1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Longest prefix match list implementation
4 *
5 * Copyright (c) 2016,2017 Daniel Mack
6 * Copyright (c) 2016 David Herrmann
7 */
8
9#include <linux/bpf.h>
10#include <linux/btf.h>
11#include <linux/err.h>
12#include <linux/slab.h>
13#include <linux/spinlock.h>
14#include <linux/vmalloc.h>
15#include <net/ipv6.h>
16#include <uapi/linux/btf.h>
17#include <linux/btf_ids.h>
18
19/* Intermediate node */
20#define LPM_TREE_NODE_FLAG_IM BIT(0)
21
22struct lpm_trie_node;
23
24struct lpm_trie_node {
25	struct rcu_head rcu;
26	struct lpm_trie_node __rcu	*child[2];
27	u32				prefixlen;
28	u32				flags;
29	u8				data[];
30};
31
32struct lpm_trie {
33	struct bpf_map			map;
34	struct lpm_trie_node __rcu	*root;
35	size_t				n_entries;
36	size_t				max_prefixlen;
37	size_t				data_size;
38	spinlock_t			lock;
39};
40
41/* This trie implements a longest prefix match algorithm that can be used to
42 * match IP addresses to a stored set of ranges.
43 *
44 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
45 * interpreted as big endian, so data[0] stores the most significant byte.
46 *
47 * Match ranges are internally stored in instances of struct lpm_trie_node
48 * which each contain their prefix length as well as two pointers that may
49 * lead to more nodes containing more specific matches. Each node also stores
50 * a value that is defined by and returned to userspace via the update_elem
51 * and lookup functions.
52 *
53 * For instance, let's start with a trie that was created with a prefix length
54 * of 32, so it can be used for IPv4 addresses, and one single element that
55 * matches 192.168.0.0/16. The data array would hence contain
56 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
57 * stick to IP-address notation for readability though.
58 *
59 * As the trie is empty initially, the new node (1) will be places as root
60 * node, denoted as (R) in the example below. As there are no other node, both
61 * child pointers are %NULL.
62 *
63 *              +----------------+
64 *              |       (1)  (R) |
65 *              | 192.168.0.0/16 |
66 *              |    value: 1    |
67 *              |   [0]    [1]   |
68 *              +----------------+
69 *
70 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
71 * a node with the same data and a smaller prefix (ie, a less specific one),
72 * node (2) will become a child of (1). In child index depends on the next bit
73 * that is outside of what (1) matches, and that bit is 0, so (2) will be
74 * child[0] of (1):
75 *
76 *              +----------------+
77 *              |       (1)  (R) |
78 *              | 192.168.0.0/16 |
79 *              |    value: 1    |
80 *              |   [0]    [1]   |
81 *              +----------------+
82 *                   |
83 *    +----------------+
84 *    |       (2)      |
85 *    | 192.168.0.0/24 |
86 *    |    value: 2    |
87 *    |   [0]    [1]   |
88 *    +----------------+
89 *
90 * The child[1] slot of (1) could be filled with another node which has bit #17
91 * (the next bit after the ones that (1) matches on) set to 1. For instance,
92 * 192.168.128.0/24:
93 *
94 *              +----------------+
95 *              |       (1)  (R) |
96 *              | 192.168.0.0/16 |
97 *              |    value: 1    |
98 *              |   [0]    [1]   |
99 *              +----------------+
100 *                   |      |
101 *    +----------------+  +------------------+
102 *    |       (2)      |  |        (3)       |
103 *    | 192.168.0.0/24 |  | 192.168.128.0/24 |
104 *    |    value: 2    |  |     value: 3     |
105 *    |   [0]    [1]   |  |    [0]    [1]    |
106 *    +----------------+  +------------------+
107 *
108 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
109 * it, node (1) is looked at first, and because (4) of the semantics laid out
110 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
111 * However, that slot is already allocated, so a new node is needed in between.
112 * That node does not have a value attached to it and it will never be
113 * returned to users as result of a lookup. It is only there to differentiate
114 * the traversal further. It will get a prefix as wide as necessary to
115 * distinguish its two children:
116 *
117 *                      +----------------+
118 *                      |       (1)  (R) |
119 *                      | 192.168.0.0/16 |
120 *                      |    value: 1    |
121 *                      |   [0]    [1]   |
122 *                      +----------------+
123 *                           |      |
124 *            +----------------+  +------------------+
125 *            |       (4)  (I) |  |        (3)       |
126 *            | 192.168.0.0/23 |  | 192.168.128.0/24 |
127 *            |    value: ---  |  |     value: 3     |
128 *            |   [0]    [1]   |  |    [0]    [1]    |
129 *            +----------------+  +------------------+
130 *                 |      |
131 *  +----------------+  +----------------+
132 *  |       (2)      |  |       (5)      |
133 *  | 192.168.0.0/24 |  | 192.168.1.0/24 |
134 *  |    value: 2    |  |     value: 5   |
135 *  |   [0]    [1]   |  |   [0]    [1]   |
136 *  +----------------+  +----------------+
137 *
138 * 192.168.1.1/32 would be a child of (5) etc.
139 *
140 * An intermediate node will be turned into a 'real' node on demand. In the
141 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
142 *
143 * A fully populated trie would have a height of 32 nodes, as the trie was
144 * created with a prefix length of 32.
145 *
146 * The lookup starts at the root node. If the current node matches and if there
147 * is a child that can be used to become more specific, the trie is traversed
148 * downwards. The last node in the traversal that is a non-intermediate one is
149 * returned.
150 */
151
152static inline int extract_bit(const u8 *data, size_t index)
153{
154	return !!(data[index / 8] & (1 << (7 - (index % 8))));
155}
156
157/**
158 * __longest_prefix_match() - determine the longest prefix
159 * @trie:	The trie to get internal sizes from
160 * @node:	The node to operate on
161 * @key:	The key to compare to @node
162 *
163 * Determine the longest prefix of @node that matches the bits in @key.
164 */
165static __always_inline
166size_t __longest_prefix_match(const struct lpm_trie *trie,
167			      const struct lpm_trie_node *node,
168			      const struct bpf_lpm_trie_key_u8 *key)
169{
170	u32 limit = min(node->prefixlen, key->prefixlen);
171	u32 prefixlen = 0, i = 0;
172
173	BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32));
174	BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key_u8, data) % sizeof(u32));
175
176#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT)
177
178	/* data_size >= 16 has very small probability.
179	 * We do not use a loop for optimal code generation.
180	 */
181	if (trie->data_size >= 8) {
182		u64 diff = be64_to_cpu(*(__be64 *)node->data ^
183				       *(__be64 *)key->data);
184
185		prefixlen = 64 - fls64(diff);
186		if (prefixlen >= limit)
187			return limit;
188		if (diff)
189			return prefixlen;
190		i = 8;
191	}
192#endif
193
194	while (trie->data_size >= i + 4) {
195		u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^
196				       *(__be32 *)&key->data[i]);
197
198		prefixlen += 32 - fls(diff);
199		if (prefixlen >= limit)
200			return limit;
201		if (diff)
202			return prefixlen;
203		i += 4;
204	}
205
206	if (trie->data_size >= i + 2) {
207		u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^
208				       *(__be16 *)&key->data[i]);
209
210		prefixlen += 16 - fls(diff);
211		if (prefixlen >= limit)
212			return limit;
213		if (diff)
214			return prefixlen;
215		i += 2;
216	}
217
218	if (trie->data_size >= i + 1) {
219		prefixlen += 8 - fls(node->data[i] ^ key->data[i]);
220
221		if (prefixlen >= limit)
222			return limit;
223	}
224
225	return prefixlen;
226}
227
228static size_t longest_prefix_match(const struct lpm_trie *trie,
229				   const struct lpm_trie_node *node,
230				   const struct bpf_lpm_trie_key_u8 *key)
231{
232	return __longest_prefix_match(trie, node, key);
233}
234
235/* Called from syscall or from eBPF program */
236static void *trie_lookup_elem(struct bpf_map *map, void *_key)
237{
238	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
239	struct lpm_trie_node *node, *found = NULL;
240	struct bpf_lpm_trie_key_u8 *key = _key;
241
242	if (key->prefixlen > trie->max_prefixlen)
243		return NULL;
244
245	/* Start walking the trie from the root node ... */
246
247	for (node = rcu_dereference_check(trie->root, rcu_read_lock_bh_held());
248	     node;) {
249		unsigned int next_bit;
250		size_t matchlen;
251
252		/* Determine the longest prefix of @node that matches @key.
253		 * If it's the maximum possible prefix for this trie, we have
254		 * an exact match and can return it directly.
255		 */
256		matchlen = __longest_prefix_match(trie, node, key);
257		if (matchlen == trie->max_prefixlen) {
258			found = node;
259			break;
260		}
261
262		/* If the number of bits that match is smaller than the prefix
263		 * length of @node, bail out and return the node we have seen
264		 * last in the traversal (ie, the parent).
265		 */
266		if (matchlen < node->prefixlen)
267			break;
268
269		/* Consider this node as return candidate unless it is an
270		 * artificially added intermediate one.
271		 */
272		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
273			found = node;
274
275		/* If the node match is fully satisfied, let's see if we can
276		 * become more specific. Determine the next bit in the key and
277		 * traverse down.
278		 */
279		next_bit = extract_bit(key->data, node->prefixlen);
280		node = rcu_dereference_check(node->child[next_bit],
281					     rcu_read_lock_bh_held());
282	}
283
284	if (!found)
285		return NULL;
286
287	return found->data + trie->data_size;
288}
289
290static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
291						 const void *value)
292{
293	struct lpm_trie_node *node;
294	size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
295
296	if (value)
297		size += trie->map.value_size;
298
299	node = bpf_map_kmalloc_node(&trie->map, size, GFP_NOWAIT | __GFP_NOWARN,
300				    trie->map.numa_node);
301	if (!node)
302		return NULL;
303
304	node->flags = 0;
305
306	if (value)
307		memcpy(node->data + trie->data_size, value,
308		       trie->map.value_size);
309
310	return node;
311}
312
313/* Called from syscall or from eBPF program */
314static long trie_update_elem(struct bpf_map *map,
315			     void *_key, void *value, u64 flags)
316{
317	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
318	struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
319	struct lpm_trie_node *free_node = NULL;
320	struct lpm_trie_node __rcu **slot;
321	struct bpf_lpm_trie_key_u8 *key = _key;
322	unsigned long irq_flags;
323	unsigned int next_bit;
324	size_t matchlen = 0;
325	int ret = 0;
326
327	if (unlikely(flags > BPF_EXIST))
328		return -EINVAL;
329
330	if (key->prefixlen > trie->max_prefixlen)
331		return -EINVAL;
332
333	spin_lock_irqsave(&trie->lock, irq_flags);
334
335	/* Allocate and fill a new node */
336
337	if (trie->n_entries == trie->map.max_entries) {
338		ret = -ENOSPC;
339		goto out;
340	}
341
342	new_node = lpm_trie_node_alloc(trie, value);
343	if (!new_node) {
344		ret = -ENOMEM;
345		goto out;
346	}
347
348	trie->n_entries++;
349
350	new_node->prefixlen = key->prefixlen;
351	RCU_INIT_POINTER(new_node->child[0], NULL);
352	RCU_INIT_POINTER(new_node->child[1], NULL);
353	memcpy(new_node->data, key->data, trie->data_size);
354
355	/* Now find a slot to attach the new node. To do that, walk the tree
356	 * from the root and match as many bits as possible for each node until
357	 * we either find an empty slot or a slot that needs to be replaced by
358	 * an intermediate node.
359	 */
360	slot = &trie->root;
361
362	while ((node = rcu_dereference_protected(*slot,
363					lockdep_is_held(&trie->lock)))) {
364		matchlen = longest_prefix_match(trie, node, key);
365
366		if (node->prefixlen != matchlen ||
367		    node->prefixlen == key->prefixlen ||
368		    node->prefixlen == trie->max_prefixlen)
369			break;
370
371		next_bit = extract_bit(key->data, node->prefixlen);
372		slot = &node->child[next_bit];
373	}
374
375	/* If the slot is empty (a free child pointer or an empty root),
376	 * simply assign the @new_node to that slot and be done.
377	 */
378	if (!node) {
379		rcu_assign_pointer(*slot, new_node);
380		goto out;
381	}
382
383	/* If the slot we picked already exists, replace it with @new_node
384	 * which already has the correct data array set.
385	 */
386	if (node->prefixlen == matchlen) {
387		new_node->child[0] = node->child[0];
388		new_node->child[1] = node->child[1];
389
390		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
391			trie->n_entries--;
392
393		rcu_assign_pointer(*slot, new_node);
394		free_node = node;
395
396		goto out;
397	}
398
399	/* If the new node matches the prefix completely, it must be inserted
400	 * as an ancestor. Simply insert it between @node and *@slot.
401	 */
402	if (matchlen == key->prefixlen) {
403		next_bit = extract_bit(node->data, matchlen);
404		rcu_assign_pointer(new_node->child[next_bit], node);
405		rcu_assign_pointer(*slot, new_node);
406		goto out;
407	}
408
409	im_node = lpm_trie_node_alloc(trie, NULL);
410	if (!im_node) {
411		ret = -ENOMEM;
412		goto out;
413	}
414
415	im_node->prefixlen = matchlen;
416	im_node->flags |= LPM_TREE_NODE_FLAG_IM;
417	memcpy(im_node->data, node->data, trie->data_size);
418
419	/* Now determine which child to install in which slot */
420	if (extract_bit(key->data, matchlen)) {
421		rcu_assign_pointer(im_node->child[0], node);
422		rcu_assign_pointer(im_node->child[1], new_node);
423	} else {
424		rcu_assign_pointer(im_node->child[0], new_node);
425		rcu_assign_pointer(im_node->child[1], node);
426	}
427
428	/* Finally, assign the intermediate node to the determined slot */
429	rcu_assign_pointer(*slot, im_node);
430
431out:
432	if (ret) {
433		if (new_node)
434			trie->n_entries--;
435
436		kfree(new_node);
437		kfree(im_node);
438	}
439
440	spin_unlock_irqrestore(&trie->lock, irq_flags);
441	kfree_rcu(free_node, rcu);
442
443	return ret;
444}
445
446/* Called from syscall or from eBPF program */
447static long trie_delete_elem(struct bpf_map *map, void *_key)
448{
449	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
450	struct lpm_trie_node *free_node = NULL, *free_parent = NULL;
451	struct bpf_lpm_trie_key_u8 *key = _key;
452	struct lpm_trie_node __rcu **trim, **trim2;
453	struct lpm_trie_node *node, *parent;
454	unsigned long irq_flags;
455	unsigned int next_bit;
456	size_t matchlen = 0;
457	int ret = 0;
458
459	if (key->prefixlen > trie->max_prefixlen)
460		return -EINVAL;
461
462	spin_lock_irqsave(&trie->lock, irq_flags);
463
464	/* Walk the tree looking for an exact key/length match and keeping
465	 * track of the path we traverse.  We will need to know the node
466	 * we wish to delete, and the slot that points to the node we want
467	 * to delete.  We may also need to know the nodes parent and the
468	 * slot that contains it.
469	 */
470	trim = &trie->root;
471	trim2 = trim;
472	parent = NULL;
473	while ((node = rcu_dereference_protected(
474		       *trim, lockdep_is_held(&trie->lock)))) {
475		matchlen = longest_prefix_match(trie, node, key);
476
477		if (node->prefixlen != matchlen ||
478		    node->prefixlen == key->prefixlen)
479			break;
480
481		parent = node;
482		trim2 = trim;
483		next_bit = extract_bit(key->data, node->prefixlen);
484		trim = &node->child[next_bit];
485	}
486
487	if (!node || node->prefixlen != key->prefixlen ||
488	    node->prefixlen != matchlen ||
489	    (node->flags & LPM_TREE_NODE_FLAG_IM)) {
490		ret = -ENOENT;
491		goto out;
492	}
493
494	trie->n_entries--;
495
496	/* If the node we are removing has two children, simply mark it
497	 * as intermediate and we are done.
498	 */
499	if (rcu_access_pointer(node->child[0]) &&
500	    rcu_access_pointer(node->child[1])) {
501		node->flags |= LPM_TREE_NODE_FLAG_IM;
502		goto out;
503	}
504
505	/* If the parent of the node we are about to delete is an intermediate
506	 * node, and the deleted node doesn't have any children, we can delete
507	 * the intermediate parent as well and promote its other child
508	 * up the tree.  Doing this maintains the invariant that all
509	 * intermediate nodes have exactly 2 children and that there are no
510	 * unnecessary intermediate nodes in the tree.
511	 */
512	if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
513	    !node->child[0] && !node->child[1]) {
514		if (node == rcu_access_pointer(parent->child[0]))
515			rcu_assign_pointer(
516				*trim2, rcu_access_pointer(parent->child[1]));
517		else
518			rcu_assign_pointer(
519				*trim2, rcu_access_pointer(parent->child[0]));
520		free_parent = parent;
521		free_node = node;
522		goto out;
523	}
524
525	/* The node we are removing has either zero or one child. If there
526	 * is a child, move it into the removed node's slot then delete
527	 * the node.  Otherwise just clear the slot and delete the node.
528	 */
529	if (node->child[0])
530		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
531	else if (node->child[1])
532		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
533	else
534		RCU_INIT_POINTER(*trim, NULL);
535	free_node = node;
536
537out:
538	spin_unlock_irqrestore(&trie->lock, irq_flags);
539	kfree_rcu(free_parent, rcu);
540	kfree_rcu(free_node, rcu);
541
542	return ret;
543}
544
545#define LPM_DATA_SIZE_MAX	256
546#define LPM_DATA_SIZE_MIN	1
547
548#define LPM_VAL_SIZE_MAX	(KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
549				 sizeof(struct lpm_trie_node))
550#define LPM_VAL_SIZE_MIN	1
551
552#define LPM_KEY_SIZE(X)		(sizeof(struct bpf_lpm_trie_key_u8) + (X))
553#define LPM_KEY_SIZE_MAX	LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
554#define LPM_KEY_SIZE_MIN	LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
555
556#define LPM_CREATE_FLAG_MASK	(BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE |	\
557				 BPF_F_ACCESS_MASK)
558
559static struct bpf_map *trie_alloc(union bpf_attr *attr)
560{
561	struct lpm_trie *trie;
562
563	/* check sanity of attributes */
564	if (attr->max_entries == 0 ||
565	    !(attr->map_flags & BPF_F_NO_PREALLOC) ||
566	    attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
567	    !bpf_map_flags_access_ok(attr->map_flags) ||
568	    attr->key_size < LPM_KEY_SIZE_MIN ||
569	    attr->key_size > LPM_KEY_SIZE_MAX ||
570	    attr->value_size < LPM_VAL_SIZE_MIN ||
571	    attr->value_size > LPM_VAL_SIZE_MAX)
572		return ERR_PTR(-EINVAL);
573
574	trie = bpf_map_area_alloc(sizeof(*trie), NUMA_NO_NODE);
575	if (!trie)
576		return ERR_PTR(-ENOMEM);
577
578	/* copy mandatory map attributes */
579	bpf_map_init_from_attr(&trie->map, attr);
580	trie->data_size = attr->key_size -
581			  offsetof(struct bpf_lpm_trie_key_u8, data);
582	trie->max_prefixlen = trie->data_size * 8;
583
584	spin_lock_init(&trie->lock);
585
586	return &trie->map;
587}
588
589static void trie_free(struct bpf_map *map)
590{
591	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
592	struct lpm_trie_node __rcu **slot;
593	struct lpm_trie_node *node;
594
595	/* Always start at the root and walk down to a node that has no
596	 * children. Then free that node, nullify its reference in the parent
597	 * and start over.
598	 */
599
600	for (;;) {
601		slot = &trie->root;
602
603		for (;;) {
604			node = rcu_dereference_protected(*slot, 1);
605			if (!node)
606				goto out;
607
608			if (rcu_access_pointer(node->child[0])) {
609				slot = &node->child[0];
610				continue;
611			}
612
613			if (rcu_access_pointer(node->child[1])) {
614				slot = &node->child[1];
615				continue;
616			}
617
618			kfree(node);
619			RCU_INIT_POINTER(*slot, NULL);
620			break;
621		}
622	}
623
624out:
625	bpf_map_area_free(trie);
626}
627
628static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
629{
630	struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
631	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
632	struct bpf_lpm_trie_key_u8 *key = _key, *next_key = _next_key;
633	struct lpm_trie_node **node_stack = NULL;
634	int err = 0, stack_ptr = -1;
635	unsigned int next_bit;
636	size_t matchlen;
637
638	/* The get_next_key follows postorder. For the 4 node example in
639	 * the top of this file, the trie_get_next_key() returns the following
640	 * one after another:
641	 *   192.168.0.0/24
642	 *   192.168.1.0/24
643	 *   192.168.128.0/24
644	 *   192.168.0.0/16
645	 *
646	 * The idea is to return more specific keys before less specific ones.
647	 */
648
649	/* Empty trie */
650	search_root = rcu_dereference(trie->root);
651	if (!search_root)
652		return -ENOENT;
653
654	/* For invalid key, find the leftmost node in the trie */
655	if (!key || key->prefixlen > trie->max_prefixlen)
656		goto find_leftmost;
657
658	node_stack = kmalloc_array(trie->max_prefixlen,
659				   sizeof(struct lpm_trie_node *),
660				   GFP_ATOMIC | __GFP_NOWARN);
661	if (!node_stack)
662		return -ENOMEM;
663
664	/* Try to find the exact node for the given key */
665	for (node = search_root; node;) {
666		node_stack[++stack_ptr] = node;
667		matchlen = longest_prefix_match(trie, node, key);
668		if (node->prefixlen != matchlen ||
669		    node->prefixlen == key->prefixlen)
670			break;
671
672		next_bit = extract_bit(key->data, node->prefixlen);
673		node = rcu_dereference(node->child[next_bit]);
674	}
675	if (!node || node->prefixlen != key->prefixlen ||
676	    (node->flags & LPM_TREE_NODE_FLAG_IM))
677		goto find_leftmost;
678
679	/* The node with the exactly-matching key has been found,
680	 * find the first node in postorder after the matched node.
681	 */
682	node = node_stack[stack_ptr];
683	while (stack_ptr > 0) {
684		parent = node_stack[stack_ptr - 1];
685		if (rcu_dereference(parent->child[0]) == node) {
686			search_root = rcu_dereference(parent->child[1]);
687			if (search_root)
688				goto find_leftmost;
689		}
690		if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
691			next_node = parent;
692			goto do_copy;
693		}
694
695		node = parent;
696		stack_ptr--;
697	}
698
699	/* did not find anything */
700	err = -ENOENT;
701	goto free_stack;
702
703find_leftmost:
704	/* Find the leftmost non-intermediate node, all intermediate nodes
705	 * have exact two children, so this function will never return NULL.
706	 */
707	for (node = search_root; node;) {
708		if (node->flags & LPM_TREE_NODE_FLAG_IM) {
709			node = rcu_dereference(node->child[0]);
710		} else {
711			next_node = node;
712			node = rcu_dereference(node->child[0]);
713			if (!node)
714				node = rcu_dereference(next_node->child[1]);
715		}
716	}
717do_copy:
718	next_key->prefixlen = next_node->prefixlen;
719	memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key_u8, data),
720	       next_node->data, trie->data_size);
721free_stack:
722	kfree(node_stack);
723	return err;
724}
725
726static int trie_check_btf(const struct bpf_map *map,
727			  const struct btf *btf,
728			  const struct btf_type *key_type,
729			  const struct btf_type *value_type)
730{
731	/* Keys must have struct bpf_lpm_trie_key_u8 embedded. */
732	return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
733	       -EINVAL : 0;
734}
735
736static u64 trie_mem_usage(const struct bpf_map *map)
737{
738	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
739	u64 elem_size;
740
741	elem_size = sizeof(struct lpm_trie_node) + trie->data_size +
742			    trie->map.value_size;
743	return elem_size * READ_ONCE(trie->n_entries);
744}
745
746BTF_ID_LIST_SINGLE(trie_map_btf_ids, struct, lpm_trie)
747const struct bpf_map_ops trie_map_ops = {
748	.map_meta_equal = bpf_map_meta_equal,
749	.map_alloc = trie_alloc,
750	.map_free = trie_free,
751	.map_get_next_key = trie_get_next_key,
752	.map_lookup_elem = trie_lookup_elem,
753	.map_update_elem = trie_update_elem,
754	.map_delete_elem = trie_delete_elem,
755	.map_lookup_batch = generic_map_lookup_batch,
756	.map_update_batch = generic_map_update_batch,
757	.map_delete_batch = generic_map_delete_batch,
758	.map_check_btf = trie_check_btf,
759	.map_mem_usage = trie_mem_usage,
760	.map_btf_id = &trie_map_btf_ids[0],
761};
762