1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Simple CPU accounting cgroup controller
4 */
5
6#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
7 #include <asm/cputime.h>
8#endif
9
10#ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12/*
13 * There are no locks covering percpu hardirq/softirq time.
14 * They are only modified in vtime_account, on corresponding CPU
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
18 * race with irq/vtime_account on this CPU. We would either get old
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
22 */
23DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
24
25static int sched_clock_irqtime;
26
27void enable_sched_clock_irqtime(void)
28{
29	sched_clock_irqtime = 1;
30}
31
32void disable_sched_clock_irqtime(void)
33{
34	sched_clock_irqtime = 0;
35}
36
37static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
38				  enum cpu_usage_stat idx)
39{
40	u64 *cpustat = kcpustat_this_cpu->cpustat;
41
42	u64_stats_update_begin(&irqtime->sync);
43	cpustat[idx] += delta;
44	irqtime->total += delta;
45	irqtime->tick_delta += delta;
46	u64_stats_update_end(&irqtime->sync);
47}
48
49/*
50 * Called after incrementing preempt_count on {soft,}irq_enter
51 * and before decrementing preempt_count on {soft,}irq_exit.
52 */
53void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
54{
55	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
56	unsigned int pc;
57	s64 delta;
58	int cpu;
59
60	if (!sched_clock_irqtime)
61		return;
62
63	cpu = smp_processor_id();
64	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
65	irqtime->irq_start_time += delta;
66	pc = irq_count() - offset;
67
68	/*
69	 * We do not account for softirq time from ksoftirqd here.
70	 * We want to continue accounting softirq time to ksoftirqd thread
71	 * in that case, so as not to confuse scheduler with a special task
72	 * that do not consume any time, but still wants to run.
73	 */
74	if (pc & HARDIRQ_MASK)
75		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
76	else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd())
77		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
78}
79
80static u64 irqtime_tick_accounted(u64 maxtime)
81{
82	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
83	u64 delta;
84
85	delta = min(irqtime->tick_delta, maxtime);
86	irqtime->tick_delta -= delta;
87
88	return delta;
89}
90
91#else /* CONFIG_IRQ_TIME_ACCOUNTING */
92
93#define sched_clock_irqtime	(0)
94
95static u64 irqtime_tick_accounted(u64 dummy)
96{
97	return 0;
98}
99
100#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
101
102static inline void task_group_account_field(struct task_struct *p, int index,
103					    u64 tmp)
104{
105	/*
106	 * Since all updates are sure to touch the root cgroup, we
107	 * get ourselves ahead and touch it first. If the root cgroup
108	 * is the only cgroup, then nothing else should be necessary.
109	 *
110	 */
111	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
112
113	cgroup_account_cputime_field(p, index, tmp);
114}
115
116/*
117 * Account user CPU time to a process.
118 * @p: the process that the CPU time gets accounted to
119 * @cputime: the CPU time spent in user space since the last update
120 */
121void account_user_time(struct task_struct *p, u64 cputime)
122{
123	int index;
124
125	/* Add user time to process. */
126	p->utime += cputime;
127	account_group_user_time(p, cputime);
128
129	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
130
131	/* Add user time to cpustat. */
132	task_group_account_field(p, index, cputime);
133
134	/* Account for user time used */
135	acct_account_cputime(p);
136}
137
138/*
139 * Account guest CPU time to a process.
140 * @p: the process that the CPU time gets accounted to
141 * @cputime: the CPU time spent in virtual machine since the last update
142 */
143void account_guest_time(struct task_struct *p, u64 cputime)
144{
145	u64 *cpustat = kcpustat_this_cpu->cpustat;
146
147	/* Add guest time to process. */
148	p->utime += cputime;
149	account_group_user_time(p, cputime);
150	p->gtime += cputime;
151
152	/* Add guest time to cpustat. */
153	if (task_nice(p) > 0) {
154		task_group_account_field(p, CPUTIME_NICE, cputime);
155		cpustat[CPUTIME_GUEST_NICE] += cputime;
156	} else {
157		task_group_account_field(p, CPUTIME_USER, cputime);
158		cpustat[CPUTIME_GUEST] += cputime;
159	}
160}
161
162/*
163 * Account system CPU time to a process and desired cpustat field
164 * @p: the process that the CPU time gets accounted to
165 * @cputime: the CPU time spent in kernel space since the last update
166 * @index: pointer to cpustat field that has to be updated
167 */
168void account_system_index_time(struct task_struct *p,
169			       u64 cputime, enum cpu_usage_stat index)
170{
171	/* Add system time to process. */
172	p->stime += cputime;
173	account_group_system_time(p, cputime);
174
175	/* Add system time to cpustat. */
176	task_group_account_field(p, index, cputime);
177
178	/* Account for system time used */
179	acct_account_cputime(p);
180}
181
182/*
183 * Account system CPU time to a process.
184 * @p: the process that the CPU time gets accounted to
185 * @hardirq_offset: the offset to subtract from hardirq_count()
186 * @cputime: the CPU time spent in kernel space since the last update
187 */
188void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
189{
190	int index;
191
192	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
193		account_guest_time(p, cputime);
194		return;
195	}
196
197	if (hardirq_count() - hardirq_offset)
198		index = CPUTIME_IRQ;
199	else if (in_serving_softirq())
200		index = CPUTIME_SOFTIRQ;
201	else
202		index = CPUTIME_SYSTEM;
203
204	account_system_index_time(p, cputime, index);
205}
206
207/*
208 * Account for involuntary wait time.
209 * @cputime: the CPU time spent in involuntary wait
210 */
211void account_steal_time(u64 cputime)
212{
213	u64 *cpustat = kcpustat_this_cpu->cpustat;
214
215	cpustat[CPUTIME_STEAL] += cputime;
216}
217
218/*
219 * Account for idle time.
220 * @cputime: the CPU time spent in idle wait
221 */
222void account_idle_time(u64 cputime)
223{
224	u64 *cpustat = kcpustat_this_cpu->cpustat;
225	struct rq *rq = this_rq();
226
227	if (atomic_read(&rq->nr_iowait) > 0)
228		cpustat[CPUTIME_IOWAIT] += cputime;
229	else
230		cpustat[CPUTIME_IDLE] += cputime;
231}
232
233
234#ifdef CONFIG_SCHED_CORE
235/*
236 * Account for forceidle time due to core scheduling.
237 *
238 * REQUIRES: schedstat is enabled.
239 */
240void __account_forceidle_time(struct task_struct *p, u64 delta)
241{
242	__schedstat_add(p->stats.core_forceidle_sum, delta);
243
244	task_group_account_field(p, CPUTIME_FORCEIDLE, delta);
245}
246#endif
247
248/*
249 * When a guest is interrupted for a longer amount of time, missed clock
250 * ticks are not redelivered later. Due to that, this function may on
251 * occasion account more time than the calling functions think elapsed.
252 */
253static __always_inline u64 steal_account_process_time(u64 maxtime)
254{
255#ifdef CONFIG_PARAVIRT
256	if (static_key_false(&paravirt_steal_enabled)) {
257		u64 steal;
258
259		steal = paravirt_steal_clock(smp_processor_id());
260		steal -= this_rq()->prev_steal_time;
261		steal = min(steal, maxtime);
262		account_steal_time(steal);
263		this_rq()->prev_steal_time += steal;
264
265		return steal;
266	}
267#endif
268	return 0;
269}
270
271/*
272 * Account how much elapsed time was spent in steal, irq, or softirq time.
273 */
274static inline u64 account_other_time(u64 max)
275{
276	u64 accounted;
277
278	lockdep_assert_irqs_disabled();
279
280	accounted = steal_account_process_time(max);
281
282	if (accounted < max)
283		accounted += irqtime_tick_accounted(max - accounted);
284
285	return accounted;
286}
287
288#ifdef CONFIG_64BIT
289static inline u64 read_sum_exec_runtime(struct task_struct *t)
290{
291	return t->se.sum_exec_runtime;
292}
293#else
294static u64 read_sum_exec_runtime(struct task_struct *t)
295{
296	u64 ns;
297	struct rq_flags rf;
298	struct rq *rq;
299
300	rq = task_rq_lock(t, &rf);
301	ns = t->se.sum_exec_runtime;
302	task_rq_unlock(rq, t, &rf);
303
304	return ns;
305}
306#endif
307
308/*
309 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
310 * tasks (sum on group iteration) belonging to @tsk's group.
311 */
312void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
313{
314	struct signal_struct *sig = tsk->signal;
315	u64 utime, stime;
316	struct task_struct *t;
317	unsigned int seq, nextseq;
318	unsigned long flags;
319
320	/*
321	 * Update current task runtime to account pending time since last
322	 * scheduler action or thread_group_cputime() call. This thread group
323	 * might have other running tasks on different CPUs, but updating
324	 * their runtime can affect syscall performance, so we skip account
325	 * those pending times and rely only on values updated on tick or
326	 * other scheduler action.
327	 */
328	if (same_thread_group(current, tsk))
329		(void) task_sched_runtime(current);
330
331	rcu_read_lock();
332	/* Attempt a lockless read on the first round. */
333	nextseq = 0;
334	do {
335		seq = nextseq;
336		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
337		times->utime = sig->utime;
338		times->stime = sig->stime;
339		times->sum_exec_runtime = sig->sum_sched_runtime;
340
341		for_each_thread(tsk, t) {
342			task_cputime(t, &utime, &stime);
343			times->utime += utime;
344			times->stime += stime;
345			times->sum_exec_runtime += read_sum_exec_runtime(t);
346		}
347		/* If lockless access failed, take the lock. */
348		nextseq = 1;
349	} while (need_seqretry(&sig->stats_lock, seq));
350	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
351	rcu_read_unlock();
352}
353
354#ifdef CONFIG_IRQ_TIME_ACCOUNTING
355/*
356 * Account a tick to a process and cpustat
357 * @p: the process that the CPU time gets accounted to
358 * @user_tick: is the tick from userspace
359 * @rq: the pointer to rq
360 *
361 * Tick demultiplexing follows the order
362 * - pending hardirq update
363 * - pending softirq update
364 * - user_time
365 * - idle_time
366 * - system time
367 *   - check for guest_time
368 *   - else account as system_time
369 *
370 * Check for hardirq is done both for system and user time as there is
371 * no timer going off while we are on hardirq and hence we may never get an
372 * opportunity to update it solely in system time.
373 * p->stime and friends are only updated on system time and not on irq
374 * softirq as those do not count in task exec_runtime any more.
375 */
376static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
377					 int ticks)
378{
379	u64 other, cputime = TICK_NSEC * ticks;
380
381	/*
382	 * When returning from idle, many ticks can get accounted at
383	 * once, including some ticks of steal, irq, and softirq time.
384	 * Subtract those ticks from the amount of time accounted to
385	 * idle, or potentially user or system time. Due to rounding,
386	 * other time can exceed ticks occasionally.
387	 */
388	other = account_other_time(ULONG_MAX);
389	if (other >= cputime)
390		return;
391
392	cputime -= other;
393
394	if (this_cpu_ksoftirqd() == p) {
395		/*
396		 * ksoftirqd time do not get accounted in cpu_softirq_time.
397		 * So, we have to handle it separately here.
398		 * Also, p->stime needs to be updated for ksoftirqd.
399		 */
400		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
401	} else if (user_tick) {
402		account_user_time(p, cputime);
403	} else if (p == this_rq()->idle) {
404		account_idle_time(cputime);
405	} else if (p->flags & PF_VCPU) { /* System time or guest time */
406		account_guest_time(p, cputime);
407	} else {
408		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
409	}
410}
411
412static void irqtime_account_idle_ticks(int ticks)
413{
414	irqtime_account_process_tick(current, 0, ticks);
415}
416#else /* CONFIG_IRQ_TIME_ACCOUNTING */
417static inline void irqtime_account_idle_ticks(int ticks) { }
418static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
419						int nr_ticks) { }
420#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
421
422/*
423 * Use precise platform statistics if available:
424 */
425#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
426
427void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
428{
429	unsigned int pc = irq_count() - offset;
430
431	if (pc & HARDIRQ_OFFSET) {
432		vtime_account_hardirq(tsk);
433	} else if (pc & SOFTIRQ_OFFSET) {
434		vtime_account_softirq(tsk);
435	} else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
436		   is_idle_task(tsk)) {
437		vtime_account_idle(tsk);
438	} else {
439		vtime_account_kernel(tsk);
440	}
441}
442
443void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
444		    u64 *ut, u64 *st)
445{
446	*ut = curr->utime;
447	*st = curr->stime;
448}
449
450void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
451{
452	*ut = p->utime;
453	*st = p->stime;
454}
455EXPORT_SYMBOL_GPL(task_cputime_adjusted);
456
457void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
458{
459	struct task_cputime cputime;
460
461	thread_group_cputime(p, &cputime);
462
463	*ut = cputime.utime;
464	*st = cputime.stime;
465}
466
467#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
468
469/*
470 * Account a single tick of CPU time.
471 * @p: the process that the CPU time gets accounted to
472 * @user_tick: indicates if the tick is a user or a system tick
473 */
474void account_process_tick(struct task_struct *p, int user_tick)
475{
476	u64 cputime, steal;
477
478	if (vtime_accounting_enabled_this_cpu())
479		return;
480
481	if (sched_clock_irqtime) {
482		irqtime_account_process_tick(p, user_tick, 1);
483		return;
484	}
485
486	cputime = TICK_NSEC;
487	steal = steal_account_process_time(ULONG_MAX);
488
489	if (steal >= cputime)
490		return;
491
492	cputime -= steal;
493
494	if (user_tick)
495		account_user_time(p, cputime);
496	else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
497		account_system_time(p, HARDIRQ_OFFSET, cputime);
498	else
499		account_idle_time(cputime);
500}
501
502/*
503 * Account multiple ticks of idle time.
504 * @ticks: number of stolen ticks
505 */
506void account_idle_ticks(unsigned long ticks)
507{
508	u64 cputime, steal;
509
510	if (sched_clock_irqtime) {
511		irqtime_account_idle_ticks(ticks);
512		return;
513	}
514
515	cputime = ticks * TICK_NSEC;
516	steal = steal_account_process_time(ULONG_MAX);
517
518	if (steal >= cputime)
519		return;
520
521	cputime -= steal;
522	account_idle_time(cputime);
523}
524
525/*
526 * Adjust tick based cputime random precision against scheduler runtime
527 * accounting.
528 *
529 * Tick based cputime accounting depend on random scheduling timeslices of a
530 * task to be interrupted or not by the timer.  Depending on these
531 * circumstances, the number of these interrupts may be over or
532 * under-optimistic, matching the real user and system cputime with a variable
533 * precision.
534 *
535 * Fix this by scaling these tick based values against the total runtime
536 * accounted by the CFS scheduler.
537 *
538 * This code provides the following guarantees:
539 *
540 *   stime + utime == rtime
541 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
542 *
543 * Assuming that rtime_i+1 >= rtime_i.
544 */
545void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
546		    u64 *ut, u64 *st)
547{
548	u64 rtime, stime, utime;
549	unsigned long flags;
550
551	/* Serialize concurrent callers such that we can honour our guarantees */
552	raw_spin_lock_irqsave(&prev->lock, flags);
553	rtime = curr->sum_exec_runtime;
554
555	/*
556	 * This is possible under two circumstances:
557	 *  - rtime isn't monotonic after all (a bug);
558	 *  - we got reordered by the lock.
559	 *
560	 * In both cases this acts as a filter such that the rest of the code
561	 * can assume it is monotonic regardless of anything else.
562	 */
563	if (prev->stime + prev->utime >= rtime)
564		goto out;
565
566	stime = curr->stime;
567	utime = curr->utime;
568
569	/*
570	 * If either stime or utime are 0, assume all runtime is userspace.
571	 * Once a task gets some ticks, the monotonicity code at 'update:'
572	 * will ensure things converge to the observed ratio.
573	 */
574	if (stime == 0) {
575		utime = rtime;
576		goto update;
577	}
578
579	if (utime == 0) {
580		stime = rtime;
581		goto update;
582	}
583
584	stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
585
586update:
587	/*
588	 * Make sure stime doesn't go backwards; this preserves monotonicity
589	 * for utime because rtime is monotonic.
590	 *
591	 *  utime_i+1 = rtime_i+1 - stime_i
592	 *            = rtime_i+1 - (rtime_i - utime_i)
593	 *            = (rtime_i+1 - rtime_i) + utime_i
594	 *            >= utime_i
595	 */
596	if (stime < prev->stime)
597		stime = prev->stime;
598	utime = rtime - stime;
599
600	/*
601	 * Make sure utime doesn't go backwards; this still preserves
602	 * monotonicity for stime, analogous argument to above.
603	 */
604	if (utime < prev->utime) {
605		utime = prev->utime;
606		stime = rtime - utime;
607	}
608
609	prev->stime = stime;
610	prev->utime = utime;
611out:
612	*ut = prev->utime;
613	*st = prev->stime;
614	raw_spin_unlock_irqrestore(&prev->lock, flags);
615}
616
617void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
618{
619	struct task_cputime cputime = {
620		.sum_exec_runtime = p->se.sum_exec_runtime,
621	};
622
623	if (task_cputime(p, &cputime.utime, &cputime.stime))
624		cputime.sum_exec_runtime = task_sched_runtime(p);
625	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
626}
627EXPORT_SYMBOL_GPL(task_cputime_adjusted);
628
629void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
630{
631	struct task_cputime cputime;
632
633	thread_group_cputime(p, &cputime);
634	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
635}
636#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
637
638#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
639static u64 vtime_delta(struct vtime *vtime)
640{
641	unsigned long long clock;
642
643	clock = sched_clock();
644	if (clock < vtime->starttime)
645		return 0;
646
647	return clock - vtime->starttime;
648}
649
650static u64 get_vtime_delta(struct vtime *vtime)
651{
652	u64 delta = vtime_delta(vtime);
653	u64 other;
654
655	/*
656	 * Unlike tick based timing, vtime based timing never has lost
657	 * ticks, and no need for steal time accounting to make up for
658	 * lost ticks. Vtime accounts a rounded version of actual
659	 * elapsed time. Limit account_other_time to prevent rounding
660	 * errors from causing elapsed vtime to go negative.
661	 */
662	other = account_other_time(delta);
663	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
664	vtime->starttime += delta;
665
666	return delta - other;
667}
668
669static void vtime_account_system(struct task_struct *tsk,
670				 struct vtime *vtime)
671{
672	vtime->stime += get_vtime_delta(vtime);
673	if (vtime->stime >= TICK_NSEC) {
674		account_system_time(tsk, irq_count(), vtime->stime);
675		vtime->stime = 0;
676	}
677}
678
679static void vtime_account_guest(struct task_struct *tsk,
680				struct vtime *vtime)
681{
682	vtime->gtime += get_vtime_delta(vtime);
683	if (vtime->gtime >= TICK_NSEC) {
684		account_guest_time(tsk, vtime->gtime);
685		vtime->gtime = 0;
686	}
687}
688
689static void __vtime_account_kernel(struct task_struct *tsk,
690				   struct vtime *vtime)
691{
692	/* We might have scheduled out from guest path */
693	if (vtime->state == VTIME_GUEST)
694		vtime_account_guest(tsk, vtime);
695	else
696		vtime_account_system(tsk, vtime);
697}
698
699void vtime_account_kernel(struct task_struct *tsk)
700{
701	struct vtime *vtime = &tsk->vtime;
702
703	if (!vtime_delta(vtime))
704		return;
705
706	write_seqcount_begin(&vtime->seqcount);
707	__vtime_account_kernel(tsk, vtime);
708	write_seqcount_end(&vtime->seqcount);
709}
710
711void vtime_user_enter(struct task_struct *tsk)
712{
713	struct vtime *vtime = &tsk->vtime;
714
715	write_seqcount_begin(&vtime->seqcount);
716	vtime_account_system(tsk, vtime);
717	vtime->state = VTIME_USER;
718	write_seqcount_end(&vtime->seqcount);
719}
720
721void vtime_user_exit(struct task_struct *tsk)
722{
723	struct vtime *vtime = &tsk->vtime;
724
725	write_seqcount_begin(&vtime->seqcount);
726	vtime->utime += get_vtime_delta(vtime);
727	if (vtime->utime >= TICK_NSEC) {
728		account_user_time(tsk, vtime->utime);
729		vtime->utime = 0;
730	}
731	vtime->state = VTIME_SYS;
732	write_seqcount_end(&vtime->seqcount);
733}
734
735void vtime_guest_enter(struct task_struct *tsk)
736{
737	struct vtime *vtime = &tsk->vtime;
738	/*
739	 * The flags must be updated under the lock with
740	 * the vtime_starttime flush and update.
741	 * That enforces a right ordering and update sequence
742	 * synchronization against the reader (task_gtime())
743	 * that can thus safely catch up with a tickless delta.
744	 */
745	write_seqcount_begin(&vtime->seqcount);
746	vtime_account_system(tsk, vtime);
747	tsk->flags |= PF_VCPU;
748	vtime->state = VTIME_GUEST;
749	write_seqcount_end(&vtime->seqcount);
750}
751EXPORT_SYMBOL_GPL(vtime_guest_enter);
752
753void vtime_guest_exit(struct task_struct *tsk)
754{
755	struct vtime *vtime = &tsk->vtime;
756
757	write_seqcount_begin(&vtime->seqcount);
758	vtime_account_guest(tsk, vtime);
759	tsk->flags &= ~PF_VCPU;
760	vtime->state = VTIME_SYS;
761	write_seqcount_end(&vtime->seqcount);
762}
763EXPORT_SYMBOL_GPL(vtime_guest_exit);
764
765void vtime_account_idle(struct task_struct *tsk)
766{
767	account_idle_time(get_vtime_delta(&tsk->vtime));
768}
769
770void vtime_task_switch_generic(struct task_struct *prev)
771{
772	struct vtime *vtime = &prev->vtime;
773
774	write_seqcount_begin(&vtime->seqcount);
775	if (vtime->state == VTIME_IDLE)
776		vtime_account_idle(prev);
777	else
778		__vtime_account_kernel(prev, vtime);
779	vtime->state = VTIME_INACTIVE;
780	vtime->cpu = -1;
781	write_seqcount_end(&vtime->seqcount);
782
783	vtime = &current->vtime;
784
785	write_seqcount_begin(&vtime->seqcount);
786	if (is_idle_task(current))
787		vtime->state = VTIME_IDLE;
788	else if (current->flags & PF_VCPU)
789		vtime->state = VTIME_GUEST;
790	else
791		vtime->state = VTIME_SYS;
792	vtime->starttime = sched_clock();
793	vtime->cpu = smp_processor_id();
794	write_seqcount_end(&vtime->seqcount);
795}
796
797void vtime_init_idle(struct task_struct *t, int cpu)
798{
799	struct vtime *vtime = &t->vtime;
800	unsigned long flags;
801
802	local_irq_save(flags);
803	write_seqcount_begin(&vtime->seqcount);
804	vtime->state = VTIME_IDLE;
805	vtime->starttime = sched_clock();
806	vtime->cpu = cpu;
807	write_seqcount_end(&vtime->seqcount);
808	local_irq_restore(flags);
809}
810
811u64 task_gtime(struct task_struct *t)
812{
813	struct vtime *vtime = &t->vtime;
814	unsigned int seq;
815	u64 gtime;
816
817	if (!vtime_accounting_enabled())
818		return t->gtime;
819
820	do {
821		seq = read_seqcount_begin(&vtime->seqcount);
822
823		gtime = t->gtime;
824		if (vtime->state == VTIME_GUEST)
825			gtime += vtime->gtime + vtime_delta(vtime);
826
827	} while (read_seqcount_retry(&vtime->seqcount, seq));
828
829	return gtime;
830}
831
832/*
833 * Fetch cputime raw values from fields of task_struct and
834 * add up the pending nohz execution time since the last
835 * cputime snapshot.
836 */
837bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
838{
839	struct vtime *vtime = &t->vtime;
840	unsigned int seq;
841	u64 delta;
842	int ret;
843
844	if (!vtime_accounting_enabled()) {
845		*utime = t->utime;
846		*stime = t->stime;
847		return false;
848	}
849
850	do {
851		ret = false;
852		seq = read_seqcount_begin(&vtime->seqcount);
853
854		*utime = t->utime;
855		*stime = t->stime;
856
857		/* Task is sleeping or idle, nothing to add */
858		if (vtime->state < VTIME_SYS)
859			continue;
860
861		ret = true;
862		delta = vtime_delta(vtime);
863
864		/*
865		 * Task runs either in user (including guest) or kernel space,
866		 * add pending nohz time to the right place.
867		 */
868		if (vtime->state == VTIME_SYS)
869			*stime += vtime->stime + delta;
870		else
871			*utime += vtime->utime + delta;
872	} while (read_seqcount_retry(&vtime->seqcount, seq));
873
874	return ret;
875}
876
877static int vtime_state_fetch(struct vtime *vtime, int cpu)
878{
879	int state = READ_ONCE(vtime->state);
880
881	/*
882	 * We raced against a context switch, fetch the
883	 * kcpustat task again.
884	 */
885	if (vtime->cpu != cpu && vtime->cpu != -1)
886		return -EAGAIN;
887
888	/*
889	 * Two possible things here:
890	 * 1) We are seeing the scheduling out task (prev) or any past one.
891	 * 2) We are seeing the scheduling in task (next) but it hasn't
892	 *    passed though vtime_task_switch() yet so the pending
893	 *    cputime of the prev task may not be flushed yet.
894	 *
895	 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
896	 */
897	if (state == VTIME_INACTIVE)
898		return -EAGAIN;
899
900	return state;
901}
902
903static u64 kcpustat_user_vtime(struct vtime *vtime)
904{
905	if (vtime->state == VTIME_USER)
906		return vtime->utime + vtime_delta(vtime);
907	else if (vtime->state == VTIME_GUEST)
908		return vtime->gtime + vtime_delta(vtime);
909	return 0;
910}
911
912static int kcpustat_field_vtime(u64 *cpustat,
913				struct task_struct *tsk,
914				enum cpu_usage_stat usage,
915				int cpu, u64 *val)
916{
917	struct vtime *vtime = &tsk->vtime;
918	unsigned int seq;
919
920	do {
921		int state;
922
923		seq = read_seqcount_begin(&vtime->seqcount);
924
925		state = vtime_state_fetch(vtime, cpu);
926		if (state < 0)
927			return state;
928
929		*val = cpustat[usage];
930
931		/*
932		 * Nice VS unnice cputime accounting may be inaccurate if
933		 * the nice value has changed since the last vtime update.
934		 * But proper fix would involve interrupting target on nice
935		 * updates which is a no go on nohz_full (although the scheduler
936		 * may still interrupt the target if rescheduling is needed...)
937		 */
938		switch (usage) {
939		case CPUTIME_SYSTEM:
940			if (state == VTIME_SYS)
941				*val += vtime->stime + vtime_delta(vtime);
942			break;
943		case CPUTIME_USER:
944			if (task_nice(tsk) <= 0)
945				*val += kcpustat_user_vtime(vtime);
946			break;
947		case CPUTIME_NICE:
948			if (task_nice(tsk) > 0)
949				*val += kcpustat_user_vtime(vtime);
950			break;
951		case CPUTIME_GUEST:
952			if (state == VTIME_GUEST && task_nice(tsk) <= 0)
953				*val += vtime->gtime + vtime_delta(vtime);
954			break;
955		case CPUTIME_GUEST_NICE:
956			if (state == VTIME_GUEST && task_nice(tsk) > 0)
957				*val += vtime->gtime + vtime_delta(vtime);
958			break;
959		default:
960			break;
961		}
962	} while (read_seqcount_retry(&vtime->seqcount, seq));
963
964	return 0;
965}
966
967u64 kcpustat_field(struct kernel_cpustat *kcpustat,
968		   enum cpu_usage_stat usage, int cpu)
969{
970	u64 *cpustat = kcpustat->cpustat;
971	u64 val = cpustat[usage];
972	struct rq *rq;
973	int err;
974
975	if (!vtime_accounting_enabled_cpu(cpu))
976		return val;
977
978	rq = cpu_rq(cpu);
979
980	for (;;) {
981		struct task_struct *curr;
982
983		rcu_read_lock();
984		curr = rcu_dereference(rq->curr);
985		if (WARN_ON_ONCE(!curr)) {
986			rcu_read_unlock();
987			return cpustat[usage];
988		}
989
990		err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
991		rcu_read_unlock();
992
993		if (!err)
994			return val;
995
996		cpu_relax();
997	}
998}
999EXPORT_SYMBOL_GPL(kcpustat_field);
1000
1001static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1002				    const struct kernel_cpustat *src,
1003				    struct task_struct *tsk, int cpu)
1004{
1005	struct vtime *vtime = &tsk->vtime;
1006	unsigned int seq;
1007
1008	do {
1009		u64 *cpustat;
1010		u64 delta;
1011		int state;
1012
1013		seq = read_seqcount_begin(&vtime->seqcount);
1014
1015		state = vtime_state_fetch(vtime, cpu);
1016		if (state < 0)
1017			return state;
1018
1019		*dst = *src;
1020		cpustat = dst->cpustat;
1021
1022		/* Task is sleeping, dead or idle, nothing to add */
1023		if (state < VTIME_SYS)
1024			continue;
1025
1026		delta = vtime_delta(vtime);
1027
1028		/*
1029		 * Task runs either in user (including guest) or kernel space,
1030		 * add pending nohz time to the right place.
1031		 */
1032		if (state == VTIME_SYS) {
1033			cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1034		} else if (state == VTIME_USER) {
1035			if (task_nice(tsk) > 0)
1036				cpustat[CPUTIME_NICE] += vtime->utime + delta;
1037			else
1038				cpustat[CPUTIME_USER] += vtime->utime + delta;
1039		} else {
1040			WARN_ON_ONCE(state != VTIME_GUEST);
1041			if (task_nice(tsk) > 0) {
1042				cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1043				cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1044			} else {
1045				cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1046				cpustat[CPUTIME_USER] += vtime->gtime + delta;
1047			}
1048		}
1049	} while (read_seqcount_retry(&vtime->seqcount, seq));
1050
1051	return 0;
1052}
1053
1054void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1055{
1056	const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1057	struct rq *rq;
1058	int err;
1059
1060	if (!vtime_accounting_enabled_cpu(cpu)) {
1061		*dst = *src;
1062		return;
1063	}
1064
1065	rq = cpu_rq(cpu);
1066
1067	for (;;) {
1068		struct task_struct *curr;
1069
1070		rcu_read_lock();
1071		curr = rcu_dereference(rq->curr);
1072		if (WARN_ON_ONCE(!curr)) {
1073			rcu_read_unlock();
1074			*dst = *src;
1075			return;
1076		}
1077
1078		err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1079		rcu_read_unlock();
1080
1081		if (!err)
1082			return;
1083
1084		cpu_relax();
1085	}
1086}
1087EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1088
1089#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
1090