range_start(&range);
5384		vma_assert_write_locked(src_vma);
5385		raw_write_seqcount_begin(&src->write_protect_seq);
5386	} else {
5387		/*
5388		 * For shared mappings the vma lock must be held before
5389		 * calling hugetlb_walk() in the src vma. Otherwise, the
5390		 * returned ptep could go away if part of a shared pmd and
5391		 * another thread calls huge_pmd_unshare.
5392		 */
5393		hugetlb_vma_lock_read(src_vma);
5394	}
5395
5396	last_addr_mask = hugetlb_mask_last_page(h);
5397	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5398		spinlock_t *src_ptl, *dst_ptl;
5399		src_pte = hugetlb_walk(src_vma, addr, sz);
5400		if (!src_pte) {
5401			addr |= last_addr_mask;
5402			continue;
5403		}
5404		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5405		if (!dst_pte) {
5406			ret = -ENOMEM;
5407			break;
5408		}
5409
5410		/*
5411		 * If the pagetables are shared don't copy or take references.
5412		 *
5413		 * dst_pte == src_pte is the common case of src/dest sharing.
5414		 * However, src could have 'unshared' and dst shares with
5415		 * another vma. So page_count of ptep page is checked instead
5416		 * to reliably determine whether pte is shared.
5417		 */
5418		if (page_count(virt_to_page(dst_pte)) > 1) {
5419			addr |= last_addr_mask;
5420			continue;
5421		}
5422
5423		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5424		src_ptl = huge_pte_lockptr(h, src, src_pte);
5425		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5426		entry = huge_ptep_get(src_pte);
5427again:
5428		if (huge_pte_none(entry)) {
5429			/*
5430			 * Skip if src entry none.
5431			 */
5432			;
5433		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5434			if (!userfaultfd_wp(dst_vma))
5435				entry = huge_pte_clear_uffd_wp(entry);
5436			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5437		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5438			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5439			bool uffd_wp = pte_swp_uffd_wp(entry);
5440
5441			if (!is_readable_migration_entry(swp_entry) && cow) {
5442				/*
5443				 * COW mappings require pages in both
5444				 * parent and child to be set to read.
5445				 */
5446				swp_entry = make_readable_migration_entry(
5447							swp_offset(swp_entry));
5448				entry = swp_entry_to_pte(swp_entry);
5449				if (userfaultfd_wp(src_vma) && uffd_wp)
5450					entry = pte_swp_mkuffd_wp(entry);
5451				set_huge_pte_at(src, addr, src_pte, entry, sz);
5452			}
5453			if (!userfaultfd_wp(dst_vma))
5454				entry = huge_pte_clear_uffd_wp(entry);
5455			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5456		} else if (unlikely(is_pte_marker(entry))) {
5457			pte_marker marker = copy_pte_marker(
5458				pte_to_swp_entry(entry), dst_vma);
5459
5460			if (marker)
5461				set_huge_pte_at(dst, addr, dst_pte,
5462						make_pte_marker(marker), sz);
5463		} else {
5464			entry = huge_ptep_get(src_pte);
5465			pte_folio = page_folio(pte_page(entry));
5466			folio_get(pte_folio);
5467
5468			/*
5469			 * Failing to duplicate the anon rmap is a rare case
5470			 * where we see pinned hugetlb pages while they're
5471			 * prone to COW. We need to do the COW earlier during
5472			 * fork.
5473			 *
5474			 * When pre-allocating the page or copying data, we
5475			 * need to be without the pgtable locks since we could
5476			 * sleep during the process.
5477			 */
5478			if (!folio_test_anon(pte_folio)) {
5479				hugetlb_add_file_rmap(pte_folio);
5480			} else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5481				pte_t src_pte_old = entry;
5482				struct folio *new_folio;
5483
5484				spin_unlock(src_ptl);
5485				spin_unlock(dst_ptl);
5486				/* Do not use reserve as it's private owned */
5487				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5488				if (IS_ERR(new_folio)) {
5489					folio_put(pte_folio);
5490					ret = PTR_ERR(new_folio);
5491					break;
5492				}
5493				ret = copy_user_large_folio(new_folio,
5494							    pte_folio,
5495							    addr, dst_vma);
5496				folio_put(pte_folio);
5497				if (ret) {
5498					folio_put(new_folio);
5499					break;
5500				}
5501
5502				/* Install the new hugetlb folio if src pte stable */
5503				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5504				src_ptl = huge_pte_lockptr(h, src, src_pte);
5505				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5506				entry = huge_ptep_get(src_pte);
5507				if (!pte_same(src_pte_old, entry)) {
5508					restore_reserve_on_error(h, dst_vma, addr,
5509								new_folio);
5510					folio_put(new_folio);
5511					/* huge_ptep of dst_pte won't change as in child */
5512					goto again;
5513				}
5514				hugetlb_install_folio(dst_vma, dst_pte, addr,
5515						      new_folio, src_pte_old, sz);
5516				spin_unlock(src_ptl);
5517				spin_unlock(dst_ptl);
5518				continue;
5519			}
5520
5521			if (cow) {
5522				/*
5523				 * No need to notify as we are downgrading page
5524				 * table protection not changing it to point
5525				 * to a new page.
5526				 *
5527				 * See Documentation/mm/mmu_notifier.rst
5528				 */
5529				huge_ptep_set_wrprotect(src, addr, src_pte);
5530				entry = huge_pte_wrprotect(entry);
5531			}
5532
5533			if (!userfaultfd_wp(dst_vma))
5534				entry = huge_pte_clear_uffd_wp(entry);
5535
5536			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5537			hugetlb_count_add(npages, dst);
5538		}
5539		spin_unlock(src_ptl);
5540		spin_unlock(dst_ptl);
5541	}
5542
5543	if (cow) {
5544		raw_write_seqcount_end(&src->write_protect_seq);
5545		mmu_notifier_invalidate_range_end(&range);
5546	} else {
5547		hugetlb_vma_unlock_read(src_vma);
5548	}
5549
5550	return ret;
5551}
5552
5553static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5554			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5555			  unsigned long sz)
5556{
5557	struct hstate *h = hstate_vma(vma);
5558	struct mm_struct *mm = vma->vm_mm;
5559	spinlock_t *src_ptl, *dst_ptl;
5560	pte_t pte;
5561
5562	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5563	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5564
5565	/*
5566	 * We don't have to worry about the ordering of src and dst ptlocks
5567	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5568	 */
5569	if (src_ptl != dst_ptl)
5570		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5571
5572	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5573	set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5574
5575	if (src_ptl != dst_ptl)
5576		spin_unlock(src_ptl);
5577	spin_unlock(dst_ptl);
5578}
5579
5580int move_hugetlb_page_tables(struct vm_area_struct *vma,
5581			     struct vm_area_struct *new_vma,
5582			     unsigned long old_addr, unsigned long new_addr,
5583			     unsigned long len)
5584{
5585	struct hstate *h = hstate_vma(vma);
5586	struct address_space *mapping = vma->vm_file->f_mapping;
5587	unsigned long sz = huge_page_size(h);
5588	struct mm_struct *mm = vma->vm_mm;
5589	unsigned long old_end = old_addr + len;
5590	unsigned long last_addr_mask;
5591	pte_t *src_pte, *dst_pte;
5592	struct mmu_notifier_range range;
5593	bool shared_pmd = false;
5594
5595	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5596				old_end);
5597	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5598	/*
5599	 * In case of shared PMDs, we should cover the maximum possible
5600	 * range.
5601	 */
5602	flush_cache_range(vma, range.start, range.end);
5603
5604	mmu_notifier_invalidate_range_start(&range);
5605	last_addr_mask = hugetlb_mask_last_page(h);
5606	/* Prevent race with file truncation */
5607	hugetlb_vma_lock_write(vma);
5608	i_mmap_lock_write(mapping);
5609	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5610		src_pte = hugetlb_walk(vma, old_addr, sz);
5611		if (!src_pte) {
5612			old_addr |= last_addr_mask;
5613			new_addr |= last_addr_mask;
5614			continue;
5615		}
5616		if (huge_pte_none(huge_ptep_get(src_pte)))
5617			continue;
5618
5619		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5620			shared_pmd = true;
5621			old_addr |= last_addr_mask;
5622			new_addr |= last_addr_mask;
5623			continue;
5624		}
5625
5626		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5627		if (!dst_pte)
5628			break;
5629
5630		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5631	}
5632
5633	if (shared_pmd)
5634		flush_hugetlb_tlb_range(vma, range.start, range.end);
5635	else
5636		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5637	mmu_notifier_invalidate_range_end(&range);
5638	i_mmap_unlock_write(mapping);
5639	hugetlb_vma_unlock_write(vma);
5640
5641	return len + old_addr - old_end;
5642}
5643
5644void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5645			    unsigned long start, unsigned long end,
5646			    struct page *ref_page, zap_flags_t zap_flags)
5647{
5648	struct mm_struct *mm = vma->vm_mm;
5649	unsigned long address;
5650	pte_t *ptep;
5651	pte_t pte;
5652	spinlock_t *ptl;
5653	struct page *page;
5654	struct hstate *h = hstate_vma(vma);
5655	unsigned long sz = huge_page_size(h);
5656	bool adjust_reservation = false;
5657	unsigned long last_addr_mask;
5658	bool force_flush = false;
5659
5660	WARN_ON(!is_vm_hugetlb_page(vma));
5661	BUG_ON(start & ~huge_page_mask(h));
5662	BUG_ON(end & ~huge_page_mask(h));
5663
5664	/*
5665	 * This is a hugetlb vma, all the pte entries should point
5666	 * to huge page.
5667	 */
5668	tlb_change_page_size(tlb, sz);
5669	tlb_start_vma(tlb, vma);
5670
5671	last_addr_mask = hugetlb_mask_last_page(h);
5672	address = start;
5673	for (; address < end; address += sz) {
5674		ptep = hugetlb_walk(vma, address, sz);
5675		if (!ptep) {
5676			address |= last_addr_mask;
5677			continue;
5678		}
5679
5680		ptl = huge_pte_lock(h, mm, ptep);
5681		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5682			spin_unlock(ptl);
5683			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5684			force_flush = true;
5685			address |= last_addr_mask;
5686			continue;
5687		}
5688
5689		pte = huge_ptep_get(ptep);
5690		if (huge_pte_none(pte)) {
5691			spin_unlock(ptl);
5692			continue;
5693		}
5694
5695		/*
5696		 * Migrating hugepage or HWPoisoned hugepage is already
5697		 * unmapped and its refcount is dropped, so just clear pte here.
5698		 */
5699		if (unlikely(!pte_present(pte))) {
5700			/*
5701			 * If the pte was wr-protected by uffd-wp in any of the
5702			 * swap forms, meanwhile the caller does not want to
5703			 * drop the uffd-wp bit in this zap, then replace the
5704			 * pte with a marker.
5705			 */
5706			if (pte_swp_uffd_wp_any(pte) &&
5707			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5708				set_huge_pte_at(mm, address, ptep,
5709						make_pte_marker(PTE_MARKER_UFFD_WP),
5710						sz);
5711			else
5712				huge_pte_clear(mm, address, ptep, sz);
5713			spin_unlock(ptl);
5714			continue;
5715		}
5716
5717		page = pte_page(pte);
5718		/*
5719		 * If a reference page is supplied, it is because a specific
5720		 * page is being unmapped, not a range. Ensure the page we
5721		 * are about to unmap is the actual page of interest.
5722		 */
5723		if (ref_page) {
5724			if (page != ref_page) {
5725				spin_unlock(ptl);
5726				continue;
5727			}
5728			/*
5729			 * Mark the VMA as having unmapped its page so that
5730			 * future faults in this VMA will fail rather than
5731			 * looking like data was lost
5732			 */
5733			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5734		}
5735
5736		pte = huge_ptep_get_and_clear(mm, address, ptep);
5737		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5738		if (huge_pte_dirty(pte))
5739			set_page_dirty(page);
5740		/* Leave a uffd-wp pte marker if needed */
5741		if (huge_pte_uffd_wp(pte) &&
5742		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5743			set_huge_pte_at(mm, address, ptep,
5744					make_pte_marker(PTE_MARKER_UFFD_WP),
5745					sz);
5746		hugetlb_count_sub(pages_per_huge_page(h), mm);
5747		hugetlb_remove_rmap(page_folio(page));
5748
5749		/*
5750		 * Restore the reservation for anonymous page, otherwise the
5751		 * backing page could be stolen by someone.
5752		 * If there we are freeing a surplus, do not set the restore
5753		 * reservation bit.
5754		 */
5755		if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5756		    folio_test_anon(page_folio(page))) {
5757			folio_set_hugetlb_restore_reserve(page_folio(page));
5758			/* Reservation to be adjusted after the spin lock */
5759			adjust_reservation = true;
5760		}
5761
5762		spin_unlock(ptl);
5763
5764		/*
5765		 * Adjust the reservation for the region that will have the
5766		 * reserve restored. Keep in mind that vma_needs_reservation() changes
5767		 * resv->adds_in_progress if it succeeds. If this is not done,
5768		 * do_exit() will not see it, and will keep the reservation
5769		 * forever.
5770		 */
5771		if (adjust_reservation && vma_needs_reservation(h, vma, address))
5772			vma_add_reservation(h, vma, address);
5773
5774		tlb_remove_page_size(tlb, page, huge_page_size(h));
5775		/*
5776		 * Bail out after unmapping reference page if supplied
5777		 */
5778		if (ref_page)
5779			break;
5780	}
5781	tlb_end_vma(tlb, vma);
5782
5783	/*
5784	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5785	 * could defer the flush until now, since by holding i_mmap_rwsem we
5786	 * guaranteed that the last refernece would not be dropped. But we must
5787	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5788	 * dropped and the last reference to the shared PMDs page might be
5789	 * dropped as well.
5790	 *
5791	 * In theory we could defer the freeing of the PMD pages as well, but
5792	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5793	 * detect sharing, so we cannot defer the release of the page either.
5794	 * Instead, do flush now.
5795	 */
5796	if (force_flush)
5797		tlb_flush_mmu_tlbonly(tlb);
5798}
5799
5800void __hugetlb_zap_begin(struct vm_area_struct *vma,
5801			 unsigned long *start, unsigned long *end)
5802{
5803	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5804		return;
5805
5806	adjust_range_if_pmd_sharing_possible(vma, start, end);
5807	hugetlb_vma_lock_write(vma);
5808	if (vma->vm_file)
5809		i_mmap_lock_write(vma->vm_file->f_mapping);
5810}
5811
5812void __hugetlb_zap_end(struct vm_area_struct *vma,
5813		       struct zap_details *details)
5814{
5815	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5816
5817	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5818		return;
5819
5820	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5821		/*
5822		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5823		 * When the vma_lock is freed, this makes the vma ineligible
5824		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5825		 * pmd sharing.  This is important as page tables for this
5826		 * unmapped range will be asynchrously deleted.  If the page
5827		 * tables are shared, there will be issues when accessed by
5828		 * someone else.
5829		 */
5830		__hugetlb_vma_unlock_write_free(vma);
5831	} else {
5832		hugetlb_vma_unlock_write(vma);
5833	}
5834
5835	if (vma->vm_file)
5836		i_mmap_unlock_write(vma->vm_file->f_mapping);
5837}
5838
5839void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5840			  unsigned long end, struct page *ref_page,
5841			  zap_flags_t zap_flags)
5842{
5843	struct mmu_notifier_range range;
5844	struct mmu_gather tlb;
5845
5846	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5847				start, end);
5848	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5849	mmu_notifier_invalidate_range_start(&range);
5850	tlb_gather_mmu(&tlb, vma->vm_mm);
5851
5852	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5853
5854	mmu_notifier_invalidate_range_end(&range);
5855	tlb_finish_mmu(&tlb);
5856}
5857
5858/*
5859 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5860 * mapping it owns the reserve page for. The intention is to unmap the page
5861 * from other VMAs and let the children be SIGKILLed if they are faulting the
5862 * same region.
5863 */
5864static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5865			      struct page *page, unsigned long address)
5866{
5867	struct hstate *h = hstate_vma(vma);
5868	struct vm_area_struct *iter_vma;
5869	struct address_space *mapping;
5870	pgoff_t pgoff;
5871
5872	/*
5873	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5874	 * from page cache lookup which is in HPAGE_SIZE units.
5875	 */
5876	address = address & huge_page_mask(h);
5877	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5878			vma->vm_pgoff;
5879	mapping = vma->vm_file->f_mapping;
5880
5881	/*
5882	 * Take the mapping lock for the duration of the table walk. As
5883	 * this mapping should be shared between all the VMAs,
5884	 * __unmap_hugepage_range() is called as the lock is already held
5885	 */
5886	i_mmap_lock_write(mapping);
5887	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5888		/* Do not unmap the current VMA */
5889		if (iter_vma == vma)
5890			continue;
5891
5892		/*
5893		 * Shared VMAs have their own reserves and do not affect
5894		 * MAP_PRIVATE accounting but it is possible that a shared
5895		 * VMA is using the same page so check and skip such VMAs.
5896		 */
5897		if (iter_vma->vm_flags & VM_MAYSHARE)
5898			continue;
5899
5900		/*
5901		 * Unmap the page from other VMAs without their own reserves.
5902		 * They get marked to be SIGKILLed if they fault in these
5903		 * areas. This is because a future no-page fault on this VMA
5904		 * could insert a zeroed page instead of the data existing
5905		 * from the time of fork. This would look like data corruption
5906		 */
5907		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5908			unmap_hugepage_range(iter_vma, address,
5909					     address + huge_page_size(h), page, 0);
5910	}
5911	i_mmap_unlock_write(mapping);
5912}
5913
5914/*
5915 * hugetlb_wp() should be called with page lock of the original hugepage held.
5916 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5917 * cannot race with other handlers or page migration.
5918 * Keep the pte_same checks anyway to make transition from the mutex easier.
5919 */
5920static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5921		       struct vm_fault *vmf)
5922{
5923	struct vm_area_struct *vma = vmf->vma;
5924	struct mm_struct *mm = vma->vm_mm;
5925	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5926	pte_t pte = huge_ptep_get(vmf->pte);
5927	struct hstate *h = hstate_vma(vma);
5928	struct folio *old_folio;
5929	struct folio *new_folio;
5930	int outside_reserve = 0;
5931	vm_fault_t ret = 0;
5932	struct mmu_notifier_range range;
5933
5934	/*
5935	 * Never handle CoW for uffd-wp protected pages.  It should be only
5936	 * handled when the uffd-wp protection is removed.
5937	 *
5938	 * Note that only the CoW optimization path (in hugetlb_no_page())
5939	 * can trigger this, because hugetlb_fault() will always resolve
5940	 * uffd-wp bit first.
5941	 */
5942	if (!unshare && huge_pte_uffd_wp(pte))
5943		return 0;
5944
5945	/*
5946	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5947	 * PTE mapped R/O such as maybe_mkwrite() would do.
5948	 */
5949	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5950		return VM_FAULT_SIGSEGV;
5951
5952	/* Let's take out MAP_SHARED mappings first. */
5953	if (vma->vm_flags & VM_MAYSHARE) {
5954		set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5955		return 0;
5956	}
5957
5958	old_folio = page_folio(pte_page(pte));
5959
5960	delayacct_wpcopy_start();
5961
5962retry_avoidcopy:
5963	/*
5964	 * If no-one else is actually using this page, we're the exclusive
5965	 * owner and can reuse this page.
5966	 *
5967	 * Note that we don't rely on the (safer) folio refcount here, because
5968	 * copying the hugetlb folio when there are unexpected (temporary)
5969	 * folio references could harm simple fork()+exit() users when
5970	 * we run out of free hugetlb folios: we would have to kill processes
5971	 * in scenarios that used to work. As a side effect, there can still
5972	 * be leaks between processes, for example, with FOLL_GET users.
5973	 */
5974	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5975		if (!PageAnonExclusive(&old_folio->page)) {
5976			folio_move_anon_rmap(old_folio, vma);
5977			SetPageAnonExclusive(&old_folio->page);
5978		}
5979		if (likely(!unshare))
5980			set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5981
5982		delayacct_wpcopy_end();
5983		return 0;
5984	}
5985	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5986		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5987
5988	/*
5989	 * If the process that created a MAP_PRIVATE mapping is about to
5990	 * perform a COW due to a shared page count, attempt to satisfy
5991	 * the allocation without using the existing reserves. The pagecache
5992	 * page is used to determine if the reserve at this address was
5993	 * consumed or not. If reserves were used, a partial faulted mapping
5994	 * at the time of fork() could consume its reserves on COW instead
5995	 * of the full address range.
5996	 */
5997	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5998			old_folio != pagecache_folio)
5999		outside_reserve = 1;
6000
6001	folio_get(old_folio);
6002
6003	/*
6004	 * Drop page table lock as buddy allocator may be called. It will
6005	 * be acquired again before returning to the caller, as expected.
6006	 */
6007	spin_unlock(vmf->ptl);
6008	new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve);
6009
6010	if (IS_ERR(new_folio)) {
6011		/*
6012		 * If a process owning a MAP_PRIVATE mapping fails to COW,
6013		 * it is due to references held by a child and an insufficient
6014		 * huge page pool. To guarantee the original mappers
6015		 * reliability, unmap the page from child processes. The child
6016		 * may get SIGKILLed if it later faults.
6017		 */
6018		if (outside_reserve) {
6019			struct address_space *mapping = vma->vm_file->f_mapping;
6020			pgoff_t idx;
6021			u32 hash;
6022
6023			folio_put(old_folio);
6024			/*
6025			 * Drop hugetlb_fault_mutex and vma_lock before
6026			 * unmapping.  unmapping needs to hold vma_lock
6027			 * in write mode.  Dropping vma_lock in read mode
6028			 * here is OK as COW mappings do not interact with
6029			 * PMD sharing.
6030			 *
6031			 * Reacquire both after unmap operation.
6032			 */
6033			idx = vma_hugecache_offset(h, vma, vmf->address);
6034			hash = hugetlb_fault_mutex_hash(mapping, idx);
6035			hugetlb_vma_unlock_read(vma);
6036			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6037
6038			unmap_ref_private(mm, vma, &old_folio->page,
6039					vmf->address);
6040
6041			mutex_lock(&hugetlb_fault_mutex_table[hash]);
6042			hugetlb_vma_lock_read(vma);
6043			spin_lock(vmf->ptl);
6044			vmf->pte = hugetlb_walk(vma, vmf->address,
6045					huge_page_size(h));
6046			if (likely(vmf->pte &&
6047				   pte_same(huge_ptep_get(vmf->pte), pte)))
6048				goto retry_avoidcopy;
6049			/*
6050			 * race occurs while re-acquiring page table
6051			 * lock, and our job is done.
6052			 */
6053			delayacct_wpcopy_end();
6054			return 0;
6055		}
6056
6057		ret = vmf_error(PTR_ERR(new_folio));
6058		goto out_release_old;
6059	}
6060
6061	/*
6062	 * When the original hugepage is shared one, it does not have
6063	 * anon_vma prepared.
6064	 */
6065	ret = vmf_anon_prepare(vmf);
6066	if (unlikely(ret))
6067		goto out_release_all;
6068
6069	if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
6070		ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
6071		goto out_release_all;
6072	}
6073	__folio_mark_uptodate(new_folio);
6074
6075	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6076				vmf->address + huge_page_size(h));
6077	mmu_notifier_invalidate_range_start(&range);
6078
6079	/*
6080	 * Retake the page table lock to check for racing updates
6081	 * before the page tables are altered
6082	 */
6083	spin_lock(vmf->ptl);
6084	vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6085	if (likely(vmf->pte && pte_same(huge_ptep_get(vmf->pte), pte))) {
6086		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6087
6088		/* Break COW or unshare */
6089		huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
6090		hugetlb_remove_rmap(old_folio);
6091		hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
6092		if (huge_pte_uffd_wp(pte))
6093			newpte = huge_pte_mkuffd_wp(newpte);
6094		set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6095				huge_page_size(h));
6096		folio_set_hugetlb_migratable(new_folio);
6097		/* Make the old page be freed below */
6098		new_folio = old_folio;
6099	}
6100	spin_unlock(vmf->ptl);
6101	mmu_notifier_invalidate_range_end(&range);
6102out_release_all:
6103	/*
6104	 * No restore in case of successful pagetable update (Break COW or
6105	 * unshare)
6106	 */
6107	if (new_folio != old_folio)
6108		restore_reserve_on_error(h, vma, vmf->address, new_folio);
6109	folio_put(new_folio);
6110out_release_old:
6111	folio_put(old_folio);
6112
6113	spin_lock(vmf->ptl); /* Caller expects lock to be held */
6114
6115	delayacct_wpcopy_end();
6116	return ret;
6117}
6118
6119/*
6120 * Return whether there is a pagecache page to back given address within VMA.
6121 */
6122bool hugetlbfs_pagecache_present(struct hstate *h,
6123				 struct vm_area_struct *vma, unsigned long address)
6124{
6125	struct address_space *mapping = vma->vm_file->f_mapping;
6126	pgoff_t idx = linear_page_index(vma, address);
6127	struct folio *folio;
6128
6129	folio = filemap_get_folio(mapping, idx);
6130	if (IS_ERR(folio))
6131		return false;
6132	folio_put(folio);
6133	return true;
6134}
6135
6136int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6137			   pgoff_t idx)
6138{
6139	struct inode *inode = mapping->host;
6140	struct hstate *h = hstate_inode(inode);
6141	int err;
6142
6143	idx <<= huge_page_order(h);
6144	__folio_set_locked(folio);
6145	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6146
6147	if (unlikely(err)) {
6148		__folio_clear_locked(folio);
6149		return err;
6150	}
6151	folio_clear_hugetlb_restore_reserve(folio);
6152
6153	/*
6154	 * mark folio dirty so that it will not be removed from cache/file
6155	 * by non-hugetlbfs specific code paths.
6156	 */
6157	folio_mark_dirty(folio);
6158
6159	spin_lock(&inode->i_lock);
6160	inode->i_blocks += blocks_per_huge_page(h);
6161	spin_unlock(&inode->i_lock);
6162	return 0;
6163}
6164
6165static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6166						  struct address_space *mapping,
6167						  unsigned long reason)
6168{
6169	u32 hash;
6170
6171	/*
6172	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6173	 * userfault. Also mmap_lock could be dropped due to handling
6174	 * userfault, any vma operation should be careful from here.
6175	 */
6176	hugetlb_vma_unlock_read(vmf->vma);
6177	hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6178	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6179	return handle_userfault(vmf, reason);
6180}
6181
6182/*
6183 * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6184 * false if pte changed or is changing.
6185 */
6186static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6187			       pte_t *ptep, pte_t old_pte)
6188{
6189	spinlock_t *ptl;
6190	bool same;
6191
6192	ptl = huge_pte_lock(h, mm, ptep);
6193	same = pte_same(huge_ptep_get(ptep), old_pte);
6194	spin_unlock(ptl);
6195
6196	return same;
6197}
6198
6199static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6200			struct vm_fault *vmf)
6201{
6202	struct vm_area_struct *vma = vmf->vma;
6203	struct mm_struct *mm = vma->vm_mm;
6204	struct hstate *h = hstate_vma(vma);
6205	vm_fault_t ret = VM_FAULT_SIGBUS;
6206	int anon_rmap = 0;
6207	unsigned long size;
6208	struct folio *folio;
6209	pte_t new_pte;
6210	bool new_folio, new_pagecache_folio = false;
6211	u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6212
6213	/*
6214	 * Currently, we are forced to kill the process in the event the
6215	 * original mapper has unmapped pages from the child due to a failed
6216	 * COW/unsharing. Warn that such a situation has occurred as it may not
6217	 * be obvious.
6218	 */
6219	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6220		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6221			   current->pid);
6222		goto out;
6223	}
6224
6225	/*
6226	 * Use page lock to guard against racing truncation
6227	 * before we get page_table_lock.
6228	 */
6229	new_folio = false;
6230	folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6231	if (IS_ERR(folio)) {
6232		size = i_size_read(mapping->host) >> huge_page_shift(h);
6233		if (vmf->pgoff >= size)
6234			goto out;
6235		/* Check for page in userfault range */
6236		if (userfaultfd_missing(vma)) {
6237			/*
6238			 * Since hugetlb_no_page() was examining pte
6239			 * without pgtable lock, we need to re-test under
6240			 * lock because the pte may not be stable and could
6241			 * have changed from under us.  Try to detect
6242			 * either changed or during-changing ptes and retry
6243			 * properly when needed.
6244			 *
6245			 * Note that userfaultfd is actually fine with
6246			 * false positives (e.g. caused by pte changed),
6247			 * but not wrong logical events (e.g. caused by
6248			 * reading a pte during changing).  The latter can
6249			 * confuse the userspace, so the strictness is very
6250			 * much preferred.  E.g., MISSING event should
6251			 * never happen on the page after UFFDIO_COPY has
6252			 * correctly installed the page and returned.
6253			 */
6254			if (!hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) {
6255				ret = 0;
6256				goto out;
6257			}
6258
6259			return hugetlb_handle_userfault(vmf, mapping,
6260							VM_UFFD_MISSING);
6261		}
6262
6263		if (!(vma->vm_flags & VM_MAYSHARE)) {
6264			ret = vmf_anon_prepare(vmf);
6265			if (unlikely(ret))
6266				goto out;
6267		}
6268
6269		folio = alloc_hugetlb_folio(vma, vmf->address, 0);
6270		if (IS_ERR(folio)) {
6271			/*
6272			 * Returning error will result in faulting task being
6273			 * sent SIGBUS.  The hugetlb fault mutex prevents two
6274			 * tasks from racing to fault in the same page which
6275			 * could result in false unable to allocate errors.
6276			 * Page migration does not take the fault mutex, but
6277			 * does a clear then write of pte's under page table
6278			 * lock.  Page fault code could race with migration,
6279			 * notice the clear pte and try to allocate a page
6280			 * here.  Before returning error, get ptl and make
6281			 * sure there really is no pte entry.
6282			 */
6283			if (hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte))
6284				ret = vmf_error(PTR_ERR(folio));
6285			else
6286				ret = 0;
6287			goto out;
6288		}
6289		clear_huge_page(&folio->page, vmf->real_address,
6290				pages_per_huge_page(h));
6291		__folio_mark_uptodate(folio);
6292		new_folio = true;
6293
6294		if (vma->vm_flags & VM_MAYSHARE) {
6295			int err = hugetlb_add_to_page_cache(folio, mapping,
6296							vmf->pgoff);
6297			if (err) {
6298				/*
6299				 * err can't be -EEXIST which implies someone
6300				 * else consumed the reservation since hugetlb
6301				 * fault mutex is held when add a hugetlb page
6302				 * to the page cache. So it's safe to call
6303				 * restore_reserve_on_error() here.
6304				 */
6305				restore_reserve_on_error(h, vma, vmf->address,
6306							folio);
6307				folio_put(folio);
6308				ret = VM_FAULT_SIGBUS;
6309				goto out;
6310			}
6311			new_pagecache_folio = true;
6312		} else {
6313			folio_lock(folio);
6314			anon_rmap = 1;
6315		}
6316	} else {
6317		/*
6318		 * If memory error occurs between mmap() and fault, some process
6319		 * don't have hwpoisoned swap entry for errored virtual address.
6320		 * So we need to block hugepage fault by PG_hwpoison bit check.
6321		 */
6322		if (unlikely(folio_test_hwpoison(folio))) {
6323			ret = VM_FAULT_HWPOISON_LARGE |
6324				VM_FAULT_SET_HINDEX(hstate_index(h));
6325			goto backout_unlocked;
6326		}
6327
6328		/* Check for page in userfault range. */
6329		if (userfaultfd_minor(vma)) {
6330			folio_unlock(folio);
6331			folio_put(folio);
6332			/* See comment in userfaultfd_missing() block above */
6333			if (!hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) {
6334				ret = 0;
6335				goto out;
6336			}
6337			return hugetlb_handle_userfault(vmf, mapping,
6338							VM_UFFD_MINOR);
6339		}
6340	}
6341
6342	/*
6343	 * If we are going to COW a private mapping later, we examine the
6344	 * pending reservations for this page now. This will ensure that
6345	 * any allocations necessary to record that reservation occur outside
6346	 * the spinlock.
6347	 */
6348	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6349		if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6350			ret = VM_FAULT_OOM;
6351			goto backout_unlocked;
6352		}
6353		/* Just decrements count, does not deallocate */
6354		vma_end_reservation(h, vma, vmf->address);
6355	}
6356
6357	vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6358	ret = 0;
6359	/* If pte changed from under us, retry */
6360	if (!pte_same(huge_ptep_get(vmf->pte), vmf->orig_pte))
6361		goto backout;
6362
6363	if (anon_rmap)
6364		hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6365	else
6366		hugetlb_add_file_rmap(folio);
6367	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6368				&& (vma->vm_flags & VM_SHARED)));
6369	/*
6370	 * If this pte was previously wr-protected, keep it wr-protected even
6371	 * if populated.
6372	 */
6373	if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6374		new_pte = huge_pte_mkuffd_wp(new_pte);
6375	set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6376
6377	hugetlb_count_add(pages_per_huge_page(h), mm);
6378	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6379		/* Optimization, do the COW without a second fault */
6380		ret = hugetlb_wp(folio, vmf);
6381	}
6382
6383	spin_unlock(vmf->ptl);
6384
6385	/*
6386	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6387	 * found in the pagecache may not have hugetlb_migratable if they have
6388	 * been isolated for migration.
6389	 */
6390	if (new_folio)
6391		folio_set_hugetlb_migratable(folio);
6392
6393	folio_unlock(folio);
6394out:
6395	hugetlb_vma_unlock_read(vma);
6396	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6397	return ret;
6398
6399backout:
6400	spin_unlock(vmf->ptl);
6401backout_unlocked:
6402	if (new_folio && !new_pagecache_folio)
6403		restore_reserve_on_error(h, vma, vmf->address, folio);
6404
6405	folio_unlock(folio);
6406	folio_put(folio);
6407	goto out;
6408}
6409
6410#ifdef CONFIG_SMP
6411u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6412{
6413	unsigned long key[2];
6414	u32 hash;
6415
6416	key[0] = (unsigned long) mapping;
6417	key[1] = idx;
6418
6419	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6420
6421	return hash & (num_fault_mutexes - 1);
6422}
6423#else
6424/*
6425 * For uniprocessor systems we always use a single mutex, so just
6426 * return 0 and avoid the hashing overhead.
6427 */
6428u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6429{
6430	return 0;
6431}
6432#endif
6433
6434vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6435			unsigned long address, unsigned int flags)
6436{
6437	vm_fault_t ret;
6438	u32 hash;
6439	struct folio *folio = NULL;
6440	struct folio *pagecache_folio = NULL;
6441	struct hstate *h = hstate_vma(vma);
6442	struct address_space *mapping;
6443	int need_wait_lock = 0;
6444	struct vm_fault vmf = {
6445		.vma = vma,
6446		.address = address & huge_page_mask(h),
6447		.real_address = address,
6448		.flags = flags,
6449		.pgoff = vma_hugecache_offset(h, vma,
6450				address & huge_page_mask(h)),
6451		/* TODO: Track hugetlb faults using vm_fault */
6452
6453		/*
6454		 * Some fields may not be initialized, be careful as it may
6455		 * be hard to debug if called functions make assumptions
6456		 */
6457	};
6458
6459	/*
6460	 * Serialize hugepage allocation and instantiation, so that we don't
6461	 * get spurious allocation failures if two CPUs race to instantiate
6462	 * the same page in the page cache.
6463	 */
6464	mapping = vma->vm_file->f_mapping;
6465	hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6466	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6467
6468	/*
6469	 * Acquire vma lock before calling huge_pte_alloc and hold
6470	 * until finished with vmf.pte.  This prevents huge_pmd_unshare from
6471	 * being called elsewhere and making the vmf.pte no longer valid.
6472	 */
6473	hugetlb_vma_lock_read(vma);
6474	vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6475	if (!vmf.pte) {
6476		hugetlb_vma_unlock_read(vma);
6477		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6478		return VM_FAULT_OOM;
6479	}
6480
6481	vmf.orig_pte = huge_ptep_get(vmf.pte);
6482	if (huge_pte_none_mostly(vmf.orig_pte)) {
6483		if (is_pte_marker(vmf.orig_pte)) {
6484			pte_marker marker =
6485				pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6486
6487			if (marker & PTE_MARKER_POISONED) {
6488				ret = VM_FAULT_HWPOISON_LARGE |
6489				      VM_FAULT_SET_HINDEX(hstate_index(h));
6490				goto out_mutex;
6491			}
6492		}
6493
6494		/*
6495		 * Other PTE markers should be handled the same way as none PTE.
6496		 *
6497		 * hugetlb_no_page will drop vma lock and hugetlb fault
6498		 * mutex internally, which make us return immediately.
6499		 */
6500		return hugetlb_no_page(mapping, &vmf);
6501	}
6502
6503	ret = 0;
6504
6505	/*
6506	 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6507	 * point, so this check prevents the kernel from going below assuming
6508	 * that we have an active hugepage in pagecache. This goto expects
6509	 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6510	 * check will properly handle it.
6511	 */
6512	if (!pte_present(vmf.orig_pte)) {
6513		if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6514			/*
6515			 * Release the hugetlb fault lock now, but retain
6516			 * the vma lock, because it is needed to guard the
6517			 * huge_pte_lockptr() later in
6518			 * migration_entry_wait_huge(). The vma lock will
6519			 * be released there.
6520			 */
6521			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6522			migration_entry_wait_huge(vma, vmf.pte);
6523			return 0;
6524		} else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6525			ret = VM_FAULT_HWPOISON_LARGE |
6526			    VM_FAULT_SET_HINDEX(hstate_index(h));
6527		goto out_mutex;
6528	}
6529
6530	/*
6531	 * If we are going to COW/unshare the mapping later, we examine the
6532	 * pending reservations for this page now. This will ensure that any
6533	 * allocations necessary to record that reservation occur outside the
6534	 * spinlock. Also lookup the pagecache page now as it is used to
6535	 * determine if a reservation has been consumed.
6536	 */
6537	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6538	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6539		if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6540			ret = VM_FAULT_OOM;
6541			goto out_mutex;
6542		}
6543		/* Just decrements count, does not deallocate */
6544		vma_end_reservation(h, vma, vmf.address);
6545
6546		pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6547							     vmf.pgoff);
6548		if (IS_ERR(pagecache_folio))
6549			pagecache_folio = NULL;
6550	}
6551
6552	vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6553
6554	/* Check for a racing update before calling hugetlb_wp() */
6555	if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(vmf.pte))))
6556		goto out_ptl;
6557
6558	/* Handle userfault-wp first, before trying to lock more pages */
6559	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(vmf.pte)) &&
6560	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6561		if (!userfaultfd_wp_async(vma)) {
6562			spin_unlock(vmf.ptl);
6563			if (pagecache_folio) {
6564				folio_unlock(pagecache_folio);
6565				folio_put(pagecache_folio);
6566			}
6567			hugetlb_vma_unlock_read(vma);
6568			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6569			return handle_userfault(&vmf, VM_UFFD_WP);
6570		}
6571
6572		vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6573		set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6574				huge_page_size(hstate_vma(vma)));
6575		/* Fallthrough to CoW */
6576	}
6577
6578	/*
6579	 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6580	 * pagecache_folio, so here we need take the former one
6581	 * when folio != pagecache_folio or !pagecache_folio.
6582	 */
6583	folio = page_folio(pte_page(vmf.orig_pte));
6584	if (folio != pagecache_folio)
6585		if (!folio_trylock(folio)) {
6586			need_wait_lock = 1;
6587			goto out_ptl;
6588		}
6589
6590	folio_get(folio);
6591
6592	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6593		if (!huge_pte_write(vmf.orig_pte)) {
6594			ret = hugetlb_wp(pagecache_folio, &vmf);
6595			goto out_put_page;
6596		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6597			vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6598		}
6599	}
6600	vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6601	if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6602						flags & FAULT_FLAG_WRITE))
6603		update_mmu_cache(vma, vmf.address, vmf.pte);
6604out_put_page:
6605	if (folio != pagecache_folio)
6606		folio_unlock(folio);
6607	folio_put(folio);
6608out_ptl:
6609	spin_unlock(vmf.ptl);
6610
6611	if (pagecache_folio) {
6612		folio_unlock(pagecache_folio);
6613		folio_put(pagecache_folio);
6614	}
6615out_mutex:
6616	hugetlb_vma_unlock_read(vma);
6617	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6618	/*
6619	 * Generally it's safe to hold refcount during waiting page lock. But
6620	 * here we just wait to defer the next page fault to avoid busy loop and
6621	 * the page is not used after unlocked before returning from the current
6622	 * page fault. So we are safe from accessing freed page, even if we wait
6623	 * here without taking refcount.
6624	 */
6625	if (need_wait_lock)
6626		folio_wait_locked(folio);
6627	return ret;
6628}
6629
6630#ifdef CONFIG_USERFAULTFD
6631/*
6632 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6633 */
6634static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6635		struct vm_area_struct *vma, unsigned long address)
6636{
6637	struct mempolicy *mpol;
6638	nodemask_t *nodemask;
6639	struct folio *folio;
6640	gfp_t gfp_mask;
6641	int node;
6642
6643	gfp_mask = htlb_alloc_mask(h);
6644	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6645	/*
6646	 * This is used to allocate a temporary hugetlb to hold the copied
6647	 * content, which will then be copied again to the final hugetlb
6648	 * consuming a reservation. Set the alloc_fallback to false to indicate
6649	 * that breaking the per-node hugetlb pool is not allowed in this case.
6650	 */
6651	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6652	mpol_cond_put(mpol);
6653
6654	return folio;
6655}
6656
6657/*
6658 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6659 * with modifications for hugetlb pages.
6660 */
6661int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6662			     struct vm_area_struct *dst_vma,
6663			     unsigned long dst_addr,
6664			     unsigned long src_addr,
6665			     uffd_flags_t flags,
6666			     struct folio **foliop)
6667{
6668	struct mm_struct *dst_mm = dst_vma->vm_mm;
6669	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6670	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6671	struct hstate *h = hstate_vma(dst_vma);
6672	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6673	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6674	unsigned long size;
6675	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6676	pte_t _dst_pte;
6677	spinlock_t *ptl;
6678	int ret = -ENOMEM;
6679	struct folio *folio;
6680	int writable;
6681	bool folio_in_pagecache = false;
6682
6683	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6684		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6685
6686		/* Don't overwrite any existing PTEs (even markers) */
6687		if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6688			spin_unlock(ptl);
6689			return -EEXIST;
6690		}
6691
6692		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6693		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6694				huge_page_size(h));
6695
6696		/* No need to invalidate - it was non-present before */
6697		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6698
6699		spin_unlock(ptl);
6700		return 0;
6701	}
6702
6703	if (is_continue) {
6704		ret = -EFAULT;
6705		folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6706		if (IS_ERR(folio))
6707			goto out;
6708		folio_in_pagecache = true;
6709	} else if (!*foliop) {
6710		/* If a folio already exists, then it's UFFDIO_COPY for
6711		 * a non-missing case. Return -EEXIST.
6712		 */
6713		if (vm_shared &&
6714		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6715			ret = -EEXIST;
6716			goto out;
6717		}
6718
6719		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6720		if (IS_ERR(folio)) {
6721			ret = -ENOMEM;
6722			goto out;
6723		}
6724
6725		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6726					   false);
6727
6728		/* fallback to copy_from_user outside mmap_lock */
6729		if (unlikely(ret)) {
6730			ret = -ENOENT;
6731			/* Free the allocated folio which may have
6732			 * consumed a reservation.
6733			 */
6734			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6735			folio_put(folio);
6736
6737			/* Allocate a temporary folio to hold the copied
6738			 * contents.
6739			 */
6740			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6741			if (!folio) {
6742				ret = -ENOMEM;
6743				goto out;
6744			}
6745			*foliop = folio;
6746			/* Set the outparam foliop and return to the caller to
6747			 * copy the contents outside the lock. Don't free the
6748			 * folio.
6749			 */
6750			goto out;
6751		}
6752	} else {
6753		if (vm_shared &&
6754		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6755			folio_put(*foliop);
6756			ret = -EEXIST;
6757			*foliop = NULL;
6758			goto out;
6759		}
6760
6761		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6762		if (IS_ERR(folio)) {
6763			folio_put(*foliop);
6764			ret = -ENOMEM;
6765			*foliop = NULL;
6766			goto out;
6767		}
6768		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6769		folio_put(*foliop);
6770		*foliop = NULL;
6771		if (ret) {
6772			folio_put(folio);
6773			goto out;
6774		}
6775	}
6776
6777	/*
6778	 * If we just allocated a new page, we need a memory barrier to ensure
6779	 * that preceding stores to the page become visible before the
6780	 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6781	 * is what we need.
6782	 *
6783	 * In the case where we have not allocated a new page (is_continue),
6784	 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6785	 * an earlier smp_wmb() to ensure that prior stores will be visible
6786	 * before the set_pte_at() write.
6787	 */
6788	if (!is_continue)
6789		__folio_mark_uptodate(folio);
6790	else
6791		WARN_ON_ONCE(!folio_test_uptodate(folio));
6792
6793	/* Add shared, newly allocated pages to the page cache. */
6794	if (vm_shared && !is_continue) {
6795		size = i_size_read(mapping->host) >> huge_page_shift(h);
6796		ret = -EFAULT;
6797		if (idx >= size)
6798			goto out_release_nounlock;
6799
6800		/*
6801		 * Serialization between remove_inode_hugepages() and
6802		 * hugetlb_add_to_page_cache() below happens through the
6803		 * hugetlb_fault_mutex_table that here must be hold by
6804		 * the caller.
6805		 */
6806		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6807		if (ret)
6808			goto out_release_nounlock;
6809		folio_in_pagecache = true;
6810	}
6811
6812	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6813
6814	ret = -EIO;
6815	if (folio_test_hwpoison(folio))
6816		goto out_release_unlock;
6817
6818	/*
6819	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6820	 * registered, we firstly wr-protect a none pte which has no page cache
6821	 * page backing it, then access the page.
6822	 */
6823	ret = -EEXIST;
6824	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6825		goto out_release_unlock;
6826
6827	if (folio_in_pagecache)
6828		hugetlb_add_file_rmap(folio);
6829	else
6830		hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6831
6832	/*
6833	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6834	 * with wp flag set, don't set pte write bit.
6835	 */
6836	if (wp_enabled || (is_continue && !vm_shared))
6837		writable = 0;
6838	else
6839		writable = dst_vma->vm_flags & VM_WRITE;
6840
6841	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6842	/*
6843	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6844	 * extremely important for hugetlbfs for now since swapping is not
6845	 * supported, but we should still be clear in that this page cannot be
6846	 * thrown away at will, even if write bit not set.
6847	 */
6848	_dst_pte = huge_pte_mkdirty(_dst_pte);
6849	_dst_pte = pte_mkyoung(_dst_pte);
6850
6851	if (wp_enabled)
6852		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6853
6854	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6855
6856	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6857
6858	/* No need to invalidate - it was non-present before */
6859	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6860
6861	spin_unlock(ptl);
6862	if (!is_continue)
6863		folio_set_hugetlb_migratable(folio);
6864	if (vm_shared || is_continue)
6865		folio_unlock(folio);
6866	ret = 0;
6867out:
6868	return ret;
6869out_release_unlock:
6870	spin_unlock(ptl);
6871	if (vm_shared || is_continue)
6872		folio_unlock(folio);
6873out_release_nounlock:
6874	if (!folio_in_pagecache)
6875		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6876	folio_put(folio);
6877	goto out;
6878}
6879#endif /* CONFIG_USERFAULTFD */
6880
6881long hugetlb_change_protection(struct vm_area_struct *vma,
6882		unsigned long address, unsigned long end,
6883		pgprot_t newprot, unsigned long cp_flags)
6884{
6885	struct mm_struct *mm = vma->vm_mm;
6886	unsigned long start = address;
6887	pte_t *ptep;
6888	pte_t pte;
6889	struct hstate *h = hstate_vma(vma);
6890	long pages = 0, psize = huge_page_size(h);
6891	bool shared_pmd = false;
6892	struct mmu_notifier_range range;
6893	unsigned long last_addr_mask;
6894	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6895	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6896
6897	/*
6898	 * In the case of shared PMDs, the area to flush could be beyond
6899	 * start/end.  Set range.start/range.end to cover the maximum possible
6900	 * range if PMD sharing is possible.
6901	 */
6902	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6903				0, mm, start, end);
6904	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6905
6906	BUG_ON(address >= end);
6907	flush_cache_range(vma, range.start, range.end);
6908
6909	mmu_notifier_invalidate_range_start(&range);
6910	hugetlb_vma_lock_write(vma);
6911	i_mmap_lock_write(vma->vm_file->f_mapping);
6912	last_addr_mask = hugetlb_mask_last_page(h);
6913	for (; address < end; address += psize) {
6914		spinlock_t *ptl;
6915		ptep = hugetlb_walk(vma, address, psize);
6916		if (!ptep) {
6917			if (!uffd_wp) {
6918				address |= last_addr_mask;
6919				continue;
6920			}
6921			/*
6922			 * Userfaultfd wr-protect requires pgtable
6923			 * pre-allocations to install pte markers.
6924			 */
6925			ptep = huge_pte_alloc(mm, vma, address, psize);
6926			if (!ptep) {
6927				pages = -ENOMEM;
6928				break;
6929			}
6930		}
6931		ptl = huge_pte_lock(h, mm, ptep);
6932		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6933			/*
6934			 * When uffd-wp is enabled on the vma, unshare
6935			 * shouldn't happen at all.  Warn about it if it
6936			 * happened due to some reason.
6937			 */
6938			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6939			pages++;
6940			spin_unlock(ptl);
6941			shared_pmd = true;
6942			address |= last_addr_mask;
6943			continue;
6944		}
6945		pte = huge_ptep_get(ptep);
6946		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6947			/* Nothing to do. */
6948		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6949			swp_entry_t entry = pte_to_swp_entry(pte);
6950			struct page *page = pfn_swap_entry_to_page(entry);
6951			pte_t newpte = pte;
6952
6953			if (is_writable_migration_entry(entry)) {
6954				if (PageAnon(page))
6955					entry = make_readable_exclusive_migration_entry(
6956								swp_offset(entry));
6957				else
6958					entry = make_readable_migration_entry(
6959								swp_offset(entry));
6960				newpte = swp_entry_to_pte(entry);
6961				pages++;
6962			}
6963
6964			if (uffd_wp)
6965				newpte = pte_swp_mkuffd_wp(newpte);
6966			else if (uffd_wp_resolve)
6967				newpte = pte_swp_clear_uffd_wp(newpte);
6968			if (!pte_same(pte, newpte))
6969				set_huge_pte_at(mm, address, ptep, newpte, psize);
6970		} else if (unlikely(is_pte_marker(pte))) {
6971			/*
6972			 * Do nothing on a poison marker; page is
6973			 * corrupted, permissons do not apply.  Here
6974			 * pte_marker_uffd_wp()==true implies !poison
6975			 * because they're mutual exclusive.
6976			 */
6977			if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6978				/* Safe to modify directly (non-present->none). */
6979				huge_pte_clear(mm, address, ptep, psize);
6980		} else if (!huge_pte_none(pte)) {
6981			pte_t old_pte;
6982			unsigned int shift = huge_page_shift(hstate_vma(vma));
6983
6984			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6985			pte = huge_pte_modify(old_pte, newprot);
6986			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6987			if (uffd_wp)
6988				pte = huge_pte_mkuffd_wp(pte);
6989			else if (uffd_wp_resolve)
6990				pte = huge_pte_clear_uffd_wp(pte);
6991			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6992			pages++;
6993		} else {
6994			/* None pte */
6995			if (unlikely(uffd_wp))
6996				/* Safe to modify directly (none->non-present). */
6997				set_huge_pte_at(mm, address, ptep,
6998						make_pte_marker(PTE_MARKER_UFFD_WP),
6999						psize);
7000		}
7001		spin_unlock(ptl);
7002	}
7003	/*
7004	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7005	 * may have cleared our pud entry and done put_page on the page table:
7006	 * once we release i_mmap_rwsem, another task can do the final put_page
7007	 * and that page table be reused and filled with junk.  If we actually
7008	 * did unshare a page of pmds, flush the range corresponding to the pud.
7009	 */
7010	if (shared_pmd)
7011		flush_hugetlb_tlb_range(vma, range.start, range.end);
7012	else
7013		flush_hugetlb_tlb_range(vma, start, end);
7014	/*
7015	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7016	 * downgrading page table protection not changing it to point to a new
7017	 * page.
7018	 *
7019	 * See Documentation/mm/mmu_notifier.rst
7020	 */
7021	i_mmap_unlock_write(vma->vm_file->f_mapping);
7022	hugetlb_vma_unlock_write(vma);
7023	mmu_notifier_invalidate_range_end(&range);
7024
7025	return pages > 0 ? (pages << h->order) : pages;
7026}
7027
7028/* Return true if reservation was successful, false otherwise.  */
7029bool hugetlb_reserve_pages(struct inode *inode,
7030					long from, long to,
7031					struct vm_area_struct *vma,
7032					vm_flags_t vm_flags)
7033{
7034	long chg = -1, add = -1;
7035	struct hstate *h = hstate_inode(inode);
7036	struct hugepage_subpool *spool = subpool_inode(inode);
7037	struct resv_map *resv_map;
7038	struct hugetlb_cgroup *h_cg = NULL;
7039	long gbl_reserve, regions_needed = 0;
7040
7041	/* This should never happen */
7042	if (from > to) {
7043		VM_WARN(1, "%s called with a negative range\n", __func__);
7044		return false;
7045	}
7046
7047	/*
7048	 * vma specific semaphore used for pmd sharing and fault/truncation
7049	 * synchronization
7050	 */
7051	hugetlb_vma_lock_alloc(vma);
7052
7053	/*
7054	 * Only apply hugepage reservation if asked. At fault time, an
7055	 * attempt will be made for VM_NORESERVE to allocate a page
7056	 * without using reserves
7057	 */
7058	if (vm_flags & VM_NORESERVE)
7059		return true;
7060
7061	/*
7062	 * Shared mappings base their reservation on the number of pages that
7063	 * are already allocated on behalf of the file. Private mappings need
7064	 * to reserve the full area even if read-only as mprotect() may be
7065	 * called to make the mapping read-write. Assume !vma is a shm mapping
7066	 */
7067	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7068		/*
7069		 * resv_map can not be NULL as hugetlb_reserve_pages is only
7070		 * called for inodes for which resv_maps were created (see
7071		 * hugetlbfs_get_inode).
7072		 */
7073		resv_map = inode_resv_map(inode);
7074
7075		chg = region_chg(resv_map, from, to, &regions_needed);
7076	} else {
7077		/* Private mapping. */
7078		resv_map = resv_map_alloc();
7079		if (!resv_map)
7080			goto out_err;
7081
7082		chg = to - from;
7083
7084		set_vma_resv_map(vma, resv_map);
7085		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7086	}
7087
7088	if (chg < 0)
7089		goto out_err;
7090
7091	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7092				chg * pages_per_huge_page(h), &h_cg) < 0)
7093		goto out_err;
7094
7095	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7096		/* For private mappings, the hugetlb_cgroup uncharge info hangs
7097		 * of the resv_map.
7098		 */
7099		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7100	}
7101
7102	/*
7103	 * There must be enough pages in the subpool for the mapping. If
7104	 * the subpool has a minimum size, there may be some global
7105	 * reservations already in place (gbl_reserve).
7106	 */
7107	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7108	if (gbl_reserve < 0)
7109		goto out_uncharge_cgroup;
7110
7111	/*
7112	 * Check enough hugepages are available for the reservation.
7113	 * Hand the pages back to the subpool if there are not
7114	 */
7115	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7116		goto out_put_pages;
7117
7118	/*
7119	 * Account for the reservations made. Shared mappings record regions
7120	 * that have reservations as they are shared by multiple VMAs.
7121	 * When the last VMA disappears, the region map says how much
7122	 * the reservation was and the page cache tells how much of
7123	 * the reservation was consumed. Private mappings are per-VMA and
7124	 * only the consumed reservations are tracked. When the VMA
7125	 * disappears, the original reservation is the VMA size and the
7126	 * consumed reservations are stored in the map. Hence, nothing
7127	 * else has to be done for private mappings here
7128	 */
7129	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7130		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7131
7132		if (unlikely(add < 0)) {
7133			hugetlb_acct_memory(h, -gbl_reserve);
7134			goto out_put_pages;
7135		} else if (unlikely(chg > add)) {
7136			/*
7137			 * pages in this range were added to the reserve
7138			 * map between region_chg and region_add.  This
7139			 * indicates a race with alloc_hugetlb_folio.  Adjust
7140			 * the subpool and reserve counts modified above
7141			 * based on the difference.
7142			 */
7143			long rsv_adjust;
7144
7145			/*
7146			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7147			 * reference to h_cg->css. See comment below for detail.
7148			 */
7149			hugetlb_cgroup_uncharge_cgroup_rsvd(
7150				hstate_index(h),
7151				(chg - add) * pages_per_huge_page(h), h_cg);
7152
7153			rsv_adjust = hugepage_subpool_put_pages(spool,
7154								chg - add);
7155			hugetlb_acct_memory(h, -rsv_adjust);
7156		} else if (h_cg) {
7157			/*
7158			 * The file_regions will hold their own reference to
7159			 * h_cg->css. So we should release the reference held
7160			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7161			 * done.
7162			 */
7163			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7164		}
7165	}
7166	return true;
7167
7168out_put_pages:
7169	/* put back original number of pages, chg */
7170	(void)hugepage_subpool_put_pages(spool, chg);
7171out_uncharge_cgroup:
7172	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7173					    chg * pages_per_huge_page(h), h_cg);
7174out_err:
7175	hugetlb_vma_lock_free(vma);
7176	if (!vma || vma->vm_flags & VM_MAYSHARE)
7177		/* Only call region_abort if the region_chg succeeded but the
7178		 * region_add failed or didn't run.
7179		 */
7180		if (chg >= 0 && add < 0)
7181			region_abort(resv_map, from, to, regions_needed);
7182	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7183		kref_put(&resv_map->refs, resv_map_release);
7184		set_vma_resv_map(vma, NULL);
7185	}
7186	return false;
7187}
7188
7189long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7190								long freed)
7191{
7192	struct hstate *h = hstate_inode(inode);
7193	struct resv_map *resv_map = inode_resv_map(inode);
7194	long chg = 0;
7195	struct hugepage_subpool *spool = subpool_inode(inode);
7196	long gbl_reserve;
7197
7198	/*
7199	 * Since this routine can be called in the evict inode path for all
7200	 * hugetlbfs inodes, resv_map could be NULL.
7201	 */
7202	if (resv_map) {
7203		chg = region_del(resv_map, start, end);
7204		/*
7205		 * region_del() can fail in the rare case where a region
7206		 * must be split and another region descriptor can not be
7207		 * allocated.  If end == LONG_MAX, it will not fail.
7208		 */
7209		if (chg < 0)
7210			return chg;
7211	}
7212
7213	spin_lock(&inode->i_lock);
7214	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7215	spin_unlock(&inode->i_lock);
7216
7217	/*
7218	 * If the subpool has a minimum size, the number of global
7219	 * reservations to be released may be adjusted.
7220	 *
7221	 * Note that !resv_map implies freed == 0. So (chg - freed)
7222	 * won't go negative.
7223	 */
7224	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7225	hugetlb_acct_memory(h, -gbl_reserve);
7226
7227	return 0;
7228}
7229
7230#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7231static unsigned long page_table_shareable(struct vm_area_struct *svma,
7232				struct vm_area_struct *vma,
7233				unsigned long addr, pgoff_t idx)
7234{
7235	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7236				svma->vm_start;
7237	unsigned long sbase = saddr & PUD_MASK;
7238	unsigned long s_end = sbase + PUD_SIZE;
7239
7240	/* Allow segments to share if only one is marked locked */
7241	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7242	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7243
7244	/*
7245	 * match the virtual addresses, permission and the alignment of the
7246	 * page table page.
7247	 *
7248	 * Also, vma_lock (vm_private_data) is required for sharing.
7249	 */
7250	if (pmd_index(addr) != pmd_index(saddr) ||
7251	    vm_flags != svm_flags ||
7252	    !range_in_vma(svma, sbase, s_end) ||
7253	    !svma->vm_private_data)
7254		return 0;
7255
7256	return saddr;
7257}
7258
7259bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7260{
7261	unsigned long start = addr & PUD_MASK;
7262	unsigned long end = start + PUD_SIZE;
7263
7264#ifdef CONFIG_USERFAULTFD
7265	if (uffd_disable_huge_pmd_share(vma))
7266		return false;
7267#endif
7268	/*
7269	 * check on proper vm_flags and page table alignment
7270	 */
7271	if (!(vma->vm_flags & VM_MAYSHARE))
7272		return false;
7273	if (!vma->vm_private_data)	/* vma lock required for sharing */
7274		return false;
7275	if (!range_in_vma(vma, start, end))
7276		return false;
7277	return true;
7278}
7279
7280/*
7281 * Determine if start,end range within vma could be mapped by shared pmd.
7282 * If yes, adjust start and end to cover range associated with possible
7283 * shared pmd mappings.
7284 */
7285void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7286				unsigned long *start, unsigned long *end)
7287{
7288	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7289		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7290
7291	/*
7292	 * vma needs to span at least one aligned PUD size, and the range
7293	 * must be at least partially within in.
7294	 */
7295	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7296		(*end <= v_start) || (*start >= v_end))
7297		return;
7298
7299	/* Extend the range to be PUD aligned for a worst case scenario */
7300	if (*start > v_start)
7301		*start = ALIGN_DOWN(*start, PUD_SIZE);
7302
7303	if (*end < v_end)
7304		*end = ALIGN(*end, PUD_SIZE);
7305}
7306
7307/*
7308 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7309 * and returns the corresponding pte. While this is not necessary for the
7310 * !shared pmd case because we can allocate the pmd later as well, it makes the
7311 * code much cleaner. pmd allocation is essential for the shared case because
7312 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7313 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7314 * bad pmd for sharing.
7315 */
7316pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7317		      unsigned long addr, pud_t *pud)
7318{
7319	struct address_space *mapping = vma->vm_file->f_mapping;
7320	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7321			vma->vm_pgoff;
7322	struct vm_area_struct *svma;
7323	unsigned long saddr;
7324	pte_t *spte = NULL;
7325	pte_t *pte;
7326
7327	i_mmap_lock_read(mapping);
7328	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7329		if (svma == vma)
7330			continue;
7331
7332		saddr = page_table_shareable(svma, vma, addr, idx);
7333		if (saddr) {
7334			spte = hugetlb_walk(svma, saddr,
7335					    vma_mmu_pagesize(svma));
7336			if (spte) {
7337				get_page(virt_to_page(spte));
7338				break;
7339			}
7340		}
7341	}
7342
7343	if (!spte)
7344		goto out;
7345
7346	spin_lock(&mm->page_table_lock);
7347	if (pud_none(*pud)) {
7348		pud_populate(mm, pud,
7349				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7350		mm_inc_nr_pmds(mm);
7351	} else {
7352		put_page(virt_to_page(spte));
7353	}
7354	spin_unlock(&mm->page_table_lock);
7355out:
7356	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7357	i_mmap_unlock_read(mapping);
7358	return pte;
7359}
7360
7361/*
7362 * unmap huge page backed by shared pte.
7363 *
7364 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7365 * indicated by page_count > 1, unmap is achieved by clearing pud and
7366 * decrementing the ref count. If count == 1, the pte page is not shared.
7367 *
7368 * Called with page table lock held.
7369 *
7370 * returns: 1 successfully unmapped a shared pte page
7371 *	    0 the underlying pte page is not shared, or it is the last user
7372 */
7373int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7374					unsigned long addr, pte_t *ptep)
7375{
7376	pgd_t *pgd = pgd_offset(mm, addr);
7377	p4d_t *p4d = p4d_offset(pgd, addr);
7378	pud_t *pud = pud_offset(p4d, addr);
7379
7380	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7381	hugetlb_vma_assert_locked(vma);
7382	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7383	if (page_count(virt_to_page(ptep)) == 1)
7384		return 0;
7385
7386	pud_clear(pud);
7387	put_page(virt_to_page(ptep));
7388	mm_dec_nr_pmds(mm);
7389	return 1;
7390}
7391
7392#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7393
7394pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7395		      unsigned long addr, pud_t *pud)
7396{
7397	return NULL;
7398}
7399
7400int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7401				unsigned long addr, pte_t *ptep)
7402{
7403	return 0;
7404}
7405
7406void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7407				unsigned long *start, unsigned long *end)
7408{
7409}
7410
7411bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7412{
7413	return false;
7414}
7415#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7416
7417#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7418pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7419			unsigned long addr, unsigned long sz)
7420{
7421	pgd_t *pgd;
7422	p4d_t *p4d;
7423	pud_t *pud;
7424	pte_t *pte = NULL;
7425
7426	pgd = pgd_offset(mm, addr);
7427	p4d = p4d_alloc(mm, pgd, addr);
7428	if (!p4d)
7429		return NULL;
7430	pud = pud_alloc(mm, p4d, addr);
7431	if (pud) {
7432		if (sz == PUD_SIZE) {
7433			pte = (pte_t *)pud;
7434		} else {
7435			BUG_ON(sz != PMD_SIZE);
7436			if (want_pmd_share(vma, addr) && pud_none(*pud))
7437				pte = huge_pmd_share(mm, vma, addr, pud);
7438			else
7439				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7440		}
7441	}
7442
7443	if (pte) {
7444		pte_t pteval = ptep_get_lockless(pte);
7445
7446		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7447	}
7448
7449	return pte;
7450}
7451
7452/*
7453 * huge_pte_offset() - Walk the page table to resolve the hugepage
7454 * entry at address @addr
7455 *
7456 * Return: Pointer to page table entry (PUD or PMD) for
7457 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7458 * size @sz doesn't match the hugepage size at this level of the page
7459 * table.
7460 */
7461pte_t *huge_pte_offset(struct mm_struct *mm,
7462		       unsigned long addr, unsigned long sz)
7463{
7464	pgd_t *pgd;
7465	p4d_t *p4d;
7466	pud_t *pud;
7467	pmd_t *pmd;
7468
7469	pgd = pgd_offset(mm, addr);
7470	if (!pgd_present(*pgd))
7471		return NULL;
7472	p4d = p4d_offset(pgd, addr);
7473	if (!p4d_present(*p4d))
7474		return NULL;
7475
7476	pud = pud_offset(p4d, addr);
7477	if (sz == PUD_SIZE)
7478		/* must be pud huge, non-present or none */
7479		return (pte_t *)pud;
7480	if (!pud_present(*pud))
7481		return NULL;
7482	/* must have a valid entry and size to go further */
7483
7484	pmd = pmd_offset(pud, addr);
7485	/* must be pmd huge, non-present or none */
7486	return (pte_t *)pmd;
7487}
7488
7489/*
7490 * Return a mask that can be used to update an address to the last huge
7491 * page in a page table page mapping size.  Used to skip non-present
7492 * page table entries when linearly scanning address ranges.  Architectures
7493 * with unique huge page to page table relationships can define their own
7494 * version of this routine.
7495 */
7496unsigned long hugetlb_mask_last_page(struct hstate *h)
7497{
7498	unsigned long hp_size = huge_page_size(h);
7499
7500	if (hp_size == PUD_SIZE)
7501		return P4D_SIZE - PUD_SIZE;
7502	else if (hp_size == PMD_SIZE)
7503		return PUD_SIZE - PMD_SIZE;
7504	else
7505		return 0UL;
7506}
7507
7508#else
7509
7510/* See description above.  Architectures can provide their own version. */
7511__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7512{
7513#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7514	if (huge_page_size(h) == PMD_SIZE)
7515		return PUD_SIZE - PMD_SIZE;
7516#endif
7517	return 0UL;
7518}
7519
7520#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7521
7522/*
7523 * These functions are overwritable if your architecture needs its own
7524 * behavior.
7525 */
7526bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7527{
7528	bool ret = true;
7529
7530	spin_lock_irq(&hugetlb_lock);
7531	if (!folio_test_hugetlb(folio) ||
7532	    !folio_test_hugetlb_migratable(folio) ||
7533	    !folio_try_get(folio)) {
7534		ret = false;
7535		goto unlock;
7536	}
7537	folio_clear_hugetlb_migratable(folio);
7538	list_move_tail(&folio->lru, list);
7539unlock:
7540	spin_unlock_irq(&hugetlb_lock);
7541	return ret;
7542}
7543
7544int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7545{
7546	int ret = 0;
7547
7548	*hugetlb = false;
7549	spin_lock_irq(&hugetlb_lock);
7550	if (folio_test_hugetlb(folio)) {
7551		*hugetlb = true;
7552		if (folio_test_hugetlb_freed(folio))
7553			ret = 0;
7554		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7555			ret = folio_try_get(folio);
7556		else
7557			ret = -EBUSY;
7558	}
7559	spin_unlock_irq(&hugetlb_lock);
7560	return ret;
7561}
7562
7563int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7564				bool *migratable_cleared)
7565{
7566	int ret;
7567
7568	spin_lock_irq(&hugetlb_lock);
7569	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7570	spin_unlock_irq(&hugetlb_lock);
7571	return ret;
7572}
7573
7574void folio_putback_active_hugetlb(struct folio *folio)
7575{
7576	spin_lock_irq(&hugetlb_lock);
7577	folio_set_hugetlb_migratable(folio);
7578	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7579	spin_unlock_irq(&hugetlb_lock);
7580	folio_put(folio);
7581}
7582
7583void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7584{
7585	struct hstate *h = folio_hstate(old_folio);
7586
7587	hugetlb_cgroup_migrate(old_folio, new_folio);
7588	set_page_owner_migrate_reason(&new_folio->page, reason);
7589
7590	/*
7591	 * transfer temporary state of the new hugetlb folio. This is
7592	 * reverse to other transitions because the newpage is going to
7593	 * be final while the old one will be freed so it takes over
7594	 * the temporary status.
7595	 *
7596	 * Also note that we have to transfer the per-node surplus state
7597	 * here as well otherwise the global surplus count will not match
7598	 * the per-node's.
7599	 */
7600	if (folio_test_hugetlb_temporary(new_folio)) {
7601		int old_nid = folio_nid(old_folio);
7602		int new_nid = folio_nid(new_folio);
7603
7604		folio_set_hugetlb_temporary(old_folio);
7605		folio_clear_hugetlb_temporary(new_folio);
7606
7607
7608		/*
7609		 * There is no need to transfer the per-node surplus state
7610		 * when we do not cross the node.
7611		 */
7612		if (new_nid == old_nid)
7613			return;
7614		spin_lock_irq(&hugetlb_lock);
7615		if (h->surplus_huge_pages_node[old_nid]) {
7616			h->surplus_huge_pages_node[old_nid]--;
7617			h->surplus_huge_pages_node[new_nid]++;
7618		}
7619		spin_unlock_irq(&hugetlb_lock);
7620	}
7621}
7622
7623static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7624				   unsigned long start,
7625				   unsigned long end)
7626{
7627	struct hstate *h = hstate_vma(vma);
7628	unsigned long sz = huge_page_size(h);
7629	struct mm_struct *mm = vma->vm_mm;
7630	struct mmu_notifier_range range;
7631	unsigned long address;
7632	spinlock_t *ptl;
7633	pte_t *ptep;
7634
7635	if (!(vma->vm_flags & VM_MAYSHARE))
7636		return;
7637
7638	if (start >= end)
7639		return;
7640
7641	flush_cache_range(vma, start, end);
7642	/*
7643	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7644	 * we have already done the PUD_SIZE alignment.
7645	 */
7646	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7647				start, end);
7648	mmu_notifier_invalidate_range_start(&range);
7649	hugetlb_vma_lock_write(vma);
7650	i_mmap_lock_write(vma->vm_file->f_mapping);
7651	for (address = start; address < end; address += PUD_SIZE) {
7652		ptep = hugetlb_walk(vma, address, sz);
7653		if (!ptep)
7654			continue;
7655		ptl = huge_pte_lock(h, mm, ptep);
7656		huge_pmd_unshare(mm, vma, address, ptep);
7657		spin_unlock(ptl);
7658	}
7659	flush_hugetlb_tlb_range(vma, start, end);
7660	i_mmap_unlock_write(vma->vm_file->f_mapping);
7661	hugetlb_vma_unlock_write(vma);
7662	/*
7663	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7664	 * Documentation/mm/mmu_notifier.rst.
7665	 */
7666	mmu_notifier_invalidate_range_end(&range);
7667}
7668
7669/*
7670 * This function will unconditionally remove all the shared pmd pgtable entries
7671 * within the specific vma for a hugetlbfs memory range.
7672 */
7673void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7674{
7675	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7676			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7677}
7678
7679#ifdef CONFIG_CMA
7680static bool cma_reserve_called __initdata;
7681
7682static int __init cmdline_parse_hugetlb_cma(char *p)
7683{
7684	int nid, count = 0;
7685	unsigned long tmp;
7686	char *s = p;
7687
7688	while (*s) {
7689		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7690			break;
7691
7692		if (s[count] == ':') {
7693			if (tmp >= MAX_NUMNODES)
7694				break;
7695			nid = array_index_nospec(tmp, MAX_NUMNODES);
7696
7697			s += count + 1;
7698			tmp = memparse(s, &s);
7699			hugetlb_cma_size_in_node[nid] = tmp;
7700			hugetlb_cma_size += tmp;
7701
7702			/*
7703			 * Skip the separator if have one, otherwise
7704			 * break the parsing.
7705			 */
7706			if (*s == ',')
7707				s++;
7708			else
7709				break;
7710		} else {
7711			hugetlb_cma_size = memparse(p, &p);
7712			break;
7713		}
7714	}
7715
7716	return 0;
7717}
7718
7719early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7720
7721void __init hugetlb_cma_reserve(int order)
7722{
7723	unsigned long size, reserved, per_node;
7724	bool node_specific_cma_alloc = false;
7725	int nid;
7726
7727	/*
7728	 * HugeTLB CMA reservation is required for gigantic
7729	 * huge pages which could not be allocated via the
7730	 * page allocator. Just warn if there is any change
7731	 * breaking this assumption.
7732	 */
7733	VM_WARN_ON(order <= MAX_PAGE_ORDER);
7734	cma_reserve_called = true;
7735
7736	if (!hugetlb_cma_size)
7737		return;
7738
7739	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7740		if (hugetlb_cma_size_in_node[nid] == 0)
7741			continue;
7742
7743		if (!node_online(nid)) {
7744			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7745			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7746			hugetlb_cma_size_in_node[nid] = 0;
7747			continue;
7748		}
7749
7750		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7751			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7752				nid, (PAGE_SIZE << order) / SZ_1M);
7753			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7754			hugetlb_cma_size_in_node[nid] = 0;
7755		} else {
7756			node_specific_cma_alloc = true;
7757		}
7758	}
7759
7760	/* Validate the CMA size again in case some invalid nodes specified. */
7761	if (!hugetlb_cma_size)
7762		return;
7763
7764	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7765		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7766			(PAGE_SIZE << order) / SZ_1M);
7767		hugetlb_cma_size = 0;
7768		return;
7769	}
7770
7771	if (!node_specific_cma_alloc) {
7772		/*
7773		 * If 3 GB area is requested on a machine with 4 numa nodes,
7774		 * let's allocate 1 GB on first three nodes and ignore the last one.
7775		 */
7776		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7777		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7778			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7779	}
7780
7781	reserved = 0;
7782	for_each_online_node(nid) {
7783		int res;
7784		char name[CMA_MAX_NAME];
7785
7786		if (node_specific_cma_alloc) {
7787			if (hugetlb_cma_size_in_node[nid] == 0)
7788				continue;
7789
7790			size = hugetlb_cma_size_in_node[nid];
7791		} else {
7792			size = min(per_node, hugetlb_cma_size - reserved);
7793		}
7794
7795		size = round_up(size, PAGE_SIZE << order);
7796
7797		snprintf(name, sizeof(name), "hugetlb%d", nid);
7798		/*
7799		 * Note that 'order per bit' is based on smallest size that
7800		 * may be returned to CMA allocator in the case of
7801		 * huge page demotion.
7802		 */
7803		res = cma_declare_contiguous_nid(0, size, 0,
7804					PAGE_SIZE << order,
7805					HUGETLB_PAGE_ORDER, false, name,
7806					&hugetlb_cma[nid], nid);
7807		if (res) {
7808			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7809				res, nid);
7810			continue;
7811		}
7812
7813		reserved += size;
7814		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7815			size / SZ_1M, nid);
7816
7817		if (reserved >= hugetlb_cma_size)
7818			break;
7819	}
7820
7821	if (!reserved)
7822		/*
7823		 * hugetlb_cma_size is used to determine if allocations from
7824		 * cma are possible.  Set to zero if no cma regions are set up.
7825		 */
7826		hugetlb_cma_size = 0;
7827}
7828
7829static void __init hugetlb_cma_check(void)
7830{
7831	if (!hugetlb_cma_size || cma_reserve_called)
7832		return;
7833
7834	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7835}
7836
7837#endif /* CONFIG_CMA */
7838