1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Scheduler topology setup/handling methods
4 */
5
6#include <linux/bsearch.h>
7
8DEFINE_MUTEX(sched_domains_mutex);
9
10/* Protected by sched_domains_mutex: */
11static cpumask_var_t sched_domains_tmpmask;
12static cpumask_var_t sched_domains_tmpmask2;
13
14#ifdef CONFIG_SCHED_DEBUG
15
16static int __init sched_debug_setup(char *str)
17{
18	sched_debug_verbose = true;
19
20	return 0;
21}
22early_param("sched_verbose", sched_debug_setup);
23
24static inline bool sched_debug(void)
25{
26	return sched_debug_verbose;
27}
28
29#define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
30const struct sd_flag_debug sd_flag_debug[] = {
31#include <linux/sched/sd_flags.h>
32};
33#undef SD_FLAG
34
35static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
36				  struct cpumask *groupmask)
37{
38	struct sched_group *group = sd->groups;
39	unsigned long flags = sd->flags;
40	unsigned int idx;
41
42	cpumask_clear(groupmask);
43
44	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
45	printk(KERN_CONT "span=%*pbl level=%s\n",
46	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
47
48	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
49		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
50	}
51	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
52		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
53	}
54
55	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
56		unsigned int flag = BIT(idx);
57		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
58
59		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
60		    !(sd->child->flags & flag))
61			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
62			       sd_flag_debug[idx].name);
63
64		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
65		    !(sd->parent->flags & flag))
66			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
67			       sd_flag_debug[idx].name);
68	}
69
70	printk(KERN_DEBUG "%*s groups:", level + 1, "");
71	do {
72		if (!group) {
73			printk("\n");
74			printk(KERN_ERR "ERROR: group is NULL\n");
75			break;
76		}
77
78		if (cpumask_empty(sched_group_span(group))) {
79			printk(KERN_CONT "\n");
80			printk(KERN_ERR "ERROR: empty group\n");
81			break;
82		}
83
84		if (!(sd->flags & SD_OVERLAP) &&
85		    cpumask_intersects(groupmask, sched_group_span(group))) {
86			printk(KERN_CONT "\n");
87			printk(KERN_ERR "ERROR: repeated CPUs\n");
88			break;
89		}
90
91		cpumask_or(groupmask, groupmask, sched_group_span(group));
92
93		printk(KERN_CONT " %d:{ span=%*pbl",
94				group->sgc->id,
95				cpumask_pr_args(sched_group_span(group)));
96
97		if ((sd->flags & SD_OVERLAP) &&
98		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
99			printk(KERN_CONT " mask=%*pbl",
100				cpumask_pr_args(group_balance_mask(group)));
101		}
102
103		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
104			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
105
106		if (group == sd->groups && sd->child &&
107		    !cpumask_equal(sched_domain_span(sd->child),
108				   sched_group_span(group))) {
109			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
110		}
111
112		printk(KERN_CONT " }");
113
114		group = group->next;
115
116		if (group != sd->groups)
117			printk(KERN_CONT ",");
118
119	} while (group != sd->groups);
120	printk(KERN_CONT "\n");
121
122	if (!cpumask_equal(sched_domain_span(sd), groupmask))
123		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
124
125	if (sd->parent &&
126	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
127		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
128	return 0;
129}
130
131static void sched_domain_debug(struct sched_domain *sd, int cpu)
132{
133	int level = 0;
134
135	if (!sched_debug_verbose)
136		return;
137
138	if (!sd) {
139		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
140		return;
141	}
142
143	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
144
145	for (;;) {
146		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
147			break;
148		level++;
149		sd = sd->parent;
150		if (!sd)
151			break;
152	}
153}
154#else /* !CONFIG_SCHED_DEBUG */
155
156# define sched_debug_verbose 0
157# define sched_domain_debug(sd, cpu) do { } while (0)
158static inline bool sched_debug(void)
159{
160	return false;
161}
162#endif /* CONFIG_SCHED_DEBUG */
163
164/* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
165#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
166static const unsigned int SD_DEGENERATE_GROUPS_MASK =
167#include <linux/sched/sd_flags.h>
1680;
169#undef SD_FLAG
170
171static int sd_degenerate(struct sched_domain *sd)
172{
173	if (cpumask_weight(sched_domain_span(sd)) == 1)
174		return 1;
175
176	/* Following flags need at least 2 groups */
177	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
178	    (sd->groups != sd->groups->next))
179		return 0;
180
181	/* Following flags don't use groups */
182	if (sd->flags & (SD_WAKE_AFFINE))
183		return 0;
184
185	return 1;
186}
187
188static int
189sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
190{
191	unsigned long cflags = sd->flags, pflags = parent->flags;
192
193	if (sd_degenerate(parent))
194		return 1;
195
196	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
197		return 0;
198
199	/* Flags needing groups don't count if only 1 group in parent */
200	if (parent->groups == parent->groups->next)
201		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
202
203	if (~cflags & pflags)
204		return 0;
205
206	return 1;
207}
208
209#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
210DEFINE_STATIC_KEY_FALSE(sched_energy_present);
211static unsigned int sysctl_sched_energy_aware = 1;
212static DEFINE_MUTEX(sched_energy_mutex);
213static bool sched_energy_update;
214
215static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
216{
217	bool any_asym_capacity = false;
218	struct cpufreq_policy *policy;
219	struct cpufreq_governor *gov;
220	int i;
221
222	/* EAS is enabled for asymmetric CPU capacity topologies. */
223	for_each_cpu(i, cpu_mask) {
224		if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) {
225			any_asym_capacity = true;
226			break;
227		}
228	}
229	if (!any_asym_capacity) {
230		if (sched_debug()) {
231			pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n",
232				cpumask_pr_args(cpu_mask));
233		}
234		return false;
235	}
236
237	/* EAS definitely does *not* handle SMT */
238	if (sched_smt_active()) {
239		if (sched_debug()) {
240			pr_info("rd %*pbl: Checking EAS, SMT is not supported\n",
241				cpumask_pr_args(cpu_mask));
242		}
243		return false;
244	}
245
246	if (!arch_scale_freq_invariant()) {
247		if (sched_debug()) {
248			pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported",
249				cpumask_pr_args(cpu_mask));
250		}
251		return false;
252	}
253
254	/* Do not attempt EAS if schedutil is not being used. */
255	for_each_cpu(i, cpu_mask) {
256		policy = cpufreq_cpu_get(i);
257		if (!policy) {
258			if (sched_debug()) {
259				pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d",
260					cpumask_pr_args(cpu_mask), i);
261			}
262			return false;
263		}
264		gov = policy->governor;
265		cpufreq_cpu_put(policy);
266		if (gov != &schedutil_gov) {
267			if (sched_debug()) {
268				pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n",
269					cpumask_pr_args(cpu_mask));
270			}
271			return false;
272		}
273	}
274
275	return true;
276}
277
278void rebuild_sched_domains_energy(void)
279{
280	mutex_lock(&sched_energy_mutex);
281	sched_energy_update = true;
282	rebuild_sched_domains();
283	sched_energy_update = false;
284	mutex_unlock(&sched_energy_mutex);
285}
286
287#ifdef CONFIG_PROC_SYSCTL
288static int sched_energy_aware_handler(struct ctl_table *table, int write,
289		void *buffer, size_t *lenp, loff_t *ppos)
290{
291	int ret, state;
292
293	if (write && !capable(CAP_SYS_ADMIN))
294		return -EPERM;
295
296	if (!sched_is_eas_possible(cpu_active_mask)) {
297		if (write) {
298			return -EOPNOTSUPP;
299		} else {
300			*lenp = 0;
301			return 0;
302		}
303	}
304
305	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
306	if (!ret && write) {
307		state = static_branch_unlikely(&sched_energy_present);
308		if (state != sysctl_sched_energy_aware)
309			rebuild_sched_domains_energy();
310	}
311
312	return ret;
313}
314
315static struct ctl_table sched_energy_aware_sysctls[] = {
316	{
317		.procname       = "sched_energy_aware",
318		.data           = &sysctl_sched_energy_aware,
319		.maxlen         = sizeof(unsigned int),
320		.mode           = 0644,
321		.proc_handler   = sched_energy_aware_handler,
322		.extra1         = SYSCTL_ZERO,
323		.extra2         = SYSCTL_ONE,
324	},
325};
326
327static int __init sched_energy_aware_sysctl_init(void)
328{
329	register_sysctl_init("kernel", sched_energy_aware_sysctls);
330	return 0;
331}
332
333late_initcall(sched_energy_aware_sysctl_init);
334#endif
335
336static void free_pd(struct perf_domain *pd)
337{
338	struct perf_domain *tmp;
339
340	while (pd) {
341		tmp = pd->next;
342		kfree(pd);
343		pd = tmp;
344	}
345}
346
347static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
348{
349	while (pd) {
350		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
351			return pd;
352		pd = pd->next;
353	}
354
355	return NULL;
356}
357
358static struct perf_domain *pd_init(int cpu)
359{
360	struct em_perf_domain *obj = em_cpu_get(cpu);
361	struct perf_domain *pd;
362
363	if (!obj) {
364		if (sched_debug())
365			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
366		return NULL;
367	}
368
369	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
370	if (!pd)
371		return NULL;
372	pd->em_pd = obj;
373
374	return pd;
375}
376
377static void perf_domain_debug(const struct cpumask *cpu_map,
378						struct perf_domain *pd)
379{
380	if (!sched_debug() || !pd)
381		return;
382
383	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
384
385	while (pd) {
386		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
387				cpumask_first(perf_domain_span(pd)),
388				cpumask_pr_args(perf_domain_span(pd)),
389				em_pd_nr_perf_states(pd->em_pd));
390		pd = pd->next;
391	}
392
393	printk(KERN_CONT "\n");
394}
395
396static void destroy_perf_domain_rcu(struct rcu_head *rp)
397{
398	struct perf_domain *pd;
399
400	pd = container_of(rp, struct perf_domain, rcu);
401	free_pd(pd);
402}
403
404static void sched_energy_set(bool has_eas)
405{
406	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
407		if (sched_debug())
408			pr_info("%s: stopping EAS\n", __func__);
409		static_branch_disable_cpuslocked(&sched_energy_present);
410	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
411		if (sched_debug())
412			pr_info("%s: starting EAS\n", __func__);
413		static_branch_enable_cpuslocked(&sched_energy_present);
414	}
415}
416
417/*
418 * EAS can be used on a root domain if it meets all the following conditions:
419 *    1. an Energy Model (EM) is available;
420 *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
421 *    3. no SMT is detected.
422 *    4. schedutil is driving the frequency of all CPUs of the rd;
423 *    5. frequency invariance support is present;
424 */
425static bool build_perf_domains(const struct cpumask *cpu_map)
426{
427	int i;
428	struct perf_domain *pd = NULL, *tmp;
429	int cpu = cpumask_first(cpu_map);
430	struct root_domain *rd = cpu_rq(cpu)->rd;
431
432	if (!sysctl_sched_energy_aware)
433		goto free;
434
435	if (!sched_is_eas_possible(cpu_map))
436		goto free;
437
438	for_each_cpu(i, cpu_map) {
439		/* Skip already covered CPUs. */
440		if (find_pd(pd, i))
441			continue;
442
443		/* Create the new pd and add it to the local list. */
444		tmp = pd_init(i);
445		if (!tmp)
446			goto free;
447		tmp->next = pd;
448		pd = tmp;
449	}
450
451	perf_domain_debug(cpu_map, pd);
452
453	/* Attach the new list of performance domains to the root domain. */
454	tmp = rd->pd;
455	rcu_assign_pointer(rd->pd, pd);
456	if (tmp)
457		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
458
459	return !!pd;
460
461free:
462	free_pd(pd);
463	tmp = rd->pd;
464	rcu_assign_pointer(rd->pd, NULL);
465	if (tmp)
466		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
467
468	return false;
469}
470#else
471static void free_pd(struct perf_domain *pd) { }
472#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
473
474static void free_rootdomain(struct rcu_head *rcu)
475{
476	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
477
478	cpupri_cleanup(&rd->cpupri);
479	cpudl_cleanup(&rd->cpudl);
480	free_cpumask_var(rd->dlo_mask);
481	free_cpumask_var(rd->rto_mask);
482	free_cpumask_var(rd->online);
483	free_cpumask_var(rd->span);
484	free_pd(rd->pd);
485	kfree(rd);
486}
487
488void rq_attach_root(struct rq *rq, struct root_domain *rd)
489{
490	struct root_domain *old_rd = NULL;
491	struct rq_flags rf;
492
493	rq_lock_irqsave(rq, &rf);
494
495	if (rq->rd) {
496		old_rd = rq->rd;
497
498		if (cpumask_test_cpu(rq->cpu, old_rd->online))
499			set_rq_offline(rq);
500
501		cpumask_clear_cpu(rq->cpu, old_rd->span);
502
503		/*
504		 * If we dont want to free the old_rd yet then
505		 * set old_rd to NULL to skip the freeing later
506		 * in this function:
507		 */
508		if (!atomic_dec_and_test(&old_rd->refcount))
509			old_rd = NULL;
510	}
511
512	atomic_inc(&rd->refcount);
513	rq->rd = rd;
514
515	cpumask_set_cpu(rq->cpu, rd->span);
516	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
517		set_rq_online(rq);
518
519	rq_unlock_irqrestore(rq, &rf);
520
521	if (old_rd)
522		call_rcu(&old_rd->rcu, free_rootdomain);
523}
524
525void sched_get_rd(struct root_domain *rd)
526{
527	atomic_inc(&rd->refcount);
528}
529
530void sched_put_rd(struct root_domain *rd)
531{
532	if (!atomic_dec_and_test(&rd->refcount))
533		return;
534
535	call_rcu(&rd->rcu, free_rootdomain);
536}
537
538static int init_rootdomain(struct root_domain *rd)
539{
540	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
541		goto out;
542	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
543		goto free_span;
544	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
545		goto free_online;
546	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
547		goto free_dlo_mask;
548
549#ifdef HAVE_RT_PUSH_IPI
550	rd->rto_cpu = -1;
551	raw_spin_lock_init(&rd->rto_lock);
552	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
553#endif
554
555	rd->visit_gen = 0;
556	init_dl_bw(&rd->dl_bw);
557	if (cpudl_init(&rd->cpudl) != 0)
558		goto free_rto_mask;
559
560	if (cpupri_init(&rd->cpupri) != 0)
561		goto free_cpudl;
562	return 0;
563
564free_cpudl:
565	cpudl_cleanup(&rd->cpudl);
566free_rto_mask:
567	free_cpumask_var(rd->rto_mask);
568free_dlo_mask:
569	free_cpumask_var(rd->dlo_mask);
570free_online:
571	free_cpumask_var(rd->online);
572free_span:
573	free_cpumask_var(rd->span);
574out:
575	return -ENOMEM;
576}
577
578/*
579 * By default the system creates a single root-domain with all CPUs as
580 * members (mimicking the global state we have today).
581 */
582struct root_domain def_root_domain;
583
584void __init init_defrootdomain(void)
585{
586	init_rootdomain(&def_root_domain);
587
588	atomic_set(&def_root_domain.refcount, 1);
589}
590
591static struct root_domain *alloc_rootdomain(void)
592{
593	struct root_domain *rd;
594
595	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
596	if (!rd)
597		return NULL;
598
599	if (init_rootdomain(rd) != 0) {
600		kfree(rd);
601		return NULL;
602	}
603
604	return rd;
605}
606
607static void free_sched_groups(struct sched_group *sg, int free_sgc)
608{
609	struct sched_group *tmp, *first;
610
611	if (!sg)
612		return;
613
614	first = sg;
615	do {
616		tmp = sg->next;
617
618		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
619			kfree(sg->sgc);
620
621		if (atomic_dec_and_test(&sg->ref))
622			kfree(sg);
623		sg = tmp;
624	} while (sg != first);
625}
626
627static void destroy_sched_domain(struct sched_domain *sd)
628{
629	/*
630	 * A normal sched domain may have multiple group references, an
631	 * overlapping domain, having private groups, only one.  Iterate,
632	 * dropping group/capacity references, freeing where none remain.
633	 */
634	free_sched_groups(sd->groups, 1);
635
636	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
637		kfree(sd->shared);
638	kfree(sd);
639}
640
641static void destroy_sched_domains_rcu(struct rcu_head *rcu)
642{
643	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
644
645	while (sd) {
646		struct sched_domain *parent = sd->parent;
647		destroy_sched_domain(sd);
648		sd = parent;
649	}
650}
651
652static void destroy_sched_domains(struct sched_domain *sd)
653{
654	if (sd)
655		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
656}
657
658/*
659 * Keep a special pointer to the highest sched_domain that has SD_SHARE_LLC set
660 * (Last Level Cache Domain) for this allows us to avoid some pointer chasing
661 * select_idle_sibling().
662 *
663 * Also keep a unique ID per domain (we use the first CPU number in the cpumask
664 * of the domain), this allows us to quickly tell if two CPUs are in the same
665 * cache domain, see cpus_share_cache().
666 */
667DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
668DEFINE_PER_CPU(int, sd_llc_size);
669DEFINE_PER_CPU(int, sd_llc_id);
670DEFINE_PER_CPU(int, sd_share_id);
671DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
672DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
673DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
674DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
675
676DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
677DEFINE_STATIC_KEY_FALSE(sched_cluster_active);
678
679static void update_top_cache_domain(int cpu)
680{
681	struct sched_domain_shared *sds = NULL;
682	struct sched_domain *sd;
683	int id = cpu;
684	int size = 1;
685
686	sd = highest_flag_domain(cpu, SD_SHARE_LLC);
687	if (sd) {
688		id = cpumask_first(sched_domain_span(sd));
689		size = cpumask_weight(sched_domain_span(sd));
690		sds = sd->shared;
691	}
692
693	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
694	per_cpu(sd_llc_size, cpu) = size;
695	per_cpu(sd_llc_id, cpu) = id;
696	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
697
698	sd = lowest_flag_domain(cpu, SD_CLUSTER);
699	if (sd)
700		id = cpumask_first(sched_domain_span(sd));
701
702	/*
703	 * This assignment should be placed after the sd_llc_id as
704	 * we want this id equals to cluster id on cluster machines
705	 * but equals to LLC id on non-Cluster machines.
706	 */
707	per_cpu(sd_share_id, cpu) = id;
708
709	sd = lowest_flag_domain(cpu, SD_NUMA);
710	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
711
712	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
713	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
714
715	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
716	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
717}
718
719/*
720 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
721 * hold the hotplug lock.
722 */
723static void
724cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
725{
726	struct rq *rq = cpu_rq(cpu);
727	struct sched_domain *tmp;
728
729	/* Remove the sched domains which do not contribute to scheduling. */
730	for (tmp = sd; tmp; ) {
731		struct sched_domain *parent = tmp->parent;
732		if (!parent)
733			break;
734
735		if (sd_parent_degenerate(tmp, parent)) {
736			tmp->parent = parent->parent;
737
738			if (parent->parent) {
739				parent->parent->child = tmp;
740				parent->parent->groups->flags = tmp->flags;
741			}
742
743			/*
744			 * Transfer SD_PREFER_SIBLING down in case of a
745			 * degenerate parent; the spans match for this
746			 * so the property transfers.
747			 */
748			if (parent->flags & SD_PREFER_SIBLING)
749				tmp->flags |= SD_PREFER_SIBLING;
750			destroy_sched_domain(parent);
751		} else
752			tmp = tmp->parent;
753	}
754
755	if (sd && sd_degenerate(sd)) {
756		tmp = sd;
757		sd = sd->parent;
758		destroy_sched_domain(tmp);
759		if (sd) {
760			struct sched_group *sg = sd->groups;
761
762			/*
763			 * sched groups hold the flags of the child sched
764			 * domain for convenience. Clear such flags since
765			 * the child is being destroyed.
766			 */
767			do {
768				sg->flags = 0;
769			} while (sg != sd->groups);
770
771			sd->child = NULL;
772		}
773	}
774
775	sched_domain_debug(sd, cpu);
776
777	rq_attach_root(rq, rd);
778	tmp = rq->sd;
779	rcu_assign_pointer(rq->sd, sd);
780	dirty_sched_domain_sysctl(cpu);
781	destroy_sched_domains(tmp);
782
783	update_top_cache_domain(cpu);
784}
785
786struct s_data {
787	struct sched_domain * __percpu *sd;
788	struct root_domain	*rd;
789};
790
791enum s_alloc {
792	sa_rootdomain,
793	sa_sd,
794	sa_sd_storage,
795	sa_none,
796};
797
798/*
799 * Return the canonical balance CPU for this group, this is the first CPU
800 * of this group that's also in the balance mask.
801 *
802 * The balance mask are all those CPUs that could actually end up at this
803 * group. See build_balance_mask().
804 *
805 * Also see should_we_balance().
806 */
807int group_balance_cpu(struct sched_group *sg)
808{
809	return cpumask_first(group_balance_mask(sg));
810}
811
812
813/*
814 * NUMA topology (first read the regular topology blurb below)
815 *
816 * Given a node-distance table, for example:
817 *
818 *   node   0   1   2   3
819 *     0:  10  20  30  20
820 *     1:  20  10  20  30
821 *     2:  30  20  10  20
822 *     3:  20  30  20  10
823 *
824 * which represents a 4 node ring topology like:
825 *
826 *   0 ----- 1
827 *   |       |
828 *   |       |
829 *   |       |
830 *   3 ----- 2
831 *
832 * We want to construct domains and groups to represent this. The way we go
833 * about doing this is to build the domains on 'hops'. For each NUMA level we
834 * construct the mask of all nodes reachable in @level hops.
835 *
836 * For the above NUMA topology that gives 3 levels:
837 *
838 * NUMA-2	0-3		0-3		0-3		0-3
839 *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
840 *
841 * NUMA-1	0-1,3		0-2		1-3		0,2-3
842 *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
843 *
844 * NUMA-0	0		1		2		3
845 *
846 *
847 * As can be seen; things don't nicely line up as with the regular topology.
848 * When we iterate a domain in child domain chunks some nodes can be
849 * represented multiple times -- hence the "overlap" naming for this part of
850 * the topology.
851 *
852 * In order to minimize this overlap, we only build enough groups to cover the
853 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
854 *
855 * Because:
856 *
857 *  - the first group of each domain is its child domain; this
858 *    gets us the first 0-1,3
859 *  - the only uncovered node is 2, who's child domain is 1-3.
860 *
861 * However, because of the overlap, computing a unique CPU for each group is
862 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
863 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
864 * end up at those groups (they would end up in group: 0-1,3).
865 *
866 * To correct this we have to introduce the group balance mask. This mask
867 * will contain those CPUs in the group that can reach this group given the
868 * (child) domain tree.
869 *
870 * With this we can once again compute balance_cpu and sched_group_capacity
871 * relations.
872 *
873 * XXX include words on how balance_cpu is unique and therefore can be
874 * used for sched_group_capacity links.
875 *
876 *
877 * Another 'interesting' topology is:
878 *
879 *   node   0   1   2   3
880 *     0:  10  20  20  30
881 *     1:  20  10  20  20
882 *     2:  20  20  10  20
883 *     3:  30  20  20  10
884 *
885 * Which looks a little like:
886 *
887 *   0 ----- 1
888 *   |     / |
889 *   |   /   |
890 *   | /     |
891 *   2 ----- 3
892 *
893 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
894 * are not.
895 *
896 * This leads to a few particularly weird cases where the sched_domain's are
897 * not of the same number for each CPU. Consider:
898 *
899 * NUMA-2	0-3						0-3
900 *  groups:	{0-2},{1-3}					{1-3},{0-2}
901 *
902 * NUMA-1	0-2		0-3		0-3		1-3
903 *
904 * NUMA-0	0		1		2		3
905 *
906 */
907
908
909/*
910 * Build the balance mask; it contains only those CPUs that can arrive at this
911 * group and should be considered to continue balancing.
912 *
913 * We do this during the group creation pass, therefore the group information
914 * isn't complete yet, however since each group represents a (child) domain we
915 * can fully construct this using the sched_domain bits (which are already
916 * complete).
917 */
918static void
919build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
920{
921	const struct cpumask *sg_span = sched_group_span(sg);
922	struct sd_data *sdd = sd->private;
923	struct sched_domain *sibling;
924	int i;
925
926	cpumask_clear(mask);
927
928	for_each_cpu(i, sg_span) {
929		sibling = *per_cpu_ptr(sdd->sd, i);
930
931		/*
932		 * Can happen in the asymmetric case, where these siblings are
933		 * unused. The mask will not be empty because those CPUs that
934		 * do have the top domain _should_ span the domain.
935		 */
936		if (!sibling->child)
937			continue;
938
939		/* If we would not end up here, we can't continue from here */
940		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
941			continue;
942
943		cpumask_set_cpu(i, mask);
944	}
945
946	/* We must not have empty masks here */
947	WARN_ON_ONCE(cpumask_empty(mask));
948}
949
950/*
951 * XXX: This creates per-node group entries; since the load-balancer will
952 * immediately access remote memory to construct this group's load-balance
953 * statistics having the groups node local is of dubious benefit.
954 */
955static struct sched_group *
956build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
957{
958	struct sched_group *sg;
959	struct cpumask *sg_span;
960
961	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
962			GFP_KERNEL, cpu_to_node(cpu));
963
964	if (!sg)
965		return NULL;
966
967	sg_span = sched_group_span(sg);
968	if (sd->child) {
969		cpumask_copy(sg_span, sched_domain_span(sd->child));
970		sg->flags = sd->child->flags;
971	} else {
972		cpumask_copy(sg_span, sched_domain_span(sd));
973	}
974
975	atomic_inc(&sg->ref);
976	return sg;
977}
978
979static void init_overlap_sched_group(struct sched_domain *sd,
980				     struct sched_group *sg)
981{
982	struct cpumask *mask = sched_domains_tmpmask2;
983	struct sd_data *sdd = sd->private;
984	struct cpumask *sg_span;
985	int cpu;
986
987	build_balance_mask(sd, sg, mask);
988	cpu = cpumask_first(mask);
989
990	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
991	if (atomic_inc_return(&sg->sgc->ref) == 1)
992		cpumask_copy(group_balance_mask(sg), mask);
993	else
994		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
995
996	/*
997	 * Initialize sgc->capacity such that even if we mess up the
998	 * domains and no possible iteration will get us here, we won't
999	 * die on a /0 trap.
1000	 */
1001	sg_span = sched_group_span(sg);
1002	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
1003	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1004	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1005}
1006
1007static struct sched_domain *
1008find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
1009{
1010	/*
1011	 * The proper descendant would be the one whose child won't span out
1012	 * of sd
1013	 */
1014	while (sibling->child &&
1015	       !cpumask_subset(sched_domain_span(sibling->child),
1016			       sched_domain_span(sd)))
1017		sibling = sibling->child;
1018
1019	/*
1020	 * As we are referencing sgc across different topology level, we need
1021	 * to go down to skip those sched_domains which don't contribute to
1022	 * scheduling because they will be degenerated in cpu_attach_domain
1023	 */
1024	while (sibling->child &&
1025	       cpumask_equal(sched_domain_span(sibling->child),
1026			     sched_domain_span(sibling)))
1027		sibling = sibling->child;
1028
1029	return sibling;
1030}
1031
1032static int
1033build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1034{
1035	struct sched_group *first = NULL, *last = NULL, *sg;
1036	const struct cpumask *span = sched_domain_span(sd);
1037	struct cpumask *covered = sched_domains_tmpmask;
1038	struct sd_data *sdd = sd->private;
1039	struct sched_domain *sibling;
1040	int i;
1041
1042	cpumask_clear(covered);
1043
1044	for_each_cpu_wrap(i, span, cpu) {
1045		struct cpumask *sg_span;
1046
1047		if (cpumask_test_cpu(i, covered))
1048			continue;
1049
1050		sibling = *per_cpu_ptr(sdd->sd, i);
1051
1052		/*
1053		 * Asymmetric node setups can result in situations where the
1054		 * domain tree is of unequal depth, make sure to skip domains
1055		 * that already cover the entire range.
1056		 *
1057		 * In that case build_sched_domains() will have terminated the
1058		 * iteration early and our sibling sd spans will be empty.
1059		 * Domains should always include the CPU they're built on, so
1060		 * check that.
1061		 */
1062		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1063			continue;
1064
1065		/*
1066		 * Usually we build sched_group by sibling's child sched_domain
1067		 * But for machines whose NUMA diameter are 3 or above, we move
1068		 * to build sched_group by sibling's proper descendant's child
1069		 * domain because sibling's child sched_domain will span out of
1070		 * the sched_domain being built as below.
1071		 *
1072		 * Smallest diameter=3 topology is:
1073		 *
1074		 *   node   0   1   2   3
1075		 *     0:  10  20  30  40
1076		 *     1:  20  10  20  30
1077		 *     2:  30  20  10  20
1078		 *     3:  40  30  20  10
1079		 *
1080		 *   0 --- 1 --- 2 --- 3
1081		 *
1082		 * NUMA-3       0-3             N/A             N/A             0-3
1083		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1084		 *
1085		 * NUMA-2       0-2             0-3             0-3             1-3
1086		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1087		 *
1088		 * NUMA-1       0-1             0-2             1-3             2-3
1089		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1090		 *
1091		 * NUMA-0       0               1               2               3
1092		 *
1093		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1094		 * group span isn't a subset of the domain span.
1095		 */
1096		if (sibling->child &&
1097		    !cpumask_subset(sched_domain_span(sibling->child), span))
1098			sibling = find_descended_sibling(sd, sibling);
1099
1100		sg = build_group_from_child_sched_domain(sibling, cpu);
1101		if (!sg)
1102			goto fail;
1103
1104		sg_span = sched_group_span(sg);
1105		cpumask_or(covered, covered, sg_span);
1106
1107		init_overlap_sched_group(sibling, sg);
1108
1109		if (!first)
1110			first = sg;
1111		if (last)
1112			last->next = sg;
1113		last = sg;
1114		last->next = first;
1115	}
1116	sd->groups = first;
1117
1118	return 0;
1119
1120fail:
1121	free_sched_groups(first, 0);
1122
1123	return -ENOMEM;
1124}
1125
1126
1127/*
1128 * Package topology (also see the load-balance blurb in fair.c)
1129 *
1130 * The scheduler builds a tree structure to represent a number of important
1131 * topology features. By default (default_topology[]) these include:
1132 *
1133 *  - Simultaneous multithreading (SMT)
1134 *  - Multi-Core Cache (MC)
1135 *  - Package (PKG)
1136 *
1137 * Where the last one more or less denotes everything up to a NUMA node.
1138 *
1139 * The tree consists of 3 primary data structures:
1140 *
1141 *	sched_domain -> sched_group -> sched_group_capacity
1142 *	    ^ ^             ^ ^
1143 *          `-'             `-'
1144 *
1145 * The sched_domains are per-CPU and have a two way link (parent & child) and
1146 * denote the ever growing mask of CPUs belonging to that level of topology.
1147 *
1148 * Each sched_domain has a circular (double) linked list of sched_group's, each
1149 * denoting the domains of the level below (or individual CPUs in case of the
1150 * first domain level). The sched_group linked by a sched_domain includes the
1151 * CPU of that sched_domain [*].
1152 *
1153 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1154 *
1155 * CPU   0   1   2   3   4   5   6   7
1156 *
1157 * PKG  [                             ]
1158 * MC   [             ] [             ]
1159 * SMT  [     ] [     ] [     ] [     ]
1160 *
1161 *  - or -
1162 *
1163 * PKG  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1164 * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1165 * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1166 *
1167 * CPU   0   1   2   3   4   5   6   7
1168 *
1169 * One way to think about it is: sched_domain moves you up and down among these
1170 * topology levels, while sched_group moves you sideways through it, at child
1171 * domain granularity.
1172 *
1173 * sched_group_capacity ensures each unique sched_group has shared storage.
1174 *
1175 * There are two related construction problems, both require a CPU that
1176 * uniquely identify each group (for a given domain):
1177 *
1178 *  - The first is the balance_cpu (see should_we_balance() and the
1179 *    load-balance blub in fair.c); for each group we only want 1 CPU to
1180 *    continue balancing at a higher domain.
1181 *
1182 *  - The second is the sched_group_capacity; we want all identical groups
1183 *    to share a single sched_group_capacity.
1184 *
1185 * Since these topologies are exclusive by construction. That is, its
1186 * impossible for an SMT thread to belong to multiple cores, and cores to
1187 * be part of multiple caches. There is a very clear and unique location
1188 * for each CPU in the hierarchy.
1189 *
1190 * Therefore computing a unique CPU for each group is trivial (the iteration
1191 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1192 * group), we can simply pick the first CPU in each group.
1193 *
1194 *
1195 * [*] in other words, the first group of each domain is its child domain.
1196 */
1197
1198static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1199{
1200	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1201	struct sched_domain *child = sd->child;
1202	struct sched_group *sg;
1203	bool already_visited;
1204
1205	if (child)
1206		cpu = cpumask_first(sched_domain_span(child));
1207
1208	sg = *per_cpu_ptr(sdd->sg, cpu);
1209	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1210
1211	/* Increase refcounts for claim_allocations: */
1212	already_visited = atomic_inc_return(&sg->ref) > 1;
1213	/* sgc visits should follow a similar trend as sg */
1214	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1215
1216	/* If we have already visited that group, it's already initialized. */
1217	if (already_visited)
1218		return sg;
1219
1220	if (child) {
1221		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1222		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1223		sg->flags = child->flags;
1224	} else {
1225		cpumask_set_cpu(cpu, sched_group_span(sg));
1226		cpumask_set_cpu(cpu, group_balance_mask(sg));
1227	}
1228
1229	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1230	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1231	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1232
1233	return sg;
1234}
1235
1236/*
1237 * build_sched_groups will build a circular linked list of the groups
1238 * covered by the given span, will set each group's ->cpumask correctly,
1239 * and will initialize their ->sgc.
1240 *
1241 * Assumes the sched_domain tree is fully constructed
1242 */
1243static int
1244build_sched_groups(struct sched_domain *sd, int cpu)
1245{
1246	struct sched_group *first = NULL, *last = NULL;
1247	struct sd_data *sdd = sd->private;
1248	const struct cpumask *span = sched_domain_span(sd);
1249	struct cpumask *covered;
1250	int i;
1251
1252	lockdep_assert_held(&sched_domains_mutex);
1253	covered = sched_domains_tmpmask;
1254
1255	cpumask_clear(covered);
1256
1257	for_each_cpu_wrap(i, span, cpu) {
1258		struct sched_group *sg;
1259
1260		if (cpumask_test_cpu(i, covered))
1261			continue;
1262
1263		sg = get_group(i, sdd);
1264
1265		cpumask_or(covered, covered, sched_group_span(sg));
1266
1267		if (!first)
1268			first = sg;
1269		if (last)
1270			last->next = sg;
1271		last = sg;
1272	}
1273	last->next = first;
1274	sd->groups = first;
1275
1276	return 0;
1277}
1278
1279/*
1280 * Initialize sched groups cpu_capacity.
1281 *
1282 * cpu_capacity indicates the capacity of sched group, which is used while
1283 * distributing the load between different sched groups in a sched domain.
1284 * Typically cpu_capacity for all the groups in a sched domain will be same
1285 * unless there are asymmetries in the topology. If there are asymmetries,
1286 * group having more cpu_capacity will pickup more load compared to the
1287 * group having less cpu_capacity.
1288 */
1289static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1290{
1291	struct sched_group *sg = sd->groups;
1292	struct cpumask *mask = sched_domains_tmpmask2;
1293
1294	WARN_ON(!sg);
1295
1296	do {
1297		int cpu, cores = 0, max_cpu = -1;
1298
1299		sg->group_weight = cpumask_weight(sched_group_span(sg));
1300
1301		cpumask_copy(mask, sched_group_span(sg));
1302		for_each_cpu(cpu, mask) {
1303			cores++;
1304#ifdef CONFIG_SCHED_SMT
1305			cpumask_andnot(mask, mask, cpu_smt_mask(cpu));
1306#endif
1307		}
1308		sg->cores = cores;
1309
1310		if (!(sd->flags & SD_ASYM_PACKING))
1311			goto next;
1312
1313		for_each_cpu(cpu, sched_group_span(sg)) {
1314			if (max_cpu < 0)
1315				max_cpu = cpu;
1316			else if (sched_asym_prefer(cpu, max_cpu))
1317				max_cpu = cpu;
1318		}
1319		sg->asym_prefer_cpu = max_cpu;
1320
1321next:
1322		sg = sg->next;
1323	} while (sg != sd->groups);
1324
1325	if (cpu != group_balance_cpu(sg))
1326		return;
1327
1328	update_group_capacity(sd, cpu);
1329}
1330
1331/*
1332 * Set of available CPUs grouped by their corresponding capacities
1333 * Each list entry contains a CPU mask reflecting CPUs that share the same
1334 * capacity.
1335 * The lifespan of data is unlimited.
1336 */
1337LIST_HEAD(asym_cap_list);
1338
1339/*
1340 * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1341 * Provides sd_flags reflecting the asymmetry scope.
1342 */
1343static inline int
1344asym_cpu_capacity_classify(const struct cpumask *sd_span,
1345			   const struct cpumask *cpu_map)
1346{
1347	struct asym_cap_data *entry;
1348	int count = 0, miss = 0;
1349
1350	/*
1351	 * Count how many unique CPU capacities this domain spans across
1352	 * (compare sched_domain CPUs mask with ones representing  available
1353	 * CPUs capacities). Take into account CPUs that might be offline:
1354	 * skip those.
1355	 */
1356	list_for_each_entry(entry, &asym_cap_list, link) {
1357		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1358			++count;
1359		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1360			++miss;
1361	}
1362
1363	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1364
1365	/* No asymmetry detected */
1366	if (count < 2)
1367		return 0;
1368	/* Some of the available CPU capacity values have not been detected */
1369	if (miss)
1370		return SD_ASYM_CPUCAPACITY;
1371
1372	/* Full asymmetry */
1373	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1374
1375}
1376
1377static void free_asym_cap_entry(struct rcu_head *head)
1378{
1379	struct asym_cap_data *entry = container_of(head, struct asym_cap_data, rcu);
1380	kfree(entry);
1381}
1382
1383static inline void asym_cpu_capacity_update_data(int cpu)
1384{
1385	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1386	struct asym_cap_data *insert_entry = NULL;
1387	struct asym_cap_data *entry;
1388
1389	/*
1390	 * Search if capacity already exits. If not, track which the entry
1391	 * where we should insert to keep the list ordered descendingly.
1392	 */
1393	list_for_each_entry(entry, &asym_cap_list, link) {
1394		if (capacity == entry->capacity)
1395			goto done;
1396		else if (!insert_entry && capacity > entry->capacity)
1397			insert_entry = list_prev_entry(entry, link);
1398	}
1399
1400	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1401	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1402		return;
1403	entry->capacity = capacity;
1404
1405	/* If NULL then the new capacity is the smallest, add last. */
1406	if (!insert_entry)
1407		list_add_tail_rcu(&entry->link, &asym_cap_list);
1408	else
1409		list_add_rcu(&entry->link, &insert_entry->link);
1410done:
1411	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1412}
1413
1414/*
1415 * Build-up/update list of CPUs grouped by their capacities
1416 * An update requires explicit request to rebuild sched domains
1417 * with state indicating CPU topology changes.
1418 */
1419static void asym_cpu_capacity_scan(void)
1420{
1421	struct asym_cap_data *entry, *next;
1422	int cpu;
1423
1424	list_for_each_entry(entry, &asym_cap_list, link)
1425		cpumask_clear(cpu_capacity_span(entry));
1426
1427	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1428		asym_cpu_capacity_update_data(cpu);
1429
1430	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1431		if (cpumask_empty(cpu_capacity_span(entry))) {
1432			list_del_rcu(&entry->link);
1433			call_rcu(&entry->rcu, free_asym_cap_entry);
1434		}
1435	}
1436
1437	/*
1438	 * Only one capacity value has been detected i.e. this system is symmetric.
1439	 * No need to keep this data around.
1440	 */
1441	if (list_is_singular(&asym_cap_list)) {
1442		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1443		list_del_rcu(&entry->link);
1444		call_rcu(&entry->rcu, free_asym_cap_entry);
1445	}
1446}
1447
1448/*
1449 * Initializers for schedule domains
1450 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1451 */
1452
1453static int default_relax_domain_level = -1;
1454int sched_domain_level_max;
1455
1456static int __init setup_relax_domain_level(char *str)
1457{
1458	if (kstrtoint(str, 0, &default_relax_domain_level))
1459		pr_warn("Unable to set relax_domain_level\n");
1460
1461	return 1;
1462}
1463__setup("relax_domain_level=", setup_relax_domain_level);
1464
1465static void set_domain_attribute(struct sched_domain *sd,
1466				 struct sched_domain_attr *attr)
1467{
1468	int request;
1469
1470	if (!attr || attr->relax_domain_level < 0) {
1471		if (default_relax_domain_level < 0)
1472			return;
1473		request = default_relax_domain_level;
1474	} else
1475		request = attr->relax_domain_level;
1476
1477	if (sd->level >= request) {
1478		/* Turn off idle balance on this domain: */
1479		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1480	}
1481}
1482
1483static void __sdt_free(const struct cpumask *cpu_map);
1484static int __sdt_alloc(const struct cpumask *cpu_map);
1485
1486static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1487				 const struct cpumask *cpu_map)
1488{
1489	switch (what) {
1490	case sa_rootdomain:
1491		if (!atomic_read(&d->rd->refcount))
1492			free_rootdomain(&d->rd->rcu);
1493		fallthrough;
1494	case sa_sd:
1495		free_percpu(d->sd);
1496		fallthrough;
1497	case sa_sd_storage:
1498		__sdt_free(cpu_map);
1499		fallthrough;
1500	case sa_none:
1501		break;
1502	}
1503}
1504
1505static enum s_alloc
1506__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1507{
1508	memset(d, 0, sizeof(*d));
1509
1510	if (__sdt_alloc(cpu_map))
1511		return sa_sd_storage;
1512	d->sd = alloc_percpu(struct sched_domain *);
1513	if (!d->sd)
1514		return sa_sd_storage;
1515	d->rd = alloc_rootdomain();
1516	if (!d->rd)
1517		return sa_sd;
1518
1519	return sa_rootdomain;
1520}
1521
1522/*
1523 * NULL the sd_data elements we've used to build the sched_domain and
1524 * sched_group structure so that the subsequent __free_domain_allocs()
1525 * will not free the data we're using.
1526 */
1527static void claim_allocations(int cpu, struct sched_domain *sd)
1528{
1529	struct sd_data *sdd = sd->private;
1530
1531	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1532	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1533
1534	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1535		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1536
1537	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1538		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1539
1540	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1541		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1542}
1543
1544#ifdef CONFIG_NUMA
1545enum numa_topology_type sched_numa_topology_type;
1546
1547static int			sched_domains_numa_levels;
1548static int			sched_domains_curr_level;
1549
1550int				sched_max_numa_distance;
1551static int			*sched_domains_numa_distance;
1552static struct cpumask		***sched_domains_numa_masks;
1553#endif
1554
1555/*
1556 * SD_flags allowed in topology descriptions.
1557 *
1558 * These flags are purely descriptive of the topology and do not prescribe
1559 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1560 * function. For details, see include/linux/sched/sd_flags.h.
1561 *
1562 *   SD_SHARE_CPUCAPACITY
1563 *   SD_SHARE_LLC
1564 *   SD_CLUSTER
1565 *   SD_NUMA
1566 *
1567 * Odd one out, which beside describing the topology has a quirk also
1568 * prescribes the desired behaviour that goes along with it:
1569 *
1570 *   SD_ASYM_PACKING        - describes SMT quirks
1571 */
1572#define TOPOLOGY_SD_FLAGS		\
1573	(SD_SHARE_CPUCAPACITY	|	\
1574	 SD_CLUSTER		|	\
1575	 SD_SHARE_LLC		|	\
1576	 SD_NUMA		|	\
1577	 SD_ASYM_PACKING)
1578
1579static struct sched_domain *
1580sd_init(struct sched_domain_topology_level *tl,
1581	const struct cpumask *cpu_map,
1582	struct sched_domain *child, int cpu)
1583{
1584	struct sd_data *sdd = &tl->data;
1585	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1586	int sd_id, sd_weight, sd_flags = 0;
1587	struct cpumask *sd_span;
1588
1589#ifdef CONFIG_NUMA
1590	/*
1591	 * Ugly hack to pass state to sd_numa_mask()...
1592	 */
1593	sched_domains_curr_level = tl->numa_level;
1594#endif
1595
1596	sd_weight = cpumask_weight(tl->mask(cpu));
1597
1598	if (tl->sd_flags)
1599		sd_flags = (*tl->sd_flags)();
1600	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1601			"wrong sd_flags in topology description\n"))
1602		sd_flags &= TOPOLOGY_SD_FLAGS;
1603
1604	*sd = (struct sched_domain){
1605		.min_interval		= sd_weight,
1606		.max_interval		= 2*sd_weight,
1607		.busy_factor		= 16,
1608		.imbalance_pct		= 117,
1609
1610		.cache_nice_tries	= 0,
1611
1612		.flags			= 1*SD_BALANCE_NEWIDLE
1613					| 1*SD_BALANCE_EXEC
1614					| 1*SD_BALANCE_FORK
1615					| 0*SD_BALANCE_WAKE
1616					| 1*SD_WAKE_AFFINE
1617					| 0*SD_SHARE_CPUCAPACITY
1618					| 0*SD_SHARE_LLC
1619					| 0*SD_SERIALIZE
1620					| 1*SD_PREFER_SIBLING
1621					| 0*SD_NUMA
1622					| sd_flags
1623					,
1624
1625		.last_balance		= jiffies,
1626		.balance_interval	= sd_weight,
1627		.max_newidle_lb_cost	= 0,
1628		.last_decay_max_lb_cost	= jiffies,
1629		.child			= child,
1630#ifdef CONFIG_SCHED_DEBUG
1631		.name			= tl->name,
1632#endif
1633	};
1634
1635	sd_span = sched_domain_span(sd);
1636	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1637	sd_id = cpumask_first(sd_span);
1638
1639	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1640
1641	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1642		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1643		  "CPU capacity asymmetry not supported on SMT\n");
1644
1645	/*
1646	 * Convert topological properties into behaviour.
1647	 */
1648	/* Don't attempt to spread across CPUs of different capacities. */
1649	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1650		sd->child->flags &= ~SD_PREFER_SIBLING;
1651
1652	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1653		sd->imbalance_pct = 110;
1654
1655	} else if (sd->flags & SD_SHARE_LLC) {
1656		sd->imbalance_pct = 117;
1657		sd->cache_nice_tries = 1;
1658
1659#ifdef CONFIG_NUMA
1660	} else if (sd->flags & SD_NUMA) {
1661		sd->cache_nice_tries = 2;
1662
1663		sd->flags &= ~SD_PREFER_SIBLING;
1664		sd->flags |= SD_SERIALIZE;
1665		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1666			sd->flags &= ~(SD_BALANCE_EXEC |
1667				       SD_BALANCE_FORK |
1668				       SD_WAKE_AFFINE);
1669		}
1670
1671#endif
1672	} else {
1673		sd->cache_nice_tries = 1;
1674	}
1675
1676	/*
1677	 * For all levels sharing cache; connect a sched_domain_shared
1678	 * instance.
1679	 */
1680	if (sd->flags & SD_SHARE_LLC) {
1681		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1682		atomic_inc(&sd->shared->ref);
1683		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1684	}
1685
1686	sd->private = sdd;
1687
1688	return sd;
1689}
1690
1691/*
1692 * Topology list, bottom-up.
1693 */
1694static struct sched_domain_topology_level default_topology[] = {
1695#ifdef CONFIG_SCHED_SMT
1696	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1697#endif
1698
1699#ifdef CONFIG_SCHED_CLUSTER
1700	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1701#endif
1702
1703#ifdef CONFIG_SCHED_MC
1704	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1705#endif
1706	{ cpu_cpu_mask, SD_INIT_NAME(PKG) },
1707	{ NULL, },
1708};
1709
1710static struct sched_domain_topology_level *sched_domain_topology =
1711	default_topology;
1712static struct sched_domain_topology_level *sched_domain_topology_saved;
1713
1714#define for_each_sd_topology(tl)			\
1715	for (tl = sched_domain_topology; tl->mask; tl++)
1716
1717void __init set_sched_topology(struct sched_domain_topology_level *tl)
1718{
1719	if (WARN_ON_ONCE(sched_smp_initialized))
1720		return;
1721
1722	sched_domain_topology = tl;
1723	sched_domain_topology_saved = NULL;
1724}
1725
1726#ifdef CONFIG_NUMA
1727
1728static const struct cpumask *sd_numa_mask(int cpu)
1729{
1730	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1731}
1732
1733static void sched_numa_warn(const char *str)
1734{
1735	static int done = false;
1736	int i,j;
1737
1738	if (done)
1739		return;
1740
1741	done = true;
1742
1743	printk(KERN_WARNING "ERROR: %s\n\n", str);
1744
1745	for (i = 0; i < nr_node_ids; i++) {
1746		printk(KERN_WARNING "  ");
1747		for (j = 0; j < nr_node_ids; j++) {
1748			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1749				printk(KERN_CONT "(%02d) ", node_distance(i,j));
1750			else
1751				printk(KERN_CONT " %02d  ", node_distance(i,j));
1752		}
1753		printk(KERN_CONT "\n");
1754	}
1755	printk(KERN_WARNING "\n");
1756}
1757
1758bool find_numa_distance(int distance)
1759{
1760	bool found = false;
1761	int i, *distances;
1762
1763	if (distance == node_distance(0, 0))
1764		return true;
1765
1766	rcu_read_lock();
1767	distances = rcu_dereference(sched_domains_numa_distance);
1768	if (!distances)
1769		goto unlock;
1770	for (i = 0; i < sched_domains_numa_levels; i++) {
1771		if (distances[i] == distance) {
1772			found = true;
1773			break;
1774		}
1775	}
1776unlock:
1777	rcu_read_unlock();
1778
1779	return found;
1780}
1781
1782#define for_each_cpu_node_but(n, nbut)		\
1783	for_each_node_state(n, N_CPU)		\
1784		if (n == nbut)			\
1785			continue;		\
1786		else
1787
1788/*
1789 * A system can have three types of NUMA topology:
1790 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1791 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1792 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1793 *
1794 * The difference between a glueless mesh topology and a backplane
1795 * topology lies in whether communication between not directly
1796 * connected nodes goes through intermediary nodes (where programs
1797 * could run), or through backplane controllers. This affects
1798 * placement of programs.
1799 *
1800 * The type of topology can be discerned with the following tests:
1801 * - If the maximum distance between any nodes is 1 hop, the system
1802 *   is directly connected.
1803 * - If for two nodes A and B, located N > 1 hops away from each other,
1804 *   there is an intermediary node C, which is < N hops away from both
1805 *   nodes A and B, the system is a glueless mesh.
1806 */
1807static void init_numa_topology_type(int offline_node)
1808{
1809	int a, b, c, n;
1810
1811	n = sched_max_numa_distance;
1812
1813	if (sched_domains_numa_levels <= 2) {
1814		sched_numa_topology_type = NUMA_DIRECT;
1815		return;
1816	}
1817
1818	for_each_cpu_node_but(a, offline_node) {
1819		for_each_cpu_node_but(b, offline_node) {
1820			/* Find two nodes furthest removed from each other. */
1821			if (node_distance(a, b) < n)
1822				continue;
1823
1824			/* Is there an intermediary node between a and b? */
1825			for_each_cpu_node_but(c, offline_node) {
1826				if (node_distance(a, c) < n &&
1827				    node_distance(b, c) < n) {
1828					sched_numa_topology_type =
1829							NUMA_GLUELESS_MESH;
1830					return;
1831				}
1832			}
1833
1834			sched_numa_topology_type = NUMA_BACKPLANE;
1835			return;
1836		}
1837	}
1838
1839	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1840	sched_numa_topology_type = NUMA_DIRECT;
1841}
1842
1843
1844#define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1845
1846void sched_init_numa(int offline_node)
1847{
1848	struct sched_domain_topology_level *tl;
1849	unsigned long *distance_map;
1850	int nr_levels = 0;
1851	int i, j;
1852	int *distances;
1853	struct cpumask ***masks;
1854
1855	/*
1856	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1857	 * unique distances in the node_distance() table.
1858	 */
1859	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1860	if (!distance_map)
1861		return;
1862
1863	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1864	for_each_cpu_node_but(i, offline_node) {
1865		for_each_cpu_node_but(j, offline_node) {
1866			int distance = node_distance(i, j);
1867
1868			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1869				sched_numa_warn("Invalid distance value range");
1870				bitmap_free(distance_map);
1871				return;
1872			}
1873
1874			bitmap_set(distance_map, distance, 1);
1875		}
1876	}
1877	/*
1878	 * We can now figure out how many unique distance values there are and
1879	 * allocate memory accordingly.
1880	 */
1881	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1882
1883	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1884	if (!distances) {
1885		bitmap_free(distance_map);
1886		return;
1887	}
1888
1889	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1890		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1891		distances[i] = j;
1892	}
1893	rcu_assign_pointer(sched_domains_numa_distance, distances);
1894
1895	bitmap_free(distance_map);
1896
1897	/*
1898	 * 'nr_levels' contains the number of unique distances
1899	 *
1900	 * The sched_domains_numa_distance[] array includes the actual distance
1901	 * numbers.
1902	 */
1903
1904	/*
1905	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1906	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1907	 * the array will contain less then 'nr_levels' members. This could be
1908	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1909	 * in other functions.
1910	 *
1911	 * We reset it to 'nr_levels' at the end of this function.
1912	 */
1913	sched_domains_numa_levels = 0;
1914
1915	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1916	if (!masks)
1917		return;
1918
1919	/*
1920	 * Now for each level, construct a mask per node which contains all
1921	 * CPUs of nodes that are that many hops away from us.
1922	 */
1923	for (i = 0; i < nr_levels; i++) {
1924		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1925		if (!masks[i])
1926			return;
1927
1928		for_each_cpu_node_but(j, offline_node) {
1929			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1930			int k;
1931
1932			if (!mask)
1933				return;
1934
1935			masks[i][j] = mask;
1936
1937			for_each_cpu_node_but(k, offline_node) {
1938				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1939					sched_numa_warn("Node-distance not symmetric");
1940
1941				if (node_distance(j, k) > sched_domains_numa_distance[i])
1942					continue;
1943
1944				cpumask_or(mask, mask, cpumask_of_node(k));
1945			}
1946		}
1947	}
1948	rcu_assign_pointer(sched_domains_numa_masks, masks);
1949
1950	/* Compute default topology size */
1951	for (i = 0; sched_domain_topology[i].mask; i++);
1952
1953	tl = kzalloc((i + nr_levels + 1) *
1954			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1955	if (!tl)
1956		return;
1957
1958	/*
1959	 * Copy the default topology bits..
1960	 */
1961	for (i = 0; sched_domain_topology[i].mask; i++)
1962		tl[i] = sched_domain_topology[i];
1963
1964	/*
1965	 * Add the NUMA identity distance, aka single NODE.
1966	 */
1967	tl[i++] = (struct sched_domain_topology_level){
1968		.mask = sd_numa_mask,
1969		.numa_level = 0,
1970		SD_INIT_NAME(NODE)
1971	};
1972
1973	/*
1974	 * .. and append 'j' levels of NUMA goodness.
1975	 */
1976	for (j = 1; j < nr_levels; i++, j++) {
1977		tl[i] = (struct sched_domain_topology_level){
1978			.mask = sd_numa_mask,
1979			.sd_flags = cpu_numa_flags,
1980			.flags = SDTL_OVERLAP,
1981			.numa_level = j,
1982			SD_INIT_NAME(NUMA)
1983		};
1984	}
1985
1986	sched_domain_topology_saved = sched_domain_topology;
1987	sched_domain_topology = tl;
1988
1989	sched_domains_numa_levels = nr_levels;
1990	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1991
1992	init_numa_topology_type(offline_node);
1993}
1994
1995
1996static void sched_reset_numa(void)
1997{
1998	int nr_levels, *distances;
1999	struct cpumask ***masks;
2000
2001	nr_levels = sched_domains_numa_levels;
2002	sched_domains_numa_levels = 0;
2003	sched_max_numa_distance = 0;
2004	sched_numa_topology_type = NUMA_DIRECT;
2005	distances = sched_domains_numa_distance;
2006	rcu_assign_pointer(sched_domains_numa_distance, NULL);
2007	masks = sched_domains_numa_masks;
2008	rcu_assign_pointer(sched_domains_numa_masks, NULL);
2009	if (distances || masks) {
2010		int i, j;
2011
2012		synchronize_rcu();
2013		kfree(distances);
2014		for (i = 0; i < nr_levels && masks; i++) {
2015			if (!masks[i])
2016				continue;
2017			for_each_node(j)
2018				kfree(masks[i][j]);
2019			kfree(masks[i]);
2020		}
2021		kfree(masks);
2022	}
2023	if (sched_domain_topology_saved) {
2024		kfree(sched_domain_topology);
2025		sched_domain_topology = sched_domain_topology_saved;
2026		sched_domain_topology_saved = NULL;
2027	}
2028}
2029
2030/*
2031 * Call with hotplug lock held
2032 */
2033void sched_update_numa(int cpu, bool online)
2034{
2035	int node;
2036
2037	node = cpu_to_node(cpu);
2038	/*
2039	 * Scheduler NUMA topology is updated when the first CPU of a
2040	 * node is onlined or the last CPU of a node is offlined.
2041	 */
2042	if (cpumask_weight(cpumask_of_node(node)) != 1)
2043		return;
2044
2045	sched_reset_numa();
2046	sched_init_numa(online ? NUMA_NO_NODE : node);
2047}
2048
2049void sched_domains_numa_masks_set(unsigned int cpu)
2050{
2051	int node = cpu_to_node(cpu);
2052	int i, j;
2053
2054	for (i = 0; i < sched_domains_numa_levels; i++) {
2055		for (j = 0; j < nr_node_ids; j++) {
2056			if (!node_state(j, N_CPU))
2057				continue;
2058
2059			/* Set ourselves in the remote node's masks */
2060			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2061				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2062		}
2063	}
2064}
2065
2066void sched_domains_numa_masks_clear(unsigned int cpu)
2067{
2068	int i, j;
2069
2070	for (i = 0; i < sched_domains_numa_levels; i++) {
2071		for (j = 0; j < nr_node_ids; j++) {
2072			if (sched_domains_numa_masks[i][j])
2073				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2074		}
2075	}
2076}
2077
2078/*
2079 * sched_numa_find_closest() - given the NUMA topology, find the cpu
2080 *                             closest to @cpu from @cpumask.
2081 * cpumask: cpumask to find a cpu from
2082 * cpu: cpu to be close to
2083 *
2084 * returns: cpu, or nr_cpu_ids when nothing found.
2085 */
2086int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2087{
2088	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2089	struct cpumask ***masks;
2090
2091	rcu_read_lock();
2092	masks = rcu_dereference(sched_domains_numa_masks);
2093	if (!masks)
2094		goto unlock;
2095	for (i = 0; i < sched_domains_numa_levels; i++) {
2096		if (!masks[i][j])
2097			break;
2098		cpu = cpumask_any_and(cpus, masks[i][j]);
2099		if (cpu < nr_cpu_ids) {
2100			found = cpu;
2101			break;
2102		}
2103	}
2104unlock:
2105	rcu_read_unlock();
2106
2107	return found;
2108}
2109
2110struct __cmp_key {
2111	const struct cpumask *cpus;
2112	struct cpumask ***masks;
2113	int node;
2114	int cpu;
2115	int w;
2116};
2117
2118static int hop_cmp(const void *a, const void *b)
2119{
2120	struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2121	struct __cmp_key *k = (struct __cmp_key *)a;
2122
2123	if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2124		return 1;
2125
2126	if (b == k->masks) {
2127		k->w = 0;
2128		return 0;
2129	}
2130
2131	prev_hop = *((struct cpumask ***)b - 1);
2132	k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2133	if (k->w <= k->cpu)
2134		return 0;
2135
2136	return -1;
2137}
2138
2139/**
2140 * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU
2141 *                             from @cpus to @cpu, taking into account distance
2142 *                             from a given @node.
2143 * @cpus: cpumask to find a cpu from
2144 * @cpu: CPU to start searching
2145 * @node: NUMA node to order CPUs by distance
2146 *
2147 * Return: cpu, or nr_cpu_ids when nothing found.
2148 */
2149int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2150{
2151	struct __cmp_key k = { .cpus = cpus, .cpu = cpu };
2152	struct cpumask ***hop_masks;
2153	int hop, ret = nr_cpu_ids;
2154
2155	if (node == NUMA_NO_NODE)
2156		return cpumask_nth_and(cpu, cpus, cpu_online_mask);
2157
2158	rcu_read_lock();
2159
2160	/* CPU-less node entries are uninitialized in sched_domains_numa_masks */
2161	node = numa_nearest_node(node, N_CPU);
2162	k.node = node;
2163
2164	k.masks = rcu_dereference(sched_domains_numa_masks);
2165	if (!k.masks)
2166		goto unlock;
2167
2168	hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2169	hop = hop_masks	- k.masks;
2170
2171	ret = hop ?
2172		cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2173		cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2174unlock:
2175	rcu_read_unlock();
2176	return ret;
2177}
2178EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2179
2180/**
2181 * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2182 *                         @node
2183 * @node: The node to count hops from.
2184 * @hops: Include CPUs up to that many hops away. 0 means local node.
2185 *
2186 * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2187 * @node, an error value otherwise.
2188 *
2189 * Requires rcu_lock to be held. Returned cpumask is only valid within that
2190 * read-side section, copy it if required beyond that.
2191 *
2192 * Note that not all hops are equal in distance; see sched_init_numa() for how
2193 * distances and masks are handled.
2194 * Also note that this is a reflection of sched_domains_numa_masks, which may change
2195 * during the lifetime of the system (offline nodes are taken out of the masks).
2196 */
2197const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2198{
2199	struct cpumask ***masks;
2200
2201	if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2202		return ERR_PTR(-EINVAL);
2203
2204	masks = rcu_dereference(sched_domains_numa_masks);
2205	if (!masks)
2206		return ERR_PTR(-EBUSY);
2207
2208	return masks[hops][node];
2209}
2210EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2211
2212#endif /* CONFIG_NUMA */
2213
2214static int __sdt_alloc(const struct cpumask *cpu_map)
2215{
2216	struct sched_domain_topology_level *tl;
2217	int j;
2218
2219	for_each_sd_topology(tl) {
2220		struct sd_data *sdd = &tl->data;
2221
2222		sdd->sd = alloc_percpu(struct sched_domain *);
2223		if (!sdd->sd)
2224			return -ENOMEM;
2225
2226		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2227		if (!sdd->sds)
2228			return -ENOMEM;
2229
2230		sdd->sg = alloc_percpu(struct sched_group *);
2231		if (!sdd->sg)
2232			return -ENOMEM;
2233
2234		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2235		if (!sdd->sgc)
2236			return -ENOMEM;
2237
2238		for_each_cpu(j, cpu_map) {
2239			struct sched_domain *sd;
2240			struct sched_domain_shared *sds;
2241			struct sched_group *sg;
2242			struct sched_group_capacity *sgc;
2243
2244			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2245					GFP_KERNEL, cpu_to_node(j));
2246			if (!sd)
2247				return -ENOMEM;
2248
2249			*per_cpu_ptr(sdd->sd, j) = sd;
2250
2251			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2252					GFP_KERNEL, cpu_to_node(j));
2253			if (!sds)
2254				return -ENOMEM;
2255
2256			*per_cpu_ptr(sdd->sds, j) = sds;
2257
2258			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2259					GFP_KERNEL, cpu_to_node(j));
2260			if (!sg)
2261				return -ENOMEM;
2262
2263			sg->next = sg;
2264
2265			*per_cpu_ptr(sdd->sg, j) = sg;
2266
2267			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2268					GFP_KERNEL, cpu_to_node(j));
2269			if (!sgc)
2270				return -ENOMEM;
2271
2272#ifdef CONFIG_SCHED_DEBUG
2273			sgc->id = j;
2274#endif
2275
2276			*per_cpu_ptr(sdd->sgc, j) = sgc;
2277		}
2278	}
2279
2280	return 0;
2281}
2282
2283static void __sdt_free(const struct cpumask *cpu_map)
2284{
2285	struct sched_domain_topology_level *tl;
2286	int j;
2287
2288	for_each_sd_topology(tl) {
2289		struct sd_data *sdd = &tl->data;
2290
2291		for_each_cpu(j, cpu_map) {
2292			struct sched_domain *sd;
2293
2294			if (sdd->sd) {
2295				sd = *per_cpu_ptr(sdd->sd, j);
2296				if (sd && (sd->flags & SD_OVERLAP))
2297					free_sched_groups(sd->groups, 0);
2298				kfree(*per_cpu_ptr(sdd->sd, j));
2299			}
2300
2301			if (sdd->sds)
2302				kfree(*per_cpu_ptr(sdd->sds, j));
2303			if (sdd->sg)
2304				kfree(*per_cpu_ptr(sdd->sg, j));
2305			if (sdd->sgc)
2306				kfree(*per_cpu_ptr(sdd->sgc, j));
2307		}
2308		free_percpu(sdd->sd);
2309		sdd->sd = NULL;
2310		free_percpu(sdd->sds);
2311		sdd->sds = NULL;
2312		free_percpu(sdd->sg);
2313		sdd->sg = NULL;
2314		free_percpu(sdd->sgc);
2315		sdd->sgc = NULL;
2316	}
2317}
2318
2319static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2320		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2321		struct sched_domain *child, int cpu)
2322{
2323	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2324
2325	if (child) {
2326		sd->level = child->level + 1;
2327		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2328		child->parent = sd;
2329
2330		if (!cpumask_subset(sched_domain_span(child),
2331				    sched_domain_span(sd))) {
2332			pr_err("BUG: arch topology borken\n");
2333#ifdef CONFIG_SCHED_DEBUG
2334			pr_err("     the %s domain not a subset of the %s domain\n",
2335					child->name, sd->name);
2336#endif
2337			/* Fixup, ensure @sd has at least @child CPUs. */
2338			cpumask_or(sched_domain_span(sd),
2339				   sched_domain_span(sd),
2340				   sched_domain_span(child));
2341		}
2342
2343	}
2344	set_domain_attribute(sd, attr);
2345
2346	return sd;
2347}
2348
2349/*
2350 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2351 * any two given CPUs at this (non-NUMA) topology level.
2352 */
2353static bool topology_span_sane(struct sched_domain_topology_level *tl,
2354			      const struct cpumask *cpu_map, int cpu)
2355{
2356	int i = cpu + 1;
2357
2358	/* NUMA levels are allowed to overlap */
2359	if (tl->flags & SDTL_OVERLAP)
2360		return true;
2361
2362	/*
2363	 * Non-NUMA levels cannot partially overlap - they must be either
2364	 * completely equal or completely disjoint. Otherwise we can end up
2365	 * breaking the sched_group lists - i.e. a later get_group() pass
2366	 * breaks the linking done for an earlier span.
2367	 */
2368	for_each_cpu_from(i, cpu_map) {
2369		/*
2370		 * We should 'and' all those masks with 'cpu_map' to exactly
2371		 * match the topology we're about to build, but that can only
2372		 * remove CPUs, which only lessens our ability to detect
2373		 * overlaps
2374		 */
2375		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2376		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2377			return false;
2378	}
2379
2380	return true;
2381}
2382
2383/*
2384 * Build sched domains for a given set of CPUs and attach the sched domains
2385 * to the individual CPUs
2386 */
2387static int
2388build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2389{
2390	enum s_alloc alloc_state = sa_none;
2391	struct sched_domain *sd;
2392	struct s_data d;
2393	struct rq *rq = NULL;
2394	int i, ret = -ENOMEM;
2395	bool has_asym = false;
2396	bool has_cluster = false;
2397
2398	if (WARN_ON(cpumask_empty(cpu_map)))
2399		goto error;
2400
2401	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2402	if (alloc_state != sa_rootdomain)
2403		goto error;
2404
2405	/* Set up domains for CPUs specified by the cpu_map: */
2406	for_each_cpu(i, cpu_map) {
2407		struct sched_domain_topology_level *tl;
2408
2409		sd = NULL;
2410		for_each_sd_topology(tl) {
2411
2412			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2413				goto error;
2414
2415			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2416
2417			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2418
2419			if (tl == sched_domain_topology)
2420				*per_cpu_ptr(d.sd, i) = sd;
2421			if (tl->flags & SDTL_OVERLAP)
2422				sd->flags |= SD_OVERLAP;
2423			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2424				break;
2425		}
2426	}
2427
2428	/* Build the groups for the domains */
2429	for_each_cpu(i, cpu_map) {
2430		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2431			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2432			if (sd->flags & SD_OVERLAP) {
2433				if (build_overlap_sched_groups(sd, i))
2434					goto error;
2435			} else {
2436				if (build_sched_groups(sd, i))
2437					goto error;
2438			}
2439		}
2440	}
2441
2442	/*
2443	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2444	 * imbalanced.
2445	 */
2446	for_each_cpu(i, cpu_map) {
2447		unsigned int imb = 0;
2448		unsigned int imb_span = 1;
2449
2450		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2451			struct sched_domain *child = sd->child;
2452
2453			if (!(sd->flags & SD_SHARE_LLC) && child &&
2454			    (child->flags & SD_SHARE_LLC)) {
2455				struct sched_domain __rcu *top_p;
2456				unsigned int nr_llcs;
2457
2458				/*
2459				 * For a single LLC per node, allow an
2460				 * imbalance up to 12.5% of the node. This is
2461				 * arbitrary cutoff based two factors -- SMT and
2462				 * memory channels. For SMT-2, the intent is to
2463				 * avoid premature sharing of HT resources but
2464				 * SMT-4 or SMT-8 *may* benefit from a different
2465				 * cutoff. For memory channels, this is a very
2466				 * rough estimate of how many channels may be
2467				 * active and is based on recent CPUs with
2468				 * many cores.
2469				 *
2470				 * For multiple LLCs, allow an imbalance
2471				 * until multiple tasks would share an LLC
2472				 * on one node while LLCs on another node
2473				 * remain idle. This assumes that there are
2474				 * enough logical CPUs per LLC to avoid SMT
2475				 * factors and that there is a correlation
2476				 * between LLCs and memory channels.
2477				 */
2478				nr_llcs = sd->span_weight / child->span_weight;
2479				if (nr_llcs == 1)
2480					imb = sd->span_weight >> 3;
2481				else
2482					imb = nr_llcs;
2483				imb = max(1U, imb);
2484				sd->imb_numa_nr = imb;
2485
2486				/* Set span based on the first NUMA domain. */
2487				top_p = sd->parent;
2488				while (top_p && !(top_p->flags & SD_NUMA)) {
2489					top_p = top_p->parent;
2490				}
2491				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2492			} else {
2493				int factor = max(1U, (sd->span_weight / imb_span));
2494
2495				sd->imb_numa_nr = imb * factor;
2496			}
2497		}
2498	}
2499
2500	/* Calculate CPU capacity for physical packages and nodes */
2501	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2502		if (!cpumask_test_cpu(i, cpu_map))
2503			continue;
2504
2505		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2506			claim_allocations(i, sd);
2507			init_sched_groups_capacity(i, sd);
2508		}
2509	}
2510
2511	/* Attach the domains */
2512	rcu_read_lock();
2513	for_each_cpu(i, cpu_map) {
2514		rq = cpu_rq(i);
2515		sd = *per_cpu_ptr(d.sd, i);
2516
2517		cpu_attach_domain(sd, d.rd, i);
2518
2519		if (lowest_flag_domain(i, SD_CLUSTER))
2520			has_cluster = true;
2521	}
2522	rcu_read_unlock();
2523
2524	if (has_asym)
2525		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2526
2527	if (has_cluster)
2528		static_branch_inc_cpuslocked(&sched_cluster_active);
2529
2530	if (rq && sched_debug_verbose)
2531		pr_info("root domain span: %*pbl\n", cpumask_pr_args(cpu_map));
2532
2533	ret = 0;
2534error:
2535	__free_domain_allocs(&d, alloc_state, cpu_map);
2536
2537	return ret;
2538}
2539
2540/* Current sched domains: */
2541static cpumask_var_t			*doms_cur;
2542
2543/* Number of sched domains in 'doms_cur': */
2544static int				ndoms_cur;
2545
2546/* Attributes of custom domains in 'doms_cur' */
2547static struct sched_domain_attr		*dattr_cur;
2548
2549/*
2550 * Special case: If a kmalloc() of a doms_cur partition (array of
2551 * cpumask) fails, then fallback to a single sched domain,
2552 * as determined by the single cpumask fallback_doms.
2553 */
2554static cpumask_var_t			fallback_doms;
2555
2556/*
2557 * arch_update_cpu_topology lets virtualized architectures update the
2558 * CPU core maps. It is supposed to return 1 if the topology changed
2559 * or 0 if it stayed the same.
2560 */
2561int __weak arch_update_cpu_topology(void)
2562{
2563	return 0;
2564}
2565
2566cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2567{
2568	int i;
2569	cpumask_var_t *doms;
2570
2571	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2572	if (!doms)
2573		return NULL;
2574	for (i = 0; i < ndoms; i++) {
2575		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2576			free_sched_domains(doms, i);
2577			return NULL;
2578		}
2579	}
2580	return doms;
2581}
2582
2583void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2584{
2585	unsigned int i;
2586	for (i = 0; i < ndoms; i++)
2587		free_cpumask_var(doms[i]);
2588	kfree(doms);
2589}
2590
2591/*
2592 * Set up scheduler domains and groups.  For now this just excludes isolated
2593 * CPUs, but could be used to exclude other special cases in the future.
2594 */
2595int __init sched_init_domains(const struct cpumask *cpu_map)
2596{
2597	int err;
2598
2599	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2600	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2601	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2602
2603	arch_update_cpu_topology();
2604	asym_cpu_capacity_scan();
2605	ndoms_cur = 1;
2606	doms_cur = alloc_sched_domains(ndoms_cur);
2607	if (!doms_cur)
2608		doms_cur = &fallback_doms;
2609	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2610	err = build_sched_domains(doms_cur[0], NULL);
2611
2612	return err;
2613}
2614
2615/*
2616 * Detach sched domains from a group of CPUs specified in cpu_map
2617 * These CPUs will now be attached to the NULL domain
2618 */
2619static void detach_destroy_domains(const struct cpumask *cpu_map)
2620{
2621	unsigned int cpu = cpumask_any(cpu_map);
2622	int i;
2623
2624	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2625		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2626
2627	if (static_branch_unlikely(&sched_cluster_active))
2628		static_branch_dec_cpuslocked(&sched_cluster_active);
2629
2630	rcu_read_lock();
2631	for_each_cpu(i, cpu_map)
2632		cpu_attach_domain(NULL, &def_root_domain, i);
2633	rcu_read_unlock();
2634}
2635
2636/* handle null as "default" */
2637static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2638			struct sched_domain_attr *new, int idx_new)
2639{
2640	struct sched_domain_attr tmp;
2641
2642	/* Fast path: */
2643	if (!new && !cur)
2644		return 1;
2645
2646	tmp = SD_ATTR_INIT;
2647
2648	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2649			new ? (new + idx_new) : &tmp,
2650			sizeof(struct sched_domain_attr));
2651}
2652
2653/*
2654 * Partition sched domains as specified by the 'ndoms_new'
2655 * cpumasks in the array doms_new[] of cpumasks. This compares
2656 * doms_new[] to the current sched domain partitioning, doms_cur[].
2657 * It destroys each deleted domain and builds each new domain.
2658 *
2659 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2660 * The masks don't intersect (don't overlap.) We should setup one
2661 * sched domain for each mask. CPUs not in any of the cpumasks will
2662 * not be load balanced. If the same cpumask appears both in the
2663 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2664 * it as it is.
2665 *
2666 * The passed in 'doms_new' should be allocated using
2667 * alloc_sched_domains.  This routine takes ownership of it and will
2668 * free_sched_domains it when done with it. If the caller failed the
2669 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2670 * and partition_sched_domains() will fallback to the single partition
2671 * 'fallback_doms', it also forces the domains to be rebuilt.
2672 *
2673 * If doms_new == NULL it will be replaced with cpu_online_mask.
2674 * ndoms_new == 0 is a special case for destroying existing domains,
2675 * and it will not create the default domain.
2676 *
2677 * Call with hotplug lock and sched_domains_mutex held
2678 */
2679void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2680				    struct sched_domain_attr *dattr_new)
2681{
2682	bool __maybe_unused has_eas = false;
2683	int i, j, n;
2684	int new_topology;
2685
2686	lockdep_assert_held(&sched_domains_mutex);
2687
2688	/* Let the architecture update CPU core mappings: */
2689	new_topology = arch_update_cpu_topology();
2690	/* Trigger rebuilding CPU capacity asymmetry data */
2691	if (new_topology)
2692		asym_cpu_capacity_scan();
2693
2694	if (!doms_new) {
2695		WARN_ON_ONCE(dattr_new);
2696		n = 0;
2697		doms_new = alloc_sched_domains(1);
2698		if (doms_new) {
2699			n = 1;
2700			cpumask_and(doms_new[0], cpu_active_mask,
2701				    housekeeping_cpumask(HK_TYPE_DOMAIN));
2702		}
2703	} else {
2704		n = ndoms_new;
2705	}
2706
2707	/* Destroy deleted domains: */
2708	for (i = 0; i < ndoms_cur; i++) {
2709		for (j = 0; j < n && !new_topology; j++) {
2710			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2711			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2712				struct root_domain *rd;
2713
2714				/*
2715				 * This domain won't be destroyed and as such
2716				 * its dl_bw->total_bw needs to be cleared.  It
2717				 * will be recomputed in function
2718				 * update_tasks_root_domain().
2719				 */
2720				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2721				dl_clear_root_domain(rd);
2722				goto match1;
2723			}
2724		}
2725		/* No match - a current sched domain not in new doms_new[] */
2726		detach_destroy_domains(doms_cur[i]);
2727match1:
2728		;
2729	}
2730
2731	n = ndoms_cur;
2732	if (!doms_new) {
2733		n = 0;
2734		doms_new = &fallback_doms;
2735		cpumask_and(doms_new[0], cpu_active_mask,
2736			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2737	}
2738
2739	/* Build new domains: */
2740	for (i = 0; i < ndoms_new; i++) {
2741		for (j = 0; j < n && !new_topology; j++) {
2742			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2743			    dattrs_equal(dattr_new, i, dattr_cur, j))
2744				goto match2;
2745		}
2746		/* No match - add a new doms_new */
2747		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2748match2:
2749		;
2750	}
2751
2752#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2753	/* Build perf. domains: */
2754	for (i = 0; i < ndoms_new; i++) {
2755		for (j = 0; j < n && !sched_energy_update; j++) {
2756			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2757			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2758				has_eas = true;
2759				goto match3;
2760			}
2761		}
2762		/* No match - add perf. domains for a new rd */
2763		has_eas |= build_perf_domains(doms_new[i]);
2764match3:
2765		;
2766	}
2767	sched_energy_set(has_eas);
2768#endif
2769
2770	/* Remember the new sched domains: */
2771	if (doms_cur != &fallback_doms)
2772		free_sched_domains(doms_cur, ndoms_cur);
2773
2774	kfree(dattr_cur);
2775	doms_cur = doms_new;
2776	dattr_cur = dattr_new;
2777	ndoms_cur = ndoms_new;
2778
2779	update_sched_domain_debugfs();
2780}
2781
2782/*
2783 * Call with hotplug lock held
2784 */
2785void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2786			     struct sched_domain_attr *dattr_new)
2787{
2788	mutex_lock(&sched_domains_mutex);
2789	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2790	mutex_unlock(&sched_domains_mutex);
2791}
2792