1/*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * See Documentation/filesystems/relay.rst for an overview.
5 *
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8 *
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * 	(mathieu.desnoyers@polymtl.ca)
12 *
13 * This file is released under the GPL.
14 */
15#include <linux/errno.h>
16#include <linux/stddef.h>
17#include <linux/slab.h>
18#include <linux/export.h>
19#include <linux/string.h>
20#include <linux/relay.h>
21#include <linux/vmalloc.h>
22#include <linux/mm.h>
23#include <linux/cpu.h>
24#include <linux/splice.h>
25
26/* list of open channels, for cpu hotplug */
27static DEFINE_MUTEX(relay_channels_mutex);
28static LIST_HEAD(relay_channels);
29
30/*
31 * fault() vm_op implementation for relay file mapping.
32 */
33static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
34{
35	struct page *page;
36	struct rchan_buf *buf = vmf->vma->vm_private_data;
37	pgoff_t pgoff = vmf->pgoff;
38
39	if (!buf)
40		return VM_FAULT_OOM;
41
42	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
43	if (!page)
44		return VM_FAULT_SIGBUS;
45	get_page(page);
46	vmf->page = page;
47
48	return 0;
49}
50
51/*
52 * vm_ops for relay file mappings.
53 */
54static const struct vm_operations_struct relay_file_mmap_ops = {
55	.fault = relay_buf_fault,
56};
57
58/*
59 * allocate an array of pointers of struct page
60 */
61static struct page **relay_alloc_page_array(unsigned int n_pages)
62{
63	return kvcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
64}
65
66/*
67 * free an array of pointers of struct page
68 */
69static void relay_free_page_array(struct page **array)
70{
71	kvfree(array);
72}
73
74/**
75 *	relay_mmap_buf: - mmap channel buffer to process address space
76 *	@buf: relay channel buffer
77 *	@vma: vm_area_struct describing memory to be mapped
78 *
79 *	Returns 0 if ok, negative on error
80 *
81 *	Caller should already have grabbed mmap_lock.
82 */
83static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
84{
85	unsigned long length = vma->vm_end - vma->vm_start;
86
87	if (!buf)
88		return -EBADF;
89
90	if (length != (unsigned long)buf->chan->alloc_size)
91		return -EINVAL;
92
93	vma->vm_ops = &relay_file_mmap_ops;
94	vm_flags_set(vma, VM_DONTEXPAND);
95	vma->vm_private_data = buf;
96
97	return 0;
98}
99
100/**
101 *	relay_alloc_buf - allocate a channel buffer
102 *	@buf: the buffer struct
103 *	@size: total size of the buffer
104 *
105 *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
106 *	passed in size will get page aligned, if it isn't already.
107 */
108static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
109{
110	void *mem;
111	unsigned int i, j, n_pages;
112
113	*size = PAGE_ALIGN(*size);
114	n_pages = *size >> PAGE_SHIFT;
115
116	buf->page_array = relay_alloc_page_array(n_pages);
117	if (!buf->page_array)
118		return NULL;
119
120	for (i = 0; i < n_pages; i++) {
121		buf->page_array[i] = alloc_page(GFP_KERNEL);
122		if (unlikely(!buf->page_array[i]))
123			goto depopulate;
124		set_page_private(buf->page_array[i], (unsigned long)buf);
125	}
126	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
127	if (!mem)
128		goto depopulate;
129
130	memset(mem, 0, *size);
131	buf->page_count = n_pages;
132	return mem;
133
134depopulate:
135	for (j = 0; j < i; j++)
136		__free_page(buf->page_array[j]);
137	relay_free_page_array(buf->page_array);
138	return NULL;
139}
140
141/**
142 *	relay_create_buf - allocate and initialize a channel buffer
143 *	@chan: the relay channel
144 *
145 *	Returns channel buffer if successful, %NULL otherwise.
146 */
147static struct rchan_buf *relay_create_buf(struct rchan *chan)
148{
149	struct rchan_buf *buf;
150
151	if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t))
152		return NULL;
153
154	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
155	if (!buf)
156		return NULL;
157	buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t),
158				     GFP_KERNEL);
159	if (!buf->padding)
160		goto free_buf;
161
162	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
163	if (!buf->start)
164		goto free_buf;
165
166	buf->chan = chan;
167	kref_get(&buf->chan->kref);
168	return buf;
169
170free_buf:
171	kfree(buf->padding);
172	kfree(buf);
173	return NULL;
174}
175
176/**
177 *	relay_destroy_channel - free the channel struct
178 *	@kref: target kernel reference that contains the relay channel
179 *
180 *	Should only be called from kref_put().
181 */
182static void relay_destroy_channel(struct kref *kref)
183{
184	struct rchan *chan = container_of(kref, struct rchan, kref);
185	free_percpu(chan->buf);
186	kfree(chan);
187}
188
189/**
190 *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
191 *	@buf: the buffer struct
192 */
193static void relay_destroy_buf(struct rchan_buf *buf)
194{
195	struct rchan *chan = buf->chan;
196	unsigned int i;
197
198	if (likely(buf->start)) {
199		vunmap(buf->start);
200		for (i = 0; i < buf->page_count; i++)
201			__free_page(buf->page_array[i]);
202		relay_free_page_array(buf->page_array);
203	}
204	*per_cpu_ptr(chan->buf, buf->cpu) = NULL;
205	kfree(buf->padding);
206	kfree(buf);
207	kref_put(&chan->kref, relay_destroy_channel);
208}
209
210/**
211 *	relay_remove_buf - remove a channel buffer
212 *	@kref: target kernel reference that contains the relay buffer
213 *
214 *	Removes the file from the filesystem, which also frees the
215 *	rchan_buf_struct and the channel buffer.  Should only be called from
216 *	kref_put().
217 */
218static void relay_remove_buf(struct kref *kref)
219{
220	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
221	relay_destroy_buf(buf);
222}
223
224/**
225 *	relay_buf_empty - boolean, is the channel buffer empty?
226 *	@buf: channel buffer
227 *
228 *	Returns 1 if the buffer is empty, 0 otherwise.
229 */
230static int relay_buf_empty(struct rchan_buf *buf)
231{
232	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
233}
234
235/**
236 *	relay_buf_full - boolean, is the channel buffer full?
237 *	@buf: channel buffer
238 *
239 *	Returns 1 if the buffer is full, 0 otherwise.
240 */
241int relay_buf_full(struct rchan_buf *buf)
242{
243	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
244	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
245}
246EXPORT_SYMBOL_GPL(relay_buf_full);
247
248/*
249 * High-level relay kernel API and associated functions.
250 */
251
252static int relay_subbuf_start(struct rchan_buf *buf, void *subbuf,
253			      void *prev_subbuf, size_t prev_padding)
254{
255	if (!buf->chan->cb->subbuf_start)
256		return !relay_buf_full(buf);
257
258	return buf->chan->cb->subbuf_start(buf, subbuf,
259					   prev_subbuf, prev_padding);
260}
261
262/**
263 *	wakeup_readers - wake up readers waiting on a channel
264 *	@work: contains the channel buffer
265 *
266 *	This is the function used to defer reader waking
267 */
268static void wakeup_readers(struct irq_work *work)
269{
270	struct rchan_buf *buf;
271
272	buf = container_of(work, struct rchan_buf, wakeup_work);
273	wake_up_interruptible(&buf->read_wait);
274}
275
276/**
277 *	__relay_reset - reset a channel buffer
278 *	@buf: the channel buffer
279 *	@init: 1 if this is a first-time initialization
280 *
281 *	See relay_reset() for description of effect.
282 */
283static void __relay_reset(struct rchan_buf *buf, unsigned int init)
284{
285	size_t i;
286
287	if (init) {
288		init_waitqueue_head(&buf->read_wait);
289		kref_init(&buf->kref);
290		init_irq_work(&buf->wakeup_work, wakeup_readers);
291	} else {
292		irq_work_sync(&buf->wakeup_work);
293	}
294
295	buf->subbufs_produced = 0;
296	buf->subbufs_consumed = 0;
297	buf->bytes_consumed = 0;
298	buf->finalized = 0;
299	buf->data = buf->start;
300	buf->offset = 0;
301
302	for (i = 0; i < buf->chan->n_subbufs; i++)
303		buf->padding[i] = 0;
304
305	relay_subbuf_start(buf, buf->data, NULL, 0);
306}
307
308/**
309 *	relay_reset - reset the channel
310 *	@chan: the channel
311 *
312 *	This has the effect of erasing all data from all channel buffers
313 *	and restarting the channel in its initial state.  The buffers
314 *	are not freed, so any mappings are still in effect.
315 *
316 *	NOTE. Care should be taken that the channel isn't actually
317 *	being used by anything when this call is made.
318 */
319void relay_reset(struct rchan *chan)
320{
321	struct rchan_buf *buf;
322	unsigned int i;
323
324	if (!chan)
325		return;
326
327	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
328		__relay_reset(buf, 0);
329		return;
330	}
331
332	mutex_lock(&relay_channels_mutex);
333	for_each_possible_cpu(i)
334		if ((buf = *per_cpu_ptr(chan->buf, i)))
335			__relay_reset(buf, 0);
336	mutex_unlock(&relay_channels_mutex);
337}
338EXPORT_SYMBOL_GPL(relay_reset);
339
340static inline void relay_set_buf_dentry(struct rchan_buf *buf,
341					struct dentry *dentry)
342{
343	buf->dentry = dentry;
344	d_inode(buf->dentry)->i_size = buf->early_bytes;
345}
346
347static struct dentry *relay_create_buf_file(struct rchan *chan,
348					    struct rchan_buf *buf,
349					    unsigned int cpu)
350{
351	struct dentry *dentry;
352	char *tmpname;
353
354	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
355	if (!tmpname)
356		return NULL;
357	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
358
359	/* Create file in fs */
360	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
361					   S_IRUSR, buf,
362					   &chan->is_global);
363	if (IS_ERR(dentry))
364		dentry = NULL;
365
366	kfree(tmpname);
367
368	return dentry;
369}
370
371/*
372 *	relay_open_buf - create a new relay channel buffer
373 *
374 *	used by relay_open() and CPU hotplug.
375 */
376static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
377{
378	struct rchan_buf *buf;
379	struct dentry *dentry;
380
381 	if (chan->is_global)
382		return *per_cpu_ptr(chan->buf, 0);
383
384	buf = relay_create_buf(chan);
385	if (!buf)
386		return NULL;
387
388	if (chan->has_base_filename) {
389		dentry = relay_create_buf_file(chan, buf, cpu);
390		if (!dentry)
391			goto free_buf;
392		relay_set_buf_dentry(buf, dentry);
393	} else {
394		/* Only retrieve global info, nothing more, nothing less */
395		dentry = chan->cb->create_buf_file(NULL, NULL,
396						   S_IRUSR, buf,
397						   &chan->is_global);
398		if (IS_ERR_OR_NULL(dentry))
399			goto free_buf;
400	}
401
402 	buf->cpu = cpu;
403 	__relay_reset(buf, 1);
404
405 	if(chan->is_global) {
406		*per_cpu_ptr(chan->buf, 0) = buf;
407 		buf->cpu = 0;
408  	}
409
410	return buf;
411
412free_buf:
413 	relay_destroy_buf(buf);
414	return NULL;
415}
416
417/**
418 *	relay_close_buf - close a channel buffer
419 *	@buf: channel buffer
420 *
421 *	Marks the buffer finalized and restores the default callbacks.
422 *	The channel buffer and channel buffer data structure are then freed
423 *	automatically when the last reference is given up.
424 */
425static void relay_close_buf(struct rchan_buf *buf)
426{
427	buf->finalized = 1;
428	irq_work_sync(&buf->wakeup_work);
429	buf->chan->cb->remove_buf_file(buf->dentry);
430	kref_put(&buf->kref, relay_remove_buf);
431}
432
433int relay_prepare_cpu(unsigned int cpu)
434{
435	struct rchan *chan;
436	struct rchan_buf *buf;
437
438	mutex_lock(&relay_channels_mutex);
439	list_for_each_entry(chan, &relay_channels, list) {
440		if (*per_cpu_ptr(chan->buf, cpu))
441			continue;
442		buf = relay_open_buf(chan, cpu);
443		if (!buf) {
444			pr_err("relay: cpu %d buffer creation failed\n", cpu);
445			mutex_unlock(&relay_channels_mutex);
446			return -ENOMEM;
447		}
448		*per_cpu_ptr(chan->buf, cpu) = buf;
449	}
450	mutex_unlock(&relay_channels_mutex);
451	return 0;
452}
453
454/**
455 *	relay_open - create a new relay channel
456 *	@base_filename: base name of files to create, %NULL for buffering only
457 *	@parent: dentry of parent directory, %NULL for root directory or buffer
458 *	@subbuf_size: size of sub-buffers
459 *	@n_subbufs: number of sub-buffers
460 *	@cb: client callback functions
461 *	@private_data: user-defined data
462 *
463 *	Returns channel pointer if successful, %NULL otherwise.
464 *
465 *	Creates a channel buffer for each cpu using the sizes and
466 *	attributes specified.  The created channel buffer files
467 *	will be named base_filename0...base_filenameN-1.  File
468 *	permissions will be %S_IRUSR.
469 *
470 *	If opening a buffer (@parent = NULL) that you later wish to register
471 *	in a filesystem, call relay_late_setup_files() once the @parent dentry
472 *	is available.
473 */
474struct rchan *relay_open(const char *base_filename,
475			 struct dentry *parent,
476			 size_t subbuf_size,
477			 size_t n_subbufs,
478			 const struct rchan_callbacks *cb,
479			 void *private_data)
480{
481	unsigned int i;
482	struct rchan *chan;
483	struct rchan_buf *buf;
484
485	if (!(subbuf_size && n_subbufs))
486		return NULL;
487	if (subbuf_size > UINT_MAX / n_subbufs)
488		return NULL;
489	if (!cb || !cb->create_buf_file || !cb->remove_buf_file)
490		return NULL;
491
492	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
493	if (!chan)
494		return NULL;
495
496	chan->buf = alloc_percpu(struct rchan_buf *);
497	if (!chan->buf) {
498		kfree(chan);
499		return NULL;
500	}
501
502	chan->version = RELAYFS_CHANNEL_VERSION;
503	chan->n_subbufs = n_subbufs;
504	chan->subbuf_size = subbuf_size;
505	chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
506	chan->parent = parent;
507	chan->private_data = private_data;
508	if (base_filename) {
509		chan->has_base_filename = 1;
510		strscpy(chan->base_filename, base_filename, NAME_MAX);
511	}
512	chan->cb = cb;
513	kref_init(&chan->kref);
514
515	mutex_lock(&relay_channels_mutex);
516	for_each_online_cpu(i) {
517		buf = relay_open_buf(chan, i);
518		if (!buf)
519			goto free_bufs;
520		*per_cpu_ptr(chan->buf, i) = buf;
521	}
522	list_add(&chan->list, &relay_channels);
523	mutex_unlock(&relay_channels_mutex);
524
525	return chan;
526
527free_bufs:
528	for_each_possible_cpu(i) {
529		if ((buf = *per_cpu_ptr(chan->buf, i)))
530			relay_close_buf(buf);
531	}
532
533	kref_put(&chan->kref, relay_destroy_channel);
534	mutex_unlock(&relay_channels_mutex);
535	return NULL;
536}
537EXPORT_SYMBOL_GPL(relay_open);
538
539struct rchan_percpu_buf_dispatcher {
540	struct rchan_buf *buf;
541	struct dentry *dentry;
542};
543
544/* Called in atomic context. */
545static void __relay_set_buf_dentry(void *info)
546{
547	struct rchan_percpu_buf_dispatcher *p = info;
548
549	relay_set_buf_dentry(p->buf, p->dentry);
550}
551
552/**
553 *	relay_late_setup_files - triggers file creation
554 *	@chan: channel to operate on
555 *	@base_filename: base name of files to create
556 *	@parent: dentry of parent directory, %NULL for root directory
557 *
558 *	Returns 0 if successful, non-zero otherwise.
559 *
560 *	Use to setup files for a previously buffer-only channel created
561 *	by relay_open() with a NULL parent dentry.
562 *
563 *	For example, this is useful for perfomring early tracing in kernel,
564 *	before VFS is up and then exposing the early results once the dentry
565 *	is available.
566 */
567int relay_late_setup_files(struct rchan *chan,
568			   const char *base_filename,
569			   struct dentry *parent)
570{
571	int err = 0;
572	unsigned int i, curr_cpu;
573	unsigned long flags;
574	struct dentry *dentry;
575	struct rchan_buf *buf;
576	struct rchan_percpu_buf_dispatcher disp;
577
578	if (!chan || !base_filename)
579		return -EINVAL;
580
581	strscpy(chan->base_filename, base_filename, NAME_MAX);
582
583	mutex_lock(&relay_channels_mutex);
584	/* Is chan already set up? */
585	if (unlikely(chan->has_base_filename)) {
586		mutex_unlock(&relay_channels_mutex);
587		return -EEXIST;
588	}
589	chan->has_base_filename = 1;
590	chan->parent = parent;
591
592	if (chan->is_global) {
593		err = -EINVAL;
594		buf = *per_cpu_ptr(chan->buf, 0);
595		if (!WARN_ON_ONCE(!buf)) {
596			dentry = relay_create_buf_file(chan, buf, 0);
597			if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
598				relay_set_buf_dentry(buf, dentry);
599				err = 0;
600			}
601		}
602		mutex_unlock(&relay_channels_mutex);
603		return err;
604	}
605
606	curr_cpu = get_cpu();
607	/*
608	 * The CPU hotplug notifier ran before us and created buffers with
609	 * no files associated. So it's safe to call relay_setup_buf_file()
610	 * on all currently online CPUs.
611	 */
612	for_each_online_cpu(i) {
613		buf = *per_cpu_ptr(chan->buf, i);
614		if (unlikely(!buf)) {
615			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
616			err = -EINVAL;
617			break;
618		}
619
620		dentry = relay_create_buf_file(chan, buf, i);
621		if (unlikely(!dentry)) {
622			err = -EINVAL;
623			break;
624		}
625
626		if (curr_cpu == i) {
627			local_irq_save(flags);
628			relay_set_buf_dentry(buf, dentry);
629			local_irq_restore(flags);
630		} else {
631			disp.buf = buf;
632			disp.dentry = dentry;
633			smp_mb();
634			/* relay_channels_mutex must be held, so wait. */
635			err = smp_call_function_single(i,
636						       __relay_set_buf_dentry,
637						       &disp, 1);
638		}
639		if (unlikely(err))
640			break;
641	}
642	put_cpu();
643	mutex_unlock(&relay_channels_mutex);
644
645	return err;
646}
647EXPORT_SYMBOL_GPL(relay_late_setup_files);
648
649/**
650 *	relay_switch_subbuf - switch to a new sub-buffer
651 *	@buf: channel buffer
652 *	@length: size of current event
653 *
654 *	Returns either the length passed in or 0 if full.
655 *
656 *	Performs sub-buffer-switch tasks such as invoking callbacks,
657 *	updating padding counts, waking up readers, etc.
658 */
659size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
660{
661	void *old, *new;
662	size_t old_subbuf, new_subbuf;
663
664	if (unlikely(length > buf->chan->subbuf_size))
665		goto toobig;
666
667	if (buf->offset != buf->chan->subbuf_size + 1) {
668		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
669		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
670		buf->padding[old_subbuf] = buf->prev_padding;
671		buf->subbufs_produced++;
672		if (buf->dentry)
673			d_inode(buf->dentry)->i_size +=
674				buf->chan->subbuf_size -
675				buf->padding[old_subbuf];
676		else
677			buf->early_bytes += buf->chan->subbuf_size -
678					    buf->padding[old_subbuf];
679		smp_mb();
680		if (waitqueue_active(&buf->read_wait)) {
681			/*
682			 * Calling wake_up_interruptible() from here
683			 * will deadlock if we happen to be logging
684			 * from the scheduler (trying to re-grab
685			 * rq->lock), so defer it.
686			 */
687			irq_work_queue(&buf->wakeup_work);
688		}
689	}
690
691	old = buf->data;
692	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
693	new = buf->start + new_subbuf * buf->chan->subbuf_size;
694	buf->offset = 0;
695	if (!relay_subbuf_start(buf, new, old, buf->prev_padding)) {
696		buf->offset = buf->chan->subbuf_size + 1;
697		return 0;
698	}
699	buf->data = new;
700	buf->padding[new_subbuf] = 0;
701
702	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
703		goto toobig;
704
705	return length;
706
707toobig:
708	buf->chan->last_toobig = length;
709	return 0;
710}
711EXPORT_SYMBOL_GPL(relay_switch_subbuf);
712
713/**
714 *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
715 *	@chan: the channel
716 *	@cpu: the cpu associated with the channel buffer to update
717 *	@subbufs_consumed: number of sub-buffers to add to current buf's count
718 *
719 *	Adds to the channel buffer's consumed sub-buffer count.
720 *	subbufs_consumed should be the number of sub-buffers newly consumed,
721 *	not the total consumed.
722 *
723 *	NOTE. Kernel clients don't need to call this function if the channel
724 *	mode is 'overwrite'.
725 */
726void relay_subbufs_consumed(struct rchan *chan,
727			    unsigned int cpu,
728			    size_t subbufs_consumed)
729{
730	struct rchan_buf *buf;
731
732	if (!chan || cpu >= NR_CPUS)
733		return;
734
735	buf = *per_cpu_ptr(chan->buf, cpu);
736	if (!buf || subbufs_consumed > chan->n_subbufs)
737		return;
738
739	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
740		buf->subbufs_consumed = buf->subbufs_produced;
741	else
742		buf->subbufs_consumed += subbufs_consumed;
743}
744EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
745
746/**
747 *	relay_close - close the channel
748 *	@chan: the channel
749 *
750 *	Closes all channel buffers and frees the channel.
751 */
752void relay_close(struct rchan *chan)
753{
754	struct rchan_buf *buf;
755	unsigned int i;
756
757	if (!chan)
758		return;
759
760	mutex_lock(&relay_channels_mutex);
761	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
762		relay_close_buf(buf);
763	else
764		for_each_possible_cpu(i)
765			if ((buf = *per_cpu_ptr(chan->buf, i)))
766				relay_close_buf(buf);
767
768	if (chan->last_toobig)
769		printk(KERN_WARNING "relay: one or more items not logged "
770		       "[item size (%zd) > sub-buffer size (%zd)]\n",
771		       chan->last_toobig, chan->subbuf_size);
772
773	list_del(&chan->list);
774	kref_put(&chan->kref, relay_destroy_channel);
775	mutex_unlock(&relay_channels_mutex);
776}
777EXPORT_SYMBOL_GPL(relay_close);
778
779/**
780 *	relay_flush - close the channel
781 *	@chan: the channel
782 *
783 *	Flushes all channel buffers, i.e. forces buffer switch.
784 */
785void relay_flush(struct rchan *chan)
786{
787	struct rchan_buf *buf;
788	unsigned int i;
789
790	if (!chan)
791		return;
792
793	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
794		relay_switch_subbuf(buf, 0);
795		return;
796	}
797
798	mutex_lock(&relay_channels_mutex);
799	for_each_possible_cpu(i)
800		if ((buf = *per_cpu_ptr(chan->buf, i)))
801			relay_switch_subbuf(buf, 0);
802	mutex_unlock(&relay_channels_mutex);
803}
804EXPORT_SYMBOL_GPL(relay_flush);
805
806/**
807 *	relay_file_open - open file op for relay files
808 *	@inode: the inode
809 *	@filp: the file
810 *
811 *	Increments the channel buffer refcount.
812 */
813static int relay_file_open(struct inode *inode, struct file *filp)
814{
815	struct rchan_buf *buf = inode->i_private;
816	kref_get(&buf->kref);
817	filp->private_data = buf;
818
819	return nonseekable_open(inode, filp);
820}
821
822/**
823 *	relay_file_mmap - mmap file op for relay files
824 *	@filp: the file
825 *	@vma: the vma describing what to map
826 *
827 *	Calls upon relay_mmap_buf() to map the file into user space.
828 */
829static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
830{
831	struct rchan_buf *buf = filp->private_data;
832	return relay_mmap_buf(buf, vma);
833}
834
835/**
836 *	relay_file_poll - poll file op for relay files
837 *	@filp: the file
838 *	@wait: poll table
839 *
840 *	Poll implemention.
841 */
842static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
843{
844	__poll_t mask = 0;
845	struct rchan_buf *buf = filp->private_data;
846
847	if (buf->finalized)
848		return EPOLLERR;
849
850	if (filp->f_mode & FMODE_READ) {
851		poll_wait(filp, &buf->read_wait, wait);
852		if (!relay_buf_empty(buf))
853			mask |= EPOLLIN | EPOLLRDNORM;
854	}
855
856	return mask;
857}
858
859/**
860 *	relay_file_release - release file op for relay files
861 *	@inode: the inode
862 *	@filp: the file
863 *
864 *	Decrements the channel refcount, as the filesystem is
865 *	no longer using it.
866 */
867static int relay_file_release(struct inode *inode, struct file *filp)
868{
869	struct rchan_buf *buf = filp->private_data;
870	kref_put(&buf->kref, relay_remove_buf);
871
872	return 0;
873}
874
875/*
876 *	relay_file_read_consume - update the consumed count for the buffer
877 */
878static void relay_file_read_consume(struct rchan_buf *buf,
879				    size_t read_pos,
880				    size_t bytes_consumed)
881{
882	size_t subbuf_size = buf->chan->subbuf_size;
883	size_t n_subbufs = buf->chan->n_subbufs;
884	size_t read_subbuf;
885
886	if (buf->subbufs_produced == buf->subbufs_consumed &&
887	    buf->offset == buf->bytes_consumed)
888		return;
889
890	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
891		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
892		buf->bytes_consumed = 0;
893	}
894
895	buf->bytes_consumed += bytes_consumed;
896	if (!read_pos)
897		read_subbuf = buf->subbufs_consumed % n_subbufs;
898	else
899		read_subbuf = read_pos / buf->chan->subbuf_size;
900	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
901		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
902		    (buf->offset == subbuf_size))
903			return;
904		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
905		buf->bytes_consumed = 0;
906	}
907}
908
909/*
910 *	relay_file_read_avail - boolean, are there unconsumed bytes available?
911 */
912static int relay_file_read_avail(struct rchan_buf *buf)
913{
914	size_t subbuf_size = buf->chan->subbuf_size;
915	size_t n_subbufs = buf->chan->n_subbufs;
916	size_t produced = buf->subbufs_produced;
917	size_t consumed;
918
919	relay_file_read_consume(buf, 0, 0);
920
921	consumed = buf->subbufs_consumed;
922
923	if (unlikely(buf->offset > subbuf_size)) {
924		if (produced == consumed)
925			return 0;
926		return 1;
927	}
928
929	if (unlikely(produced - consumed >= n_subbufs)) {
930		consumed = produced - n_subbufs + 1;
931		buf->subbufs_consumed = consumed;
932		buf->bytes_consumed = 0;
933	}
934
935	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
936	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
937
938	if (consumed > produced)
939		produced += n_subbufs * subbuf_size;
940
941	if (consumed == produced) {
942		if (buf->offset == subbuf_size &&
943		    buf->subbufs_produced > buf->subbufs_consumed)
944			return 1;
945		return 0;
946	}
947
948	return 1;
949}
950
951/**
952 *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
953 *	@read_pos: file read position
954 *	@buf: relay channel buffer
955 */
956static size_t relay_file_read_subbuf_avail(size_t read_pos,
957					   struct rchan_buf *buf)
958{
959	size_t padding, avail = 0;
960	size_t read_subbuf, read_offset, write_subbuf, write_offset;
961	size_t subbuf_size = buf->chan->subbuf_size;
962
963	write_subbuf = (buf->data - buf->start) / subbuf_size;
964	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
965	read_subbuf = read_pos / subbuf_size;
966	read_offset = read_pos % subbuf_size;
967	padding = buf->padding[read_subbuf];
968
969	if (read_subbuf == write_subbuf) {
970		if (read_offset + padding < write_offset)
971			avail = write_offset - (read_offset + padding);
972	} else
973		avail = (subbuf_size - padding) - read_offset;
974
975	return avail;
976}
977
978/**
979 *	relay_file_read_start_pos - find the first available byte to read
980 *	@buf: relay channel buffer
981 *
982 *	If the read_pos is in the middle of padding, return the
983 *	position of the first actually available byte, otherwise
984 *	return the original value.
985 */
986static size_t relay_file_read_start_pos(struct rchan_buf *buf)
987{
988	size_t read_subbuf, padding, padding_start, padding_end;
989	size_t subbuf_size = buf->chan->subbuf_size;
990	size_t n_subbufs = buf->chan->n_subbufs;
991	size_t consumed = buf->subbufs_consumed % n_subbufs;
992	size_t read_pos = (consumed * subbuf_size + buf->bytes_consumed)
993			% (n_subbufs * subbuf_size);
994
995	read_subbuf = read_pos / subbuf_size;
996	padding = buf->padding[read_subbuf];
997	padding_start = (read_subbuf + 1) * subbuf_size - padding;
998	padding_end = (read_subbuf + 1) * subbuf_size;
999	if (read_pos >= padding_start && read_pos < padding_end) {
1000		read_subbuf = (read_subbuf + 1) % n_subbufs;
1001		read_pos = read_subbuf * subbuf_size;
1002	}
1003
1004	return read_pos;
1005}
1006
1007/**
1008 *	relay_file_read_end_pos - return the new read position
1009 *	@read_pos: file read position
1010 *	@buf: relay channel buffer
1011 *	@count: number of bytes to be read
1012 */
1013static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1014				      size_t read_pos,
1015				      size_t count)
1016{
1017	size_t read_subbuf, padding, end_pos;
1018	size_t subbuf_size = buf->chan->subbuf_size;
1019	size_t n_subbufs = buf->chan->n_subbufs;
1020
1021	read_subbuf = read_pos / subbuf_size;
1022	padding = buf->padding[read_subbuf];
1023	if (read_pos % subbuf_size + count + padding == subbuf_size)
1024		end_pos = (read_subbuf + 1) * subbuf_size;
1025	else
1026		end_pos = read_pos + count;
1027	if (end_pos >= subbuf_size * n_subbufs)
1028		end_pos = 0;
1029
1030	return end_pos;
1031}
1032
1033static ssize_t relay_file_read(struct file *filp,
1034			       char __user *buffer,
1035			       size_t count,
1036			       loff_t *ppos)
1037{
1038	struct rchan_buf *buf = filp->private_data;
1039	size_t read_start, avail;
1040	size_t written = 0;
1041	int ret;
1042
1043	if (!count)
1044		return 0;
1045
1046	inode_lock(file_inode(filp));
1047	do {
1048		void *from;
1049
1050		if (!relay_file_read_avail(buf))
1051			break;
1052
1053		read_start = relay_file_read_start_pos(buf);
1054		avail = relay_file_read_subbuf_avail(read_start, buf);
1055		if (!avail)
1056			break;
1057
1058		avail = min(count, avail);
1059		from = buf->start + read_start;
1060		ret = avail;
1061		if (copy_to_user(buffer, from, avail))
1062			break;
1063
1064		buffer += ret;
1065		written += ret;
1066		count -= ret;
1067
1068		relay_file_read_consume(buf, read_start, ret);
1069		*ppos = relay_file_read_end_pos(buf, read_start, ret);
1070	} while (count);
1071	inode_unlock(file_inode(filp));
1072
1073	return written;
1074}
1075
1076
1077const struct file_operations relay_file_operations = {
1078	.open		= relay_file_open,
1079	.poll		= relay_file_poll,
1080	.mmap		= relay_file_mmap,
1081	.read		= relay_file_read,
1082	.llseek		= no_llseek,
1083	.release	= relay_file_release,
1084};
1085EXPORT_SYMBOL_GPL(relay_file_operations);
1086