1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018 Facebook */
3
4#include <uapi/linux/btf.h>
5#include <uapi/linux/bpf.h>
6#include <uapi/linux/bpf_perf_event.h>
7#include <uapi/linux/types.h>
8#include <linux/seq_file.h>
9#include <linux/compiler.h>
10#include <linux/ctype.h>
11#include <linux/errno.h>
12#include <linux/slab.h>
13#include <linux/anon_inodes.h>
14#include <linux/file.h>
15#include <linux/uaccess.h>
16#include <linux/kernel.h>
17#include <linux/idr.h>
18#include <linux/sort.h>
19#include <linux/bpf_verifier.h>
20#include <linux/btf.h>
21#include <linux/btf_ids.h>
22#include <linux/bpf.h>
23#include <linux/bpf_lsm.h>
24#include <linux/skmsg.h>
25#include <linux/perf_event.h>
26#include <linux/bsearch.h>
27#include <linux/kobject.h>
28#include <linux/sysfs.h>
29
30#include <net/netfilter/nf_bpf_link.h>
31
32#include <net/sock.h>
33#include <net/xdp.h>
34#include "../tools/lib/bpf/relo_core.h"
35
36/* BTF (BPF Type Format) is the meta data format which describes
37 * the data types of BPF program/map.  Hence, it basically focus
38 * on the C programming language which the modern BPF is primary
39 * using.
40 *
41 * ELF Section:
42 * ~~~~~~~~~~~
43 * The BTF data is stored under the ".BTF" ELF section
44 *
45 * struct btf_type:
46 * ~~~~~~~~~~~~~~~
47 * Each 'struct btf_type' object describes a C data type.
48 * Depending on the type it is describing, a 'struct btf_type'
49 * object may be followed by more data.  F.e.
50 * To describe an array, 'struct btf_type' is followed by
51 * 'struct btf_array'.
52 *
53 * 'struct btf_type' and any extra data following it are
54 * 4 bytes aligned.
55 *
56 * Type section:
57 * ~~~~~~~~~~~~~
58 * The BTF type section contains a list of 'struct btf_type' objects.
59 * Each one describes a C type.  Recall from the above section
60 * that a 'struct btf_type' object could be immediately followed by extra
61 * data in order to describe some particular C types.
62 *
63 * type_id:
64 * ~~~~~~~
65 * Each btf_type object is identified by a type_id.  The type_id
66 * is implicitly implied by the location of the btf_type object in
67 * the BTF type section.  The first one has type_id 1.  The second
68 * one has type_id 2...etc.  Hence, an earlier btf_type has
69 * a smaller type_id.
70 *
71 * A btf_type object may refer to another btf_type object by using
72 * type_id (i.e. the "type" in the "struct btf_type").
73 *
74 * NOTE that we cannot assume any reference-order.
75 * A btf_type object can refer to an earlier btf_type object
76 * but it can also refer to a later btf_type object.
77 *
78 * For example, to describe "const void *".  A btf_type
79 * object describing "const" may refer to another btf_type
80 * object describing "void *".  This type-reference is done
81 * by specifying type_id:
82 *
83 * [1] CONST (anon) type_id=2
84 * [2] PTR (anon) type_id=0
85 *
86 * The above is the btf_verifier debug log:
87 *   - Each line started with "[?]" is a btf_type object
88 *   - [?] is the type_id of the btf_type object.
89 *   - CONST/PTR is the BTF_KIND_XXX
90 *   - "(anon)" is the name of the type.  It just
91 *     happens that CONST and PTR has no name.
92 *   - type_id=XXX is the 'u32 type' in btf_type
93 *
94 * NOTE: "void" has type_id 0
95 *
96 * String section:
97 * ~~~~~~~~~~~~~~
98 * The BTF string section contains the names used by the type section.
99 * Each string is referred by an "offset" from the beginning of the
100 * string section.
101 *
102 * Each string is '\0' terminated.
103 *
104 * The first character in the string section must be '\0'
105 * which is used to mean 'anonymous'. Some btf_type may not
106 * have a name.
107 */
108
109/* BTF verification:
110 *
111 * To verify BTF data, two passes are needed.
112 *
113 * Pass #1
114 * ~~~~~~~
115 * The first pass is to collect all btf_type objects to
116 * an array: "btf->types".
117 *
118 * Depending on the C type that a btf_type is describing,
119 * a btf_type may be followed by extra data.  We don't know
120 * how many btf_type is there, and more importantly we don't
121 * know where each btf_type is located in the type section.
122 *
123 * Without knowing the location of each type_id, most verifications
124 * cannot be done.  e.g. an earlier btf_type may refer to a later
125 * btf_type (recall the "const void *" above), so we cannot
126 * check this type-reference in the first pass.
127 *
128 * In the first pass, it still does some verifications (e.g.
129 * checking the name is a valid offset to the string section).
130 *
131 * Pass #2
132 * ~~~~~~~
133 * The main focus is to resolve a btf_type that is referring
134 * to another type.
135 *
136 * We have to ensure the referring type:
137 * 1) does exist in the BTF (i.e. in btf->types[])
138 * 2) does not cause a loop:
139 *	struct A {
140 *		struct B b;
141 *	};
142 *
143 *	struct B {
144 *		struct A a;
145 *	};
146 *
147 * btf_type_needs_resolve() decides if a btf_type needs
148 * to be resolved.
149 *
150 * The needs_resolve type implements the "resolve()" ops which
151 * essentially does a DFS and detects backedge.
152 *
153 * During resolve (or DFS), different C types have different
154 * "RESOLVED" conditions.
155 *
156 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
157 * members because a member is always referring to another
158 * type.  A struct's member can be treated as "RESOLVED" if
159 * it is referring to a BTF_KIND_PTR.  Otherwise, the
160 * following valid C struct would be rejected:
161 *
162 *	struct A {
163 *		int m;
164 *		struct A *a;
165 *	};
166 *
167 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
168 * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
169 * detect a pointer loop, e.g.:
170 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
171 *                        ^                                         |
172 *                        +-----------------------------------------+
173 *
174 */
175
176#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
177#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
178#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
179#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
180#define BITS_ROUNDUP_BYTES(bits) \
181	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
182
183#define BTF_INFO_MASK 0x9f00ffff
184#define BTF_INT_MASK 0x0fffffff
185#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
186#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
187
188/* 16MB for 64k structs and each has 16 members and
189 * a few MB spaces for the string section.
190 * The hard limit is S32_MAX.
191 */
192#define BTF_MAX_SIZE (16 * 1024 * 1024)
193
194#define for_each_member_from(i, from, struct_type, member)		\
195	for (i = from, member = btf_type_member(struct_type) + from;	\
196	     i < btf_type_vlen(struct_type);				\
197	     i++, member++)
198
199#define for_each_vsi_from(i, from, struct_type, member)				\
200	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
201	     i < btf_type_vlen(struct_type);					\
202	     i++, member++)
203
204DEFINE_IDR(btf_idr);
205DEFINE_SPINLOCK(btf_idr_lock);
206
207enum btf_kfunc_hook {
208	BTF_KFUNC_HOOK_COMMON,
209	BTF_KFUNC_HOOK_XDP,
210	BTF_KFUNC_HOOK_TC,
211	BTF_KFUNC_HOOK_STRUCT_OPS,
212	BTF_KFUNC_HOOK_TRACING,
213	BTF_KFUNC_HOOK_SYSCALL,
214	BTF_KFUNC_HOOK_FMODRET,
215	BTF_KFUNC_HOOK_CGROUP_SKB,
216	BTF_KFUNC_HOOK_SCHED_ACT,
217	BTF_KFUNC_HOOK_SK_SKB,
218	BTF_KFUNC_HOOK_SOCKET_FILTER,
219	BTF_KFUNC_HOOK_LWT,
220	BTF_KFUNC_HOOK_NETFILTER,
221	BTF_KFUNC_HOOK_KPROBE,
222	BTF_KFUNC_HOOK_MAX,
223};
224
225enum {
226	BTF_KFUNC_SET_MAX_CNT = 256,
227	BTF_DTOR_KFUNC_MAX_CNT = 256,
228	BTF_KFUNC_FILTER_MAX_CNT = 16,
229};
230
231struct btf_kfunc_hook_filter {
232	btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
233	u32 nr_filters;
234};
235
236struct btf_kfunc_set_tab {
237	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
238	struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
239};
240
241struct btf_id_dtor_kfunc_tab {
242	u32 cnt;
243	struct btf_id_dtor_kfunc dtors[];
244};
245
246struct btf_struct_ops_tab {
247	u32 cnt;
248	u32 capacity;
249	struct bpf_struct_ops_desc ops[];
250};
251
252struct btf {
253	void *data;
254	struct btf_type **types;
255	u32 *resolved_ids;
256	u32 *resolved_sizes;
257	const char *strings;
258	void *nohdr_data;
259	struct btf_header hdr;
260	u32 nr_types; /* includes VOID for base BTF */
261	u32 types_size;
262	u32 data_size;
263	refcount_t refcnt;
264	u32 id;
265	struct rcu_head rcu;
266	struct btf_kfunc_set_tab *kfunc_set_tab;
267	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
268	struct btf_struct_metas *struct_meta_tab;
269	struct btf_struct_ops_tab *struct_ops_tab;
270
271	/* split BTF support */
272	struct btf *base_btf;
273	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
274	u32 start_str_off; /* first string offset (0 for base BTF) */
275	char name[MODULE_NAME_LEN];
276	bool kernel_btf;
277};
278
279enum verifier_phase {
280	CHECK_META,
281	CHECK_TYPE,
282};
283
284struct resolve_vertex {
285	const struct btf_type *t;
286	u32 type_id;
287	u16 next_member;
288};
289
290enum visit_state {
291	NOT_VISITED,
292	VISITED,
293	RESOLVED,
294};
295
296enum resolve_mode {
297	RESOLVE_TBD,	/* To Be Determined */
298	RESOLVE_PTR,	/* Resolving for Pointer */
299	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
300					 * or array
301					 */
302};
303
304#define MAX_RESOLVE_DEPTH 32
305
306struct btf_sec_info {
307	u32 off;
308	u32 len;
309};
310
311struct btf_verifier_env {
312	struct btf *btf;
313	u8 *visit_states;
314	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
315	struct bpf_verifier_log log;
316	u32 log_type_id;
317	u32 top_stack;
318	enum verifier_phase phase;
319	enum resolve_mode resolve_mode;
320};
321
322static const char * const btf_kind_str[NR_BTF_KINDS] = {
323	[BTF_KIND_UNKN]		= "UNKNOWN",
324	[BTF_KIND_INT]		= "INT",
325	[BTF_KIND_PTR]		= "PTR",
326	[BTF_KIND_ARRAY]	= "ARRAY",
327	[BTF_KIND_STRUCT]	= "STRUCT",
328	[BTF_KIND_UNION]	= "UNION",
329	[BTF_KIND_ENUM]		= "ENUM",
330	[BTF_KIND_FWD]		= "FWD",
331	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
332	[BTF_KIND_VOLATILE]	= "VOLATILE",
333	[BTF_KIND_CONST]	= "CONST",
334	[BTF_KIND_RESTRICT]	= "RESTRICT",
335	[BTF_KIND_FUNC]		= "FUNC",
336	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
337	[BTF_KIND_VAR]		= "VAR",
338	[BTF_KIND_DATASEC]	= "DATASEC",
339	[BTF_KIND_FLOAT]	= "FLOAT",
340	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
341	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
342	[BTF_KIND_ENUM64]	= "ENUM64",
343};
344
345const char *btf_type_str(const struct btf_type *t)
346{
347	return btf_kind_str[BTF_INFO_KIND(t->info)];
348}
349
350/* Chunk size we use in safe copy of data to be shown. */
351#define BTF_SHOW_OBJ_SAFE_SIZE		32
352
353/*
354 * This is the maximum size of a base type value (equivalent to a
355 * 128-bit int); if we are at the end of our safe buffer and have
356 * less than 16 bytes space we can't be assured of being able
357 * to copy the next type safely, so in such cases we will initiate
358 * a new copy.
359 */
360#define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
361
362/* Type name size */
363#define BTF_SHOW_NAME_SIZE		80
364
365/*
366 * The suffix of a type that indicates it cannot alias another type when
367 * comparing BTF IDs for kfunc invocations.
368 */
369#define NOCAST_ALIAS_SUFFIX		"___init"
370
371/*
372 * Common data to all BTF show operations. Private show functions can add
373 * their own data to a structure containing a struct btf_show and consult it
374 * in the show callback.  See btf_type_show() below.
375 *
376 * One challenge with showing nested data is we want to skip 0-valued
377 * data, but in order to figure out whether a nested object is all zeros
378 * we need to walk through it.  As a result, we need to make two passes
379 * when handling structs, unions and arrays; the first path simply looks
380 * for nonzero data, while the second actually does the display.  The first
381 * pass is signalled by show->state.depth_check being set, and if we
382 * encounter a non-zero value we set show->state.depth_to_show to
383 * the depth at which we encountered it.  When we have completed the
384 * first pass, we will know if anything needs to be displayed if
385 * depth_to_show > depth.  See btf_[struct,array]_show() for the
386 * implementation of this.
387 *
388 * Another problem is we want to ensure the data for display is safe to
389 * access.  To support this, the anonymous "struct {} obj" tracks the data
390 * object and our safe copy of it.  We copy portions of the data needed
391 * to the object "copy" buffer, but because its size is limited to
392 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
393 * traverse larger objects for display.
394 *
395 * The various data type show functions all start with a call to
396 * btf_show_start_type() which returns a pointer to the safe copy
397 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
398 * raw data itself).  btf_show_obj_safe() is responsible for
399 * using copy_from_kernel_nofault() to update the safe data if necessary
400 * as we traverse the object's data.  skbuff-like semantics are
401 * used:
402 *
403 * - obj.head points to the start of the toplevel object for display
404 * - obj.size is the size of the toplevel object
405 * - obj.data points to the current point in the original data at
406 *   which our safe data starts.  obj.data will advance as we copy
407 *   portions of the data.
408 *
409 * In most cases a single copy will suffice, but larger data structures
410 * such as "struct task_struct" will require many copies.  The logic in
411 * btf_show_obj_safe() handles the logic that determines if a new
412 * copy_from_kernel_nofault() is needed.
413 */
414struct btf_show {
415	u64 flags;
416	void *target;	/* target of show operation (seq file, buffer) */
417	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
418	const struct btf *btf;
419	/* below are used during iteration */
420	struct {
421		u8 depth;
422		u8 depth_to_show;
423		u8 depth_check;
424		u8 array_member:1,
425		   array_terminated:1;
426		u16 array_encoding;
427		u32 type_id;
428		int status;			/* non-zero for error */
429		const struct btf_type *type;
430		const struct btf_member *member;
431		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
432	} state;
433	struct {
434		u32 size;
435		void *head;
436		void *data;
437		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
438	} obj;
439};
440
441struct btf_kind_operations {
442	s32 (*check_meta)(struct btf_verifier_env *env,
443			  const struct btf_type *t,
444			  u32 meta_left);
445	int (*resolve)(struct btf_verifier_env *env,
446		       const struct resolve_vertex *v);
447	int (*check_member)(struct btf_verifier_env *env,
448			    const struct btf_type *struct_type,
449			    const struct btf_member *member,
450			    const struct btf_type *member_type);
451	int (*check_kflag_member)(struct btf_verifier_env *env,
452				  const struct btf_type *struct_type,
453				  const struct btf_member *member,
454				  const struct btf_type *member_type);
455	void (*log_details)(struct btf_verifier_env *env,
456			    const struct btf_type *t);
457	void (*show)(const struct btf *btf, const struct btf_type *t,
458			 u32 type_id, void *data, u8 bits_offsets,
459			 struct btf_show *show);
460};
461
462static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
463static struct btf_type btf_void;
464
465static int btf_resolve(struct btf_verifier_env *env,
466		       const struct btf_type *t, u32 type_id);
467
468static int btf_func_check(struct btf_verifier_env *env,
469			  const struct btf_type *t);
470
471static bool btf_type_is_modifier(const struct btf_type *t)
472{
473	/* Some of them is not strictly a C modifier
474	 * but they are grouped into the same bucket
475	 * for BTF concern:
476	 *   A type (t) that refers to another
477	 *   type through t->type AND its size cannot
478	 *   be determined without following the t->type.
479	 *
480	 * ptr does not fall into this bucket
481	 * because its size is always sizeof(void *).
482	 */
483	switch (BTF_INFO_KIND(t->info)) {
484	case BTF_KIND_TYPEDEF:
485	case BTF_KIND_VOLATILE:
486	case BTF_KIND_CONST:
487	case BTF_KIND_RESTRICT:
488	case BTF_KIND_TYPE_TAG:
489		return true;
490	}
491
492	return false;
493}
494
495bool btf_type_is_void(const struct btf_type *t)
496{
497	return t == &btf_void;
498}
499
500static bool btf_type_is_fwd(const struct btf_type *t)
501{
502	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
503}
504
505static bool btf_type_is_datasec(const struct btf_type *t)
506{
507	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
508}
509
510static bool btf_type_is_decl_tag(const struct btf_type *t)
511{
512	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
513}
514
515static bool btf_type_nosize(const struct btf_type *t)
516{
517	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
518	       btf_type_is_func(t) || btf_type_is_func_proto(t) ||
519	       btf_type_is_decl_tag(t);
520}
521
522static bool btf_type_nosize_or_null(const struct btf_type *t)
523{
524	return !t || btf_type_nosize(t);
525}
526
527static bool btf_type_is_decl_tag_target(const struct btf_type *t)
528{
529	return btf_type_is_func(t) || btf_type_is_struct(t) ||
530	       btf_type_is_var(t) || btf_type_is_typedef(t);
531}
532
533u32 btf_nr_types(const struct btf *btf)
534{
535	u32 total = 0;
536
537	while (btf) {
538		total += btf->nr_types;
539		btf = btf->base_btf;
540	}
541
542	return total;
543}
544
545s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
546{
547	const struct btf_type *t;
548	const char *tname;
549	u32 i, total;
550
551	total = btf_nr_types(btf);
552	for (i = 1; i < total; i++) {
553		t = btf_type_by_id(btf, i);
554		if (BTF_INFO_KIND(t->info) != kind)
555			continue;
556
557		tname = btf_name_by_offset(btf, t->name_off);
558		if (!strcmp(tname, name))
559			return i;
560	}
561
562	return -ENOENT;
563}
564
565s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
566{
567	struct btf *btf;
568	s32 ret;
569	int id;
570
571	btf = bpf_get_btf_vmlinux();
572	if (IS_ERR(btf))
573		return PTR_ERR(btf);
574	if (!btf)
575		return -EINVAL;
576
577	ret = btf_find_by_name_kind(btf, name, kind);
578	/* ret is never zero, since btf_find_by_name_kind returns
579	 * positive btf_id or negative error.
580	 */
581	if (ret > 0) {
582		btf_get(btf);
583		*btf_p = btf;
584		return ret;
585	}
586
587	/* If name is not found in vmlinux's BTF then search in module's BTFs */
588	spin_lock_bh(&btf_idr_lock);
589	idr_for_each_entry(&btf_idr, btf, id) {
590		if (!btf_is_module(btf))
591			continue;
592		/* linear search could be slow hence unlock/lock
593		 * the IDR to avoiding holding it for too long
594		 */
595		btf_get(btf);
596		spin_unlock_bh(&btf_idr_lock);
597		ret = btf_find_by_name_kind(btf, name, kind);
598		if (ret > 0) {
599			*btf_p = btf;
600			return ret;
601		}
602		btf_put(btf);
603		spin_lock_bh(&btf_idr_lock);
604	}
605	spin_unlock_bh(&btf_idr_lock);
606	return ret;
607}
608
609const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
610					       u32 id, u32 *res_id)
611{
612	const struct btf_type *t = btf_type_by_id(btf, id);
613
614	while (btf_type_is_modifier(t)) {
615		id = t->type;
616		t = btf_type_by_id(btf, t->type);
617	}
618
619	if (res_id)
620		*res_id = id;
621
622	return t;
623}
624
625const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
626					    u32 id, u32 *res_id)
627{
628	const struct btf_type *t;
629
630	t = btf_type_skip_modifiers(btf, id, NULL);
631	if (!btf_type_is_ptr(t))
632		return NULL;
633
634	return btf_type_skip_modifiers(btf, t->type, res_id);
635}
636
637const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
638						 u32 id, u32 *res_id)
639{
640	const struct btf_type *ptype;
641
642	ptype = btf_type_resolve_ptr(btf, id, res_id);
643	if (ptype && btf_type_is_func_proto(ptype))
644		return ptype;
645
646	return NULL;
647}
648
649/* Types that act only as a source, not sink or intermediate
650 * type when resolving.
651 */
652static bool btf_type_is_resolve_source_only(const struct btf_type *t)
653{
654	return btf_type_is_var(t) ||
655	       btf_type_is_decl_tag(t) ||
656	       btf_type_is_datasec(t);
657}
658
659/* What types need to be resolved?
660 *
661 * btf_type_is_modifier() is an obvious one.
662 *
663 * btf_type_is_struct() because its member refers to
664 * another type (through member->type).
665 *
666 * btf_type_is_var() because the variable refers to
667 * another type. btf_type_is_datasec() holds multiple
668 * btf_type_is_var() types that need resolving.
669 *
670 * btf_type_is_array() because its element (array->type)
671 * refers to another type.  Array can be thought of a
672 * special case of struct while array just has the same
673 * member-type repeated by array->nelems of times.
674 */
675static bool btf_type_needs_resolve(const struct btf_type *t)
676{
677	return btf_type_is_modifier(t) ||
678	       btf_type_is_ptr(t) ||
679	       btf_type_is_struct(t) ||
680	       btf_type_is_array(t) ||
681	       btf_type_is_var(t) ||
682	       btf_type_is_func(t) ||
683	       btf_type_is_decl_tag(t) ||
684	       btf_type_is_datasec(t);
685}
686
687/* t->size can be used */
688static bool btf_type_has_size(const struct btf_type *t)
689{
690	switch (BTF_INFO_KIND(t->info)) {
691	case BTF_KIND_INT:
692	case BTF_KIND_STRUCT:
693	case BTF_KIND_UNION:
694	case BTF_KIND_ENUM:
695	case BTF_KIND_DATASEC:
696	case BTF_KIND_FLOAT:
697	case BTF_KIND_ENUM64:
698		return true;
699	}
700
701	return false;
702}
703
704static const char *btf_int_encoding_str(u8 encoding)
705{
706	if (encoding == 0)
707		return "(none)";
708	else if (encoding == BTF_INT_SIGNED)
709		return "SIGNED";
710	else if (encoding == BTF_INT_CHAR)
711		return "CHAR";
712	else if (encoding == BTF_INT_BOOL)
713		return "BOOL";
714	else
715		return "UNKN";
716}
717
718static u32 btf_type_int(const struct btf_type *t)
719{
720	return *(u32 *)(t + 1);
721}
722
723static const struct btf_array *btf_type_array(const struct btf_type *t)
724{
725	return (const struct btf_array *)(t + 1);
726}
727
728static const struct btf_enum *btf_type_enum(const struct btf_type *t)
729{
730	return (const struct btf_enum *)(t + 1);
731}
732
733static const struct btf_var *btf_type_var(const struct btf_type *t)
734{
735	return (const struct btf_var *)(t + 1);
736}
737
738static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
739{
740	return (const struct btf_decl_tag *)(t + 1);
741}
742
743static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
744{
745	return (const struct btf_enum64 *)(t + 1);
746}
747
748static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
749{
750	return kind_ops[BTF_INFO_KIND(t->info)];
751}
752
753static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
754{
755	if (!BTF_STR_OFFSET_VALID(offset))
756		return false;
757
758	while (offset < btf->start_str_off)
759		btf = btf->base_btf;
760
761	offset -= btf->start_str_off;
762	return offset < btf->hdr.str_len;
763}
764
765static bool __btf_name_char_ok(char c, bool first)
766{
767	if ((first ? !isalpha(c) :
768		     !isalnum(c)) &&
769	    c != '_' &&
770	    c != '.')
771		return false;
772	return true;
773}
774
775static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
776{
777	while (offset < btf->start_str_off)
778		btf = btf->base_btf;
779
780	offset -= btf->start_str_off;
781	if (offset < btf->hdr.str_len)
782		return &btf->strings[offset];
783
784	return NULL;
785}
786
787static bool __btf_name_valid(const struct btf *btf, u32 offset)
788{
789	/* offset must be valid */
790	const char *src = btf_str_by_offset(btf, offset);
791	const char *src_limit;
792
793	if (!__btf_name_char_ok(*src, true))
794		return false;
795
796	/* set a limit on identifier length */
797	src_limit = src + KSYM_NAME_LEN;
798	src++;
799	while (*src && src < src_limit) {
800		if (!__btf_name_char_ok(*src, false))
801			return false;
802		src++;
803	}
804
805	return !*src;
806}
807
808static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
809{
810	return __btf_name_valid(btf, offset);
811}
812
813/* Allow any printable character in DATASEC names */
814static bool btf_name_valid_section(const struct btf *btf, u32 offset)
815{
816	/* offset must be valid */
817	const char *src = btf_str_by_offset(btf, offset);
818	const char *src_limit;
819
820	/* set a limit on identifier length */
821	src_limit = src + KSYM_NAME_LEN;
822	src++;
823	while (*src && src < src_limit) {
824		if (!isprint(*src))
825			return false;
826		src++;
827	}
828
829	return !*src;
830}
831
832static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
833{
834	const char *name;
835
836	if (!offset)
837		return "(anon)";
838
839	name = btf_str_by_offset(btf, offset);
840	return name ?: "(invalid-name-offset)";
841}
842
843const char *btf_name_by_offset(const struct btf *btf, u32 offset)
844{
845	return btf_str_by_offset(btf, offset);
846}
847
848const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
849{
850	while (type_id < btf->start_id)
851		btf = btf->base_btf;
852
853	type_id -= btf->start_id;
854	if (type_id >= btf->nr_types)
855		return NULL;
856	return btf->types[type_id];
857}
858EXPORT_SYMBOL_GPL(btf_type_by_id);
859
860/*
861 * Regular int is not a bit field and it must be either
862 * u8/u16/u32/u64 or __int128.
863 */
864static bool btf_type_int_is_regular(const struct btf_type *t)
865{
866	u8 nr_bits, nr_bytes;
867	u32 int_data;
868
869	int_data = btf_type_int(t);
870	nr_bits = BTF_INT_BITS(int_data);
871	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
872	if (BITS_PER_BYTE_MASKED(nr_bits) ||
873	    BTF_INT_OFFSET(int_data) ||
874	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
875	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
876	     nr_bytes != (2 * sizeof(u64)))) {
877		return false;
878	}
879
880	return true;
881}
882
883/*
884 * Check that given struct member is a regular int with expected
885 * offset and size.
886 */
887bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
888			   const struct btf_member *m,
889			   u32 expected_offset, u32 expected_size)
890{
891	const struct btf_type *t;
892	u32 id, int_data;
893	u8 nr_bits;
894
895	id = m->type;
896	t = btf_type_id_size(btf, &id, NULL);
897	if (!t || !btf_type_is_int(t))
898		return false;
899
900	int_data = btf_type_int(t);
901	nr_bits = BTF_INT_BITS(int_data);
902	if (btf_type_kflag(s)) {
903		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
904		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
905
906		/* if kflag set, int should be a regular int and
907		 * bit offset should be at byte boundary.
908		 */
909		return !bitfield_size &&
910		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
911		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
912	}
913
914	if (BTF_INT_OFFSET(int_data) ||
915	    BITS_PER_BYTE_MASKED(m->offset) ||
916	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
917	    BITS_PER_BYTE_MASKED(nr_bits) ||
918	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
919		return false;
920
921	return true;
922}
923
924/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
925static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
926						       u32 id)
927{
928	const struct btf_type *t = btf_type_by_id(btf, id);
929
930	while (btf_type_is_modifier(t) &&
931	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
932		t = btf_type_by_id(btf, t->type);
933	}
934
935	return t;
936}
937
938#define BTF_SHOW_MAX_ITER	10
939
940#define BTF_KIND_BIT(kind)	(1ULL << kind)
941
942/*
943 * Populate show->state.name with type name information.
944 * Format of type name is
945 *
946 * [.member_name = ] (type_name)
947 */
948static const char *btf_show_name(struct btf_show *show)
949{
950	/* BTF_MAX_ITER array suffixes "[]" */
951	const char *array_suffixes = "[][][][][][][][][][]";
952	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
953	/* BTF_MAX_ITER pointer suffixes "*" */
954	const char *ptr_suffixes = "**********";
955	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
956	const char *name = NULL, *prefix = "", *parens = "";
957	const struct btf_member *m = show->state.member;
958	const struct btf_type *t;
959	const struct btf_array *array;
960	u32 id = show->state.type_id;
961	const char *member = NULL;
962	bool show_member = false;
963	u64 kinds = 0;
964	int i;
965
966	show->state.name[0] = '\0';
967
968	/*
969	 * Don't show type name if we're showing an array member;
970	 * in that case we show the array type so don't need to repeat
971	 * ourselves for each member.
972	 */
973	if (show->state.array_member)
974		return "";
975
976	/* Retrieve member name, if any. */
977	if (m) {
978		member = btf_name_by_offset(show->btf, m->name_off);
979		show_member = strlen(member) > 0;
980		id = m->type;
981	}
982
983	/*
984	 * Start with type_id, as we have resolved the struct btf_type *
985	 * via btf_modifier_show() past the parent typedef to the child
986	 * struct, int etc it is defined as.  In such cases, the type_id
987	 * still represents the starting type while the struct btf_type *
988	 * in our show->state points at the resolved type of the typedef.
989	 */
990	t = btf_type_by_id(show->btf, id);
991	if (!t)
992		return "";
993
994	/*
995	 * The goal here is to build up the right number of pointer and
996	 * array suffixes while ensuring the type name for a typedef
997	 * is represented.  Along the way we accumulate a list of
998	 * BTF kinds we have encountered, since these will inform later
999	 * display; for example, pointer types will not require an
1000	 * opening "{" for struct, we will just display the pointer value.
1001	 *
1002	 * We also want to accumulate the right number of pointer or array
1003	 * indices in the format string while iterating until we get to
1004	 * the typedef/pointee/array member target type.
1005	 *
1006	 * We start by pointing at the end of pointer and array suffix
1007	 * strings; as we accumulate pointers and arrays we move the pointer
1008	 * or array string backwards so it will show the expected number of
1009	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
1010	 * and/or arrays and typedefs are supported as a precaution.
1011	 *
1012	 * We also want to get typedef name while proceeding to resolve
1013	 * type it points to so that we can add parentheses if it is a
1014	 * "typedef struct" etc.
1015	 */
1016	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
1017
1018		switch (BTF_INFO_KIND(t->info)) {
1019		case BTF_KIND_TYPEDEF:
1020			if (!name)
1021				name = btf_name_by_offset(show->btf,
1022							       t->name_off);
1023			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1024			id = t->type;
1025			break;
1026		case BTF_KIND_ARRAY:
1027			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1028			parens = "[";
1029			if (!t)
1030				return "";
1031			array = btf_type_array(t);
1032			if (array_suffix > array_suffixes)
1033				array_suffix -= 2;
1034			id = array->type;
1035			break;
1036		case BTF_KIND_PTR:
1037			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1038			if (ptr_suffix > ptr_suffixes)
1039				ptr_suffix -= 1;
1040			id = t->type;
1041			break;
1042		default:
1043			id = 0;
1044			break;
1045		}
1046		if (!id)
1047			break;
1048		t = btf_type_skip_qualifiers(show->btf, id);
1049	}
1050	/* We may not be able to represent this type; bail to be safe */
1051	if (i == BTF_SHOW_MAX_ITER)
1052		return "";
1053
1054	if (!name)
1055		name = btf_name_by_offset(show->btf, t->name_off);
1056
1057	switch (BTF_INFO_KIND(t->info)) {
1058	case BTF_KIND_STRUCT:
1059	case BTF_KIND_UNION:
1060		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1061			 "struct" : "union";
1062		/* if it's an array of struct/union, parens is already set */
1063		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1064			parens = "{";
1065		break;
1066	case BTF_KIND_ENUM:
1067	case BTF_KIND_ENUM64:
1068		prefix = "enum";
1069		break;
1070	default:
1071		break;
1072	}
1073
1074	/* pointer does not require parens */
1075	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1076		parens = "";
1077	/* typedef does not require struct/union/enum prefix */
1078	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1079		prefix = "";
1080
1081	if (!name)
1082		name = "";
1083
1084	/* Even if we don't want type name info, we want parentheses etc */
1085	if (show->flags & BTF_SHOW_NONAME)
1086		snprintf(show->state.name, sizeof(show->state.name), "%s",
1087			 parens);
1088	else
1089		snprintf(show->state.name, sizeof(show->state.name),
1090			 "%s%s%s(%s%s%s%s%s%s)%s",
1091			 /* first 3 strings comprise ".member = " */
1092			 show_member ? "." : "",
1093			 show_member ? member : "",
1094			 show_member ? " = " : "",
1095			 /* ...next is our prefix (struct, enum, etc) */
1096			 prefix,
1097			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1098			 /* ...this is the type name itself */
1099			 name,
1100			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1101			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1102			 array_suffix, parens);
1103
1104	return show->state.name;
1105}
1106
1107static const char *__btf_show_indent(struct btf_show *show)
1108{
1109	const char *indents = "                                ";
1110	const char *indent = &indents[strlen(indents)];
1111
1112	if ((indent - show->state.depth) >= indents)
1113		return indent - show->state.depth;
1114	return indents;
1115}
1116
1117static const char *btf_show_indent(struct btf_show *show)
1118{
1119	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1120}
1121
1122static const char *btf_show_newline(struct btf_show *show)
1123{
1124	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1125}
1126
1127static const char *btf_show_delim(struct btf_show *show)
1128{
1129	if (show->state.depth == 0)
1130		return "";
1131
1132	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1133		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1134		return "|";
1135
1136	return ",";
1137}
1138
1139__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1140{
1141	va_list args;
1142
1143	if (!show->state.depth_check) {
1144		va_start(args, fmt);
1145		show->showfn(show, fmt, args);
1146		va_end(args);
1147	}
1148}
1149
1150/* Macros are used here as btf_show_type_value[s]() prepends and appends
1151 * format specifiers to the format specifier passed in; these do the work of
1152 * adding indentation, delimiters etc while the caller simply has to specify
1153 * the type value(s) in the format specifier + value(s).
1154 */
1155#define btf_show_type_value(show, fmt, value)				       \
1156	do {								       \
1157		if ((value) != (__typeof__(value))0 ||			       \
1158		    (show->flags & BTF_SHOW_ZERO) ||			       \
1159		    show->state.depth == 0) {				       \
1160			btf_show(show, "%s%s" fmt "%s%s",		       \
1161				 btf_show_indent(show),			       \
1162				 btf_show_name(show),			       \
1163				 value, btf_show_delim(show),		       \
1164				 btf_show_newline(show));		       \
1165			if (show->state.depth > show->state.depth_to_show)     \
1166				show->state.depth_to_show = show->state.depth; \
1167		}							       \
1168	} while (0)
1169
1170#define btf_show_type_values(show, fmt, ...)				       \
1171	do {								       \
1172		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1173			 btf_show_name(show),				       \
1174			 __VA_ARGS__, btf_show_delim(show),		       \
1175			 btf_show_newline(show));			       \
1176		if (show->state.depth > show->state.depth_to_show)	       \
1177			show->state.depth_to_show = show->state.depth;	       \
1178	} while (0)
1179
1180/* How much is left to copy to safe buffer after @data? */
1181static int btf_show_obj_size_left(struct btf_show *show, void *data)
1182{
1183	return show->obj.head + show->obj.size - data;
1184}
1185
1186/* Is object pointed to by @data of @size already copied to our safe buffer? */
1187static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1188{
1189	return data >= show->obj.data &&
1190	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1191}
1192
1193/*
1194 * If object pointed to by @data of @size falls within our safe buffer, return
1195 * the equivalent pointer to the same safe data.  Assumes
1196 * copy_from_kernel_nofault() has already happened and our safe buffer is
1197 * populated.
1198 */
1199static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1200{
1201	if (btf_show_obj_is_safe(show, data, size))
1202		return show->obj.safe + (data - show->obj.data);
1203	return NULL;
1204}
1205
1206/*
1207 * Return a safe-to-access version of data pointed to by @data.
1208 * We do this by copying the relevant amount of information
1209 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1210 *
1211 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1212 * safe copy is needed.
1213 *
1214 * Otherwise we need to determine if we have the required amount
1215 * of data (determined by the @data pointer and the size of the
1216 * largest base type we can encounter (represented by
1217 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1218 * that we will be able to print some of the current object,
1219 * and if more is needed a copy will be triggered.
1220 * Some objects such as structs will not fit into the buffer;
1221 * in such cases additional copies when we iterate over their
1222 * members may be needed.
1223 *
1224 * btf_show_obj_safe() is used to return a safe buffer for
1225 * btf_show_start_type(); this ensures that as we recurse into
1226 * nested types we always have safe data for the given type.
1227 * This approach is somewhat wasteful; it's possible for example
1228 * that when iterating over a large union we'll end up copying the
1229 * same data repeatedly, but the goal is safety not performance.
1230 * We use stack data as opposed to per-CPU buffers because the
1231 * iteration over a type can take some time, and preemption handling
1232 * would greatly complicate use of the safe buffer.
1233 */
1234static void *btf_show_obj_safe(struct btf_show *show,
1235			       const struct btf_type *t,
1236			       void *data)
1237{
1238	const struct btf_type *rt;
1239	int size_left, size;
1240	void *safe = NULL;
1241
1242	if (show->flags & BTF_SHOW_UNSAFE)
1243		return data;
1244
1245	rt = btf_resolve_size(show->btf, t, &size);
1246	if (IS_ERR(rt)) {
1247		show->state.status = PTR_ERR(rt);
1248		return NULL;
1249	}
1250
1251	/*
1252	 * Is this toplevel object? If so, set total object size and
1253	 * initialize pointers.  Otherwise check if we still fall within
1254	 * our safe object data.
1255	 */
1256	if (show->state.depth == 0) {
1257		show->obj.size = size;
1258		show->obj.head = data;
1259	} else {
1260		/*
1261		 * If the size of the current object is > our remaining
1262		 * safe buffer we _may_ need to do a new copy.  However
1263		 * consider the case of a nested struct; it's size pushes
1264		 * us over the safe buffer limit, but showing any individual
1265		 * struct members does not.  In such cases, we don't need
1266		 * to initiate a fresh copy yet; however we definitely need
1267		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1268		 * in our buffer, regardless of the current object size.
1269		 * The logic here is that as we resolve types we will
1270		 * hit a base type at some point, and we need to be sure
1271		 * the next chunk of data is safely available to display
1272		 * that type info safely.  We cannot rely on the size of
1273		 * the current object here because it may be much larger
1274		 * than our current buffer (e.g. task_struct is 8k).
1275		 * All we want to do here is ensure that we can print the
1276		 * next basic type, which we can if either
1277		 * - the current type size is within the safe buffer; or
1278		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1279		 *   the safe buffer.
1280		 */
1281		safe = __btf_show_obj_safe(show, data,
1282					   min(size,
1283					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1284	}
1285
1286	/*
1287	 * We need a new copy to our safe object, either because we haven't
1288	 * yet copied and are initializing safe data, or because the data
1289	 * we want falls outside the boundaries of the safe object.
1290	 */
1291	if (!safe) {
1292		size_left = btf_show_obj_size_left(show, data);
1293		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1294			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1295		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1296							      data, size_left);
1297		if (!show->state.status) {
1298			show->obj.data = data;
1299			safe = show->obj.safe;
1300		}
1301	}
1302
1303	return safe;
1304}
1305
1306/*
1307 * Set the type we are starting to show and return a safe data pointer
1308 * to be used for showing the associated data.
1309 */
1310static void *btf_show_start_type(struct btf_show *show,
1311				 const struct btf_type *t,
1312				 u32 type_id, void *data)
1313{
1314	show->state.type = t;
1315	show->state.type_id = type_id;
1316	show->state.name[0] = '\0';
1317
1318	return btf_show_obj_safe(show, t, data);
1319}
1320
1321static void btf_show_end_type(struct btf_show *show)
1322{
1323	show->state.type = NULL;
1324	show->state.type_id = 0;
1325	show->state.name[0] = '\0';
1326}
1327
1328static void *btf_show_start_aggr_type(struct btf_show *show,
1329				      const struct btf_type *t,
1330				      u32 type_id, void *data)
1331{
1332	void *safe_data = btf_show_start_type(show, t, type_id, data);
1333
1334	if (!safe_data)
1335		return safe_data;
1336
1337	btf_show(show, "%s%s%s", btf_show_indent(show),
1338		 btf_show_name(show),
1339		 btf_show_newline(show));
1340	show->state.depth++;
1341	return safe_data;
1342}
1343
1344static void btf_show_end_aggr_type(struct btf_show *show,
1345				   const char *suffix)
1346{
1347	show->state.depth--;
1348	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1349		 btf_show_delim(show), btf_show_newline(show));
1350	btf_show_end_type(show);
1351}
1352
1353static void btf_show_start_member(struct btf_show *show,
1354				  const struct btf_member *m)
1355{
1356	show->state.member = m;
1357}
1358
1359static void btf_show_start_array_member(struct btf_show *show)
1360{
1361	show->state.array_member = 1;
1362	btf_show_start_member(show, NULL);
1363}
1364
1365static void btf_show_end_member(struct btf_show *show)
1366{
1367	show->state.member = NULL;
1368}
1369
1370static void btf_show_end_array_member(struct btf_show *show)
1371{
1372	show->state.array_member = 0;
1373	btf_show_end_member(show);
1374}
1375
1376static void *btf_show_start_array_type(struct btf_show *show,
1377				       const struct btf_type *t,
1378				       u32 type_id,
1379				       u16 array_encoding,
1380				       void *data)
1381{
1382	show->state.array_encoding = array_encoding;
1383	show->state.array_terminated = 0;
1384	return btf_show_start_aggr_type(show, t, type_id, data);
1385}
1386
1387static void btf_show_end_array_type(struct btf_show *show)
1388{
1389	show->state.array_encoding = 0;
1390	show->state.array_terminated = 0;
1391	btf_show_end_aggr_type(show, "]");
1392}
1393
1394static void *btf_show_start_struct_type(struct btf_show *show,
1395					const struct btf_type *t,
1396					u32 type_id,
1397					void *data)
1398{
1399	return btf_show_start_aggr_type(show, t, type_id, data);
1400}
1401
1402static void btf_show_end_struct_type(struct btf_show *show)
1403{
1404	btf_show_end_aggr_type(show, "}");
1405}
1406
1407__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1408					      const char *fmt, ...)
1409{
1410	va_list args;
1411
1412	va_start(args, fmt);
1413	bpf_verifier_vlog(log, fmt, args);
1414	va_end(args);
1415}
1416
1417__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1418					    const char *fmt, ...)
1419{
1420	struct bpf_verifier_log *log = &env->log;
1421	va_list args;
1422
1423	if (!bpf_verifier_log_needed(log))
1424		return;
1425
1426	va_start(args, fmt);
1427	bpf_verifier_vlog(log, fmt, args);
1428	va_end(args);
1429}
1430
1431__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1432						   const struct btf_type *t,
1433						   bool log_details,
1434						   const char *fmt, ...)
1435{
1436	struct bpf_verifier_log *log = &env->log;
1437	struct btf *btf = env->btf;
1438	va_list args;
1439
1440	if (!bpf_verifier_log_needed(log))
1441		return;
1442
1443	if (log->level == BPF_LOG_KERNEL) {
1444		/* btf verifier prints all types it is processing via
1445		 * btf_verifier_log_type(..., fmt = NULL).
1446		 * Skip those prints for in-kernel BTF verification.
1447		 */
1448		if (!fmt)
1449			return;
1450
1451		/* Skip logging when loading module BTF with mismatches permitted */
1452		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1453			return;
1454	}
1455
1456	__btf_verifier_log(log, "[%u] %s %s%s",
1457			   env->log_type_id,
1458			   btf_type_str(t),
1459			   __btf_name_by_offset(btf, t->name_off),
1460			   log_details ? " " : "");
1461
1462	if (log_details)
1463		btf_type_ops(t)->log_details(env, t);
1464
1465	if (fmt && *fmt) {
1466		__btf_verifier_log(log, " ");
1467		va_start(args, fmt);
1468		bpf_verifier_vlog(log, fmt, args);
1469		va_end(args);
1470	}
1471
1472	__btf_verifier_log(log, "\n");
1473}
1474
1475#define btf_verifier_log_type(env, t, ...) \
1476	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1477#define btf_verifier_log_basic(env, t, ...) \
1478	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1479
1480__printf(4, 5)
1481static void btf_verifier_log_member(struct btf_verifier_env *env,
1482				    const struct btf_type *struct_type,
1483				    const struct btf_member *member,
1484				    const char *fmt, ...)
1485{
1486	struct bpf_verifier_log *log = &env->log;
1487	struct btf *btf = env->btf;
1488	va_list args;
1489
1490	if (!bpf_verifier_log_needed(log))
1491		return;
1492
1493	if (log->level == BPF_LOG_KERNEL) {
1494		if (!fmt)
1495			return;
1496
1497		/* Skip logging when loading module BTF with mismatches permitted */
1498		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1499			return;
1500	}
1501
1502	/* The CHECK_META phase already did a btf dump.
1503	 *
1504	 * If member is logged again, it must hit an error in
1505	 * parsing this member.  It is useful to print out which
1506	 * struct this member belongs to.
1507	 */
1508	if (env->phase != CHECK_META)
1509		btf_verifier_log_type(env, struct_type, NULL);
1510
1511	if (btf_type_kflag(struct_type))
1512		__btf_verifier_log(log,
1513				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1514				   __btf_name_by_offset(btf, member->name_off),
1515				   member->type,
1516				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1517				   BTF_MEMBER_BIT_OFFSET(member->offset));
1518	else
1519		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1520				   __btf_name_by_offset(btf, member->name_off),
1521				   member->type, member->offset);
1522
1523	if (fmt && *fmt) {
1524		__btf_verifier_log(log, " ");
1525		va_start(args, fmt);
1526		bpf_verifier_vlog(log, fmt, args);
1527		va_end(args);
1528	}
1529
1530	__btf_verifier_log(log, "\n");
1531}
1532
1533__printf(4, 5)
1534static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1535				 const struct btf_type *datasec_type,
1536				 const struct btf_var_secinfo *vsi,
1537				 const char *fmt, ...)
1538{
1539	struct bpf_verifier_log *log = &env->log;
1540	va_list args;
1541
1542	if (!bpf_verifier_log_needed(log))
1543		return;
1544	if (log->level == BPF_LOG_KERNEL && !fmt)
1545		return;
1546	if (env->phase != CHECK_META)
1547		btf_verifier_log_type(env, datasec_type, NULL);
1548
1549	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1550			   vsi->type, vsi->offset, vsi->size);
1551	if (fmt && *fmt) {
1552		__btf_verifier_log(log, " ");
1553		va_start(args, fmt);
1554		bpf_verifier_vlog(log, fmt, args);
1555		va_end(args);
1556	}
1557
1558	__btf_verifier_log(log, "\n");
1559}
1560
1561static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1562				 u32 btf_data_size)
1563{
1564	struct bpf_verifier_log *log = &env->log;
1565	const struct btf *btf = env->btf;
1566	const struct btf_header *hdr;
1567
1568	if (!bpf_verifier_log_needed(log))
1569		return;
1570
1571	if (log->level == BPF_LOG_KERNEL)
1572		return;
1573	hdr = &btf->hdr;
1574	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1575	__btf_verifier_log(log, "version: %u\n", hdr->version);
1576	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1577	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1578	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1579	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1580	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1581	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1582	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1583}
1584
1585static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1586{
1587	struct btf *btf = env->btf;
1588
1589	if (btf->types_size == btf->nr_types) {
1590		/* Expand 'types' array */
1591
1592		struct btf_type **new_types;
1593		u32 expand_by, new_size;
1594
1595		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1596			btf_verifier_log(env, "Exceeded max num of types");
1597			return -E2BIG;
1598		}
1599
1600		expand_by = max_t(u32, btf->types_size >> 2, 16);
1601		new_size = min_t(u32, BTF_MAX_TYPE,
1602				 btf->types_size + expand_by);
1603
1604		new_types = kvcalloc(new_size, sizeof(*new_types),
1605				     GFP_KERNEL | __GFP_NOWARN);
1606		if (!new_types)
1607			return -ENOMEM;
1608
1609		if (btf->nr_types == 0) {
1610			if (!btf->base_btf) {
1611				/* lazily init VOID type */
1612				new_types[0] = &btf_void;
1613				btf->nr_types++;
1614			}
1615		} else {
1616			memcpy(new_types, btf->types,
1617			       sizeof(*btf->types) * btf->nr_types);
1618		}
1619
1620		kvfree(btf->types);
1621		btf->types = new_types;
1622		btf->types_size = new_size;
1623	}
1624
1625	btf->types[btf->nr_types++] = t;
1626
1627	return 0;
1628}
1629
1630static int btf_alloc_id(struct btf *btf)
1631{
1632	int id;
1633
1634	idr_preload(GFP_KERNEL);
1635	spin_lock_bh(&btf_idr_lock);
1636	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1637	if (id > 0)
1638		btf->id = id;
1639	spin_unlock_bh(&btf_idr_lock);
1640	idr_preload_end();
1641
1642	if (WARN_ON_ONCE(!id))
1643		return -ENOSPC;
1644
1645	return id > 0 ? 0 : id;
1646}
1647
1648static void btf_free_id(struct btf *btf)
1649{
1650	unsigned long flags;
1651
1652	/*
1653	 * In map-in-map, calling map_delete_elem() on outer
1654	 * map will call bpf_map_put on the inner map.
1655	 * It will then eventually call btf_free_id()
1656	 * on the inner map.  Some of the map_delete_elem()
1657	 * implementation may have irq disabled, so
1658	 * we need to use the _irqsave() version instead
1659	 * of the _bh() version.
1660	 */
1661	spin_lock_irqsave(&btf_idr_lock, flags);
1662	idr_remove(&btf_idr, btf->id);
1663	spin_unlock_irqrestore(&btf_idr_lock, flags);
1664}
1665
1666static void btf_free_kfunc_set_tab(struct btf *btf)
1667{
1668	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1669	int hook;
1670
1671	if (!tab)
1672		return;
1673	/* For module BTF, we directly assign the sets being registered, so
1674	 * there is nothing to free except kfunc_set_tab.
1675	 */
1676	if (btf_is_module(btf))
1677		goto free_tab;
1678	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1679		kfree(tab->sets[hook]);
1680free_tab:
1681	kfree(tab);
1682	btf->kfunc_set_tab = NULL;
1683}
1684
1685static void btf_free_dtor_kfunc_tab(struct btf *btf)
1686{
1687	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1688
1689	if (!tab)
1690		return;
1691	kfree(tab);
1692	btf->dtor_kfunc_tab = NULL;
1693}
1694
1695static void btf_struct_metas_free(struct btf_struct_metas *tab)
1696{
1697	int i;
1698
1699	if (!tab)
1700		return;
1701	for (i = 0; i < tab->cnt; i++)
1702		btf_record_free(tab->types[i].record);
1703	kfree(tab);
1704}
1705
1706static void btf_free_struct_meta_tab(struct btf *btf)
1707{
1708	struct btf_struct_metas *tab = btf->struct_meta_tab;
1709
1710	btf_struct_metas_free(tab);
1711	btf->struct_meta_tab = NULL;
1712}
1713
1714static void btf_free_struct_ops_tab(struct btf *btf)
1715{
1716	struct btf_struct_ops_tab *tab = btf->struct_ops_tab;
1717	u32 i;
1718
1719	if (!tab)
1720		return;
1721
1722	for (i = 0; i < tab->cnt; i++)
1723		bpf_struct_ops_desc_release(&tab->ops[i]);
1724
1725	kfree(tab);
1726	btf->struct_ops_tab = NULL;
1727}
1728
1729static void btf_free(struct btf *btf)
1730{
1731	btf_free_struct_meta_tab(btf);
1732	btf_free_dtor_kfunc_tab(btf);
1733	btf_free_kfunc_set_tab(btf);
1734	btf_free_struct_ops_tab(btf);
1735	kvfree(btf->types);
1736	kvfree(btf->resolved_sizes);
1737	kvfree(btf->resolved_ids);
1738	kvfree(btf->data);
1739	kfree(btf);
1740}
1741
1742static void btf_free_rcu(struct rcu_head *rcu)
1743{
1744	struct btf *btf = container_of(rcu, struct btf, rcu);
1745
1746	btf_free(btf);
1747}
1748
1749const char *btf_get_name(const struct btf *btf)
1750{
1751	return btf->name;
1752}
1753
1754void btf_get(struct btf *btf)
1755{
1756	refcount_inc(&btf->refcnt);
1757}
1758
1759void btf_put(struct btf *btf)
1760{
1761	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1762		btf_free_id(btf);
1763		call_rcu(&btf->rcu, btf_free_rcu);
1764	}
1765}
1766
1767static int env_resolve_init(struct btf_verifier_env *env)
1768{
1769	struct btf *btf = env->btf;
1770	u32 nr_types = btf->nr_types;
1771	u32 *resolved_sizes = NULL;
1772	u32 *resolved_ids = NULL;
1773	u8 *visit_states = NULL;
1774
1775	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1776				  GFP_KERNEL | __GFP_NOWARN);
1777	if (!resolved_sizes)
1778		goto nomem;
1779
1780	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1781				GFP_KERNEL | __GFP_NOWARN);
1782	if (!resolved_ids)
1783		goto nomem;
1784
1785	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1786				GFP_KERNEL | __GFP_NOWARN);
1787	if (!visit_states)
1788		goto nomem;
1789
1790	btf->resolved_sizes = resolved_sizes;
1791	btf->resolved_ids = resolved_ids;
1792	env->visit_states = visit_states;
1793
1794	return 0;
1795
1796nomem:
1797	kvfree(resolved_sizes);
1798	kvfree(resolved_ids);
1799	kvfree(visit_states);
1800	return -ENOMEM;
1801}
1802
1803static void btf_verifier_env_free(struct btf_verifier_env *env)
1804{
1805	kvfree(env->visit_states);
1806	kfree(env);
1807}
1808
1809static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1810				     const struct btf_type *next_type)
1811{
1812	switch (env->resolve_mode) {
1813	case RESOLVE_TBD:
1814		/* int, enum or void is a sink */
1815		return !btf_type_needs_resolve(next_type);
1816	case RESOLVE_PTR:
1817		/* int, enum, void, struct, array, func or func_proto is a sink
1818		 * for ptr
1819		 */
1820		return !btf_type_is_modifier(next_type) &&
1821			!btf_type_is_ptr(next_type);
1822	case RESOLVE_STRUCT_OR_ARRAY:
1823		/* int, enum, void, ptr, func or func_proto is a sink
1824		 * for struct and array
1825		 */
1826		return !btf_type_is_modifier(next_type) &&
1827			!btf_type_is_array(next_type) &&
1828			!btf_type_is_struct(next_type);
1829	default:
1830		BUG();
1831	}
1832}
1833
1834static bool env_type_is_resolved(const struct btf_verifier_env *env,
1835				 u32 type_id)
1836{
1837	/* base BTF types should be resolved by now */
1838	if (type_id < env->btf->start_id)
1839		return true;
1840
1841	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1842}
1843
1844static int env_stack_push(struct btf_verifier_env *env,
1845			  const struct btf_type *t, u32 type_id)
1846{
1847	const struct btf *btf = env->btf;
1848	struct resolve_vertex *v;
1849
1850	if (env->top_stack == MAX_RESOLVE_DEPTH)
1851		return -E2BIG;
1852
1853	if (type_id < btf->start_id
1854	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1855		return -EEXIST;
1856
1857	env->visit_states[type_id - btf->start_id] = VISITED;
1858
1859	v = &env->stack[env->top_stack++];
1860	v->t = t;
1861	v->type_id = type_id;
1862	v->next_member = 0;
1863
1864	if (env->resolve_mode == RESOLVE_TBD) {
1865		if (btf_type_is_ptr(t))
1866			env->resolve_mode = RESOLVE_PTR;
1867		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1868			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1869	}
1870
1871	return 0;
1872}
1873
1874static void env_stack_set_next_member(struct btf_verifier_env *env,
1875				      u16 next_member)
1876{
1877	env->stack[env->top_stack - 1].next_member = next_member;
1878}
1879
1880static void env_stack_pop_resolved(struct btf_verifier_env *env,
1881				   u32 resolved_type_id,
1882				   u32 resolved_size)
1883{
1884	u32 type_id = env->stack[--(env->top_stack)].type_id;
1885	struct btf *btf = env->btf;
1886
1887	type_id -= btf->start_id; /* adjust to local type id */
1888	btf->resolved_sizes[type_id] = resolved_size;
1889	btf->resolved_ids[type_id] = resolved_type_id;
1890	env->visit_states[type_id] = RESOLVED;
1891}
1892
1893static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1894{
1895	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1896}
1897
1898/* Resolve the size of a passed-in "type"
1899 *
1900 * type: is an array (e.g. u32 array[x][y])
1901 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1902 * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1903 *             corresponds to the return type.
1904 * *elem_type: u32
1905 * *elem_id: id of u32
1906 * *total_nelems: (x * y).  Hence, individual elem size is
1907 *                (*type_size / *total_nelems)
1908 * *type_id: id of type if it's changed within the function, 0 if not
1909 *
1910 * type: is not an array (e.g. const struct X)
1911 * return type: type "struct X"
1912 * *type_size: sizeof(struct X)
1913 * *elem_type: same as return type ("struct X")
1914 * *elem_id: 0
1915 * *total_nelems: 1
1916 * *type_id: id of type if it's changed within the function, 0 if not
1917 */
1918static const struct btf_type *
1919__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1920		   u32 *type_size, const struct btf_type **elem_type,
1921		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1922{
1923	const struct btf_type *array_type = NULL;
1924	const struct btf_array *array = NULL;
1925	u32 i, size, nelems = 1, id = 0;
1926
1927	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1928		switch (BTF_INFO_KIND(type->info)) {
1929		/* type->size can be used */
1930		case BTF_KIND_INT:
1931		case BTF_KIND_STRUCT:
1932		case BTF_KIND_UNION:
1933		case BTF_KIND_ENUM:
1934		case BTF_KIND_FLOAT:
1935		case BTF_KIND_ENUM64:
1936			size = type->size;
1937			goto resolved;
1938
1939		case BTF_KIND_PTR:
1940			size = sizeof(void *);
1941			goto resolved;
1942
1943		/* Modifiers */
1944		case BTF_KIND_TYPEDEF:
1945		case BTF_KIND_VOLATILE:
1946		case BTF_KIND_CONST:
1947		case BTF_KIND_RESTRICT:
1948		case BTF_KIND_TYPE_TAG:
1949			id = type->type;
1950			type = btf_type_by_id(btf, type->type);
1951			break;
1952
1953		case BTF_KIND_ARRAY:
1954			if (!array_type)
1955				array_type = type;
1956			array = btf_type_array(type);
1957			if (nelems && array->nelems > U32_MAX / nelems)
1958				return ERR_PTR(-EINVAL);
1959			nelems *= array->nelems;
1960			type = btf_type_by_id(btf, array->type);
1961			break;
1962
1963		/* type without size */
1964		default:
1965			return ERR_PTR(-EINVAL);
1966		}
1967	}
1968
1969	return ERR_PTR(-EINVAL);
1970
1971resolved:
1972	if (nelems && size > U32_MAX / nelems)
1973		return ERR_PTR(-EINVAL);
1974
1975	*type_size = nelems * size;
1976	if (total_nelems)
1977		*total_nelems = nelems;
1978	if (elem_type)
1979		*elem_type = type;
1980	if (elem_id)
1981		*elem_id = array ? array->type : 0;
1982	if (type_id && id)
1983		*type_id = id;
1984
1985	return array_type ? : type;
1986}
1987
1988const struct btf_type *
1989btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1990		 u32 *type_size)
1991{
1992	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1993}
1994
1995static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1996{
1997	while (type_id < btf->start_id)
1998		btf = btf->base_btf;
1999
2000	return btf->resolved_ids[type_id - btf->start_id];
2001}
2002
2003/* The input param "type_id" must point to a needs_resolve type */
2004static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
2005						  u32 *type_id)
2006{
2007	*type_id = btf_resolved_type_id(btf, *type_id);
2008	return btf_type_by_id(btf, *type_id);
2009}
2010
2011static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
2012{
2013	while (type_id < btf->start_id)
2014		btf = btf->base_btf;
2015
2016	return btf->resolved_sizes[type_id - btf->start_id];
2017}
2018
2019const struct btf_type *btf_type_id_size(const struct btf *btf,
2020					u32 *type_id, u32 *ret_size)
2021{
2022	const struct btf_type *size_type;
2023	u32 size_type_id = *type_id;
2024	u32 size = 0;
2025
2026	size_type = btf_type_by_id(btf, size_type_id);
2027	if (btf_type_nosize_or_null(size_type))
2028		return NULL;
2029
2030	if (btf_type_has_size(size_type)) {
2031		size = size_type->size;
2032	} else if (btf_type_is_array(size_type)) {
2033		size = btf_resolved_type_size(btf, size_type_id);
2034	} else if (btf_type_is_ptr(size_type)) {
2035		size = sizeof(void *);
2036	} else {
2037		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
2038				 !btf_type_is_var(size_type)))
2039			return NULL;
2040
2041		size_type_id = btf_resolved_type_id(btf, size_type_id);
2042		size_type = btf_type_by_id(btf, size_type_id);
2043		if (btf_type_nosize_or_null(size_type))
2044			return NULL;
2045		else if (btf_type_has_size(size_type))
2046			size = size_type->size;
2047		else if (btf_type_is_array(size_type))
2048			size = btf_resolved_type_size(btf, size_type_id);
2049		else if (btf_type_is_ptr(size_type))
2050			size = sizeof(void *);
2051		else
2052			return NULL;
2053	}
2054
2055	*type_id = size_type_id;
2056	if (ret_size)
2057		*ret_size = size;
2058
2059	return size_type;
2060}
2061
2062static int btf_df_check_member(struct btf_verifier_env *env,
2063			       const struct btf_type *struct_type,
2064			       const struct btf_member *member,
2065			       const struct btf_type *member_type)
2066{
2067	btf_verifier_log_basic(env, struct_type,
2068			       "Unsupported check_member");
2069	return -EINVAL;
2070}
2071
2072static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2073				     const struct btf_type *struct_type,
2074				     const struct btf_member *member,
2075				     const struct btf_type *member_type)
2076{
2077	btf_verifier_log_basic(env, struct_type,
2078			       "Unsupported check_kflag_member");
2079	return -EINVAL;
2080}
2081
2082/* Used for ptr, array struct/union and float type members.
2083 * int, enum and modifier types have their specific callback functions.
2084 */
2085static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2086					  const struct btf_type *struct_type,
2087					  const struct btf_member *member,
2088					  const struct btf_type *member_type)
2089{
2090	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2091		btf_verifier_log_member(env, struct_type, member,
2092					"Invalid member bitfield_size");
2093		return -EINVAL;
2094	}
2095
2096	/* bitfield size is 0, so member->offset represents bit offset only.
2097	 * It is safe to call non kflag check_member variants.
2098	 */
2099	return btf_type_ops(member_type)->check_member(env, struct_type,
2100						       member,
2101						       member_type);
2102}
2103
2104static int btf_df_resolve(struct btf_verifier_env *env,
2105			  const struct resolve_vertex *v)
2106{
2107	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2108	return -EINVAL;
2109}
2110
2111static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2112			u32 type_id, void *data, u8 bits_offsets,
2113			struct btf_show *show)
2114{
2115	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2116}
2117
2118static int btf_int_check_member(struct btf_verifier_env *env,
2119				const struct btf_type *struct_type,
2120				const struct btf_member *member,
2121				const struct btf_type *member_type)
2122{
2123	u32 int_data = btf_type_int(member_type);
2124	u32 struct_bits_off = member->offset;
2125	u32 struct_size = struct_type->size;
2126	u32 nr_copy_bits;
2127	u32 bytes_offset;
2128
2129	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2130		btf_verifier_log_member(env, struct_type, member,
2131					"bits_offset exceeds U32_MAX");
2132		return -EINVAL;
2133	}
2134
2135	struct_bits_off += BTF_INT_OFFSET(int_data);
2136	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2137	nr_copy_bits = BTF_INT_BITS(int_data) +
2138		BITS_PER_BYTE_MASKED(struct_bits_off);
2139
2140	if (nr_copy_bits > BITS_PER_U128) {
2141		btf_verifier_log_member(env, struct_type, member,
2142					"nr_copy_bits exceeds 128");
2143		return -EINVAL;
2144	}
2145
2146	if (struct_size < bytes_offset ||
2147	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2148		btf_verifier_log_member(env, struct_type, member,
2149					"Member exceeds struct_size");
2150		return -EINVAL;
2151	}
2152
2153	return 0;
2154}
2155
2156static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2157				      const struct btf_type *struct_type,
2158				      const struct btf_member *member,
2159				      const struct btf_type *member_type)
2160{
2161	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2162	u32 int_data = btf_type_int(member_type);
2163	u32 struct_size = struct_type->size;
2164	u32 nr_copy_bits;
2165
2166	/* a regular int type is required for the kflag int member */
2167	if (!btf_type_int_is_regular(member_type)) {
2168		btf_verifier_log_member(env, struct_type, member,
2169					"Invalid member base type");
2170		return -EINVAL;
2171	}
2172
2173	/* check sanity of bitfield size */
2174	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2175	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2176	nr_int_data_bits = BTF_INT_BITS(int_data);
2177	if (!nr_bits) {
2178		/* Not a bitfield member, member offset must be at byte
2179		 * boundary.
2180		 */
2181		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2182			btf_verifier_log_member(env, struct_type, member,
2183						"Invalid member offset");
2184			return -EINVAL;
2185		}
2186
2187		nr_bits = nr_int_data_bits;
2188	} else if (nr_bits > nr_int_data_bits) {
2189		btf_verifier_log_member(env, struct_type, member,
2190					"Invalid member bitfield_size");
2191		return -EINVAL;
2192	}
2193
2194	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2195	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2196	if (nr_copy_bits > BITS_PER_U128) {
2197		btf_verifier_log_member(env, struct_type, member,
2198					"nr_copy_bits exceeds 128");
2199		return -EINVAL;
2200	}
2201
2202	if (struct_size < bytes_offset ||
2203	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2204		btf_verifier_log_member(env, struct_type, member,
2205					"Member exceeds struct_size");
2206		return -EINVAL;
2207	}
2208
2209	return 0;
2210}
2211
2212static s32 btf_int_check_meta(struct btf_verifier_env *env,
2213			      const struct btf_type *t,
2214			      u32 meta_left)
2215{
2216	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2217	u16 encoding;
2218
2219	if (meta_left < meta_needed) {
2220		btf_verifier_log_basic(env, t,
2221				       "meta_left:%u meta_needed:%u",
2222				       meta_left, meta_needed);
2223		return -EINVAL;
2224	}
2225
2226	if (btf_type_vlen(t)) {
2227		btf_verifier_log_type(env, t, "vlen != 0");
2228		return -EINVAL;
2229	}
2230
2231	if (btf_type_kflag(t)) {
2232		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2233		return -EINVAL;
2234	}
2235
2236	int_data = btf_type_int(t);
2237	if (int_data & ~BTF_INT_MASK) {
2238		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2239				       int_data);
2240		return -EINVAL;
2241	}
2242
2243	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2244
2245	if (nr_bits > BITS_PER_U128) {
2246		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2247				      BITS_PER_U128);
2248		return -EINVAL;
2249	}
2250
2251	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2252		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2253		return -EINVAL;
2254	}
2255
2256	/*
2257	 * Only one of the encoding bits is allowed and it
2258	 * should be sufficient for the pretty print purpose (i.e. decoding).
2259	 * Multiple bits can be allowed later if it is found
2260	 * to be insufficient.
2261	 */
2262	encoding = BTF_INT_ENCODING(int_data);
2263	if (encoding &&
2264	    encoding != BTF_INT_SIGNED &&
2265	    encoding != BTF_INT_CHAR &&
2266	    encoding != BTF_INT_BOOL) {
2267		btf_verifier_log_type(env, t, "Unsupported encoding");
2268		return -ENOTSUPP;
2269	}
2270
2271	btf_verifier_log_type(env, t, NULL);
2272
2273	return meta_needed;
2274}
2275
2276static void btf_int_log(struct btf_verifier_env *env,
2277			const struct btf_type *t)
2278{
2279	int int_data = btf_type_int(t);
2280
2281	btf_verifier_log(env,
2282			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2283			 t->size, BTF_INT_OFFSET(int_data),
2284			 BTF_INT_BITS(int_data),
2285			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2286}
2287
2288static void btf_int128_print(struct btf_show *show, void *data)
2289{
2290	/* data points to a __int128 number.
2291	 * Suppose
2292	 *     int128_num = *(__int128 *)data;
2293	 * The below formulas shows what upper_num and lower_num represents:
2294	 *     upper_num = int128_num >> 64;
2295	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2296	 */
2297	u64 upper_num, lower_num;
2298
2299#ifdef __BIG_ENDIAN_BITFIELD
2300	upper_num = *(u64 *)data;
2301	lower_num = *(u64 *)(data + 8);
2302#else
2303	upper_num = *(u64 *)(data + 8);
2304	lower_num = *(u64 *)data;
2305#endif
2306	if (upper_num == 0)
2307		btf_show_type_value(show, "0x%llx", lower_num);
2308	else
2309		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2310				     lower_num);
2311}
2312
2313static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2314			     u16 right_shift_bits)
2315{
2316	u64 upper_num, lower_num;
2317
2318#ifdef __BIG_ENDIAN_BITFIELD
2319	upper_num = print_num[0];
2320	lower_num = print_num[1];
2321#else
2322	upper_num = print_num[1];
2323	lower_num = print_num[0];
2324#endif
2325
2326	/* shake out un-needed bits by shift/or operations */
2327	if (left_shift_bits >= 64) {
2328		upper_num = lower_num << (left_shift_bits - 64);
2329		lower_num = 0;
2330	} else {
2331		upper_num = (upper_num << left_shift_bits) |
2332			    (lower_num >> (64 - left_shift_bits));
2333		lower_num = lower_num << left_shift_bits;
2334	}
2335
2336	if (right_shift_bits >= 64) {
2337		lower_num = upper_num >> (right_shift_bits - 64);
2338		upper_num = 0;
2339	} else {
2340		lower_num = (lower_num >> right_shift_bits) |
2341			    (upper_num << (64 - right_shift_bits));
2342		upper_num = upper_num >> right_shift_bits;
2343	}
2344
2345#ifdef __BIG_ENDIAN_BITFIELD
2346	print_num[0] = upper_num;
2347	print_num[1] = lower_num;
2348#else
2349	print_num[0] = lower_num;
2350	print_num[1] = upper_num;
2351#endif
2352}
2353
2354static void btf_bitfield_show(void *data, u8 bits_offset,
2355			      u8 nr_bits, struct btf_show *show)
2356{
2357	u16 left_shift_bits, right_shift_bits;
2358	u8 nr_copy_bytes;
2359	u8 nr_copy_bits;
2360	u64 print_num[2] = {};
2361
2362	nr_copy_bits = nr_bits + bits_offset;
2363	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2364
2365	memcpy(print_num, data, nr_copy_bytes);
2366
2367#ifdef __BIG_ENDIAN_BITFIELD
2368	left_shift_bits = bits_offset;
2369#else
2370	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2371#endif
2372	right_shift_bits = BITS_PER_U128 - nr_bits;
2373
2374	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2375	btf_int128_print(show, print_num);
2376}
2377
2378
2379static void btf_int_bits_show(const struct btf *btf,
2380			      const struct btf_type *t,
2381			      void *data, u8 bits_offset,
2382			      struct btf_show *show)
2383{
2384	u32 int_data = btf_type_int(t);
2385	u8 nr_bits = BTF_INT_BITS(int_data);
2386	u8 total_bits_offset;
2387
2388	/*
2389	 * bits_offset is at most 7.
2390	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2391	 */
2392	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2393	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2394	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2395	btf_bitfield_show(data, bits_offset, nr_bits, show);
2396}
2397
2398static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2399			 u32 type_id, void *data, u8 bits_offset,
2400			 struct btf_show *show)
2401{
2402	u32 int_data = btf_type_int(t);
2403	u8 encoding = BTF_INT_ENCODING(int_data);
2404	bool sign = encoding & BTF_INT_SIGNED;
2405	u8 nr_bits = BTF_INT_BITS(int_data);
2406	void *safe_data;
2407
2408	safe_data = btf_show_start_type(show, t, type_id, data);
2409	if (!safe_data)
2410		return;
2411
2412	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2413	    BITS_PER_BYTE_MASKED(nr_bits)) {
2414		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2415		goto out;
2416	}
2417
2418	switch (nr_bits) {
2419	case 128:
2420		btf_int128_print(show, safe_data);
2421		break;
2422	case 64:
2423		if (sign)
2424			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2425		else
2426			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2427		break;
2428	case 32:
2429		if (sign)
2430			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2431		else
2432			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2433		break;
2434	case 16:
2435		if (sign)
2436			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2437		else
2438			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2439		break;
2440	case 8:
2441		if (show->state.array_encoding == BTF_INT_CHAR) {
2442			/* check for null terminator */
2443			if (show->state.array_terminated)
2444				break;
2445			if (*(char *)data == '\0') {
2446				show->state.array_terminated = 1;
2447				break;
2448			}
2449			if (isprint(*(char *)data)) {
2450				btf_show_type_value(show, "'%c'",
2451						    *(char *)safe_data);
2452				break;
2453			}
2454		}
2455		if (sign)
2456			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2457		else
2458			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2459		break;
2460	default:
2461		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2462		break;
2463	}
2464out:
2465	btf_show_end_type(show);
2466}
2467
2468static const struct btf_kind_operations int_ops = {
2469	.check_meta = btf_int_check_meta,
2470	.resolve = btf_df_resolve,
2471	.check_member = btf_int_check_member,
2472	.check_kflag_member = btf_int_check_kflag_member,
2473	.log_details = btf_int_log,
2474	.show = btf_int_show,
2475};
2476
2477static int btf_modifier_check_member(struct btf_verifier_env *env,
2478				     const struct btf_type *struct_type,
2479				     const struct btf_member *member,
2480				     const struct btf_type *member_type)
2481{
2482	const struct btf_type *resolved_type;
2483	u32 resolved_type_id = member->type;
2484	struct btf_member resolved_member;
2485	struct btf *btf = env->btf;
2486
2487	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2488	if (!resolved_type) {
2489		btf_verifier_log_member(env, struct_type, member,
2490					"Invalid member");
2491		return -EINVAL;
2492	}
2493
2494	resolved_member = *member;
2495	resolved_member.type = resolved_type_id;
2496
2497	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2498							 &resolved_member,
2499							 resolved_type);
2500}
2501
2502static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2503					   const struct btf_type *struct_type,
2504					   const struct btf_member *member,
2505					   const struct btf_type *member_type)
2506{
2507	const struct btf_type *resolved_type;
2508	u32 resolved_type_id = member->type;
2509	struct btf_member resolved_member;
2510	struct btf *btf = env->btf;
2511
2512	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2513	if (!resolved_type) {
2514		btf_verifier_log_member(env, struct_type, member,
2515					"Invalid member");
2516		return -EINVAL;
2517	}
2518
2519	resolved_member = *member;
2520	resolved_member.type = resolved_type_id;
2521
2522	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2523							       &resolved_member,
2524							       resolved_type);
2525}
2526
2527static int btf_ptr_check_member(struct btf_verifier_env *env,
2528				const struct btf_type *struct_type,
2529				const struct btf_member *member,
2530				const struct btf_type *member_type)
2531{
2532	u32 struct_size, struct_bits_off, bytes_offset;
2533
2534	struct_size = struct_type->size;
2535	struct_bits_off = member->offset;
2536	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2537
2538	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2539		btf_verifier_log_member(env, struct_type, member,
2540					"Member is not byte aligned");
2541		return -EINVAL;
2542	}
2543
2544	if (struct_size - bytes_offset < sizeof(void *)) {
2545		btf_verifier_log_member(env, struct_type, member,
2546					"Member exceeds struct_size");
2547		return -EINVAL;
2548	}
2549
2550	return 0;
2551}
2552
2553static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2554				   const struct btf_type *t,
2555				   u32 meta_left)
2556{
2557	const char *value;
2558
2559	if (btf_type_vlen(t)) {
2560		btf_verifier_log_type(env, t, "vlen != 0");
2561		return -EINVAL;
2562	}
2563
2564	if (btf_type_kflag(t)) {
2565		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2566		return -EINVAL;
2567	}
2568
2569	if (!BTF_TYPE_ID_VALID(t->type)) {
2570		btf_verifier_log_type(env, t, "Invalid type_id");
2571		return -EINVAL;
2572	}
2573
2574	/* typedef/type_tag type must have a valid name, and other ref types,
2575	 * volatile, const, restrict, should have a null name.
2576	 */
2577	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2578		if (!t->name_off ||
2579		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2580			btf_verifier_log_type(env, t, "Invalid name");
2581			return -EINVAL;
2582		}
2583	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2584		value = btf_name_by_offset(env->btf, t->name_off);
2585		if (!value || !value[0]) {
2586			btf_verifier_log_type(env, t, "Invalid name");
2587			return -EINVAL;
2588		}
2589	} else {
2590		if (t->name_off) {
2591			btf_verifier_log_type(env, t, "Invalid name");
2592			return -EINVAL;
2593		}
2594	}
2595
2596	btf_verifier_log_type(env, t, NULL);
2597
2598	return 0;
2599}
2600
2601static int btf_modifier_resolve(struct btf_verifier_env *env,
2602				const struct resolve_vertex *v)
2603{
2604	const struct btf_type *t = v->t;
2605	const struct btf_type *next_type;
2606	u32 next_type_id = t->type;
2607	struct btf *btf = env->btf;
2608
2609	next_type = btf_type_by_id(btf, next_type_id);
2610	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2611		btf_verifier_log_type(env, v->t, "Invalid type_id");
2612		return -EINVAL;
2613	}
2614
2615	if (!env_type_is_resolve_sink(env, next_type) &&
2616	    !env_type_is_resolved(env, next_type_id))
2617		return env_stack_push(env, next_type, next_type_id);
2618
2619	/* Figure out the resolved next_type_id with size.
2620	 * They will be stored in the current modifier's
2621	 * resolved_ids and resolved_sizes such that it can
2622	 * save us a few type-following when we use it later (e.g. in
2623	 * pretty print).
2624	 */
2625	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2626		if (env_type_is_resolved(env, next_type_id))
2627			next_type = btf_type_id_resolve(btf, &next_type_id);
2628
2629		/* "typedef void new_void", "const void"...etc */
2630		if (!btf_type_is_void(next_type) &&
2631		    !btf_type_is_fwd(next_type) &&
2632		    !btf_type_is_func_proto(next_type)) {
2633			btf_verifier_log_type(env, v->t, "Invalid type_id");
2634			return -EINVAL;
2635		}
2636	}
2637
2638	env_stack_pop_resolved(env, next_type_id, 0);
2639
2640	return 0;
2641}
2642
2643static int btf_var_resolve(struct btf_verifier_env *env,
2644			   const struct resolve_vertex *v)
2645{
2646	const struct btf_type *next_type;
2647	const struct btf_type *t = v->t;
2648	u32 next_type_id = t->type;
2649	struct btf *btf = env->btf;
2650
2651	next_type = btf_type_by_id(btf, next_type_id);
2652	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2653		btf_verifier_log_type(env, v->t, "Invalid type_id");
2654		return -EINVAL;
2655	}
2656
2657	if (!env_type_is_resolve_sink(env, next_type) &&
2658	    !env_type_is_resolved(env, next_type_id))
2659		return env_stack_push(env, next_type, next_type_id);
2660
2661	if (btf_type_is_modifier(next_type)) {
2662		const struct btf_type *resolved_type;
2663		u32 resolved_type_id;
2664
2665		resolved_type_id = next_type_id;
2666		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2667
2668		if (btf_type_is_ptr(resolved_type) &&
2669		    !env_type_is_resolve_sink(env, resolved_type) &&
2670		    !env_type_is_resolved(env, resolved_type_id))
2671			return env_stack_push(env, resolved_type,
2672					      resolved_type_id);
2673	}
2674
2675	/* We must resolve to something concrete at this point, no
2676	 * forward types or similar that would resolve to size of
2677	 * zero is allowed.
2678	 */
2679	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2680		btf_verifier_log_type(env, v->t, "Invalid type_id");
2681		return -EINVAL;
2682	}
2683
2684	env_stack_pop_resolved(env, next_type_id, 0);
2685
2686	return 0;
2687}
2688
2689static int btf_ptr_resolve(struct btf_verifier_env *env,
2690			   const struct resolve_vertex *v)
2691{
2692	const struct btf_type *next_type;
2693	const struct btf_type *t = v->t;
2694	u32 next_type_id = t->type;
2695	struct btf *btf = env->btf;
2696
2697	next_type = btf_type_by_id(btf, next_type_id);
2698	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2699		btf_verifier_log_type(env, v->t, "Invalid type_id");
2700		return -EINVAL;
2701	}
2702
2703	if (!env_type_is_resolve_sink(env, next_type) &&
2704	    !env_type_is_resolved(env, next_type_id))
2705		return env_stack_push(env, next_type, next_type_id);
2706
2707	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2708	 * the modifier may have stopped resolving when it was resolved
2709	 * to a ptr (last-resolved-ptr).
2710	 *
2711	 * We now need to continue from the last-resolved-ptr to
2712	 * ensure the last-resolved-ptr will not referring back to
2713	 * the current ptr (t).
2714	 */
2715	if (btf_type_is_modifier(next_type)) {
2716		const struct btf_type *resolved_type;
2717		u32 resolved_type_id;
2718
2719		resolved_type_id = next_type_id;
2720		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2721
2722		if (btf_type_is_ptr(resolved_type) &&
2723		    !env_type_is_resolve_sink(env, resolved_type) &&
2724		    !env_type_is_resolved(env, resolved_type_id))
2725			return env_stack_push(env, resolved_type,
2726					      resolved_type_id);
2727	}
2728
2729	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2730		if (env_type_is_resolved(env, next_type_id))
2731			next_type = btf_type_id_resolve(btf, &next_type_id);
2732
2733		if (!btf_type_is_void(next_type) &&
2734		    !btf_type_is_fwd(next_type) &&
2735		    !btf_type_is_func_proto(next_type)) {
2736			btf_verifier_log_type(env, v->t, "Invalid type_id");
2737			return -EINVAL;
2738		}
2739	}
2740
2741	env_stack_pop_resolved(env, next_type_id, 0);
2742
2743	return 0;
2744}
2745
2746static void btf_modifier_show(const struct btf *btf,
2747			      const struct btf_type *t,
2748			      u32 type_id, void *data,
2749			      u8 bits_offset, struct btf_show *show)
2750{
2751	if (btf->resolved_ids)
2752		t = btf_type_id_resolve(btf, &type_id);
2753	else
2754		t = btf_type_skip_modifiers(btf, type_id, NULL);
2755
2756	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2757}
2758
2759static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2760			 u32 type_id, void *data, u8 bits_offset,
2761			 struct btf_show *show)
2762{
2763	t = btf_type_id_resolve(btf, &type_id);
2764
2765	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2766}
2767
2768static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2769			 u32 type_id, void *data, u8 bits_offset,
2770			 struct btf_show *show)
2771{
2772	void *safe_data;
2773
2774	safe_data = btf_show_start_type(show, t, type_id, data);
2775	if (!safe_data)
2776		return;
2777
2778	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2779	if (show->flags & BTF_SHOW_PTR_RAW)
2780		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2781	else
2782		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2783	btf_show_end_type(show);
2784}
2785
2786static void btf_ref_type_log(struct btf_verifier_env *env,
2787			     const struct btf_type *t)
2788{
2789	btf_verifier_log(env, "type_id=%u", t->type);
2790}
2791
2792static struct btf_kind_operations modifier_ops = {
2793	.check_meta = btf_ref_type_check_meta,
2794	.resolve = btf_modifier_resolve,
2795	.check_member = btf_modifier_check_member,
2796	.check_kflag_member = btf_modifier_check_kflag_member,
2797	.log_details = btf_ref_type_log,
2798	.show = btf_modifier_show,
2799};
2800
2801static struct btf_kind_operations ptr_ops = {
2802	.check_meta = btf_ref_type_check_meta,
2803	.resolve = btf_ptr_resolve,
2804	.check_member = btf_ptr_check_member,
2805	.check_kflag_member = btf_generic_check_kflag_member,
2806	.log_details = btf_ref_type_log,
2807	.show = btf_ptr_show,
2808};
2809
2810static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2811			      const struct btf_type *t,
2812			      u32 meta_left)
2813{
2814	if (btf_type_vlen(t)) {
2815		btf_verifier_log_type(env, t, "vlen != 0");
2816		return -EINVAL;
2817	}
2818
2819	if (t->type) {
2820		btf_verifier_log_type(env, t, "type != 0");
2821		return -EINVAL;
2822	}
2823
2824	/* fwd type must have a valid name */
2825	if (!t->name_off ||
2826	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2827		btf_verifier_log_type(env, t, "Invalid name");
2828		return -EINVAL;
2829	}
2830
2831	btf_verifier_log_type(env, t, NULL);
2832
2833	return 0;
2834}
2835
2836static void btf_fwd_type_log(struct btf_verifier_env *env,
2837			     const struct btf_type *t)
2838{
2839	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2840}
2841
2842static struct btf_kind_operations fwd_ops = {
2843	.check_meta = btf_fwd_check_meta,
2844	.resolve = btf_df_resolve,
2845	.check_member = btf_df_check_member,
2846	.check_kflag_member = btf_df_check_kflag_member,
2847	.log_details = btf_fwd_type_log,
2848	.show = btf_df_show,
2849};
2850
2851static int btf_array_check_member(struct btf_verifier_env *env,
2852				  const struct btf_type *struct_type,
2853				  const struct btf_member *member,
2854				  const struct btf_type *member_type)
2855{
2856	u32 struct_bits_off = member->offset;
2857	u32 struct_size, bytes_offset;
2858	u32 array_type_id, array_size;
2859	struct btf *btf = env->btf;
2860
2861	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2862		btf_verifier_log_member(env, struct_type, member,
2863					"Member is not byte aligned");
2864		return -EINVAL;
2865	}
2866
2867	array_type_id = member->type;
2868	btf_type_id_size(btf, &array_type_id, &array_size);
2869	struct_size = struct_type->size;
2870	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2871	if (struct_size - bytes_offset < array_size) {
2872		btf_verifier_log_member(env, struct_type, member,
2873					"Member exceeds struct_size");
2874		return -EINVAL;
2875	}
2876
2877	return 0;
2878}
2879
2880static s32 btf_array_check_meta(struct btf_verifier_env *env,
2881				const struct btf_type *t,
2882				u32 meta_left)
2883{
2884	const struct btf_array *array = btf_type_array(t);
2885	u32 meta_needed = sizeof(*array);
2886
2887	if (meta_left < meta_needed) {
2888		btf_verifier_log_basic(env, t,
2889				       "meta_left:%u meta_needed:%u",
2890				       meta_left, meta_needed);
2891		return -EINVAL;
2892	}
2893
2894	/* array type should not have a name */
2895	if (t->name_off) {
2896		btf_verifier_log_type(env, t, "Invalid name");
2897		return -EINVAL;
2898	}
2899
2900	if (btf_type_vlen(t)) {
2901		btf_verifier_log_type(env, t, "vlen != 0");
2902		return -EINVAL;
2903	}
2904
2905	if (btf_type_kflag(t)) {
2906		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2907		return -EINVAL;
2908	}
2909
2910	if (t->size) {
2911		btf_verifier_log_type(env, t, "size != 0");
2912		return -EINVAL;
2913	}
2914
2915	/* Array elem type and index type cannot be in type void,
2916	 * so !array->type and !array->index_type are not allowed.
2917	 */
2918	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2919		btf_verifier_log_type(env, t, "Invalid elem");
2920		return -EINVAL;
2921	}
2922
2923	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2924		btf_verifier_log_type(env, t, "Invalid index");
2925		return -EINVAL;
2926	}
2927
2928	btf_verifier_log_type(env, t, NULL);
2929
2930	return meta_needed;
2931}
2932
2933static int btf_array_resolve(struct btf_verifier_env *env,
2934			     const struct resolve_vertex *v)
2935{
2936	const struct btf_array *array = btf_type_array(v->t);
2937	const struct btf_type *elem_type, *index_type;
2938	u32 elem_type_id, index_type_id;
2939	struct btf *btf = env->btf;
2940	u32 elem_size;
2941
2942	/* Check array->index_type */
2943	index_type_id = array->index_type;
2944	index_type = btf_type_by_id(btf, index_type_id);
2945	if (btf_type_nosize_or_null(index_type) ||
2946	    btf_type_is_resolve_source_only(index_type)) {
2947		btf_verifier_log_type(env, v->t, "Invalid index");
2948		return -EINVAL;
2949	}
2950
2951	if (!env_type_is_resolve_sink(env, index_type) &&
2952	    !env_type_is_resolved(env, index_type_id))
2953		return env_stack_push(env, index_type, index_type_id);
2954
2955	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2956	if (!index_type || !btf_type_is_int(index_type) ||
2957	    !btf_type_int_is_regular(index_type)) {
2958		btf_verifier_log_type(env, v->t, "Invalid index");
2959		return -EINVAL;
2960	}
2961
2962	/* Check array->type */
2963	elem_type_id = array->type;
2964	elem_type = btf_type_by_id(btf, elem_type_id);
2965	if (btf_type_nosize_or_null(elem_type) ||
2966	    btf_type_is_resolve_source_only(elem_type)) {
2967		btf_verifier_log_type(env, v->t,
2968				      "Invalid elem");
2969		return -EINVAL;
2970	}
2971
2972	if (!env_type_is_resolve_sink(env, elem_type) &&
2973	    !env_type_is_resolved(env, elem_type_id))
2974		return env_stack_push(env, elem_type, elem_type_id);
2975
2976	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2977	if (!elem_type) {
2978		btf_verifier_log_type(env, v->t, "Invalid elem");
2979		return -EINVAL;
2980	}
2981
2982	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2983		btf_verifier_log_type(env, v->t, "Invalid array of int");
2984		return -EINVAL;
2985	}
2986
2987	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2988		btf_verifier_log_type(env, v->t,
2989				      "Array size overflows U32_MAX");
2990		return -EINVAL;
2991	}
2992
2993	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2994
2995	return 0;
2996}
2997
2998static void btf_array_log(struct btf_verifier_env *env,
2999			  const struct btf_type *t)
3000{
3001	const struct btf_array *array = btf_type_array(t);
3002
3003	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
3004			 array->type, array->index_type, array->nelems);
3005}
3006
3007static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
3008			     u32 type_id, void *data, u8 bits_offset,
3009			     struct btf_show *show)
3010{
3011	const struct btf_array *array = btf_type_array(t);
3012	const struct btf_kind_operations *elem_ops;
3013	const struct btf_type *elem_type;
3014	u32 i, elem_size = 0, elem_type_id;
3015	u16 encoding = 0;
3016
3017	elem_type_id = array->type;
3018	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
3019	if (elem_type && btf_type_has_size(elem_type))
3020		elem_size = elem_type->size;
3021
3022	if (elem_type && btf_type_is_int(elem_type)) {
3023		u32 int_type = btf_type_int(elem_type);
3024
3025		encoding = BTF_INT_ENCODING(int_type);
3026
3027		/*
3028		 * BTF_INT_CHAR encoding never seems to be set for
3029		 * char arrays, so if size is 1 and element is
3030		 * printable as a char, we'll do that.
3031		 */
3032		if (elem_size == 1)
3033			encoding = BTF_INT_CHAR;
3034	}
3035
3036	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
3037		return;
3038
3039	if (!elem_type)
3040		goto out;
3041	elem_ops = btf_type_ops(elem_type);
3042
3043	for (i = 0; i < array->nelems; i++) {
3044
3045		btf_show_start_array_member(show);
3046
3047		elem_ops->show(btf, elem_type, elem_type_id, data,
3048			       bits_offset, show);
3049		data += elem_size;
3050
3051		btf_show_end_array_member(show);
3052
3053		if (show->state.array_terminated)
3054			break;
3055	}
3056out:
3057	btf_show_end_array_type(show);
3058}
3059
3060static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3061			   u32 type_id, void *data, u8 bits_offset,
3062			   struct btf_show *show)
3063{
3064	const struct btf_member *m = show->state.member;
3065
3066	/*
3067	 * First check if any members would be shown (are non-zero).
3068	 * See comments above "struct btf_show" definition for more
3069	 * details on how this works at a high-level.
3070	 */
3071	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3072		if (!show->state.depth_check) {
3073			show->state.depth_check = show->state.depth + 1;
3074			show->state.depth_to_show = 0;
3075		}
3076		__btf_array_show(btf, t, type_id, data, bits_offset, show);
3077		show->state.member = m;
3078
3079		if (show->state.depth_check != show->state.depth + 1)
3080			return;
3081		show->state.depth_check = 0;
3082
3083		if (show->state.depth_to_show <= show->state.depth)
3084			return;
3085		/*
3086		 * Reaching here indicates we have recursed and found
3087		 * non-zero array member(s).
3088		 */
3089	}
3090	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3091}
3092
3093static struct btf_kind_operations array_ops = {
3094	.check_meta = btf_array_check_meta,
3095	.resolve = btf_array_resolve,
3096	.check_member = btf_array_check_member,
3097	.check_kflag_member = btf_generic_check_kflag_member,
3098	.log_details = btf_array_log,
3099	.show = btf_array_show,
3100};
3101
3102static int btf_struct_check_member(struct btf_verifier_env *env,
3103				   const struct btf_type *struct_type,
3104				   const struct btf_member *member,
3105				   const struct btf_type *member_type)
3106{
3107	u32 struct_bits_off = member->offset;
3108	u32 struct_size, bytes_offset;
3109
3110	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3111		btf_verifier_log_member(env, struct_type, member,
3112					"Member is not byte aligned");
3113		return -EINVAL;
3114	}
3115
3116	struct_size = struct_type->size;
3117	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3118	if (struct_size - bytes_offset < member_type->size) {
3119		btf_verifier_log_member(env, struct_type, member,
3120					"Member exceeds struct_size");
3121		return -EINVAL;
3122	}
3123
3124	return 0;
3125}
3126
3127static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3128				 const struct btf_type *t,
3129				 u32 meta_left)
3130{
3131	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3132	const struct btf_member *member;
3133	u32 meta_needed, last_offset;
3134	struct btf *btf = env->btf;
3135	u32 struct_size = t->size;
3136	u32 offset;
3137	u16 i;
3138
3139	meta_needed = btf_type_vlen(t) * sizeof(*member);
3140	if (meta_left < meta_needed) {
3141		btf_verifier_log_basic(env, t,
3142				       "meta_left:%u meta_needed:%u",
3143				       meta_left, meta_needed);
3144		return -EINVAL;
3145	}
3146
3147	/* struct type either no name or a valid one */
3148	if (t->name_off &&
3149	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3150		btf_verifier_log_type(env, t, "Invalid name");
3151		return -EINVAL;
3152	}
3153
3154	btf_verifier_log_type(env, t, NULL);
3155
3156	last_offset = 0;
3157	for_each_member(i, t, member) {
3158		if (!btf_name_offset_valid(btf, member->name_off)) {
3159			btf_verifier_log_member(env, t, member,
3160						"Invalid member name_offset:%u",
3161						member->name_off);
3162			return -EINVAL;
3163		}
3164
3165		/* struct member either no name or a valid one */
3166		if (member->name_off &&
3167		    !btf_name_valid_identifier(btf, member->name_off)) {
3168			btf_verifier_log_member(env, t, member, "Invalid name");
3169			return -EINVAL;
3170		}
3171		/* A member cannot be in type void */
3172		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3173			btf_verifier_log_member(env, t, member,
3174						"Invalid type_id");
3175			return -EINVAL;
3176		}
3177
3178		offset = __btf_member_bit_offset(t, member);
3179		if (is_union && offset) {
3180			btf_verifier_log_member(env, t, member,
3181						"Invalid member bits_offset");
3182			return -EINVAL;
3183		}
3184
3185		/*
3186		 * ">" instead of ">=" because the last member could be
3187		 * "char a[0];"
3188		 */
3189		if (last_offset > offset) {
3190			btf_verifier_log_member(env, t, member,
3191						"Invalid member bits_offset");
3192			return -EINVAL;
3193		}
3194
3195		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3196			btf_verifier_log_member(env, t, member,
3197						"Member bits_offset exceeds its struct size");
3198			return -EINVAL;
3199		}
3200
3201		btf_verifier_log_member(env, t, member, NULL);
3202		last_offset = offset;
3203	}
3204
3205	return meta_needed;
3206}
3207
3208static int btf_struct_resolve(struct btf_verifier_env *env,
3209			      const struct resolve_vertex *v)
3210{
3211	const struct btf_member *member;
3212	int err;
3213	u16 i;
3214
3215	/* Before continue resolving the next_member,
3216	 * ensure the last member is indeed resolved to a
3217	 * type with size info.
3218	 */
3219	if (v->next_member) {
3220		const struct btf_type *last_member_type;
3221		const struct btf_member *last_member;
3222		u32 last_member_type_id;
3223
3224		last_member = btf_type_member(v->t) + v->next_member - 1;
3225		last_member_type_id = last_member->type;
3226		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3227						       last_member_type_id)))
3228			return -EINVAL;
3229
3230		last_member_type = btf_type_by_id(env->btf,
3231						  last_member_type_id);
3232		if (btf_type_kflag(v->t))
3233			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3234								last_member,
3235								last_member_type);
3236		else
3237			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3238								last_member,
3239								last_member_type);
3240		if (err)
3241			return err;
3242	}
3243
3244	for_each_member_from(i, v->next_member, v->t, member) {
3245		u32 member_type_id = member->type;
3246		const struct btf_type *member_type = btf_type_by_id(env->btf,
3247								member_type_id);
3248
3249		if (btf_type_nosize_or_null(member_type) ||
3250		    btf_type_is_resolve_source_only(member_type)) {
3251			btf_verifier_log_member(env, v->t, member,
3252						"Invalid member");
3253			return -EINVAL;
3254		}
3255
3256		if (!env_type_is_resolve_sink(env, member_type) &&
3257		    !env_type_is_resolved(env, member_type_id)) {
3258			env_stack_set_next_member(env, i + 1);
3259			return env_stack_push(env, member_type, member_type_id);
3260		}
3261
3262		if (btf_type_kflag(v->t))
3263			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3264									    member,
3265									    member_type);
3266		else
3267			err = btf_type_ops(member_type)->check_member(env, v->t,
3268								      member,
3269								      member_type);
3270		if (err)
3271			return err;
3272	}
3273
3274	env_stack_pop_resolved(env, 0, 0);
3275
3276	return 0;
3277}
3278
3279static void btf_struct_log(struct btf_verifier_env *env,
3280			   const struct btf_type *t)
3281{
3282	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3283}
3284
3285enum {
3286	BTF_FIELD_IGNORE = 0,
3287	BTF_FIELD_FOUND  = 1,
3288};
3289
3290struct btf_field_info {
3291	enum btf_field_type type;
3292	u32 off;
3293	union {
3294		struct {
3295			u32 type_id;
3296		} kptr;
3297		struct {
3298			const char *node_name;
3299			u32 value_btf_id;
3300		} graph_root;
3301	};
3302};
3303
3304static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3305			   u32 off, int sz, enum btf_field_type field_type,
3306			   struct btf_field_info *info)
3307{
3308	if (!__btf_type_is_struct(t))
3309		return BTF_FIELD_IGNORE;
3310	if (t->size != sz)
3311		return BTF_FIELD_IGNORE;
3312	info->type = field_type;
3313	info->off = off;
3314	return BTF_FIELD_FOUND;
3315}
3316
3317static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3318			 u32 off, int sz, struct btf_field_info *info)
3319{
3320	enum btf_field_type type;
3321	u32 res_id;
3322
3323	/* Permit modifiers on the pointer itself */
3324	if (btf_type_is_volatile(t))
3325		t = btf_type_by_id(btf, t->type);
3326	/* For PTR, sz is always == 8 */
3327	if (!btf_type_is_ptr(t))
3328		return BTF_FIELD_IGNORE;
3329	t = btf_type_by_id(btf, t->type);
3330
3331	if (!btf_type_is_type_tag(t))
3332		return BTF_FIELD_IGNORE;
3333	/* Reject extra tags */
3334	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3335		return -EINVAL;
3336	if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3337		type = BPF_KPTR_UNREF;
3338	else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3339		type = BPF_KPTR_REF;
3340	else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off)))
3341		type = BPF_KPTR_PERCPU;
3342	else
3343		return -EINVAL;
3344
3345	/* Get the base type */
3346	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3347	/* Only pointer to struct is allowed */
3348	if (!__btf_type_is_struct(t))
3349		return -EINVAL;
3350
3351	info->type = type;
3352	info->off = off;
3353	info->kptr.type_id = res_id;
3354	return BTF_FIELD_FOUND;
3355}
3356
3357int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
3358			   int comp_idx, const char *tag_key, int last_id)
3359{
3360	int len = strlen(tag_key);
3361	int i, n;
3362
3363	for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) {
3364		const struct btf_type *t = btf_type_by_id(btf, i);
3365
3366		if (!btf_type_is_decl_tag(t))
3367			continue;
3368		if (pt != btf_type_by_id(btf, t->type))
3369			continue;
3370		if (btf_type_decl_tag(t)->component_idx != comp_idx)
3371			continue;
3372		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3373			continue;
3374		return i;
3375	}
3376	return -ENOENT;
3377}
3378
3379const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3380				    int comp_idx, const char *tag_key)
3381{
3382	const char *value = NULL;
3383	const struct btf_type *t;
3384	int len, id;
3385
3386	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0);
3387	if (id < 0)
3388		return ERR_PTR(id);
3389
3390	t = btf_type_by_id(btf, id);
3391	len = strlen(tag_key);
3392	value = __btf_name_by_offset(btf, t->name_off) + len;
3393
3394	/* Prevent duplicate entries for same type */
3395	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id);
3396	if (id >= 0)
3397		return ERR_PTR(-EEXIST);
3398
3399	return value;
3400}
3401
3402static int
3403btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3404		    const struct btf_type *t, int comp_idx, u32 off,
3405		    int sz, struct btf_field_info *info,
3406		    enum btf_field_type head_type)
3407{
3408	const char *node_field_name;
3409	const char *value_type;
3410	s32 id;
3411
3412	if (!__btf_type_is_struct(t))
3413		return BTF_FIELD_IGNORE;
3414	if (t->size != sz)
3415		return BTF_FIELD_IGNORE;
3416	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3417	if (IS_ERR(value_type))
3418		return -EINVAL;
3419	node_field_name = strstr(value_type, ":");
3420	if (!node_field_name)
3421		return -EINVAL;
3422	value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3423	if (!value_type)
3424		return -ENOMEM;
3425	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3426	kfree(value_type);
3427	if (id < 0)
3428		return id;
3429	node_field_name++;
3430	if (str_is_empty(node_field_name))
3431		return -EINVAL;
3432	info->type = head_type;
3433	info->off = off;
3434	info->graph_root.value_btf_id = id;
3435	info->graph_root.node_name = node_field_name;
3436	return BTF_FIELD_FOUND;
3437}
3438
3439#define field_mask_test_name(field_type, field_type_str) \
3440	if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3441		type = field_type;					\
3442		goto end;						\
3443	}
3444
3445static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3446			      int *align, int *sz)
3447{
3448	int type = 0;
3449
3450	if (field_mask & BPF_SPIN_LOCK) {
3451		if (!strcmp(name, "bpf_spin_lock")) {
3452			if (*seen_mask & BPF_SPIN_LOCK)
3453				return -E2BIG;
3454			*seen_mask |= BPF_SPIN_LOCK;
3455			type = BPF_SPIN_LOCK;
3456			goto end;
3457		}
3458	}
3459	if (field_mask & BPF_TIMER) {
3460		if (!strcmp(name, "bpf_timer")) {
3461			if (*seen_mask & BPF_TIMER)
3462				return -E2BIG;
3463			*seen_mask |= BPF_TIMER;
3464			type = BPF_TIMER;
3465			goto end;
3466		}
3467	}
3468	if (field_mask & BPF_WORKQUEUE) {
3469		if (!strcmp(name, "bpf_wq")) {
3470			if (*seen_mask & BPF_WORKQUEUE)
3471				return -E2BIG;
3472			*seen_mask |= BPF_WORKQUEUE;
3473			type = BPF_WORKQUEUE;
3474			goto end;
3475		}
3476	}
3477	field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3478	field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3479	field_mask_test_name(BPF_RB_ROOT,   "bpf_rb_root");
3480	field_mask_test_name(BPF_RB_NODE,   "bpf_rb_node");
3481	field_mask_test_name(BPF_REFCOUNT,  "bpf_refcount");
3482
3483	/* Only return BPF_KPTR when all other types with matchable names fail */
3484	if (field_mask & BPF_KPTR) {
3485		type = BPF_KPTR_REF;
3486		goto end;
3487	}
3488	return 0;
3489end:
3490	*sz = btf_field_type_size(type);
3491	*align = btf_field_type_align(type);
3492	return type;
3493}
3494
3495#undef field_mask_test_name
3496
3497static int btf_find_struct_field(const struct btf *btf,
3498				 const struct btf_type *t, u32 field_mask,
3499				 struct btf_field_info *info, int info_cnt)
3500{
3501	int ret, idx = 0, align, sz, field_type;
3502	const struct btf_member *member;
3503	struct btf_field_info tmp;
3504	u32 i, off, seen_mask = 0;
3505
3506	for_each_member(i, t, member) {
3507		const struct btf_type *member_type = btf_type_by_id(btf,
3508								    member->type);
3509
3510		field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
3511						field_mask, &seen_mask, &align, &sz);
3512		if (field_type == 0)
3513			continue;
3514		if (field_type < 0)
3515			return field_type;
3516
3517		off = __btf_member_bit_offset(t, member);
3518		if (off % 8)
3519			/* valid C code cannot generate such BTF */
3520			return -EINVAL;
3521		off /= 8;
3522		if (off % align)
3523			continue;
3524
3525		switch (field_type) {
3526		case BPF_SPIN_LOCK:
3527		case BPF_TIMER:
3528		case BPF_WORKQUEUE:
3529		case BPF_LIST_NODE:
3530		case BPF_RB_NODE:
3531		case BPF_REFCOUNT:
3532			ret = btf_find_struct(btf, member_type, off, sz, field_type,
3533					      idx < info_cnt ? &info[idx] : &tmp);
3534			if (ret < 0)
3535				return ret;
3536			break;
3537		case BPF_KPTR_UNREF:
3538		case BPF_KPTR_REF:
3539		case BPF_KPTR_PERCPU:
3540			ret = btf_find_kptr(btf, member_type, off, sz,
3541					    idx < info_cnt ? &info[idx] : &tmp);
3542			if (ret < 0)
3543				return ret;
3544			break;
3545		case BPF_LIST_HEAD:
3546		case BPF_RB_ROOT:
3547			ret = btf_find_graph_root(btf, t, member_type,
3548						  i, off, sz,
3549						  idx < info_cnt ? &info[idx] : &tmp,
3550						  field_type);
3551			if (ret < 0)
3552				return ret;
3553			break;
3554		default:
3555			return -EFAULT;
3556		}
3557
3558		if (ret == BTF_FIELD_IGNORE)
3559			continue;
3560		if (idx >= info_cnt)
3561			return -E2BIG;
3562		++idx;
3563	}
3564	return idx;
3565}
3566
3567static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3568				u32 field_mask, struct btf_field_info *info,
3569				int info_cnt)
3570{
3571	int ret, idx = 0, align, sz, field_type;
3572	const struct btf_var_secinfo *vsi;
3573	struct btf_field_info tmp;
3574	u32 i, off, seen_mask = 0;
3575
3576	for_each_vsi(i, t, vsi) {
3577		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3578		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3579
3580		field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
3581						field_mask, &seen_mask, &align, &sz);
3582		if (field_type == 0)
3583			continue;
3584		if (field_type < 0)
3585			return field_type;
3586
3587		off = vsi->offset;
3588		if (vsi->size != sz)
3589			continue;
3590		if (off % align)
3591			continue;
3592
3593		switch (field_type) {
3594		case BPF_SPIN_LOCK:
3595		case BPF_TIMER:
3596		case BPF_WORKQUEUE:
3597		case BPF_LIST_NODE:
3598		case BPF_RB_NODE:
3599		case BPF_REFCOUNT:
3600			ret = btf_find_struct(btf, var_type, off, sz, field_type,
3601					      idx < info_cnt ? &info[idx] : &tmp);
3602			if (ret < 0)
3603				return ret;
3604			break;
3605		case BPF_KPTR_UNREF:
3606		case BPF_KPTR_REF:
3607		case BPF_KPTR_PERCPU:
3608			ret = btf_find_kptr(btf, var_type, off, sz,
3609					    idx < info_cnt ? &info[idx] : &tmp);
3610			if (ret < 0)
3611				return ret;
3612			break;
3613		case BPF_LIST_HEAD:
3614		case BPF_RB_ROOT:
3615			ret = btf_find_graph_root(btf, var, var_type,
3616						  -1, off, sz,
3617						  idx < info_cnt ? &info[idx] : &tmp,
3618						  field_type);
3619			if (ret < 0)
3620				return ret;
3621			break;
3622		default:
3623			return -EFAULT;
3624		}
3625
3626		if (ret == BTF_FIELD_IGNORE)
3627			continue;
3628		if (idx >= info_cnt)
3629			return -E2BIG;
3630		++idx;
3631	}
3632	return idx;
3633}
3634
3635static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3636			  u32 field_mask, struct btf_field_info *info,
3637			  int info_cnt)
3638{
3639	if (__btf_type_is_struct(t))
3640		return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
3641	else if (btf_type_is_datasec(t))
3642		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
3643	return -EINVAL;
3644}
3645
3646static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3647			  struct btf_field_info *info)
3648{
3649	struct module *mod = NULL;
3650	const struct btf_type *t;
3651	/* If a matching btf type is found in kernel or module BTFs, kptr_ref
3652	 * is that BTF, otherwise it's program BTF
3653	 */
3654	struct btf *kptr_btf;
3655	int ret;
3656	s32 id;
3657
3658	/* Find type in map BTF, and use it to look up the matching type
3659	 * in vmlinux or module BTFs, by name and kind.
3660	 */
3661	t = btf_type_by_id(btf, info->kptr.type_id);
3662	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3663			     &kptr_btf);
3664	if (id == -ENOENT) {
3665		/* btf_parse_kptr should only be called w/ btf = program BTF */
3666		WARN_ON_ONCE(btf_is_kernel(btf));
3667
3668		/* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3669		 * kptr allocated via bpf_obj_new
3670		 */
3671		field->kptr.dtor = NULL;
3672		id = info->kptr.type_id;
3673		kptr_btf = (struct btf *)btf;
3674		btf_get(kptr_btf);
3675		goto found_dtor;
3676	}
3677	if (id < 0)
3678		return id;
3679
3680	/* Find and stash the function pointer for the destruction function that
3681	 * needs to be eventually invoked from the map free path.
3682	 */
3683	if (info->type == BPF_KPTR_REF) {
3684		const struct btf_type *dtor_func;
3685		const char *dtor_func_name;
3686		unsigned long addr;
3687		s32 dtor_btf_id;
3688
3689		/* This call also serves as a whitelist of allowed objects that
3690		 * can be used as a referenced pointer and be stored in a map at
3691		 * the same time.
3692		 */
3693		dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3694		if (dtor_btf_id < 0) {
3695			ret = dtor_btf_id;
3696			goto end_btf;
3697		}
3698
3699		dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3700		if (!dtor_func) {
3701			ret = -ENOENT;
3702			goto end_btf;
3703		}
3704
3705		if (btf_is_module(kptr_btf)) {
3706			mod = btf_try_get_module(kptr_btf);
3707			if (!mod) {
3708				ret = -ENXIO;
3709				goto end_btf;
3710			}
3711		}
3712
3713		/* We already verified dtor_func to be btf_type_is_func
3714		 * in register_btf_id_dtor_kfuncs.
3715		 */
3716		dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3717		addr = kallsyms_lookup_name(dtor_func_name);
3718		if (!addr) {
3719			ret = -EINVAL;
3720			goto end_mod;
3721		}
3722		field->kptr.dtor = (void *)addr;
3723	}
3724
3725found_dtor:
3726	field->kptr.btf_id = id;
3727	field->kptr.btf = kptr_btf;
3728	field->kptr.module = mod;
3729	return 0;
3730end_mod:
3731	module_put(mod);
3732end_btf:
3733	btf_put(kptr_btf);
3734	return ret;
3735}
3736
3737static int btf_parse_graph_root(const struct btf *btf,
3738				struct btf_field *field,
3739				struct btf_field_info *info,
3740				const char *node_type_name,
3741				size_t node_type_align)
3742{
3743	const struct btf_type *t, *n = NULL;
3744	const struct btf_member *member;
3745	u32 offset;
3746	int i;
3747
3748	t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3749	/* We've already checked that value_btf_id is a struct type. We
3750	 * just need to figure out the offset of the list_node, and
3751	 * verify its type.
3752	 */
3753	for_each_member(i, t, member) {
3754		if (strcmp(info->graph_root.node_name,
3755			   __btf_name_by_offset(btf, member->name_off)))
3756			continue;
3757		/* Invalid BTF, two members with same name */
3758		if (n)
3759			return -EINVAL;
3760		n = btf_type_by_id(btf, member->type);
3761		if (!__btf_type_is_struct(n))
3762			return -EINVAL;
3763		if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3764			return -EINVAL;
3765		offset = __btf_member_bit_offset(n, member);
3766		if (offset % 8)
3767			return -EINVAL;
3768		offset /= 8;
3769		if (offset % node_type_align)
3770			return -EINVAL;
3771
3772		field->graph_root.btf = (struct btf *)btf;
3773		field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3774		field->graph_root.node_offset = offset;
3775	}
3776	if (!n)
3777		return -ENOENT;
3778	return 0;
3779}
3780
3781static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3782			       struct btf_field_info *info)
3783{
3784	return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3785					    __alignof__(struct bpf_list_node));
3786}
3787
3788static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3789			     struct btf_field_info *info)
3790{
3791	return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3792					    __alignof__(struct bpf_rb_node));
3793}
3794
3795static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3796{
3797	const struct btf_field *a = (const struct btf_field *)_a;
3798	const struct btf_field *b = (const struct btf_field *)_b;
3799
3800	if (a->offset < b->offset)
3801		return -1;
3802	else if (a->offset > b->offset)
3803		return 1;
3804	return 0;
3805}
3806
3807struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3808				    u32 field_mask, u32 value_size)
3809{
3810	struct btf_field_info info_arr[BTF_FIELDS_MAX];
3811	u32 next_off = 0, field_type_size;
3812	struct btf_record *rec;
3813	int ret, i, cnt;
3814
3815	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3816	if (ret < 0)
3817		return ERR_PTR(ret);
3818	if (!ret)
3819		return NULL;
3820
3821	cnt = ret;
3822	/* This needs to be kzalloc to zero out padding and unused fields, see
3823	 * comment in btf_record_equal.
3824	 */
3825	rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3826	if (!rec)
3827		return ERR_PTR(-ENOMEM);
3828
3829	rec->spin_lock_off = -EINVAL;
3830	rec->timer_off = -EINVAL;
3831	rec->wq_off = -EINVAL;
3832	rec->refcount_off = -EINVAL;
3833	for (i = 0; i < cnt; i++) {
3834		field_type_size = btf_field_type_size(info_arr[i].type);
3835		if (info_arr[i].off + field_type_size > value_size) {
3836			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3837			ret = -EFAULT;
3838			goto end;
3839		}
3840		if (info_arr[i].off < next_off) {
3841			ret = -EEXIST;
3842			goto end;
3843		}
3844		next_off = info_arr[i].off + field_type_size;
3845
3846		rec->field_mask |= info_arr[i].type;
3847		rec->fields[i].offset = info_arr[i].off;
3848		rec->fields[i].type = info_arr[i].type;
3849		rec->fields[i].size = field_type_size;
3850
3851		switch (info_arr[i].type) {
3852		case BPF_SPIN_LOCK:
3853			WARN_ON_ONCE(rec->spin_lock_off >= 0);
3854			/* Cache offset for faster lookup at runtime */
3855			rec->spin_lock_off = rec->fields[i].offset;
3856			break;
3857		case BPF_TIMER:
3858			WARN_ON_ONCE(rec->timer_off >= 0);
3859			/* Cache offset for faster lookup at runtime */
3860			rec->timer_off = rec->fields[i].offset;
3861			break;
3862		case BPF_WORKQUEUE:
3863			WARN_ON_ONCE(rec->wq_off >= 0);
3864			/* Cache offset for faster lookup at runtime */
3865			rec->wq_off = rec->fields[i].offset;
3866			break;
3867		case BPF_REFCOUNT:
3868			WARN_ON_ONCE(rec->refcount_off >= 0);
3869			/* Cache offset for faster lookup at runtime */
3870			rec->refcount_off = rec->fields[i].offset;
3871			break;
3872		case BPF_KPTR_UNREF:
3873		case BPF_KPTR_REF:
3874		case BPF_KPTR_PERCPU:
3875			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3876			if (ret < 0)
3877				goto end;
3878			break;
3879		case BPF_LIST_HEAD:
3880			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3881			if (ret < 0)
3882				goto end;
3883			break;
3884		case BPF_RB_ROOT:
3885			ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
3886			if (ret < 0)
3887				goto end;
3888			break;
3889		case BPF_LIST_NODE:
3890		case BPF_RB_NODE:
3891			break;
3892		default:
3893			ret = -EFAULT;
3894			goto end;
3895		}
3896		rec->cnt++;
3897	}
3898
3899	/* bpf_{list_head, rb_node} require bpf_spin_lock */
3900	if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
3901	     btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
3902		ret = -EINVAL;
3903		goto end;
3904	}
3905
3906	if (rec->refcount_off < 0 &&
3907	    btf_record_has_field(rec, BPF_LIST_NODE) &&
3908	    btf_record_has_field(rec, BPF_RB_NODE)) {
3909		ret = -EINVAL;
3910		goto end;
3911	}
3912
3913	sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
3914	       NULL, rec);
3915
3916	return rec;
3917end:
3918	btf_record_free(rec);
3919	return ERR_PTR(ret);
3920}
3921
3922int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3923{
3924	int i;
3925
3926	/* There are three types that signify ownership of some other type:
3927	 *  kptr_ref, bpf_list_head, bpf_rb_root.
3928	 * kptr_ref only supports storing kernel types, which can't store
3929	 * references to program allocated local types.
3930	 *
3931	 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
3932	 * does not form cycles.
3933	 */
3934	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_GRAPH_ROOT))
3935		return 0;
3936	for (i = 0; i < rec->cnt; i++) {
3937		struct btf_struct_meta *meta;
3938		u32 btf_id;
3939
3940		if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
3941			continue;
3942		btf_id = rec->fields[i].graph_root.value_btf_id;
3943		meta = btf_find_struct_meta(btf, btf_id);
3944		if (!meta)
3945			return -EFAULT;
3946		rec->fields[i].graph_root.value_rec = meta->record;
3947
3948		/* We need to set value_rec for all root types, but no need
3949		 * to check ownership cycle for a type unless it's also a
3950		 * node type.
3951		 */
3952		if (!(rec->field_mask & BPF_GRAPH_NODE))
3953			continue;
3954
3955		/* We need to ensure ownership acyclicity among all types. The
3956		 * proper way to do it would be to topologically sort all BTF
3957		 * IDs based on the ownership edges, since there can be multiple
3958		 * bpf_{list_head,rb_node} in a type. Instead, we use the
3959		 * following resaoning:
3960		 *
3961		 * - A type can only be owned by another type in user BTF if it
3962		 *   has a bpf_{list,rb}_node. Let's call these node types.
3963		 * - A type can only _own_ another type in user BTF if it has a
3964		 *   bpf_{list_head,rb_root}. Let's call these root types.
3965		 *
3966		 * We ensure that if a type is both a root and node, its
3967		 * element types cannot be root types.
3968		 *
3969		 * To ensure acyclicity:
3970		 *
3971		 * When A is an root type but not a node, its ownership
3972		 * chain can be:
3973		 *	A -> B -> C
3974		 * Where:
3975		 * - A is an root, e.g. has bpf_rb_root.
3976		 * - B is both a root and node, e.g. has bpf_rb_node and
3977		 *   bpf_list_head.
3978		 * - C is only an root, e.g. has bpf_list_node
3979		 *
3980		 * When A is both a root and node, some other type already
3981		 * owns it in the BTF domain, hence it can not own
3982		 * another root type through any of the ownership edges.
3983		 *	A -> B
3984		 * Where:
3985		 * - A is both an root and node.
3986		 * - B is only an node.
3987		 */
3988		if (meta->record->field_mask & BPF_GRAPH_ROOT)
3989			return -ELOOP;
3990	}
3991	return 0;
3992}
3993
3994static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3995			      u32 type_id, void *data, u8 bits_offset,
3996			      struct btf_show *show)
3997{
3998	const struct btf_member *member;
3999	void *safe_data;
4000	u32 i;
4001
4002	safe_data = btf_show_start_struct_type(show, t, type_id, data);
4003	if (!safe_data)
4004		return;
4005
4006	for_each_member(i, t, member) {
4007		const struct btf_type *member_type = btf_type_by_id(btf,
4008								member->type);
4009		const struct btf_kind_operations *ops;
4010		u32 member_offset, bitfield_size;
4011		u32 bytes_offset;
4012		u8 bits8_offset;
4013
4014		btf_show_start_member(show, member);
4015
4016		member_offset = __btf_member_bit_offset(t, member);
4017		bitfield_size = __btf_member_bitfield_size(t, member);
4018		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
4019		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
4020		if (bitfield_size) {
4021			safe_data = btf_show_start_type(show, member_type,
4022							member->type,
4023							data + bytes_offset);
4024			if (safe_data)
4025				btf_bitfield_show(safe_data,
4026						  bits8_offset,
4027						  bitfield_size, show);
4028			btf_show_end_type(show);
4029		} else {
4030			ops = btf_type_ops(member_type);
4031			ops->show(btf, member_type, member->type,
4032				  data + bytes_offset, bits8_offset, show);
4033		}
4034
4035		btf_show_end_member(show);
4036	}
4037
4038	btf_show_end_struct_type(show);
4039}
4040
4041static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
4042			    u32 type_id, void *data, u8 bits_offset,
4043			    struct btf_show *show)
4044{
4045	const struct btf_member *m = show->state.member;
4046
4047	/*
4048	 * First check if any members would be shown (are non-zero).
4049	 * See comments above "struct btf_show" definition for more
4050	 * details on how this works at a high-level.
4051	 */
4052	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
4053		if (!show->state.depth_check) {
4054			show->state.depth_check = show->state.depth + 1;
4055			show->state.depth_to_show = 0;
4056		}
4057		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4058		/* Restore saved member data here */
4059		show->state.member = m;
4060		if (show->state.depth_check != show->state.depth + 1)
4061			return;
4062		show->state.depth_check = 0;
4063
4064		if (show->state.depth_to_show <= show->state.depth)
4065			return;
4066		/*
4067		 * Reaching here indicates we have recursed and found
4068		 * non-zero child values.
4069		 */
4070	}
4071
4072	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4073}
4074
4075static struct btf_kind_operations struct_ops = {
4076	.check_meta = btf_struct_check_meta,
4077	.resolve = btf_struct_resolve,
4078	.check_member = btf_struct_check_member,
4079	.check_kflag_member = btf_generic_check_kflag_member,
4080	.log_details = btf_struct_log,
4081	.show = btf_struct_show,
4082};
4083
4084static int btf_enum_check_member(struct btf_verifier_env *env,
4085				 const struct btf_type *struct_type,
4086				 const struct btf_member *member,
4087				 const struct btf_type *member_type)
4088{
4089	u32 struct_bits_off = member->offset;
4090	u32 struct_size, bytes_offset;
4091
4092	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4093		btf_verifier_log_member(env, struct_type, member,
4094					"Member is not byte aligned");
4095		return -EINVAL;
4096	}
4097
4098	struct_size = struct_type->size;
4099	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4100	if (struct_size - bytes_offset < member_type->size) {
4101		btf_verifier_log_member(env, struct_type, member,
4102					"Member exceeds struct_size");
4103		return -EINVAL;
4104	}
4105
4106	return 0;
4107}
4108
4109static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4110				       const struct btf_type *struct_type,
4111				       const struct btf_member *member,
4112				       const struct btf_type *member_type)
4113{
4114	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4115	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4116
4117	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4118	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4119	if (!nr_bits) {
4120		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4121			btf_verifier_log_member(env, struct_type, member,
4122						"Member is not byte aligned");
4123			return -EINVAL;
4124		}
4125
4126		nr_bits = int_bitsize;
4127	} else if (nr_bits > int_bitsize) {
4128		btf_verifier_log_member(env, struct_type, member,
4129					"Invalid member bitfield_size");
4130		return -EINVAL;
4131	}
4132
4133	struct_size = struct_type->size;
4134	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4135	if (struct_size < bytes_end) {
4136		btf_verifier_log_member(env, struct_type, member,
4137					"Member exceeds struct_size");
4138		return -EINVAL;
4139	}
4140
4141	return 0;
4142}
4143
4144static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4145			       const struct btf_type *t,
4146			       u32 meta_left)
4147{
4148	const struct btf_enum *enums = btf_type_enum(t);
4149	struct btf *btf = env->btf;
4150	const char *fmt_str;
4151	u16 i, nr_enums;
4152	u32 meta_needed;
4153
4154	nr_enums = btf_type_vlen(t);
4155	meta_needed = nr_enums * sizeof(*enums);
4156
4157	if (meta_left < meta_needed) {
4158		btf_verifier_log_basic(env, t,
4159				       "meta_left:%u meta_needed:%u",
4160				       meta_left, meta_needed);
4161		return -EINVAL;
4162	}
4163
4164	if (t->size > 8 || !is_power_of_2(t->size)) {
4165		btf_verifier_log_type(env, t, "Unexpected size");
4166		return -EINVAL;
4167	}
4168
4169	/* enum type either no name or a valid one */
4170	if (t->name_off &&
4171	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4172		btf_verifier_log_type(env, t, "Invalid name");
4173		return -EINVAL;
4174	}
4175
4176	btf_verifier_log_type(env, t, NULL);
4177
4178	for (i = 0; i < nr_enums; i++) {
4179		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4180			btf_verifier_log(env, "\tInvalid name_offset:%u",
4181					 enums[i].name_off);
4182			return -EINVAL;
4183		}
4184
4185		/* enum member must have a valid name */
4186		if (!enums[i].name_off ||
4187		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4188			btf_verifier_log_type(env, t, "Invalid name");
4189			return -EINVAL;
4190		}
4191
4192		if (env->log.level == BPF_LOG_KERNEL)
4193			continue;
4194		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4195		btf_verifier_log(env, fmt_str,
4196				 __btf_name_by_offset(btf, enums[i].name_off),
4197				 enums[i].val);
4198	}
4199
4200	return meta_needed;
4201}
4202
4203static void btf_enum_log(struct btf_verifier_env *env,
4204			 const struct btf_type *t)
4205{
4206	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4207}
4208
4209static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4210			  u32 type_id, void *data, u8 bits_offset,
4211			  struct btf_show *show)
4212{
4213	const struct btf_enum *enums = btf_type_enum(t);
4214	u32 i, nr_enums = btf_type_vlen(t);
4215	void *safe_data;
4216	int v;
4217
4218	safe_data = btf_show_start_type(show, t, type_id, data);
4219	if (!safe_data)
4220		return;
4221
4222	v = *(int *)safe_data;
4223
4224	for (i = 0; i < nr_enums; i++) {
4225		if (v != enums[i].val)
4226			continue;
4227
4228		btf_show_type_value(show, "%s",
4229				    __btf_name_by_offset(btf,
4230							 enums[i].name_off));
4231
4232		btf_show_end_type(show);
4233		return;
4234	}
4235
4236	if (btf_type_kflag(t))
4237		btf_show_type_value(show, "%d", v);
4238	else
4239		btf_show_type_value(show, "%u", v);
4240	btf_show_end_type(show);
4241}
4242
4243static struct btf_kind_operations enum_ops = {
4244	.check_meta = btf_enum_check_meta,
4245	.resolve = btf_df_resolve,
4246	.check_member = btf_enum_check_member,
4247	.check_kflag_member = btf_enum_check_kflag_member,
4248	.log_details = btf_enum_log,
4249	.show = btf_enum_show,
4250};
4251
4252static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4253				 const struct btf_type *t,
4254				 u32 meta_left)
4255{
4256	const struct btf_enum64 *enums = btf_type_enum64(t);
4257	struct btf *btf = env->btf;
4258	const char *fmt_str;
4259	u16 i, nr_enums;
4260	u32 meta_needed;
4261
4262	nr_enums = btf_type_vlen(t);
4263	meta_needed = nr_enums * sizeof(*enums);
4264
4265	if (meta_left < meta_needed) {
4266		btf_verifier_log_basic(env, t,
4267				       "meta_left:%u meta_needed:%u",
4268				       meta_left, meta_needed);
4269		return -EINVAL;
4270	}
4271
4272	if (t->size > 8 || !is_power_of_2(t->size)) {
4273		btf_verifier_log_type(env, t, "Unexpected size");
4274		return -EINVAL;
4275	}
4276
4277	/* enum type either no name or a valid one */
4278	if (t->name_off &&
4279	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4280		btf_verifier_log_type(env, t, "Invalid name");
4281		return -EINVAL;
4282	}
4283
4284	btf_verifier_log_type(env, t, NULL);
4285
4286	for (i = 0; i < nr_enums; i++) {
4287		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4288			btf_verifier_log(env, "\tInvalid name_offset:%u",
4289					 enums[i].name_off);
4290			return -EINVAL;
4291		}
4292
4293		/* enum member must have a valid name */
4294		if (!enums[i].name_off ||
4295		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4296			btf_verifier_log_type(env, t, "Invalid name");
4297			return -EINVAL;
4298		}
4299
4300		if (env->log.level == BPF_LOG_KERNEL)
4301			continue;
4302
4303		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4304		btf_verifier_log(env, fmt_str,
4305				 __btf_name_by_offset(btf, enums[i].name_off),
4306				 btf_enum64_value(enums + i));
4307	}
4308
4309	return meta_needed;
4310}
4311
4312static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4313			    u32 type_id, void *data, u8 bits_offset,
4314			    struct btf_show *show)
4315{
4316	const struct btf_enum64 *enums = btf_type_enum64(t);
4317	u32 i, nr_enums = btf_type_vlen(t);
4318	void *safe_data;
4319	s64 v;
4320
4321	safe_data = btf_show_start_type(show, t, type_id, data);
4322	if (!safe_data)
4323		return;
4324
4325	v = *(u64 *)safe_data;
4326
4327	for (i = 0; i < nr_enums; i++) {
4328		if (v != btf_enum64_value(enums + i))
4329			continue;
4330
4331		btf_show_type_value(show, "%s",
4332				    __btf_name_by_offset(btf,
4333							 enums[i].name_off));
4334
4335		btf_show_end_type(show);
4336		return;
4337	}
4338
4339	if (btf_type_kflag(t))
4340		btf_show_type_value(show, "%lld", v);
4341	else
4342		btf_show_type_value(show, "%llu", v);
4343	btf_show_end_type(show);
4344}
4345
4346static struct btf_kind_operations enum64_ops = {
4347	.check_meta = btf_enum64_check_meta,
4348	.resolve = btf_df_resolve,
4349	.check_member = btf_enum_check_member,
4350	.check_kflag_member = btf_enum_check_kflag_member,
4351	.log_details = btf_enum_log,
4352	.show = btf_enum64_show,
4353};
4354
4355static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4356				     const struct btf_type *t,
4357				     u32 meta_left)
4358{
4359	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4360
4361	if (meta_left < meta_needed) {
4362		btf_verifier_log_basic(env, t,
4363				       "meta_left:%u meta_needed:%u",
4364				       meta_left, meta_needed);
4365		return -EINVAL;
4366	}
4367
4368	if (t->name_off) {
4369		btf_verifier_log_type(env, t, "Invalid name");
4370		return -EINVAL;
4371	}
4372
4373	if (btf_type_kflag(t)) {
4374		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4375		return -EINVAL;
4376	}
4377
4378	btf_verifier_log_type(env, t, NULL);
4379
4380	return meta_needed;
4381}
4382
4383static void btf_func_proto_log(struct btf_verifier_env *env,
4384			       const struct btf_type *t)
4385{
4386	const struct btf_param *args = (const struct btf_param *)(t + 1);
4387	u16 nr_args = btf_type_vlen(t), i;
4388
4389	btf_verifier_log(env, "return=%u args=(", t->type);
4390	if (!nr_args) {
4391		btf_verifier_log(env, "void");
4392		goto done;
4393	}
4394
4395	if (nr_args == 1 && !args[0].type) {
4396		/* Only one vararg */
4397		btf_verifier_log(env, "vararg");
4398		goto done;
4399	}
4400
4401	btf_verifier_log(env, "%u %s", args[0].type,
4402			 __btf_name_by_offset(env->btf,
4403					      args[0].name_off));
4404	for (i = 1; i < nr_args - 1; i++)
4405		btf_verifier_log(env, ", %u %s", args[i].type,
4406				 __btf_name_by_offset(env->btf,
4407						      args[i].name_off));
4408
4409	if (nr_args > 1) {
4410		const struct btf_param *last_arg = &args[nr_args - 1];
4411
4412		if (last_arg->type)
4413			btf_verifier_log(env, ", %u %s", last_arg->type,
4414					 __btf_name_by_offset(env->btf,
4415							      last_arg->name_off));
4416		else
4417			btf_verifier_log(env, ", vararg");
4418	}
4419
4420done:
4421	btf_verifier_log(env, ")");
4422}
4423
4424static struct btf_kind_operations func_proto_ops = {
4425	.check_meta = btf_func_proto_check_meta,
4426	.resolve = btf_df_resolve,
4427	/*
4428	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4429	 * a struct's member.
4430	 *
4431	 * It should be a function pointer instead.
4432	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4433	 *
4434	 * Hence, there is no btf_func_check_member().
4435	 */
4436	.check_member = btf_df_check_member,
4437	.check_kflag_member = btf_df_check_kflag_member,
4438	.log_details = btf_func_proto_log,
4439	.show = btf_df_show,
4440};
4441
4442static s32 btf_func_check_meta(struct btf_verifier_env *env,
4443			       const struct btf_type *t,
4444			       u32 meta_left)
4445{
4446	if (!t->name_off ||
4447	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4448		btf_verifier_log_type(env, t, "Invalid name");
4449		return -EINVAL;
4450	}
4451
4452	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4453		btf_verifier_log_type(env, t, "Invalid func linkage");
4454		return -EINVAL;
4455	}
4456
4457	if (btf_type_kflag(t)) {
4458		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4459		return -EINVAL;
4460	}
4461
4462	btf_verifier_log_type(env, t, NULL);
4463
4464	return 0;
4465}
4466
4467static int btf_func_resolve(struct btf_verifier_env *env,
4468			    const struct resolve_vertex *v)
4469{
4470	const struct btf_type *t = v->t;
4471	u32 next_type_id = t->type;
4472	int err;
4473
4474	err = btf_func_check(env, t);
4475	if (err)
4476		return err;
4477
4478	env_stack_pop_resolved(env, next_type_id, 0);
4479	return 0;
4480}
4481
4482static struct btf_kind_operations func_ops = {
4483	.check_meta = btf_func_check_meta,
4484	.resolve = btf_func_resolve,
4485	.check_member = btf_df_check_member,
4486	.check_kflag_member = btf_df_check_kflag_member,
4487	.log_details = btf_ref_type_log,
4488	.show = btf_df_show,
4489};
4490
4491static s32 btf_var_check_meta(struct btf_verifier_env *env,
4492			      const struct btf_type *t,
4493			      u32 meta_left)
4494{
4495	const struct btf_var *var;
4496	u32 meta_needed = sizeof(*var);
4497
4498	if (meta_left < meta_needed) {
4499		btf_verifier_log_basic(env, t,
4500				       "meta_left:%u meta_needed:%u",
4501				       meta_left, meta_needed);
4502		return -EINVAL;
4503	}
4504
4505	if (btf_type_vlen(t)) {
4506		btf_verifier_log_type(env, t, "vlen != 0");
4507		return -EINVAL;
4508	}
4509
4510	if (btf_type_kflag(t)) {
4511		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4512		return -EINVAL;
4513	}
4514
4515	if (!t->name_off ||
4516	    !__btf_name_valid(env->btf, t->name_off)) {
4517		btf_verifier_log_type(env, t, "Invalid name");
4518		return -EINVAL;
4519	}
4520
4521	/* A var cannot be in type void */
4522	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4523		btf_verifier_log_type(env, t, "Invalid type_id");
4524		return -EINVAL;
4525	}
4526
4527	var = btf_type_var(t);
4528	if (var->linkage != BTF_VAR_STATIC &&
4529	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4530		btf_verifier_log_type(env, t, "Linkage not supported");
4531		return -EINVAL;
4532	}
4533
4534	btf_verifier_log_type(env, t, NULL);
4535
4536	return meta_needed;
4537}
4538
4539static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4540{
4541	const struct btf_var *var = btf_type_var(t);
4542
4543	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4544}
4545
4546static const struct btf_kind_operations var_ops = {
4547	.check_meta		= btf_var_check_meta,
4548	.resolve		= btf_var_resolve,
4549	.check_member		= btf_df_check_member,
4550	.check_kflag_member	= btf_df_check_kflag_member,
4551	.log_details		= btf_var_log,
4552	.show			= btf_var_show,
4553};
4554
4555static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4556				  const struct btf_type *t,
4557				  u32 meta_left)
4558{
4559	const struct btf_var_secinfo *vsi;
4560	u64 last_vsi_end_off = 0, sum = 0;
4561	u32 i, meta_needed;
4562
4563	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4564	if (meta_left < meta_needed) {
4565		btf_verifier_log_basic(env, t,
4566				       "meta_left:%u meta_needed:%u",
4567				       meta_left, meta_needed);
4568		return -EINVAL;
4569	}
4570
4571	if (!t->size) {
4572		btf_verifier_log_type(env, t, "size == 0");
4573		return -EINVAL;
4574	}
4575
4576	if (btf_type_kflag(t)) {
4577		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4578		return -EINVAL;
4579	}
4580
4581	if (!t->name_off ||
4582	    !btf_name_valid_section(env->btf, t->name_off)) {
4583		btf_verifier_log_type(env, t, "Invalid name");
4584		return -EINVAL;
4585	}
4586
4587	btf_verifier_log_type(env, t, NULL);
4588
4589	for_each_vsi(i, t, vsi) {
4590		/* A var cannot be in type void */
4591		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4592			btf_verifier_log_vsi(env, t, vsi,
4593					     "Invalid type_id");
4594			return -EINVAL;
4595		}
4596
4597		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4598			btf_verifier_log_vsi(env, t, vsi,
4599					     "Invalid offset");
4600			return -EINVAL;
4601		}
4602
4603		if (!vsi->size || vsi->size > t->size) {
4604			btf_verifier_log_vsi(env, t, vsi,
4605					     "Invalid size");
4606			return -EINVAL;
4607		}
4608
4609		last_vsi_end_off = vsi->offset + vsi->size;
4610		if (last_vsi_end_off > t->size) {
4611			btf_verifier_log_vsi(env, t, vsi,
4612					     "Invalid offset+size");
4613			return -EINVAL;
4614		}
4615
4616		btf_verifier_log_vsi(env, t, vsi, NULL);
4617		sum += vsi->size;
4618	}
4619
4620	if (t->size < sum) {
4621		btf_verifier_log_type(env, t, "Invalid btf_info size");
4622		return -EINVAL;
4623	}
4624
4625	return meta_needed;
4626}
4627
4628static int btf_datasec_resolve(struct btf_verifier_env *env,
4629			       const struct resolve_vertex *v)
4630{
4631	const struct btf_var_secinfo *vsi;
4632	struct btf *btf = env->btf;
4633	u16 i;
4634
4635	env->resolve_mode = RESOLVE_TBD;
4636	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4637		u32 var_type_id = vsi->type, type_id, type_size = 0;
4638		const struct btf_type *var_type = btf_type_by_id(env->btf,
4639								 var_type_id);
4640		if (!var_type || !btf_type_is_var(var_type)) {
4641			btf_verifier_log_vsi(env, v->t, vsi,
4642					     "Not a VAR kind member");
4643			return -EINVAL;
4644		}
4645
4646		if (!env_type_is_resolve_sink(env, var_type) &&
4647		    !env_type_is_resolved(env, var_type_id)) {
4648			env_stack_set_next_member(env, i + 1);
4649			return env_stack_push(env, var_type, var_type_id);
4650		}
4651
4652		type_id = var_type->type;
4653		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4654			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4655			return -EINVAL;
4656		}
4657
4658		if (vsi->size < type_size) {
4659			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4660			return -EINVAL;
4661		}
4662	}
4663
4664	env_stack_pop_resolved(env, 0, 0);
4665	return 0;
4666}
4667
4668static void btf_datasec_log(struct btf_verifier_env *env,
4669			    const struct btf_type *t)
4670{
4671	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4672}
4673
4674static void btf_datasec_show(const struct btf *btf,
4675			     const struct btf_type *t, u32 type_id,
4676			     void *data, u8 bits_offset,
4677			     struct btf_show *show)
4678{
4679	const struct btf_var_secinfo *vsi;
4680	const struct btf_type *var;
4681	u32 i;
4682
4683	if (!btf_show_start_type(show, t, type_id, data))
4684		return;
4685
4686	btf_show_type_value(show, "section (\"%s\") = {",
4687			    __btf_name_by_offset(btf, t->name_off));
4688	for_each_vsi(i, t, vsi) {
4689		var = btf_type_by_id(btf, vsi->type);
4690		if (i)
4691			btf_show(show, ",");
4692		btf_type_ops(var)->show(btf, var, vsi->type,
4693					data + vsi->offset, bits_offset, show);
4694	}
4695	btf_show_end_type(show);
4696}
4697
4698static const struct btf_kind_operations datasec_ops = {
4699	.check_meta		= btf_datasec_check_meta,
4700	.resolve		= btf_datasec_resolve,
4701	.check_member		= btf_df_check_member,
4702	.check_kflag_member	= btf_df_check_kflag_member,
4703	.log_details		= btf_datasec_log,
4704	.show			= btf_datasec_show,
4705};
4706
4707static s32 btf_float_check_meta(struct btf_verifier_env *env,
4708				const struct btf_type *t,
4709				u32 meta_left)
4710{
4711	if (btf_type_vlen(t)) {
4712		btf_verifier_log_type(env, t, "vlen != 0");
4713		return -EINVAL;
4714	}
4715
4716	if (btf_type_kflag(t)) {
4717		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4718		return -EINVAL;
4719	}
4720
4721	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4722	    t->size != 16) {
4723		btf_verifier_log_type(env, t, "Invalid type_size");
4724		return -EINVAL;
4725	}
4726
4727	btf_verifier_log_type(env, t, NULL);
4728
4729	return 0;
4730}
4731
4732static int btf_float_check_member(struct btf_verifier_env *env,
4733				  const struct btf_type *struct_type,
4734				  const struct btf_member *member,
4735				  const struct btf_type *member_type)
4736{
4737	u64 start_offset_bytes;
4738	u64 end_offset_bytes;
4739	u64 misalign_bits;
4740	u64 align_bytes;
4741	u64 align_bits;
4742
4743	/* Different architectures have different alignment requirements, so
4744	 * here we check only for the reasonable minimum. This way we ensure
4745	 * that types after CO-RE can pass the kernel BTF verifier.
4746	 */
4747	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4748	align_bits = align_bytes * BITS_PER_BYTE;
4749	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4750	if (misalign_bits) {
4751		btf_verifier_log_member(env, struct_type, member,
4752					"Member is not properly aligned");
4753		return -EINVAL;
4754	}
4755
4756	start_offset_bytes = member->offset / BITS_PER_BYTE;
4757	end_offset_bytes = start_offset_bytes + member_type->size;
4758	if (end_offset_bytes > struct_type->size) {
4759		btf_verifier_log_member(env, struct_type, member,
4760					"Member exceeds struct_size");
4761		return -EINVAL;
4762	}
4763
4764	return 0;
4765}
4766
4767static void btf_float_log(struct btf_verifier_env *env,
4768			  const struct btf_type *t)
4769{
4770	btf_verifier_log(env, "size=%u", t->size);
4771}
4772
4773static const struct btf_kind_operations float_ops = {
4774	.check_meta = btf_float_check_meta,
4775	.resolve = btf_df_resolve,
4776	.check_member = btf_float_check_member,
4777	.check_kflag_member = btf_generic_check_kflag_member,
4778	.log_details = btf_float_log,
4779	.show = btf_df_show,
4780};
4781
4782static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4783			      const struct btf_type *t,
4784			      u32 meta_left)
4785{
4786	const struct btf_decl_tag *tag;
4787	u32 meta_needed = sizeof(*tag);
4788	s32 component_idx;
4789	const char *value;
4790
4791	if (meta_left < meta_needed) {
4792		btf_verifier_log_basic(env, t,
4793				       "meta_left:%u meta_needed:%u",
4794				       meta_left, meta_needed);
4795		return -EINVAL;
4796	}
4797
4798	value = btf_name_by_offset(env->btf, t->name_off);
4799	if (!value || !value[0]) {
4800		btf_verifier_log_type(env, t, "Invalid value");
4801		return -EINVAL;
4802	}
4803
4804	if (btf_type_vlen(t)) {
4805		btf_verifier_log_type(env, t, "vlen != 0");
4806		return -EINVAL;
4807	}
4808
4809	if (btf_type_kflag(t)) {
4810		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4811		return -EINVAL;
4812	}
4813
4814	component_idx = btf_type_decl_tag(t)->component_idx;
4815	if (component_idx < -1) {
4816		btf_verifier_log_type(env, t, "Invalid component_idx");
4817		return -EINVAL;
4818	}
4819
4820	btf_verifier_log_type(env, t, NULL);
4821
4822	return meta_needed;
4823}
4824
4825static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4826			   const struct resolve_vertex *v)
4827{
4828	const struct btf_type *next_type;
4829	const struct btf_type *t = v->t;
4830	u32 next_type_id = t->type;
4831	struct btf *btf = env->btf;
4832	s32 component_idx;
4833	u32 vlen;
4834
4835	next_type = btf_type_by_id(btf, next_type_id);
4836	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4837		btf_verifier_log_type(env, v->t, "Invalid type_id");
4838		return -EINVAL;
4839	}
4840
4841	if (!env_type_is_resolve_sink(env, next_type) &&
4842	    !env_type_is_resolved(env, next_type_id))
4843		return env_stack_push(env, next_type, next_type_id);
4844
4845	component_idx = btf_type_decl_tag(t)->component_idx;
4846	if (component_idx != -1) {
4847		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4848			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4849			return -EINVAL;
4850		}
4851
4852		if (btf_type_is_struct(next_type)) {
4853			vlen = btf_type_vlen(next_type);
4854		} else {
4855			/* next_type should be a function */
4856			next_type = btf_type_by_id(btf, next_type->type);
4857			vlen = btf_type_vlen(next_type);
4858		}
4859
4860		if ((u32)component_idx >= vlen) {
4861			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4862			return -EINVAL;
4863		}
4864	}
4865
4866	env_stack_pop_resolved(env, next_type_id, 0);
4867
4868	return 0;
4869}
4870
4871static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4872{
4873	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4874			 btf_type_decl_tag(t)->component_idx);
4875}
4876
4877static const struct btf_kind_operations decl_tag_ops = {
4878	.check_meta = btf_decl_tag_check_meta,
4879	.resolve = btf_decl_tag_resolve,
4880	.check_member = btf_df_check_member,
4881	.check_kflag_member = btf_df_check_kflag_member,
4882	.log_details = btf_decl_tag_log,
4883	.show = btf_df_show,
4884};
4885
4886static int btf_func_proto_check(struct btf_verifier_env *env,
4887				const struct btf_type *t)
4888{
4889	const struct btf_type *ret_type;
4890	const struct btf_param *args;
4891	const struct btf *btf;
4892	u16 nr_args, i;
4893	int err;
4894
4895	btf = env->btf;
4896	args = (const struct btf_param *)(t + 1);
4897	nr_args = btf_type_vlen(t);
4898
4899	/* Check func return type which could be "void" (t->type == 0) */
4900	if (t->type) {
4901		u32 ret_type_id = t->type;
4902
4903		ret_type = btf_type_by_id(btf, ret_type_id);
4904		if (!ret_type) {
4905			btf_verifier_log_type(env, t, "Invalid return type");
4906			return -EINVAL;
4907		}
4908
4909		if (btf_type_is_resolve_source_only(ret_type)) {
4910			btf_verifier_log_type(env, t, "Invalid return type");
4911			return -EINVAL;
4912		}
4913
4914		if (btf_type_needs_resolve(ret_type) &&
4915		    !env_type_is_resolved(env, ret_type_id)) {
4916			err = btf_resolve(env, ret_type, ret_type_id);
4917			if (err)
4918				return err;
4919		}
4920
4921		/* Ensure the return type is a type that has a size */
4922		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4923			btf_verifier_log_type(env, t, "Invalid return type");
4924			return -EINVAL;
4925		}
4926	}
4927
4928	if (!nr_args)
4929		return 0;
4930
4931	/* Last func arg type_id could be 0 if it is a vararg */
4932	if (!args[nr_args - 1].type) {
4933		if (args[nr_args - 1].name_off) {
4934			btf_verifier_log_type(env, t, "Invalid arg#%u",
4935					      nr_args);
4936			return -EINVAL;
4937		}
4938		nr_args--;
4939	}
4940
4941	for (i = 0; i < nr_args; i++) {
4942		const struct btf_type *arg_type;
4943		u32 arg_type_id;
4944
4945		arg_type_id = args[i].type;
4946		arg_type = btf_type_by_id(btf, arg_type_id);
4947		if (!arg_type) {
4948			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4949			return -EINVAL;
4950		}
4951
4952		if (btf_type_is_resolve_source_only(arg_type)) {
4953			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4954			return -EINVAL;
4955		}
4956
4957		if (args[i].name_off &&
4958		    (!btf_name_offset_valid(btf, args[i].name_off) ||
4959		     !btf_name_valid_identifier(btf, args[i].name_off))) {
4960			btf_verifier_log_type(env, t,
4961					      "Invalid arg#%u", i + 1);
4962			return -EINVAL;
4963		}
4964
4965		if (btf_type_needs_resolve(arg_type) &&
4966		    !env_type_is_resolved(env, arg_type_id)) {
4967			err = btf_resolve(env, arg_type, arg_type_id);
4968			if (err)
4969				return err;
4970		}
4971
4972		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4973			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4974			return -EINVAL;
4975		}
4976	}
4977
4978	return 0;
4979}
4980
4981static int btf_func_check(struct btf_verifier_env *env,
4982			  const struct btf_type *t)
4983{
4984	const struct btf_type *proto_type;
4985	const struct btf_param *args;
4986	const struct btf *btf;
4987	u16 nr_args, i;
4988
4989	btf = env->btf;
4990	proto_type = btf_type_by_id(btf, t->type);
4991
4992	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4993		btf_verifier_log_type(env, t, "Invalid type_id");
4994		return -EINVAL;
4995	}
4996
4997	args = (const struct btf_param *)(proto_type + 1);
4998	nr_args = btf_type_vlen(proto_type);
4999	for (i = 0; i < nr_args; i++) {
5000		if (!args[i].name_off && args[i].type) {
5001			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5002			return -EINVAL;
5003		}
5004	}
5005
5006	return 0;
5007}
5008
5009static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
5010	[BTF_KIND_INT] = &int_ops,
5011	[BTF_KIND_PTR] = &ptr_ops,
5012	[BTF_KIND_ARRAY] = &array_ops,
5013	[BTF_KIND_STRUCT] = &struct_ops,
5014	[BTF_KIND_UNION] = &struct_ops,
5015	[BTF_KIND_ENUM] = &enum_ops,
5016	[BTF_KIND_FWD] = &fwd_ops,
5017	[BTF_KIND_TYPEDEF] = &modifier_ops,
5018	[BTF_KIND_VOLATILE] = &modifier_ops,
5019	[BTF_KIND_CONST] = &modifier_ops,
5020	[BTF_KIND_RESTRICT] = &modifier_ops,
5021	[BTF_KIND_FUNC] = &func_ops,
5022	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
5023	[BTF_KIND_VAR] = &var_ops,
5024	[BTF_KIND_DATASEC] = &datasec_ops,
5025	[BTF_KIND_FLOAT] = &float_ops,
5026	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
5027	[BTF_KIND_TYPE_TAG] = &modifier_ops,
5028	[BTF_KIND_ENUM64] = &enum64_ops,
5029};
5030
5031static s32 btf_check_meta(struct btf_verifier_env *env,
5032			  const struct btf_type *t,
5033			  u32 meta_left)
5034{
5035	u32 saved_meta_left = meta_left;
5036	s32 var_meta_size;
5037
5038	if (meta_left < sizeof(*t)) {
5039		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
5040				 env->log_type_id, meta_left, sizeof(*t));
5041		return -EINVAL;
5042	}
5043	meta_left -= sizeof(*t);
5044
5045	if (t->info & ~BTF_INFO_MASK) {
5046		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
5047				 env->log_type_id, t->info);
5048		return -EINVAL;
5049	}
5050
5051	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
5052	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
5053		btf_verifier_log(env, "[%u] Invalid kind:%u",
5054				 env->log_type_id, BTF_INFO_KIND(t->info));
5055		return -EINVAL;
5056	}
5057
5058	if (!btf_name_offset_valid(env->btf, t->name_off)) {
5059		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
5060				 env->log_type_id, t->name_off);
5061		return -EINVAL;
5062	}
5063
5064	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
5065	if (var_meta_size < 0)
5066		return var_meta_size;
5067
5068	meta_left -= var_meta_size;
5069
5070	return saved_meta_left - meta_left;
5071}
5072
5073static int btf_check_all_metas(struct btf_verifier_env *env)
5074{
5075	struct btf *btf = env->btf;
5076	struct btf_header *hdr;
5077	void *cur, *end;
5078
5079	hdr = &btf->hdr;
5080	cur = btf->nohdr_data + hdr->type_off;
5081	end = cur + hdr->type_len;
5082
5083	env->log_type_id = btf->base_btf ? btf->start_id : 1;
5084	while (cur < end) {
5085		struct btf_type *t = cur;
5086		s32 meta_size;
5087
5088		meta_size = btf_check_meta(env, t, end - cur);
5089		if (meta_size < 0)
5090			return meta_size;
5091
5092		btf_add_type(env, t);
5093		cur += meta_size;
5094		env->log_type_id++;
5095	}
5096
5097	return 0;
5098}
5099
5100static bool btf_resolve_valid(struct btf_verifier_env *env,
5101			      const struct btf_type *t,
5102			      u32 type_id)
5103{
5104	struct btf *btf = env->btf;
5105
5106	if (!env_type_is_resolved(env, type_id))
5107		return false;
5108
5109	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5110		return !btf_resolved_type_id(btf, type_id) &&
5111		       !btf_resolved_type_size(btf, type_id);
5112
5113	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5114		return btf_resolved_type_id(btf, type_id) &&
5115		       !btf_resolved_type_size(btf, type_id);
5116
5117	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5118	    btf_type_is_var(t)) {
5119		t = btf_type_id_resolve(btf, &type_id);
5120		return t &&
5121		       !btf_type_is_modifier(t) &&
5122		       !btf_type_is_var(t) &&
5123		       !btf_type_is_datasec(t);
5124	}
5125
5126	if (btf_type_is_array(t)) {
5127		const struct btf_array *array = btf_type_array(t);
5128		const struct btf_type *elem_type;
5129		u32 elem_type_id = array->type;
5130		u32 elem_size;
5131
5132		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5133		return elem_type && !btf_type_is_modifier(elem_type) &&
5134			(array->nelems * elem_size ==
5135			 btf_resolved_type_size(btf, type_id));
5136	}
5137
5138	return false;
5139}
5140
5141static int btf_resolve(struct btf_verifier_env *env,
5142		       const struct btf_type *t, u32 type_id)
5143{
5144	u32 save_log_type_id = env->log_type_id;
5145	const struct resolve_vertex *v;
5146	int err = 0;
5147
5148	env->resolve_mode = RESOLVE_TBD;
5149	env_stack_push(env, t, type_id);
5150	while (!err && (v = env_stack_peak(env))) {
5151		env->log_type_id = v->type_id;
5152		err = btf_type_ops(v->t)->resolve(env, v);
5153	}
5154
5155	env->log_type_id = type_id;
5156	if (err == -E2BIG) {
5157		btf_verifier_log_type(env, t,
5158				      "Exceeded max resolving depth:%u",
5159				      MAX_RESOLVE_DEPTH);
5160	} else if (err == -EEXIST) {
5161		btf_verifier_log_type(env, t, "Loop detected");
5162	}
5163
5164	/* Final sanity check */
5165	if (!err && !btf_resolve_valid(env, t, type_id)) {
5166		btf_verifier_log_type(env, t, "Invalid resolve state");
5167		err = -EINVAL;
5168	}
5169
5170	env->log_type_id = save_log_type_id;
5171	return err;
5172}
5173
5174static int btf_check_all_types(struct btf_verifier_env *env)
5175{
5176	struct btf *btf = env->btf;
5177	const struct btf_type *t;
5178	u32 type_id, i;
5179	int err;
5180
5181	err = env_resolve_init(env);
5182	if (err)
5183		return err;
5184
5185	env->phase++;
5186	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5187		type_id = btf->start_id + i;
5188		t = btf_type_by_id(btf, type_id);
5189
5190		env->log_type_id = type_id;
5191		if (btf_type_needs_resolve(t) &&
5192		    !env_type_is_resolved(env, type_id)) {
5193			err = btf_resolve(env, t, type_id);
5194			if (err)
5195				return err;
5196		}
5197
5198		if (btf_type_is_func_proto(t)) {
5199			err = btf_func_proto_check(env, t);
5200			if (err)
5201				return err;
5202		}
5203	}
5204
5205	return 0;
5206}
5207
5208static int btf_parse_type_sec(struct btf_verifier_env *env)
5209{
5210	const struct btf_header *hdr = &env->btf->hdr;
5211	int err;
5212
5213	/* Type section must align to 4 bytes */
5214	if (hdr->type_off & (sizeof(u32) - 1)) {
5215		btf_verifier_log(env, "Unaligned type_off");
5216		return -EINVAL;
5217	}
5218
5219	if (!env->btf->base_btf && !hdr->type_len) {
5220		btf_verifier_log(env, "No type found");
5221		return -EINVAL;
5222	}
5223
5224	err = btf_check_all_metas(env);
5225	if (err)
5226		return err;
5227
5228	return btf_check_all_types(env);
5229}
5230
5231static int btf_parse_str_sec(struct btf_verifier_env *env)
5232{
5233	const struct btf_header *hdr;
5234	struct btf *btf = env->btf;
5235	const char *start, *end;
5236
5237	hdr = &btf->hdr;
5238	start = btf->nohdr_data + hdr->str_off;
5239	end = start + hdr->str_len;
5240
5241	if (end != btf->data + btf->data_size) {
5242		btf_verifier_log(env, "String section is not at the end");
5243		return -EINVAL;
5244	}
5245
5246	btf->strings = start;
5247
5248	if (btf->base_btf && !hdr->str_len)
5249		return 0;
5250	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5251		btf_verifier_log(env, "Invalid string section");
5252		return -EINVAL;
5253	}
5254	if (!btf->base_btf && start[0]) {
5255		btf_verifier_log(env, "Invalid string section");
5256		return -EINVAL;
5257	}
5258
5259	return 0;
5260}
5261
5262static const size_t btf_sec_info_offset[] = {
5263	offsetof(struct btf_header, type_off),
5264	offsetof(struct btf_header, str_off),
5265};
5266
5267static int btf_sec_info_cmp(const void *a, const void *b)
5268{
5269	const struct btf_sec_info *x = a;
5270	const struct btf_sec_info *y = b;
5271
5272	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5273}
5274
5275static int btf_check_sec_info(struct btf_verifier_env *env,
5276			      u32 btf_data_size)
5277{
5278	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5279	u32 total, expected_total, i;
5280	const struct btf_header *hdr;
5281	const struct btf *btf;
5282
5283	btf = env->btf;
5284	hdr = &btf->hdr;
5285
5286	/* Populate the secs from hdr */
5287	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5288		secs[i] = *(struct btf_sec_info *)((void *)hdr +
5289						   btf_sec_info_offset[i]);
5290
5291	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5292	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5293
5294	/* Check for gaps and overlap among sections */
5295	total = 0;
5296	expected_total = btf_data_size - hdr->hdr_len;
5297	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5298		if (expected_total < secs[i].off) {
5299			btf_verifier_log(env, "Invalid section offset");
5300			return -EINVAL;
5301		}
5302		if (total < secs[i].off) {
5303			/* gap */
5304			btf_verifier_log(env, "Unsupported section found");
5305			return -EINVAL;
5306		}
5307		if (total > secs[i].off) {
5308			btf_verifier_log(env, "Section overlap found");
5309			return -EINVAL;
5310		}
5311		if (expected_total - total < secs[i].len) {
5312			btf_verifier_log(env,
5313					 "Total section length too long");
5314			return -EINVAL;
5315		}
5316		total += secs[i].len;
5317	}
5318
5319	/* There is data other than hdr and known sections */
5320	if (expected_total != total) {
5321		btf_verifier_log(env, "Unsupported section found");
5322		return -EINVAL;
5323	}
5324
5325	return 0;
5326}
5327
5328static int btf_parse_hdr(struct btf_verifier_env *env)
5329{
5330	u32 hdr_len, hdr_copy, btf_data_size;
5331	const struct btf_header *hdr;
5332	struct btf *btf;
5333
5334	btf = env->btf;
5335	btf_data_size = btf->data_size;
5336
5337	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5338		btf_verifier_log(env, "hdr_len not found");
5339		return -EINVAL;
5340	}
5341
5342	hdr = btf->data;
5343	hdr_len = hdr->hdr_len;
5344	if (btf_data_size < hdr_len) {
5345		btf_verifier_log(env, "btf_header not found");
5346		return -EINVAL;
5347	}
5348
5349	/* Ensure the unsupported header fields are zero */
5350	if (hdr_len > sizeof(btf->hdr)) {
5351		u8 *expected_zero = btf->data + sizeof(btf->hdr);
5352		u8 *end = btf->data + hdr_len;
5353
5354		for (; expected_zero < end; expected_zero++) {
5355			if (*expected_zero) {
5356				btf_verifier_log(env, "Unsupported btf_header");
5357				return -E2BIG;
5358			}
5359		}
5360	}
5361
5362	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5363	memcpy(&btf->hdr, btf->data, hdr_copy);
5364
5365	hdr = &btf->hdr;
5366
5367	btf_verifier_log_hdr(env, btf_data_size);
5368
5369	if (hdr->magic != BTF_MAGIC) {
5370		btf_verifier_log(env, "Invalid magic");
5371		return -EINVAL;
5372	}
5373
5374	if (hdr->version != BTF_VERSION) {
5375		btf_verifier_log(env, "Unsupported version");
5376		return -ENOTSUPP;
5377	}
5378
5379	if (hdr->flags) {
5380		btf_verifier_log(env, "Unsupported flags");
5381		return -ENOTSUPP;
5382	}
5383
5384	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5385		btf_verifier_log(env, "No data");
5386		return -EINVAL;
5387	}
5388
5389	return btf_check_sec_info(env, btf_data_size);
5390}
5391
5392static const char *alloc_obj_fields[] = {
5393	"bpf_spin_lock",
5394	"bpf_list_head",
5395	"bpf_list_node",
5396	"bpf_rb_root",
5397	"bpf_rb_node",
5398	"bpf_refcount",
5399};
5400
5401static struct btf_struct_metas *
5402btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5403{
5404	union {
5405		struct btf_id_set set;
5406		struct {
5407			u32 _cnt;
5408			u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5409		} _arr;
5410	} aof;
5411	struct btf_struct_metas *tab = NULL;
5412	int i, n, id, ret;
5413
5414	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5415	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5416
5417	memset(&aof, 0, sizeof(aof));
5418	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5419		/* Try to find whether this special type exists in user BTF, and
5420		 * if so remember its ID so we can easily find it among members
5421		 * of structs that we iterate in the next loop.
5422		 */
5423		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5424		if (id < 0)
5425			continue;
5426		aof.set.ids[aof.set.cnt++] = id;
5427	}
5428
5429	if (!aof.set.cnt)
5430		return NULL;
5431	sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5432
5433	n = btf_nr_types(btf);
5434	for (i = 1; i < n; i++) {
5435		struct btf_struct_metas *new_tab;
5436		const struct btf_member *member;
5437		struct btf_struct_meta *type;
5438		struct btf_record *record;
5439		const struct btf_type *t;
5440		int j, tab_cnt;
5441
5442		t = btf_type_by_id(btf, i);
5443		if (!t) {
5444			ret = -EINVAL;
5445			goto free;
5446		}
5447		if (!__btf_type_is_struct(t))
5448			continue;
5449
5450		cond_resched();
5451
5452		for_each_member(j, t, member) {
5453			if (btf_id_set_contains(&aof.set, member->type))
5454				goto parse;
5455		}
5456		continue;
5457	parse:
5458		tab_cnt = tab ? tab->cnt : 0;
5459		new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5460				   GFP_KERNEL | __GFP_NOWARN);
5461		if (!new_tab) {
5462			ret = -ENOMEM;
5463			goto free;
5464		}
5465		if (!tab)
5466			new_tab->cnt = 0;
5467		tab = new_tab;
5468
5469		type = &tab->types[tab->cnt];
5470		type->btf_id = i;
5471		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5472						  BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size);
5473		/* The record cannot be unset, treat it as an error if so */
5474		if (IS_ERR_OR_NULL(record)) {
5475			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5476			goto free;
5477		}
5478		type->record = record;
5479		tab->cnt++;
5480	}
5481	return tab;
5482free:
5483	btf_struct_metas_free(tab);
5484	return ERR_PTR(ret);
5485}
5486
5487struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5488{
5489	struct btf_struct_metas *tab;
5490
5491	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5492	tab = btf->struct_meta_tab;
5493	if (!tab)
5494		return NULL;
5495	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5496}
5497
5498static int btf_check_type_tags(struct btf_verifier_env *env,
5499			       struct btf *btf, int start_id)
5500{
5501	int i, n, good_id = start_id - 1;
5502	bool in_tags;
5503
5504	n = btf_nr_types(btf);
5505	for (i = start_id; i < n; i++) {
5506		const struct btf_type *t;
5507		int chain_limit = 32;
5508		u32 cur_id = i;
5509
5510		t = btf_type_by_id(btf, i);
5511		if (!t)
5512			return -EINVAL;
5513		if (!btf_type_is_modifier(t))
5514			continue;
5515
5516		cond_resched();
5517
5518		in_tags = btf_type_is_type_tag(t);
5519		while (btf_type_is_modifier(t)) {
5520			if (!chain_limit--) {
5521				btf_verifier_log(env, "Max chain length or cycle detected");
5522				return -ELOOP;
5523			}
5524			if (btf_type_is_type_tag(t)) {
5525				if (!in_tags) {
5526					btf_verifier_log(env, "Type tags don't precede modifiers");
5527					return -EINVAL;
5528				}
5529			} else if (in_tags) {
5530				in_tags = false;
5531			}
5532			if (cur_id <= good_id)
5533				break;
5534			/* Move to next type */
5535			cur_id = t->type;
5536			t = btf_type_by_id(btf, cur_id);
5537			if (!t)
5538				return -EINVAL;
5539		}
5540		good_id = i;
5541	}
5542	return 0;
5543}
5544
5545static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5546{
5547	u32 log_true_size;
5548	int err;
5549
5550	err = bpf_vlog_finalize(log, &log_true_size);
5551
5552	if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5553	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5554				  &log_true_size, sizeof(log_true_size)))
5555		err = -EFAULT;
5556
5557	return err;
5558}
5559
5560static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5561{
5562	bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5563	char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5564	struct btf_struct_metas *struct_meta_tab;
5565	struct btf_verifier_env *env = NULL;
5566	struct btf *btf = NULL;
5567	u8 *data;
5568	int err, ret;
5569
5570	if (attr->btf_size > BTF_MAX_SIZE)
5571		return ERR_PTR(-E2BIG);
5572
5573	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5574	if (!env)
5575		return ERR_PTR(-ENOMEM);
5576
5577	/* user could have requested verbose verifier output
5578	 * and supplied buffer to store the verification trace
5579	 */
5580	err = bpf_vlog_init(&env->log, attr->btf_log_level,
5581			    log_ubuf, attr->btf_log_size);
5582	if (err)
5583		goto errout_free;
5584
5585	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5586	if (!btf) {
5587		err = -ENOMEM;
5588		goto errout;
5589	}
5590	env->btf = btf;
5591
5592	data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5593	if (!data) {
5594		err = -ENOMEM;
5595		goto errout;
5596	}
5597
5598	btf->data = data;
5599	btf->data_size = attr->btf_size;
5600
5601	if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5602		err = -EFAULT;
5603		goto errout;
5604	}
5605
5606	err = btf_parse_hdr(env);
5607	if (err)
5608		goto errout;
5609
5610	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5611
5612	err = btf_parse_str_sec(env);
5613	if (err)
5614		goto errout;
5615
5616	err = btf_parse_type_sec(env);
5617	if (err)
5618		goto errout;
5619
5620	err = btf_check_type_tags(env, btf, 1);
5621	if (err)
5622		goto errout;
5623
5624	struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5625	if (IS_ERR(struct_meta_tab)) {
5626		err = PTR_ERR(struct_meta_tab);
5627		goto errout;
5628	}
5629	btf->struct_meta_tab = struct_meta_tab;
5630
5631	if (struct_meta_tab) {
5632		int i;
5633
5634		for (i = 0; i < struct_meta_tab->cnt; i++) {
5635			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5636			if (err < 0)
5637				goto errout_meta;
5638		}
5639	}
5640
5641	err = finalize_log(&env->log, uattr, uattr_size);
5642	if (err)
5643		goto errout_free;
5644
5645	btf_verifier_env_free(env);
5646	refcount_set(&btf->refcnt, 1);
5647	return btf;
5648
5649errout_meta:
5650	btf_free_struct_meta_tab(btf);
5651errout:
5652	/* overwrite err with -ENOSPC or -EFAULT */
5653	ret = finalize_log(&env->log, uattr, uattr_size);
5654	if (ret)
5655		err = ret;
5656errout_free:
5657	btf_verifier_env_free(env);
5658	if (btf)
5659		btf_free(btf);
5660	return ERR_PTR(err);
5661}
5662
5663extern char __start_BTF[];
5664extern char __stop_BTF[];
5665extern struct btf *btf_vmlinux;
5666
5667#define BPF_MAP_TYPE(_id, _ops)
5668#define BPF_LINK_TYPE(_id, _name)
5669static union {
5670	struct bpf_ctx_convert {
5671#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5672	prog_ctx_type _id##_prog; \
5673	kern_ctx_type _id##_kern;
5674#include <linux/bpf_types.h>
5675#undef BPF_PROG_TYPE
5676	} *__t;
5677	/* 't' is written once under lock. Read many times. */
5678	const struct btf_type *t;
5679} bpf_ctx_convert;
5680enum {
5681#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5682	__ctx_convert##_id,
5683#include <linux/bpf_types.h>
5684#undef BPF_PROG_TYPE
5685	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5686};
5687static u8 bpf_ctx_convert_map[] = {
5688#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5689	[_id] = __ctx_convert##_id,
5690#include <linux/bpf_types.h>
5691#undef BPF_PROG_TYPE
5692	0, /* avoid empty array */
5693};
5694#undef BPF_MAP_TYPE
5695#undef BPF_LINK_TYPE
5696
5697static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)
5698{
5699	const struct btf_type *conv_struct;
5700	const struct btf_member *ctx_type;
5701
5702	conv_struct = bpf_ctx_convert.t;
5703	if (!conv_struct)
5704		return NULL;
5705	/* prog_type is valid bpf program type. No need for bounds check. */
5706	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5707	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5708	 * Like 'struct __sk_buff'
5709	 */
5710	return btf_type_by_id(btf_vmlinux, ctx_type->type);
5711}
5712
5713static int find_kern_ctx_type_id(enum bpf_prog_type prog_type)
5714{
5715	const struct btf_type *conv_struct;
5716	const struct btf_member *ctx_type;
5717
5718	conv_struct = bpf_ctx_convert.t;
5719	if (!conv_struct)
5720		return -EFAULT;
5721	/* prog_type is valid bpf program type. No need for bounds check. */
5722	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5723	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5724	 * Like 'struct sk_buff'
5725	 */
5726	return ctx_type->type;
5727}
5728
5729bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5730			  const struct btf_type *t, enum bpf_prog_type prog_type,
5731			  int arg)
5732{
5733	const struct btf_type *ctx_type;
5734	const char *tname, *ctx_tname;
5735
5736	t = btf_type_by_id(btf, t->type);
5737
5738	/* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to
5739	 * check before we skip all the typedef below.
5740	 */
5741	if (prog_type == BPF_PROG_TYPE_KPROBE) {
5742		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5743			t = btf_type_by_id(btf, t->type);
5744
5745		if (btf_type_is_typedef(t)) {
5746			tname = btf_name_by_offset(btf, t->name_off);
5747			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5748				return true;
5749		}
5750	}
5751
5752	while (btf_type_is_modifier(t))
5753		t = btf_type_by_id(btf, t->type);
5754	if (!btf_type_is_struct(t)) {
5755		/* Only pointer to struct is supported for now.
5756		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5757		 * is not supported yet.
5758		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5759		 */
5760		return false;
5761	}
5762	tname = btf_name_by_offset(btf, t->name_off);
5763	if (!tname) {
5764		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5765		return false;
5766	}
5767
5768	ctx_type = find_canonical_prog_ctx_type(prog_type);
5769	if (!ctx_type) {
5770		bpf_log(log, "btf_vmlinux is malformed\n");
5771		/* should not happen */
5772		return false;
5773	}
5774again:
5775	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5776	if (!ctx_tname) {
5777		/* should not happen */
5778		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5779		return false;
5780	}
5781	/* program types without named context types work only with arg:ctx tag */
5782	if (ctx_tname[0] == '\0')
5783		return false;
5784	/* only compare that prog's ctx type name is the same as
5785	 * kernel expects. No need to compare field by field.
5786	 * It's ok for bpf prog to do:
5787	 * struct __sk_buff {};
5788	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5789	 * { // no fields of skb are ever used }
5790	 */
5791	if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5792		return true;
5793	if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5794		return true;
5795	if (strcmp(ctx_tname, tname)) {
5796		/* bpf_user_pt_regs_t is a typedef, so resolve it to
5797		 * underlying struct and check name again
5798		 */
5799		if (!btf_type_is_modifier(ctx_type))
5800			return false;
5801		while (btf_type_is_modifier(ctx_type))
5802			ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5803		goto again;
5804	}
5805	return true;
5806}
5807
5808/* forward declarations for arch-specific underlying types of
5809 * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef
5810 * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still
5811 * works correctly with __builtin_types_compatible_p() on respective
5812 * architectures
5813 */
5814struct user_regs_struct;
5815struct user_pt_regs;
5816
5817static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5818				      const struct btf_type *t, int arg,
5819				      enum bpf_prog_type prog_type,
5820				      enum bpf_attach_type attach_type)
5821{
5822	const struct btf_type *ctx_type;
5823	const char *tname, *ctx_tname;
5824
5825	if (!btf_is_ptr(t)) {
5826		bpf_log(log, "arg#%d type isn't a pointer\n", arg);
5827		return -EINVAL;
5828	}
5829	t = btf_type_by_id(btf, t->type);
5830
5831	/* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */
5832	if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) {
5833		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5834			t = btf_type_by_id(btf, t->type);
5835
5836		if (btf_type_is_typedef(t)) {
5837			tname = btf_name_by_offset(btf, t->name_off);
5838			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5839				return 0;
5840		}
5841	}
5842
5843	/* all other program types don't use typedefs for context type */
5844	while (btf_type_is_modifier(t))
5845		t = btf_type_by_id(btf, t->type);
5846
5847	/* `void *ctx __arg_ctx` is always valid */
5848	if (btf_type_is_void(t))
5849		return 0;
5850
5851	tname = btf_name_by_offset(btf, t->name_off);
5852	if (str_is_empty(tname)) {
5853		bpf_log(log, "arg#%d type doesn't have a name\n", arg);
5854		return -EINVAL;
5855	}
5856
5857	/* special cases */
5858	switch (prog_type) {
5859	case BPF_PROG_TYPE_KPROBE:
5860		if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
5861			return 0;
5862		break;
5863	case BPF_PROG_TYPE_PERF_EVENT:
5864		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
5865		    __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
5866			return 0;
5867		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
5868		    __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
5869			return 0;
5870		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
5871		    __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
5872			return 0;
5873		break;
5874	case BPF_PROG_TYPE_RAW_TRACEPOINT:
5875	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
5876		/* allow u64* as ctx */
5877		if (btf_is_int(t) && t->size == 8)
5878			return 0;
5879		break;
5880	case BPF_PROG_TYPE_TRACING:
5881		switch (attach_type) {
5882		case BPF_TRACE_RAW_TP:
5883			/* tp_btf program is TRACING, so need special case here */
5884			if (__btf_type_is_struct(t) &&
5885			    strcmp(tname, "bpf_raw_tracepoint_args") == 0)
5886				return 0;
5887			/* allow u64* as ctx */
5888			if (btf_is_int(t) && t->size == 8)
5889				return 0;
5890			break;
5891		case BPF_TRACE_ITER:
5892			/* allow struct bpf_iter__xxx types only */
5893			if (__btf_type_is_struct(t) &&
5894			    strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0)
5895				return 0;
5896			break;
5897		case BPF_TRACE_FENTRY:
5898		case BPF_TRACE_FEXIT:
5899		case BPF_MODIFY_RETURN:
5900			/* allow u64* as ctx */
5901			if (btf_is_int(t) && t->size == 8)
5902				return 0;
5903			break;
5904		default:
5905			break;
5906		}
5907		break;
5908	case BPF_PROG_TYPE_LSM:
5909	case BPF_PROG_TYPE_STRUCT_OPS:
5910		/* allow u64* as ctx */
5911		if (btf_is_int(t) && t->size == 8)
5912			return 0;
5913		break;
5914	case BPF_PROG_TYPE_TRACEPOINT:
5915	case BPF_PROG_TYPE_SYSCALL:
5916	case BPF_PROG_TYPE_EXT:
5917		return 0; /* anything goes */
5918	default:
5919		break;
5920	}
5921
5922	ctx_type = find_canonical_prog_ctx_type(prog_type);
5923	if (!ctx_type) {
5924		/* should not happen */
5925		bpf_log(log, "btf_vmlinux is malformed\n");
5926		return -EINVAL;
5927	}
5928
5929	/* resolve typedefs and check that underlying structs are matching as well */
5930	while (btf_type_is_modifier(ctx_type))
5931		ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5932
5933	/* if program type doesn't have distinctly named struct type for
5934	 * context, then __arg_ctx argument can only be `void *`, which we
5935	 * already checked above
5936	 */
5937	if (!__btf_type_is_struct(ctx_type)) {
5938		bpf_log(log, "arg#%d should be void pointer\n", arg);
5939		return -EINVAL;
5940	}
5941
5942	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5943	if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) {
5944		bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname);
5945		return -EINVAL;
5946	}
5947
5948	return 0;
5949}
5950
5951static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5952				     struct btf *btf,
5953				     const struct btf_type *t,
5954				     enum bpf_prog_type prog_type,
5955				     int arg)
5956{
5957	if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg))
5958		return -ENOENT;
5959	return find_kern_ctx_type_id(prog_type);
5960}
5961
5962int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5963{
5964	const struct btf_member *kctx_member;
5965	const struct btf_type *conv_struct;
5966	const struct btf_type *kctx_type;
5967	u32 kctx_type_id;
5968
5969	conv_struct = bpf_ctx_convert.t;
5970	/* get member for kernel ctx type */
5971	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5972	kctx_type_id = kctx_member->type;
5973	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5974	if (!btf_type_is_struct(kctx_type)) {
5975		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
5976		return -EINVAL;
5977	}
5978
5979	return kctx_type_id;
5980}
5981
5982BTF_ID_LIST(bpf_ctx_convert_btf_id)
5983BTF_ID(struct, bpf_ctx_convert)
5984
5985struct btf *btf_parse_vmlinux(void)
5986{
5987	struct btf_verifier_env *env = NULL;
5988	struct bpf_verifier_log *log;
5989	struct btf *btf = NULL;
5990	int err;
5991
5992	if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF))
5993		return ERR_PTR(-ENOENT);
5994
5995	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5996	if (!env)
5997		return ERR_PTR(-ENOMEM);
5998
5999	log = &env->log;
6000	log->level = BPF_LOG_KERNEL;
6001
6002	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6003	if (!btf) {
6004		err = -ENOMEM;
6005		goto errout;
6006	}
6007	env->btf = btf;
6008
6009	btf->data = __start_BTF;
6010	btf->data_size = __stop_BTF - __start_BTF;
6011	btf->kernel_btf = true;
6012	snprintf(btf->name, sizeof(btf->name), "vmlinux");
6013
6014	err = btf_parse_hdr(env);
6015	if (err)
6016		goto errout;
6017
6018	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6019
6020	err = btf_parse_str_sec(env);
6021	if (err)
6022		goto errout;
6023
6024	err = btf_check_all_metas(env);
6025	if (err)
6026		goto errout;
6027
6028	err = btf_check_type_tags(env, btf, 1);
6029	if (err)
6030		goto errout;
6031
6032	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
6033	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
6034
6035	refcount_set(&btf->refcnt, 1);
6036
6037	err = btf_alloc_id(btf);
6038	if (err)
6039		goto errout;
6040
6041	btf_verifier_env_free(env);
6042	return btf;
6043
6044errout:
6045	btf_verifier_env_free(env);
6046	if (btf) {
6047		kvfree(btf->types);
6048		kfree(btf);
6049	}
6050	return ERR_PTR(err);
6051}
6052
6053#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6054
6055static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
6056{
6057	struct btf_verifier_env *env = NULL;
6058	struct bpf_verifier_log *log;
6059	struct btf *btf = NULL, *base_btf;
6060	int err;
6061
6062	base_btf = bpf_get_btf_vmlinux();
6063	if (IS_ERR(base_btf))
6064		return base_btf;
6065	if (!base_btf)
6066		return ERR_PTR(-EINVAL);
6067
6068	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6069	if (!env)
6070		return ERR_PTR(-ENOMEM);
6071
6072	log = &env->log;
6073	log->level = BPF_LOG_KERNEL;
6074
6075	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6076	if (!btf) {
6077		err = -ENOMEM;
6078		goto errout;
6079	}
6080	env->btf = btf;
6081
6082	btf->base_btf = base_btf;
6083	btf->start_id = base_btf->nr_types;
6084	btf->start_str_off = base_btf->hdr.str_len;
6085	btf->kernel_btf = true;
6086	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
6087
6088	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
6089	if (!btf->data) {
6090		err = -ENOMEM;
6091		goto errout;
6092	}
6093	memcpy(btf->data, data, data_size);
6094	btf->data_size = data_size;
6095
6096	err = btf_parse_hdr(env);
6097	if (err)
6098		goto errout;
6099
6100	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6101
6102	err = btf_parse_str_sec(env);
6103	if (err)
6104		goto errout;
6105
6106	err = btf_check_all_metas(env);
6107	if (err)
6108		goto errout;
6109
6110	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
6111	if (err)
6112		goto errout;
6113
6114	btf_verifier_env_free(env);
6115	refcount_set(&btf->refcnt, 1);
6116	return btf;
6117
6118errout:
6119	btf_verifier_env_free(env);
6120	if (btf) {
6121		kvfree(btf->data);
6122		kvfree(btf->types);
6123		kfree(btf);
6124	}
6125	return ERR_PTR(err);
6126}
6127
6128#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6129
6130struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
6131{
6132	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6133
6134	if (tgt_prog)
6135		return tgt_prog->aux->btf;
6136	else
6137		return prog->aux->attach_btf;
6138}
6139
6140static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
6141{
6142	/* skip modifiers */
6143	t = btf_type_skip_modifiers(btf, t->type, NULL);
6144
6145	return btf_type_is_int(t);
6146}
6147
6148static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
6149			   int off)
6150{
6151	const struct btf_param *args;
6152	const struct btf_type *t;
6153	u32 offset = 0, nr_args;
6154	int i;
6155
6156	if (!func_proto)
6157		return off / 8;
6158
6159	nr_args = btf_type_vlen(func_proto);
6160	args = (const struct btf_param *)(func_proto + 1);
6161	for (i = 0; i < nr_args; i++) {
6162		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6163		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6164		if (off < offset)
6165			return i;
6166	}
6167
6168	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
6169	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6170	if (off < offset)
6171		return nr_args;
6172
6173	return nr_args + 1;
6174}
6175
6176static bool prog_args_trusted(const struct bpf_prog *prog)
6177{
6178	enum bpf_attach_type atype = prog->expected_attach_type;
6179
6180	switch (prog->type) {
6181	case BPF_PROG_TYPE_TRACING:
6182		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
6183	case BPF_PROG_TYPE_LSM:
6184		return bpf_lsm_is_trusted(prog);
6185	case BPF_PROG_TYPE_STRUCT_OPS:
6186		return true;
6187	default:
6188		return false;
6189	}
6190}
6191
6192int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto,
6193		       u32 arg_no)
6194{
6195	const struct btf_param *args;
6196	const struct btf_type *t;
6197	int off = 0, i;
6198	u32 sz;
6199
6200	args = btf_params(func_proto);
6201	for (i = 0; i < arg_no; i++) {
6202		t = btf_type_by_id(btf, args[i].type);
6203		t = btf_resolve_size(btf, t, &sz);
6204		if (IS_ERR(t))
6205			return PTR_ERR(t);
6206		off += roundup(sz, 8);
6207	}
6208
6209	return off;
6210}
6211
6212bool btf_ctx_access(int off, int size, enum bpf_access_type type,
6213		    const struct bpf_prog *prog,
6214		    struct bpf_insn_access_aux *info)
6215{
6216	const struct btf_type *t = prog->aux->attach_func_proto;
6217	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6218	struct btf *btf = bpf_prog_get_target_btf(prog);
6219	const char *tname = prog->aux->attach_func_name;
6220	struct bpf_verifier_log *log = info->log;
6221	const struct btf_param *args;
6222	const char *tag_value;
6223	u32 nr_args, arg;
6224	int i, ret;
6225
6226	if (off % 8) {
6227		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
6228			tname, off);
6229		return false;
6230	}
6231	arg = get_ctx_arg_idx(btf, t, off);
6232	args = (const struct btf_param *)(t + 1);
6233	/* if (t == NULL) Fall back to default BPF prog with
6234	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
6235	 */
6236	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
6237	if (prog->aux->attach_btf_trace) {
6238		/* skip first 'void *__data' argument in btf_trace_##name typedef */
6239		args++;
6240		nr_args--;
6241	}
6242
6243	if (arg > nr_args) {
6244		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6245			tname, arg + 1);
6246		return false;
6247	}
6248
6249	if (arg == nr_args) {
6250		switch (prog->expected_attach_type) {
6251		case BPF_LSM_CGROUP:
6252		case BPF_LSM_MAC:
6253		case BPF_TRACE_FEXIT:
6254			/* When LSM programs are attached to void LSM hooks
6255			 * they use FEXIT trampolines and when attached to
6256			 * int LSM hooks, they use MODIFY_RETURN trampolines.
6257			 *
6258			 * While the LSM programs are BPF_MODIFY_RETURN-like
6259			 * the check:
6260			 *
6261			 *	if (ret_type != 'int')
6262			 *		return -EINVAL;
6263			 *
6264			 * is _not_ done here. This is still safe as LSM hooks
6265			 * have only void and int return types.
6266			 */
6267			if (!t)
6268				return true;
6269			t = btf_type_by_id(btf, t->type);
6270			break;
6271		case BPF_MODIFY_RETURN:
6272			/* For now the BPF_MODIFY_RETURN can only be attached to
6273			 * functions that return an int.
6274			 */
6275			if (!t)
6276				return false;
6277
6278			t = btf_type_skip_modifiers(btf, t->type, NULL);
6279			if (!btf_type_is_small_int(t)) {
6280				bpf_log(log,
6281					"ret type %s not allowed for fmod_ret\n",
6282					btf_type_str(t));
6283				return false;
6284			}
6285			break;
6286		default:
6287			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6288				tname, arg + 1);
6289			return false;
6290		}
6291	} else {
6292		if (!t)
6293			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6294			return true;
6295		t = btf_type_by_id(btf, args[arg].type);
6296	}
6297
6298	/* skip modifiers */
6299	while (btf_type_is_modifier(t))
6300		t = btf_type_by_id(btf, t->type);
6301	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6302		/* accessing a scalar */
6303		return true;
6304	if (!btf_type_is_ptr(t)) {
6305		bpf_log(log,
6306			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6307			tname, arg,
6308			__btf_name_by_offset(btf, t->name_off),
6309			btf_type_str(t));
6310		return false;
6311	}
6312
6313	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6314	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6315		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6316		u32 type, flag;
6317
6318		type = base_type(ctx_arg_info->reg_type);
6319		flag = type_flag(ctx_arg_info->reg_type);
6320		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6321		    (flag & PTR_MAYBE_NULL)) {
6322			info->reg_type = ctx_arg_info->reg_type;
6323			return true;
6324		}
6325	}
6326
6327	if (t->type == 0)
6328		/* This is a pointer to void.
6329		 * It is the same as scalar from the verifier safety pov.
6330		 * No further pointer walking is allowed.
6331		 */
6332		return true;
6333
6334	if (is_int_ptr(btf, t))
6335		return true;
6336
6337	/* this is a pointer to another type */
6338	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6339		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6340
6341		if (ctx_arg_info->offset == off) {
6342			if (!ctx_arg_info->btf_id) {
6343				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6344				return false;
6345			}
6346
6347			info->reg_type = ctx_arg_info->reg_type;
6348			info->btf = ctx_arg_info->btf ? : btf_vmlinux;
6349			info->btf_id = ctx_arg_info->btf_id;
6350			return true;
6351		}
6352	}
6353
6354	info->reg_type = PTR_TO_BTF_ID;
6355	if (prog_args_trusted(prog))
6356		info->reg_type |= PTR_TRUSTED;
6357
6358	if (tgt_prog) {
6359		enum bpf_prog_type tgt_type;
6360
6361		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6362			tgt_type = tgt_prog->aux->saved_dst_prog_type;
6363		else
6364			tgt_type = tgt_prog->type;
6365
6366		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6367		if (ret > 0) {
6368			info->btf = btf_vmlinux;
6369			info->btf_id = ret;
6370			return true;
6371		} else {
6372			return false;
6373		}
6374	}
6375
6376	info->btf = btf;
6377	info->btf_id = t->type;
6378	t = btf_type_by_id(btf, t->type);
6379
6380	if (btf_type_is_type_tag(t)) {
6381		tag_value = __btf_name_by_offset(btf, t->name_off);
6382		if (strcmp(tag_value, "user") == 0)
6383			info->reg_type |= MEM_USER;
6384		if (strcmp(tag_value, "percpu") == 0)
6385			info->reg_type |= MEM_PERCPU;
6386	}
6387
6388	/* skip modifiers */
6389	while (btf_type_is_modifier(t)) {
6390		info->btf_id = t->type;
6391		t = btf_type_by_id(btf, t->type);
6392	}
6393	if (!btf_type_is_struct(t)) {
6394		bpf_log(log,
6395			"func '%s' arg%d type %s is not a struct\n",
6396			tname, arg, btf_type_str(t));
6397		return false;
6398	}
6399	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6400		tname, arg, info->btf_id, btf_type_str(t),
6401		__btf_name_by_offset(btf, t->name_off));
6402	return true;
6403}
6404EXPORT_SYMBOL_GPL(btf_ctx_access);
6405
6406enum bpf_struct_walk_result {
6407	/* < 0 error */
6408	WALK_SCALAR = 0,
6409	WALK_PTR,
6410	WALK_STRUCT,
6411};
6412
6413static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6414			   const struct btf_type *t, int off, int size,
6415			   u32 *next_btf_id, enum bpf_type_flag *flag,
6416			   const char **field_name)
6417{
6418	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6419	const struct btf_type *mtype, *elem_type = NULL;
6420	const struct btf_member *member;
6421	const char *tname, *mname, *tag_value;
6422	u32 vlen, elem_id, mid;
6423
6424again:
6425	if (btf_type_is_modifier(t))
6426		t = btf_type_skip_modifiers(btf, t->type, NULL);
6427	tname = __btf_name_by_offset(btf, t->name_off);
6428	if (!btf_type_is_struct(t)) {
6429		bpf_log(log, "Type '%s' is not a struct\n", tname);
6430		return -EINVAL;
6431	}
6432
6433	vlen = btf_type_vlen(t);
6434	if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6435		/*
6436		 * walking unions yields untrusted pointers
6437		 * with exception of __bpf_md_ptr and other
6438		 * unions with a single member
6439		 */
6440		*flag |= PTR_UNTRUSTED;
6441
6442	if (off + size > t->size) {
6443		/* If the last element is a variable size array, we may
6444		 * need to relax the rule.
6445		 */
6446		struct btf_array *array_elem;
6447
6448		if (vlen == 0)
6449			goto error;
6450
6451		member = btf_type_member(t) + vlen - 1;
6452		mtype = btf_type_skip_modifiers(btf, member->type,
6453						NULL);
6454		if (!btf_type_is_array(mtype))
6455			goto error;
6456
6457		array_elem = (struct btf_array *)(mtype + 1);
6458		if (array_elem->nelems != 0)
6459			goto error;
6460
6461		moff = __btf_member_bit_offset(t, member) / 8;
6462		if (off < moff)
6463			goto error;
6464
6465		/* allow structure and integer */
6466		t = btf_type_skip_modifiers(btf, array_elem->type,
6467					    NULL);
6468
6469		if (btf_type_is_int(t))
6470			return WALK_SCALAR;
6471
6472		if (!btf_type_is_struct(t))
6473			goto error;
6474
6475		off = (off - moff) % t->size;
6476		goto again;
6477
6478error:
6479		bpf_log(log, "access beyond struct %s at off %u size %u\n",
6480			tname, off, size);
6481		return -EACCES;
6482	}
6483
6484	for_each_member(i, t, member) {
6485		/* offset of the field in bytes */
6486		moff = __btf_member_bit_offset(t, member) / 8;
6487		if (off + size <= moff)
6488			/* won't find anything, field is already too far */
6489			break;
6490
6491		if (__btf_member_bitfield_size(t, member)) {
6492			u32 end_bit = __btf_member_bit_offset(t, member) +
6493				__btf_member_bitfield_size(t, member);
6494
6495			/* off <= moff instead of off == moff because clang
6496			 * does not generate a BTF member for anonymous
6497			 * bitfield like the ":16" here:
6498			 * struct {
6499			 *	int :16;
6500			 *	int x:8;
6501			 * };
6502			 */
6503			if (off <= moff &&
6504			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6505				return WALK_SCALAR;
6506
6507			/* off may be accessing a following member
6508			 *
6509			 * or
6510			 *
6511			 * Doing partial access at either end of this
6512			 * bitfield.  Continue on this case also to
6513			 * treat it as not accessing this bitfield
6514			 * and eventually error out as field not
6515			 * found to keep it simple.
6516			 * It could be relaxed if there was a legit
6517			 * partial access case later.
6518			 */
6519			continue;
6520		}
6521
6522		/* In case of "off" is pointing to holes of a struct */
6523		if (off < moff)
6524			break;
6525
6526		/* type of the field */
6527		mid = member->type;
6528		mtype = btf_type_by_id(btf, member->type);
6529		mname = __btf_name_by_offset(btf, member->name_off);
6530
6531		mtype = __btf_resolve_size(btf, mtype, &msize,
6532					   &elem_type, &elem_id, &total_nelems,
6533					   &mid);
6534		if (IS_ERR(mtype)) {
6535			bpf_log(log, "field %s doesn't have size\n", mname);
6536			return -EFAULT;
6537		}
6538
6539		mtrue_end = moff + msize;
6540		if (off >= mtrue_end)
6541			/* no overlap with member, keep iterating */
6542			continue;
6543
6544		if (btf_type_is_array(mtype)) {
6545			u32 elem_idx;
6546
6547			/* __btf_resolve_size() above helps to
6548			 * linearize a multi-dimensional array.
6549			 *
6550			 * The logic here is treating an array
6551			 * in a struct as the following way:
6552			 *
6553			 * struct outer {
6554			 *	struct inner array[2][2];
6555			 * };
6556			 *
6557			 * looks like:
6558			 *
6559			 * struct outer {
6560			 *	struct inner array_elem0;
6561			 *	struct inner array_elem1;
6562			 *	struct inner array_elem2;
6563			 *	struct inner array_elem3;
6564			 * };
6565			 *
6566			 * When accessing outer->array[1][0], it moves
6567			 * moff to "array_elem2", set mtype to
6568			 * "struct inner", and msize also becomes
6569			 * sizeof(struct inner).  Then most of the
6570			 * remaining logic will fall through without
6571			 * caring the current member is an array or
6572			 * not.
6573			 *
6574			 * Unlike mtype/msize/moff, mtrue_end does not
6575			 * change.  The naming difference ("_true") tells
6576			 * that it is not always corresponding to
6577			 * the current mtype/msize/moff.
6578			 * It is the true end of the current
6579			 * member (i.e. array in this case).  That
6580			 * will allow an int array to be accessed like
6581			 * a scratch space,
6582			 * i.e. allow access beyond the size of
6583			 *      the array's element as long as it is
6584			 *      within the mtrue_end boundary.
6585			 */
6586
6587			/* skip empty array */
6588			if (moff == mtrue_end)
6589				continue;
6590
6591			msize /= total_nelems;
6592			elem_idx = (off - moff) / msize;
6593			moff += elem_idx * msize;
6594			mtype = elem_type;
6595			mid = elem_id;
6596		}
6597
6598		/* the 'off' we're looking for is either equal to start
6599		 * of this field or inside of this struct
6600		 */
6601		if (btf_type_is_struct(mtype)) {
6602			/* our field must be inside that union or struct */
6603			t = mtype;
6604
6605			/* return if the offset matches the member offset */
6606			if (off == moff) {
6607				*next_btf_id = mid;
6608				return WALK_STRUCT;
6609			}
6610
6611			/* adjust offset we're looking for */
6612			off -= moff;
6613			goto again;
6614		}
6615
6616		if (btf_type_is_ptr(mtype)) {
6617			const struct btf_type *stype, *t;
6618			enum bpf_type_flag tmp_flag = 0;
6619			u32 id;
6620
6621			if (msize != size || off != moff) {
6622				bpf_log(log,
6623					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6624					mname, moff, tname, off, size);
6625				return -EACCES;
6626			}
6627
6628			/* check type tag */
6629			t = btf_type_by_id(btf, mtype->type);
6630			if (btf_type_is_type_tag(t)) {
6631				tag_value = __btf_name_by_offset(btf, t->name_off);
6632				/* check __user tag */
6633				if (strcmp(tag_value, "user") == 0)
6634					tmp_flag = MEM_USER;
6635				/* check __percpu tag */
6636				if (strcmp(tag_value, "percpu") == 0)
6637					tmp_flag = MEM_PERCPU;
6638				/* check __rcu tag */
6639				if (strcmp(tag_value, "rcu") == 0)
6640					tmp_flag = MEM_RCU;
6641			}
6642
6643			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6644			if (btf_type_is_struct(stype)) {
6645				*next_btf_id = id;
6646				*flag |= tmp_flag;
6647				if (field_name)
6648					*field_name = mname;
6649				return WALK_PTR;
6650			}
6651		}
6652
6653		/* Allow more flexible access within an int as long as
6654		 * it is within mtrue_end.
6655		 * Since mtrue_end could be the end of an array,
6656		 * that also allows using an array of int as a scratch
6657		 * space. e.g. skb->cb[].
6658		 */
6659		if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
6660			bpf_log(log,
6661				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6662				mname, mtrue_end, tname, off, size);
6663			return -EACCES;
6664		}
6665
6666		return WALK_SCALAR;
6667	}
6668	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6669	return -EINVAL;
6670}
6671
6672int btf_struct_access(struct bpf_verifier_log *log,
6673		      const struct bpf_reg_state *reg,
6674		      int off, int size, enum bpf_access_type atype __maybe_unused,
6675		      u32 *next_btf_id, enum bpf_type_flag *flag,
6676		      const char **field_name)
6677{
6678	const struct btf *btf = reg->btf;
6679	enum bpf_type_flag tmp_flag = 0;
6680	const struct btf_type *t;
6681	u32 id = reg->btf_id;
6682	int err;
6683
6684	while (type_is_alloc(reg->type)) {
6685		struct btf_struct_meta *meta;
6686		struct btf_record *rec;
6687		int i;
6688
6689		meta = btf_find_struct_meta(btf, id);
6690		if (!meta)
6691			break;
6692		rec = meta->record;
6693		for (i = 0; i < rec->cnt; i++) {
6694			struct btf_field *field = &rec->fields[i];
6695			u32 offset = field->offset;
6696			if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
6697				bpf_log(log,
6698					"direct access to %s is disallowed\n",
6699					btf_field_type_name(field->type));
6700				return -EACCES;
6701			}
6702		}
6703		break;
6704	}
6705
6706	t = btf_type_by_id(btf, id);
6707	do {
6708		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
6709
6710		switch (err) {
6711		case WALK_PTR:
6712			/* For local types, the destination register cannot
6713			 * become a pointer again.
6714			 */
6715			if (type_is_alloc(reg->type))
6716				return SCALAR_VALUE;
6717			/* If we found the pointer or scalar on t+off,
6718			 * we're done.
6719			 */
6720			*next_btf_id = id;
6721			*flag = tmp_flag;
6722			return PTR_TO_BTF_ID;
6723		case WALK_SCALAR:
6724			return SCALAR_VALUE;
6725		case WALK_STRUCT:
6726			/* We found nested struct, so continue the search
6727			 * by diving in it. At this point the offset is
6728			 * aligned with the new type, so set it to 0.
6729			 */
6730			t = btf_type_by_id(btf, id);
6731			off = 0;
6732			break;
6733		default:
6734			/* It's either error or unknown return value..
6735			 * scream and leave.
6736			 */
6737			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6738				return -EINVAL;
6739			return err;
6740		}
6741	} while (t);
6742
6743	return -EINVAL;
6744}
6745
6746/* Check that two BTF types, each specified as an BTF object + id, are exactly
6747 * the same. Trivial ID check is not enough due to module BTFs, because we can
6748 * end up with two different module BTFs, but IDs point to the common type in
6749 * vmlinux BTF.
6750 */
6751bool btf_types_are_same(const struct btf *btf1, u32 id1,
6752			const struct btf *btf2, u32 id2)
6753{
6754	if (id1 != id2)
6755		return false;
6756	if (btf1 == btf2)
6757		return true;
6758	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6759}
6760
6761bool btf_struct_ids_match(struct bpf_verifier_log *log,
6762			  const struct btf *btf, u32 id, int off,
6763			  const struct btf *need_btf, u32 need_type_id,
6764			  bool strict)
6765{
6766	const struct btf_type *type;
6767	enum bpf_type_flag flag = 0;
6768	int err;
6769
6770	/* Are we already done? */
6771	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
6772		return true;
6773	/* In case of strict type match, we do not walk struct, the top level
6774	 * type match must succeed. When strict is true, off should have already
6775	 * been 0.
6776	 */
6777	if (strict)
6778		return false;
6779again:
6780	type = btf_type_by_id(btf, id);
6781	if (!type)
6782		return false;
6783	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
6784	if (err != WALK_STRUCT)
6785		return false;
6786
6787	/* We found nested struct object. If it matches
6788	 * the requested ID, we're done. Otherwise let's
6789	 * continue the search with offset 0 in the new
6790	 * type.
6791	 */
6792	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
6793		off = 0;
6794		goto again;
6795	}
6796
6797	return true;
6798}
6799
6800static int __get_type_size(struct btf *btf, u32 btf_id,
6801			   const struct btf_type **ret_type)
6802{
6803	const struct btf_type *t;
6804
6805	*ret_type = btf_type_by_id(btf, 0);
6806	if (!btf_id)
6807		/* void */
6808		return 0;
6809	t = btf_type_by_id(btf, btf_id);
6810	while (t && btf_type_is_modifier(t))
6811		t = btf_type_by_id(btf, t->type);
6812	if (!t)
6813		return -EINVAL;
6814	*ret_type = t;
6815	if (btf_type_is_ptr(t))
6816		/* kernel size of pointer. Not BPF's size of pointer*/
6817		return sizeof(void *);
6818	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6819		return t->size;
6820	return -EINVAL;
6821}
6822
6823static u8 __get_type_fmodel_flags(const struct btf_type *t)
6824{
6825	u8 flags = 0;
6826
6827	if (__btf_type_is_struct(t))
6828		flags |= BTF_FMODEL_STRUCT_ARG;
6829	if (btf_type_is_signed_int(t))
6830		flags |= BTF_FMODEL_SIGNED_ARG;
6831
6832	return flags;
6833}
6834
6835int btf_distill_func_proto(struct bpf_verifier_log *log,
6836			   struct btf *btf,
6837			   const struct btf_type *func,
6838			   const char *tname,
6839			   struct btf_func_model *m)
6840{
6841	const struct btf_param *args;
6842	const struct btf_type *t;
6843	u32 i, nargs;
6844	int ret;
6845
6846	if (!func) {
6847		/* BTF function prototype doesn't match the verifier types.
6848		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
6849		 */
6850		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6851			m->arg_size[i] = 8;
6852			m->arg_flags[i] = 0;
6853		}
6854		m->ret_size = 8;
6855		m->ret_flags = 0;
6856		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
6857		return 0;
6858	}
6859	args = (const struct btf_param *)(func + 1);
6860	nargs = btf_type_vlen(func);
6861	if (nargs > MAX_BPF_FUNC_ARGS) {
6862		bpf_log(log,
6863			"The function %s has %d arguments. Too many.\n",
6864			tname, nargs);
6865		return -EINVAL;
6866	}
6867	ret = __get_type_size(btf, func->type, &t);
6868	if (ret < 0 || __btf_type_is_struct(t)) {
6869		bpf_log(log,
6870			"The function %s return type %s is unsupported.\n",
6871			tname, btf_type_str(t));
6872		return -EINVAL;
6873	}
6874	m->ret_size = ret;
6875	m->ret_flags = __get_type_fmodel_flags(t);
6876
6877	for (i = 0; i < nargs; i++) {
6878		if (i == nargs - 1 && args[i].type == 0) {
6879			bpf_log(log,
6880				"The function %s with variable args is unsupported.\n",
6881				tname);
6882			return -EINVAL;
6883		}
6884		ret = __get_type_size(btf, args[i].type, &t);
6885
6886		/* No support of struct argument size greater than 16 bytes */
6887		if (ret < 0 || ret > 16) {
6888			bpf_log(log,
6889				"The function %s arg%d type %s is unsupported.\n",
6890				tname, i, btf_type_str(t));
6891			return -EINVAL;
6892		}
6893		if (ret == 0) {
6894			bpf_log(log,
6895				"The function %s has malformed void argument.\n",
6896				tname);
6897			return -EINVAL;
6898		}
6899		m->arg_size[i] = ret;
6900		m->arg_flags[i] = __get_type_fmodel_flags(t);
6901	}
6902	m->nr_args = nargs;
6903	return 0;
6904}
6905
6906/* Compare BTFs of two functions assuming only scalars and pointers to context.
6907 * t1 points to BTF_KIND_FUNC in btf1
6908 * t2 points to BTF_KIND_FUNC in btf2
6909 * Returns:
6910 * EINVAL - function prototype mismatch
6911 * EFAULT - verifier bug
6912 * 0 - 99% match. The last 1% is validated by the verifier.
6913 */
6914static int btf_check_func_type_match(struct bpf_verifier_log *log,
6915				     struct btf *btf1, const struct btf_type *t1,
6916				     struct btf *btf2, const struct btf_type *t2)
6917{
6918	const struct btf_param *args1, *args2;
6919	const char *fn1, *fn2, *s1, *s2;
6920	u32 nargs1, nargs2, i;
6921
6922	fn1 = btf_name_by_offset(btf1, t1->name_off);
6923	fn2 = btf_name_by_offset(btf2, t2->name_off);
6924
6925	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6926		bpf_log(log, "%s() is not a global function\n", fn1);
6927		return -EINVAL;
6928	}
6929	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6930		bpf_log(log, "%s() is not a global function\n", fn2);
6931		return -EINVAL;
6932	}
6933
6934	t1 = btf_type_by_id(btf1, t1->type);
6935	if (!t1 || !btf_type_is_func_proto(t1))
6936		return -EFAULT;
6937	t2 = btf_type_by_id(btf2, t2->type);
6938	if (!t2 || !btf_type_is_func_proto(t2))
6939		return -EFAULT;
6940
6941	args1 = (const struct btf_param *)(t1 + 1);
6942	nargs1 = btf_type_vlen(t1);
6943	args2 = (const struct btf_param *)(t2 + 1);
6944	nargs2 = btf_type_vlen(t2);
6945
6946	if (nargs1 != nargs2) {
6947		bpf_log(log, "%s() has %d args while %s() has %d args\n",
6948			fn1, nargs1, fn2, nargs2);
6949		return -EINVAL;
6950	}
6951
6952	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6953	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6954	if (t1->info != t2->info) {
6955		bpf_log(log,
6956			"Return type %s of %s() doesn't match type %s of %s()\n",
6957			btf_type_str(t1), fn1,
6958			btf_type_str(t2), fn2);
6959		return -EINVAL;
6960	}
6961
6962	for (i = 0; i < nargs1; i++) {
6963		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6964		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6965
6966		if (t1->info != t2->info) {
6967			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6968				i, fn1, btf_type_str(t1),
6969				fn2, btf_type_str(t2));
6970			return -EINVAL;
6971		}
6972		if (btf_type_has_size(t1) && t1->size != t2->size) {
6973			bpf_log(log,
6974				"arg%d in %s() has size %d while %s() has %d\n",
6975				i, fn1, t1->size,
6976				fn2, t2->size);
6977			return -EINVAL;
6978		}
6979
6980		/* global functions are validated with scalars and pointers
6981		 * to context only. And only global functions can be replaced.
6982		 * Hence type check only those types.
6983		 */
6984		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
6985			continue;
6986		if (!btf_type_is_ptr(t1)) {
6987			bpf_log(log,
6988				"arg%d in %s() has unrecognized type\n",
6989				i, fn1);
6990			return -EINVAL;
6991		}
6992		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6993		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6994		if (!btf_type_is_struct(t1)) {
6995			bpf_log(log,
6996				"arg%d in %s() is not a pointer to context\n",
6997				i, fn1);
6998			return -EINVAL;
6999		}
7000		if (!btf_type_is_struct(t2)) {
7001			bpf_log(log,
7002				"arg%d in %s() is not a pointer to context\n",
7003				i, fn2);
7004			return -EINVAL;
7005		}
7006		/* This is an optional check to make program writing easier.
7007		 * Compare names of structs and report an error to the user.
7008		 * btf_prepare_func_args() already checked that t2 struct
7009		 * is a context type. btf_prepare_func_args() will check
7010		 * later that t1 struct is a context type as well.
7011		 */
7012		s1 = btf_name_by_offset(btf1, t1->name_off);
7013		s2 = btf_name_by_offset(btf2, t2->name_off);
7014		if (strcmp(s1, s2)) {
7015			bpf_log(log,
7016				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
7017				i, fn1, s1, fn2, s2);
7018			return -EINVAL;
7019		}
7020	}
7021	return 0;
7022}
7023
7024/* Compare BTFs of given program with BTF of target program */
7025int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
7026			 struct btf *btf2, const struct btf_type *t2)
7027{
7028	struct btf *btf1 = prog->aux->btf;
7029	const struct btf_type *t1;
7030	u32 btf_id = 0;
7031
7032	if (!prog->aux->func_info) {
7033		bpf_log(log, "Program extension requires BTF\n");
7034		return -EINVAL;
7035	}
7036
7037	btf_id = prog->aux->func_info[0].type_id;
7038	if (!btf_id)
7039		return -EFAULT;
7040
7041	t1 = btf_type_by_id(btf1, btf_id);
7042	if (!t1 || !btf_type_is_func(t1))
7043		return -EFAULT;
7044
7045	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
7046}
7047
7048static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t)
7049{
7050	const char *name;
7051
7052	t = btf_type_by_id(btf, t->type); /* skip PTR */
7053
7054	while (btf_type_is_modifier(t))
7055		t = btf_type_by_id(btf, t->type);
7056
7057	/* allow either struct or struct forward declaration */
7058	if (btf_type_is_struct(t) ||
7059	    (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) {
7060		name = btf_str_by_offset(btf, t->name_off);
7061		return name && strcmp(name, "bpf_dynptr") == 0;
7062	}
7063
7064	return false;
7065}
7066
7067struct bpf_cand_cache {
7068	const char *name;
7069	u32 name_len;
7070	u16 kind;
7071	u16 cnt;
7072	struct {
7073		const struct btf *btf;
7074		u32 id;
7075	} cands[];
7076};
7077
7078static DEFINE_MUTEX(cand_cache_mutex);
7079
7080static struct bpf_cand_cache *
7081bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id);
7082
7083static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx,
7084				 const struct btf *btf, const struct btf_type *t)
7085{
7086	struct bpf_cand_cache *cc;
7087	struct bpf_core_ctx ctx = {
7088		.btf = btf,
7089		.log = log,
7090	};
7091	u32 kern_type_id, type_id;
7092	int err = 0;
7093
7094	/* skip PTR and modifiers */
7095	type_id = t->type;
7096	t = btf_type_by_id(btf, t->type);
7097	while (btf_type_is_modifier(t)) {
7098		type_id = t->type;
7099		t = btf_type_by_id(btf, t->type);
7100	}
7101
7102	mutex_lock(&cand_cache_mutex);
7103	cc = bpf_core_find_cands(&ctx, type_id);
7104	if (IS_ERR(cc)) {
7105		err = PTR_ERR(cc);
7106		bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n",
7107			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7108			err);
7109		goto cand_cache_unlock;
7110	}
7111	if (cc->cnt != 1) {
7112		bpf_log(log, "arg#%d reference type('%s %s') %s\n",
7113			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7114			cc->cnt == 0 ? "has no matches" : "is ambiguous");
7115		err = cc->cnt == 0 ? -ENOENT : -ESRCH;
7116		goto cand_cache_unlock;
7117	}
7118	if (btf_is_module(cc->cands[0].btf)) {
7119		bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n",
7120			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off));
7121		err = -EOPNOTSUPP;
7122		goto cand_cache_unlock;
7123	}
7124	kern_type_id = cc->cands[0].id;
7125
7126cand_cache_unlock:
7127	mutex_unlock(&cand_cache_mutex);
7128	if (err)
7129		return err;
7130
7131	return kern_type_id;
7132}
7133
7134enum btf_arg_tag {
7135	ARG_TAG_CTX	 = BIT_ULL(0),
7136	ARG_TAG_NONNULL  = BIT_ULL(1),
7137	ARG_TAG_TRUSTED  = BIT_ULL(2),
7138	ARG_TAG_NULLABLE = BIT_ULL(3),
7139	ARG_TAG_ARENA	 = BIT_ULL(4),
7140};
7141
7142/* Process BTF of a function to produce high-level expectation of function
7143 * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information
7144 * is cached in subprog info for reuse.
7145 * Returns:
7146 * EFAULT - there is a verifier bug. Abort verification.
7147 * EINVAL - cannot convert BTF.
7148 * 0 - Successfully processed BTF and constructed argument expectations.
7149 */
7150int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog)
7151{
7152	bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL;
7153	struct bpf_subprog_info *sub = subprog_info(env, subprog);
7154	struct bpf_verifier_log *log = &env->log;
7155	struct bpf_prog *prog = env->prog;
7156	enum bpf_prog_type prog_type = prog->type;
7157	struct btf *btf = prog->aux->btf;
7158	const struct btf_param *args;
7159	const struct btf_type *t, *ref_t, *fn_t;
7160	u32 i, nargs, btf_id;
7161	const char *tname;
7162
7163	if (sub->args_cached)
7164		return 0;
7165
7166	if (!prog->aux->func_info) {
7167		bpf_log(log, "Verifier bug\n");
7168		return -EFAULT;
7169	}
7170
7171	btf_id = prog->aux->func_info[subprog].type_id;
7172	if (!btf_id) {
7173		if (!is_global) /* not fatal for static funcs */
7174			return -EINVAL;
7175		bpf_log(log, "Global functions need valid BTF\n");
7176		return -EFAULT;
7177	}
7178
7179	fn_t = btf_type_by_id(btf, btf_id);
7180	if (!fn_t || !btf_type_is_func(fn_t)) {
7181		/* These checks were already done by the verifier while loading
7182		 * struct bpf_func_info
7183		 */
7184		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
7185			subprog);
7186		return -EFAULT;
7187	}
7188	tname = btf_name_by_offset(btf, fn_t->name_off);
7189
7190	if (prog->aux->func_info_aux[subprog].unreliable) {
7191		bpf_log(log, "Verifier bug in function %s()\n", tname);
7192		return -EFAULT;
7193	}
7194	if (prog_type == BPF_PROG_TYPE_EXT)
7195		prog_type = prog->aux->dst_prog->type;
7196
7197	t = btf_type_by_id(btf, fn_t->type);
7198	if (!t || !btf_type_is_func_proto(t)) {
7199		bpf_log(log, "Invalid type of function %s()\n", tname);
7200		return -EFAULT;
7201	}
7202	args = (const struct btf_param *)(t + 1);
7203	nargs = btf_type_vlen(t);
7204	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7205		if (!is_global)
7206			return -EINVAL;
7207		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7208			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7209		return -EINVAL;
7210	}
7211	/* check that function returns int, exception cb also requires this */
7212	t = btf_type_by_id(btf, t->type);
7213	while (btf_type_is_modifier(t))
7214		t = btf_type_by_id(btf, t->type);
7215	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7216		if (!is_global)
7217			return -EINVAL;
7218		bpf_log(log,
7219			"Global function %s() doesn't return scalar. Only those are supported.\n",
7220			tname);
7221		return -EINVAL;
7222	}
7223	/* Convert BTF function arguments into verifier types.
7224	 * Only PTR_TO_CTX and SCALAR are supported atm.
7225	 */
7226	for (i = 0; i < nargs; i++) {
7227		u32 tags = 0;
7228		int id = 0;
7229
7230		/* 'arg:<tag>' decl_tag takes precedence over derivation of
7231		 * register type from BTF type itself
7232		 */
7233		while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) {
7234			const struct btf_type *tag_t = btf_type_by_id(btf, id);
7235			const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4;
7236
7237			/* disallow arg tags in static subprogs */
7238			if (!is_global) {
7239				bpf_log(log, "arg#%d type tag is not supported in static functions\n", i);
7240				return -EOPNOTSUPP;
7241			}
7242
7243			if (strcmp(tag, "ctx") == 0) {
7244				tags |= ARG_TAG_CTX;
7245			} else if (strcmp(tag, "trusted") == 0) {
7246				tags |= ARG_TAG_TRUSTED;
7247			} else if (strcmp(tag, "nonnull") == 0) {
7248				tags |= ARG_TAG_NONNULL;
7249			} else if (strcmp(tag, "nullable") == 0) {
7250				tags |= ARG_TAG_NULLABLE;
7251			} else if (strcmp(tag, "arena") == 0) {
7252				tags |= ARG_TAG_ARENA;
7253			} else {
7254				bpf_log(log, "arg#%d has unsupported set of tags\n", i);
7255				return -EOPNOTSUPP;
7256			}
7257		}
7258		if (id != -ENOENT) {
7259			bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id);
7260			return id;
7261		}
7262
7263		t = btf_type_by_id(btf, args[i].type);
7264		while (btf_type_is_modifier(t))
7265			t = btf_type_by_id(btf, t->type);
7266		if (!btf_type_is_ptr(t))
7267			goto skip_pointer;
7268
7269		if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) {
7270			if (tags & ~ARG_TAG_CTX) {
7271				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7272				return -EINVAL;
7273			}
7274			if ((tags & ARG_TAG_CTX) &&
7275			    btf_validate_prog_ctx_type(log, btf, t, i, prog_type,
7276						       prog->expected_attach_type))
7277				return -EINVAL;
7278			sub->args[i].arg_type = ARG_PTR_TO_CTX;
7279			continue;
7280		}
7281		if (btf_is_dynptr_ptr(btf, t)) {
7282			if (tags) {
7283				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7284				return -EINVAL;
7285			}
7286			sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY;
7287			continue;
7288		}
7289		if (tags & ARG_TAG_TRUSTED) {
7290			int kern_type_id;
7291
7292			if (tags & ARG_TAG_NONNULL) {
7293				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7294				return -EINVAL;
7295			}
7296
7297			kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t);
7298			if (kern_type_id < 0)
7299				return kern_type_id;
7300
7301			sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED;
7302			if (tags & ARG_TAG_NULLABLE)
7303				sub->args[i].arg_type |= PTR_MAYBE_NULL;
7304			sub->args[i].btf_id = kern_type_id;
7305			continue;
7306		}
7307		if (tags & ARG_TAG_ARENA) {
7308			if (tags & ~ARG_TAG_ARENA) {
7309				bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i);
7310				return -EINVAL;
7311			}
7312			sub->args[i].arg_type = ARG_PTR_TO_ARENA;
7313			continue;
7314		}
7315		if (is_global) { /* generic user data pointer */
7316			u32 mem_size;
7317
7318			if (tags & ARG_TAG_NULLABLE) {
7319				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7320				return -EINVAL;
7321			}
7322
7323			t = btf_type_skip_modifiers(btf, t->type, NULL);
7324			ref_t = btf_resolve_size(btf, t, &mem_size);
7325			if (IS_ERR(ref_t)) {
7326				bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7327					i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7328					PTR_ERR(ref_t));
7329				return -EINVAL;
7330			}
7331
7332			sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL;
7333			if (tags & ARG_TAG_NONNULL)
7334				sub->args[i].arg_type &= ~PTR_MAYBE_NULL;
7335			sub->args[i].mem_size = mem_size;
7336			continue;
7337		}
7338
7339skip_pointer:
7340		if (tags) {
7341			bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i);
7342			return -EINVAL;
7343		}
7344		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7345			sub->args[i].arg_type = ARG_ANYTHING;
7346			continue;
7347		}
7348		if (!is_global)
7349			return -EINVAL;
7350		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7351			i, btf_type_str(t), tname);
7352		return -EINVAL;
7353	}
7354
7355	sub->arg_cnt = nargs;
7356	sub->args_cached = true;
7357
7358	return 0;
7359}
7360
7361static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7362			  struct btf_show *show)
7363{
7364	const struct btf_type *t = btf_type_by_id(btf, type_id);
7365
7366	show->btf = btf;
7367	memset(&show->state, 0, sizeof(show->state));
7368	memset(&show->obj, 0, sizeof(show->obj));
7369
7370	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7371}
7372
7373static void btf_seq_show(struct btf_show *show, const char *fmt,
7374			 va_list args)
7375{
7376	seq_vprintf((struct seq_file *)show->target, fmt, args);
7377}
7378
7379int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7380			    void *obj, struct seq_file *m, u64 flags)
7381{
7382	struct btf_show sseq;
7383
7384	sseq.target = m;
7385	sseq.showfn = btf_seq_show;
7386	sseq.flags = flags;
7387
7388	btf_type_show(btf, type_id, obj, &sseq);
7389
7390	return sseq.state.status;
7391}
7392
7393void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7394		       struct seq_file *m)
7395{
7396	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
7397				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7398				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7399}
7400
7401struct btf_show_snprintf {
7402	struct btf_show show;
7403	int len_left;		/* space left in string */
7404	int len;		/* length we would have written */
7405};
7406
7407static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7408			      va_list args)
7409{
7410	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7411	int len;
7412
7413	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7414
7415	if (len < 0) {
7416		ssnprintf->len_left = 0;
7417		ssnprintf->len = len;
7418	} else if (len >= ssnprintf->len_left) {
7419		/* no space, drive on to get length we would have written */
7420		ssnprintf->len_left = 0;
7421		ssnprintf->len += len;
7422	} else {
7423		ssnprintf->len_left -= len;
7424		ssnprintf->len += len;
7425		show->target += len;
7426	}
7427}
7428
7429int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7430			   char *buf, int len, u64 flags)
7431{
7432	struct btf_show_snprintf ssnprintf;
7433
7434	ssnprintf.show.target = buf;
7435	ssnprintf.show.flags = flags;
7436	ssnprintf.show.showfn = btf_snprintf_show;
7437	ssnprintf.len_left = len;
7438	ssnprintf.len = 0;
7439
7440	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7441
7442	/* If we encountered an error, return it. */
7443	if (ssnprintf.show.state.status)
7444		return ssnprintf.show.state.status;
7445
7446	/* Otherwise return length we would have written */
7447	return ssnprintf.len;
7448}
7449
7450#ifdef CONFIG_PROC_FS
7451static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7452{
7453	const struct btf *btf = filp->private_data;
7454
7455	seq_printf(m, "btf_id:\t%u\n", btf->id);
7456}
7457#endif
7458
7459static int btf_release(struct inode *inode, struct file *filp)
7460{
7461	btf_put(filp->private_data);
7462	return 0;
7463}
7464
7465const struct file_operations btf_fops = {
7466#ifdef CONFIG_PROC_FS
7467	.show_fdinfo	= bpf_btf_show_fdinfo,
7468#endif
7469	.release	= btf_release,
7470};
7471
7472static int __btf_new_fd(struct btf *btf)
7473{
7474	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7475}
7476
7477int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7478{
7479	struct btf *btf;
7480	int ret;
7481
7482	btf = btf_parse(attr, uattr, uattr_size);
7483	if (IS_ERR(btf))
7484		return PTR_ERR(btf);
7485
7486	ret = btf_alloc_id(btf);
7487	if (ret) {
7488		btf_free(btf);
7489		return ret;
7490	}
7491
7492	/*
7493	 * The BTF ID is published to the userspace.
7494	 * All BTF free must go through call_rcu() from
7495	 * now on (i.e. free by calling btf_put()).
7496	 */
7497
7498	ret = __btf_new_fd(btf);
7499	if (ret < 0)
7500		btf_put(btf);
7501
7502	return ret;
7503}
7504
7505struct btf *btf_get_by_fd(int fd)
7506{
7507	struct btf *btf;
7508	struct fd f;
7509
7510	f = fdget(fd);
7511
7512	if (!f.file)
7513		return ERR_PTR(-EBADF);
7514
7515	if (f.file->f_op != &btf_fops) {
7516		fdput(f);
7517		return ERR_PTR(-EINVAL);
7518	}
7519
7520	btf = f.file->private_data;
7521	refcount_inc(&btf->refcnt);
7522	fdput(f);
7523
7524	return btf;
7525}
7526
7527int btf_get_info_by_fd(const struct btf *btf,
7528		       const union bpf_attr *attr,
7529		       union bpf_attr __user *uattr)
7530{
7531	struct bpf_btf_info __user *uinfo;
7532	struct bpf_btf_info info;
7533	u32 info_copy, btf_copy;
7534	void __user *ubtf;
7535	char __user *uname;
7536	u32 uinfo_len, uname_len, name_len;
7537	int ret = 0;
7538
7539	uinfo = u64_to_user_ptr(attr->info.info);
7540	uinfo_len = attr->info.info_len;
7541
7542	info_copy = min_t(u32, uinfo_len, sizeof(info));
7543	memset(&info, 0, sizeof(info));
7544	if (copy_from_user(&info, uinfo, info_copy))
7545		return -EFAULT;
7546
7547	info.id = btf->id;
7548	ubtf = u64_to_user_ptr(info.btf);
7549	btf_copy = min_t(u32, btf->data_size, info.btf_size);
7550	if (copy_to_user(ubtf, btf->data, btf_copy))
7551		return -EFAULT;
7552	info.btf_size = btf->data_size;
7553
7554	info.kernel_btf = btf->kernel_btf;
7555
7556	uname = u64_to_user_ptr(info.name);
7557	uname_len = info.name_len;
7558	if (!uname ^ !uname_len)
7559		return -EINVAL;
7560
7561	name_len = strlen(btf->name);
7562	info.name_len = name_len;
7563
7564	if (uname) {
7565		if (uname_len >= name_len + 1) {
7566			if (copy_to_user(uname, btf->name, name_len + 1))
7567				return -EFAULT;
7568		} else {
7569			char zero = '\0';
7570
7571			if (copy_to_user(uname, btf->name, uname_len - 1))
7572				return -EFAULT;
7573			if (put_user(zero, uname + uname_len - 1))
7574				return -EFAULT;
7575			/* let user-space know about too short buffer */
7576			ret = -ENOSPC;
7577		}
7578	}
7579
7580	if (copy_to_user(uinfo, &info, info_copy) ||
7581	    put_user(info_copy, &uattr->info.info_len))
7582		return -EFAULT;
7583
7584	return ret;
7585}
7586
7587int btf_get_fd_by_id(u32 id)
7588{
7589	struct btf *btf;
7590	int fd;
7591
7592	rcu_read_lock();
7593	btf = idr_find(&btf_idr, id);
7594	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7595		btf = ERR_PTR(-ENOENT);
7596	rcu_read_unlock();
7597
7598	if (IS_ERR(btf))
7599		return PTR_ERR(btf);
7600
7601	fd = __btf_new_fd(btf);
7602	if (fd < 0)
7603		btf_put(btf);
7604
7605	return fd;
7606}
7607
7608u32 btf_obj_id(const struct btf *btf)
7609{
7610	return btf->id;
7611}
7612
7613bool btf_is_kernel(const struct btf *btf)
7614{
7615	return btf->kernel_btf;
7616}
7617
7618bool btf_is_module(const struct btf *btf)
7619{
7620	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7621}
7622
7623enum {
7624	BTF_MODULE_F_LIVE = (1 << 0),
7625};
7626
7627#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7628struct btf_module {
7629	struct list_head list;
7630	struct module *module;
7631	struct btf *btf;
7632	struct bin_attribute *sysfs_attr;
7633	int flags;
7634};
7635
7636static LIST_HEAD(btf_modules);
7637static DEFINE_MUTEX(btf_module_mutex);
7638
7639static ssize_t
7640btf_module_read(struct file *file, struct kobject *kobj,
7641		struct bin_attribute *bin_attr,
7642		char *buf, loff_t off, size_t len)
7643{
7644	const struct btf *btf = bin_attr->private;
7645
7646	memcpy(buf, btf->data + off, len);
7647	return len;
7648}
7649
7650static void purge_cand_cache(struct btf *btf);
7651
7652static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7653			     void *module)
7654{
7655	struct btf_module *btf_mod, *tmp;
7656	struct module *mod = module;
7657	struct btf *btf;
7658	int err = 0;
7659
7660	if (mod->btf_data_size == 0 ||
7661	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7662	     op != MODULE_STATE_GOING))
7663		goto out;
7664
7665	switch (op) {
7666	case MODULE_STATE_COMING:
7667		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7668		if (!btf_mod) {
7669			err = -ENOMEM;
7670			goto out;
7671		}
7672		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7673		if (IS_ERR(btf)) {
7674			kfree(btf_mod);
7675			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7676				pr_warn("failed to validate module [%s] BTF: %ld\n",
7677					mod->name, PTR_ERR(btf));
7678				err = PTR_ERR(btf);
7679			} else {
7680				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7681			}
7682			goto out;
7683		}
7684		err = btf_alloc_id(btf);
7685		if (err) {
7686			btf_free(btf);
7687			kfree(btf_mod);
7688			goto out;
7689		}
7690
7691		purge_cand_cache(NULL);
7692		mutex_lock(&btf_module_mutex);
7693		btf_mod->module = module;
7694		btf_mod->btf = btf;
7695		list_add(&btf_mod->list, &btf_modules);
7696		mutex_unlock(&btf_module_mutex);
7697
7698		if (IS_ENABLED(CONFIG_SYSFS)) {
7699			struct bin_attribute *attr;
7700
7701			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7702			if (!attr)
7703				goto out;
7704
7705			sysfs_bin_attr_init(attr);
7706			attr->attr.name = btf->name;
7707			attr->attr.mode = 0444;
7708			attr->size = btf->data_size;
7709			attr->private = btf;
7710			attr->read = btf_module_read;
7711
7712			err = sysfs_create_bin_file(btf_kobj, attr);
7713			if (err) {
7714				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7715					mod->name, err);
7716				kfree(attr);
7717				err = 0;
7718				goto out;
7719			}
7720
7721			btf_mod->sysfs_attr = attr;
7722		}
7723
7724		break;
7725	case MODULE_STATE_LIVE:
7726		mutex_lock(&btf_module_mutex);
7727		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7728			if (btf_mod->module != module)
7729				continue;
7730
7731			btf_mod->flags |= BTF_MODULE_F_LIVE;
7732			break;
7733		}
7734		mutex_unlock(&btf_module_mutex);
7735		break;
7736	case MODULE_STATE_GOING:
7737		mutex_lock(&btf_module_mutex);
7738		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7739			if (btf_mod->module != module)
7740				continue;
7741
7742			list_del(&btf_mod->list);
7743			if (btf_mod->sysfs_attr)
7744				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7745			purge_cand_cache(btf_mod->btf);
7746			btf_put(btf_mod->btf);
7747			kfree(btf_mod->sysfs_attr);
7748			kfree(btf_mod);
7749			break;
7750		}
7751		mutex_unlock(&btf_module_mutex);
7752		break;
7753	}
7754out:
7755	return notifier_from_errno(err);
7756}
7757
7758static struct notifier_block btf_module_nb = {
7759	.notifier_call = btf_module_notify,
7760};
7761
7762static int __init btf_module_init(void)
7763{
7764	register_module_notifier(&btf_module_nb);
7765	return 0;
7766}
7767
7768fs_initcall(btf_module_init);
7769#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7770
7771struct module *btf_try_get_module(const struct btf *btf)
7772{
7773	struct module *res = NULL;
7774#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7775	struct btf_module *btf_mod, *tmp;
7776
7777	mutex_lock(&btf_module_mutex);
7778	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7779		if (btf_mod->btf != btf)
7780			continue;
7781
7782		/* We must only consider module whose __init routine has
7783		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7784		 * which is set from the notifier callback for
7785		 * MODULE_STATE_LIVE.
7786		 */
7787		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7788			res = btf_mod->module;
7789
7790		break;
7791	}
7792	mutex_unlock(&btf_module_mutex);
7793#endif
7794
7795	return res;
7796}
7797
7798/* Returns struct btf corresponding to the struct module.
7799 * This function can return NULL or ERR_PTR.
7800 */
7801static struct btf *btf_get_module_btf(const struct module *module)
7802{
7803#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7804	struct btf_module *btf_mod, *tmp;
7805#endif
7806	struct btf *btf = NULL;
7807
7808	if (!module) {
7809		btf = bpf_get_btf_vmlinux();
7810		if (!IS_ERR_OR_NULL(btf))
7811			btf_get(btf);
7812		return btf;
7813	}
7814
7815#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7816	mutex_lock(&btf_module_mutex);
7817	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7818		if (btf_mod->module != module)
7819			continue;
7820
7821		btf_get(btf_mod->btf);
7822		btf = btf_mod->btf;
7823		break;
7824	}
7825	mutex_unlock(&btf_module_mutex);
7826#endif
7827
7828	return btf;
7829}
7830
7831static int check_btf_kconfigs(const struct module *module, const char *feature)
7832{
7833	if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7834		pr_err("missing vmlinux BTF, cannot register %s\n", feature);
7835		return -ENOENT;
7836	}
7837	if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
7838		pr_warn("missing module BTF, cannot register %s\n", feature);
7839	return 0;
7840}
7841
7842BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7843{
7844	struct btf *btf = NULL;
7845	int btf_obj_fd = 0;
7846	long ret;
7847
7848	if (flags)
7849		return -EINVAL;
7850
7851	if (name_sz <= 1 || name[name_sz - 1])
7852		return -EINVAL;
7853
7854	ret = bpf_find_btf_id(name, kind, &btf);
7855	if (ret > 0 && btf_is_module(btf)) {
7856		btf_obj_fd = __btf_new_fd(btf);
7857		if (btf_obj_fd < 0) {
7858			btf_put(btf);
7859			return btf_obj_fd;
7860		}
7861		return ret | (((u64)btf_obj_fd) << 32);
7862	}
7863	if (ret > 0)
7864		btf_put(btf);
7865	return ret;
7866}
7867
7868const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7869	.func		= bpf_btf_find_by_name_kind,
7870	.gpl_only	= false,
7871	.ret_type	= RET_INTEGER,
7872	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7873	.arg2_type	= ARG_CONST_SIZE,
7874	.arg3_type	= ARG_ANYTHING,
7875	.arg4_type	= ARG_ANYTHING,
7876};
7877
7878BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7879#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7880BTF_TRACING_TYPE_xxx
7881#undef BTF_TRACING_TYPE
7882
7883static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
7884				 const struct btf_type *func, u32 func_flags)
7885{
7886	u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7887	const char *name, *sfx, *iter_name;
7888	const struct btf_param *arg;
7889	const struct btf_type *t;
7890	char exp_name[128];
7891	u32 nr_args;
7892
7893	/* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
7894	if (!flags || (flags & (flags - 1)))
7895		return -EINVAL;
7896
7897	/* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
7898	nr_args = btf_type_vlen(func);
7899	if (nr_args < 1)
7900		return -EINVAL;
7901
7902	arg = &btf_params(func)[0];
7903	t = btf_type_skip_modifiers(btf, arg->type, NULL);
7904	if (!t || !btf_type_is_ptr(t))
7905		return -EINVAL;
7906	t = btf_type_skip_modifiers(btf, t->type, NULL);
7907	if (!t || !__btf_type_is_struct(t))
7908		return -EINVAL;
7909
7910	name = btf_name_by_offset(btf, t->name_off);
7911	if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
7912		return -EINVAL;
7913
7914	/* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
7915	 * fit nicely in stack slots
7916	 */
7917	if (t->size == 0 || (t->size % 8))
7918		return -EINVAL;
7919
7920	/* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
7921	 * naming pattern
7922	 */
7923	iter_name = name + sizeof(ITER_PREFIX) - 1;
7924	if (flags & KF_ITER_NEW)
7925		sfx = "new";
7926	else if (flags & KF_ITER_NEXT)
7927		sfx = "next";
7928	else /* (flags & KF_ITER_DESTROY) */
7929		sfx = "destroy";
7930
7931	snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
7932	if (strcmp(func_name, exp_name))
7933		return -EINVAL;
7934
7935	/* only iter constructor should have extra arguments */
7936	if (!(flags & KF_ITER_NEW) && nr_args != 1)
7937		return -EINVAL;
7938
7939	if (flags & KF_ITER_NEXT) {
7940		/* bpf_iter_<type>_next() should return pointer */
7941		t = btf_type_skip_modifiers(btf, func->type, NULL);
7942		if (!t || !btf_type_is_ptr(t))
7943			return -EINVAL;
7944	}
7945
7946	if (flags & KF_ITER_DESTROY) {
7947		/* bpf_iter_<type>_destroy() should return void */
7948		t = btf_type_by_id(btf, func->type);
7949		if (!t || !btf_type_is_void(t))
7950			return -EINVAL;
7951	}
7952
7953	return 0;
7954}
7955
7956static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
7957{
7958	const struct btf_type *func;
7959	const char *func_name;
7960	int err;
7961
7962	/* any kfunc should be FUNC -> FUNC_PROTO */
7963	func = btf_type_by_id(btf, func_id);
7964	if (!func || !btf_type_is_func(func))
7965		return -EINVAL;
7966
7967	/* sanity check kfunc name */
7968	func_name = btf_name_by_offset(btf, func->name_off);
7969	if (!func_name || !func_name[0])
7970		return -EINVAL;
7971
7972	func = btf_type_by_id(btf, func->type);
7973	if (!func || !btf_type_is_func_proto(func))
7974		return -EINVAL;
7975
7976	if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
7977		err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
7978		if (err)
7979			return err;
7980	}
7981
7982	return 0;
7983}
7984
7985/* Kernel Function (kfunc) BTF ID set registration API */
7986
7987static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7988				  const struct btf_kfunc_id_set *kset)
7989{
7990	struct btf_kfunc_hook_filter *hook_filter;
7991	struct btf_id_set8 *add_set = kset->set;
7992	bool vmlinux_set = !btf_is_module(btf);
7993	bool add_filter = !!kset->filter;
7994	struct btf_kfunc_set_tab *tab;
7995	struct btf_id_set8 *set;
7996	u32 set_cnt;
7997	int ret;
7998
7999	if (hook >= BTF_KFUNC_HOOK_MAX) {
8000		ret = -EINVAL;
8001		goto end;
8002	}
8003
8004	if (!add_set->cnt)
8005		return 0;
8006
8007	tab = btf->kfunc_set_tab;
8008
8009	if (tab && add_filter) {
8010		u32 i;
8011
8012		hook_filter = &tab->hook_filters[hook];
8013		for (i = 0; i < hook_filter->nr_filters; i++) {
8014			if (hook_filter->filters[i] == kset->filter) {
8015				add_filter = false;
8016				break;
8017			}
8018		}
8019
8020		if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
8021			ret = -E2BIG;
8022			goto end;
8023		}
8024	}
8025
8026	if (!tab) {
8027		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
8028		if (!tab)
8029			return -ENOMEM;
8030		btf->kfunc_set_tab = tab;
8031	}
8032
8033	set = tab->sets[hook];
8034	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
8035	 * for module sets.
8036	 */
8037	if (WARN_ON_ONCE(set && !vmlinux_set)) {
8038		ret = -EINVAL;
8039		goto end;
8040	}
8041
8042	/* We don't need to allocate, concatenate, and sort module sets, because
8043	 * only one is allowed per hook. Hence, we can directly assign the
8044	 * pointer and return.
8045	 */
8046	if (!vmlinux_set) {
8047		tab->sets[hook] = add_set;
8048		goto do_add_filter;
8049	}
8050
8051	/* In case of vmlinux sets, there may be more than one set being
8052	 * registered per hook. To create a unified set, we allocate a new set
8053	 * and concatenate all individual sets being registered. While each set
8054	 * is individually sorted, they may become unsorted when concatenated,
8055	 * hence re-sorting the final set again is required to make binary
8056	 * searching the set using btf_id_set8_contains function work.
8057	 */
8058	set_cnt = set ? set->cnt : 0;
8059
8060	if (set_cnt > U32_MAX - add_set->cnt) {
8061		ret = -EOVERFLOW;
8062		goto end;
8063	}
8064
8065	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
8066		ret = -E2BIG;
8067		goto end;
8068	}
8069
8070	/* Grow set */
8071	set = krealloc(tab->sets[hook],
8072		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
8073		       GFP_KERNEL | __GFP_NOWARN);
8074	if (!set) {
8075		ret = -ENOMEM;
8076		goto end;
8077	}
8078
8079	/* For newly allocated set, initialize set->cnt to 0 */
8080	if (!tab->sets[hook])
8081		set->cnt = 0;
8082	tab->sets[hook] = set;
8083
8084	/* Concatenate the two sets */
8085	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
8086	set->cnt += add_set->cnt;
8087
8088	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
8089
8090do_add_filter:
8091	if (add_filter) {
8092		hook_filter = &tab->hook_filters[hook];
8093		hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
8094	}
8095	return 0;
8096end:
8097	btf_free_kfunc_set_tab(btf);
8098	return ret;
8099}
8100
8101static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
8102					enum btf_kfunc_hook hook,
8103					u32 kfunc_btf_id,
8104					const struct bpf_prog *prog)
8105{
8106	struct btf_kfunc_hook_filter *hook_filter;
8107	struct btf_id_set8 *set;
8108	u32 *id, i;
8109
8110	if (hook >= BTF_KFUNC_HOOK_MAX)
8111		return NULL;
8112	if (!btf->kfunc_set_tab)
8113		return NULL;
8114	hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
8115	for (i = 0; i < hook_filter->nr_filters; i++) {
8116		if (hook_filter->filters[i](prog, kfunc_btf_id))
8117			return NULL;
8118	}
8119	set = btf->kfunc_set_tab->sets[hook];
8120	if (!set)
8121		return NULL;
8122	id = btf_id_set8_contains(set, kfunc_btf_id);
8123	if (!id)
8124		return NULL;
8125	/* The flags for BTF ID are located next to it */
8126	return id + 1;
8127}
8128
8129static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
8130{
8131	switch (prog_type) {
8132	case BPF_PROG_TYPE_UNSPEC:
8133		return BTF_KFUNC_HOOK_COMMON;
8134	case BPF_PROG_TYPE_XDP:
8135		return BTF_KFUNC_HOOK_XDP;
8136	case BPF_PROG_TYPE_SCHED_CLS:
8137		return BTF_KFUNC_HOOK_TC;
8138	case BPF_PROG_TYPE_STRUCT_OPS:
8139		return BTF_KFUNC_HOOK_STRUCT_OPS;
8140	case BPF_PROG_TYPE_TRACING:
8141	case BPF_PROG_TYPE_LSM:
8142		return BTF_KFUNC_HOOK_TRACING;
8143	case BPF_PROG_TYPE_SYSCALL:
8144		return BTF_KFUNC_HOOK_SYSCALL;
8145	case BPF_PROG_TYPE_CGROUP_SKB:
8146	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8147		return BTF_KFUNC_HOOK_CGROUP_SKB;
8148	case BPF_PROG_TYPE_SCHED_ACT:
8149		return BTF_KFUNC_HOOK_SCHED_ACT;
8150	case BPF_PROG_TYPE_SK_SKB:
8151		return BTF_KFUNC_HOOK_SK_SKB;
8152	case BPF_PROG_TYPE_SOCKET_FILTER:
8153		return BTF_KFUNC_HOOK_SOCKET_FILTER;
8154	case BPF_PROG_TYPE_LWT_OUT:
8155	case BPF_PROG_TYPE_LWT_IN:
8156	case BPF_PROG_TYPE_LWT_XMIT:
8157	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
8158		return BTF_KFUNC_HOOK_LWT;
8159	case BPF_PROG_TYPE_NETFILTER:
8160		return BTF_KFUNC_HOOK_NETFILTER;
8161	case BPF_PROG_TYPE_KPROBE:
8162		return BTF_KFUNC_HOOK_KPROBE;
8163	default:
8164		return BTF_KFUNC_HOOK_MAX;
8165	}
8166}
8167
8168/* Caution:
8169 * Reference to the module (obtained using btf_try_get_module) corresponding to
8170 * the struct btf *MUST* be held when calling this function from verifier
8171 * context. This is usually true as we stash references in prog's kfunc_btf_tab;
8172 * keeping the reference for the duration of the call provides the necessary
8173 * protection for looking up a well-formed btf->kfunc_set_tab.
8174 */
8175u32 *btf_kfunc_id_set_contains(const struct btf *btf,
8176			       u32 kfunc_btf_id,
8177			       const struct bpf_prog *prog)
8178{
8179	enum bpf_prog_type prog_type = resolve_prog_type(prog);
8180	enum btf_kfunc_hook hook;
8181	u32 *kfunc_flags;
8182
8183	kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
8184	if (kfunc_flags)
8185		return kfunc_flags;
8186
8187	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8188	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
8189}
8190
8191u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
8192				const struct bpf_prog *prog)
8193{
8194	return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
8195}
8196
8197static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
8198				       const struct btf_kfunc_id_set *kset)
8199{
8200	struct btf *btf;
8201	int ret, i;
8202
8203	btf = btf_get_module_btf(kset->owner);
8204	if (!btf)
8205		return check_btf_kconfigs(kset->owner, "kfunc");
8206	if (IS_ERR(btf))
8207		return PTR_ERR(btf);
8208
8209	for (i = 0; i < kset->set->cnt; i++) {
8210		ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id,
8211					     kset->set->pairs[i].flags);
8212		if (ret)
8213			goto err_out;
8214	}
8215
8216	ret = btf_populate_kfunc_set(btf, hook, kset);
8217
8218err_out:
8219	btf_put(btf);
8220	return ret;
8221}
8222
8223/* This function must be invoked only from initcalls/module init functions */
8224int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
8225			      const struct btf_kfunc_id_set *kset)
8226{
8227	enum btf_kfunc_hook hook;
8228
8229	/* All kfuncs need to be tagged as such in BTF.
8230	 * WARN() for initcall registrations that do not check errors.
8231	 */
8232	if (!(kset->set->flags & BTF_SET8_KFUNCS)) {
8233		WARN_ON(!kset->owner);
8234		return -EINVAL;
8235	}
8236
8237	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8238	return __register_btf_kfunc_id_set(hook, kset);
8239}
8240EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
8241
8242/* This function must be invoked only from initcalls/module init functions */
8243int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
8244{
8245	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
8246}
8247EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
8248
8249s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
8250{
8251	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
8252	struct btf_id_dtor_kfunc *dtor;
8253
8254	if (!tab)
8255		return -ENOENT;
8256	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
8257	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
8258	 */
8259	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
8260	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
8261	if (!dtor)
8262		return -ENOENT;
8263	return dtor->kfunc_btf_id;
8264}
8265
8266static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
8267{
8268	const struct btf_type *dtor_func, *dtor_func_proto, *t;
8269	const struct btf_param *args;
8270	s32 dtor_btf_id;
8271	u32 nr_args, i;
8272
8273	for (i = 0; i < cnt; i++) {
8274		dtor_btf_id = dtors[i].kfunc_btf_id;
8275
8276		dtor_func = btf_type_by_id(btf, dtor_btf_id);
8277		if (!dtor_func || !btf_type_is_func(dtor_func))
8278			return -EINVAL;
8279
8280		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
8281		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
8282			return -EINVAL;
8283
8284		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
8285		t = btf_type_by_id(btf, dtor_func_proto->type);
8286		if (!t || !btf_type_is_void(t))
8287			return -EINVAL;
8288
8289		nr_args = btf_type_vlen(dtor_func_proto);
8290		if (nr_args != 1)
8291			return -EINVAL;
8292		args = btf_params(dtor_func_proto);
8293		t = btf_type_by_id(btf, args[0].type);
8294		/* Allow any pointer type, as width on targets Linux supports
8295		 * will be same for all pointer types (i.e. sizeof(void *))
8296		 */
8297		if (!t || !btf_type_is_ptr(t))
8298			return -EINVAL;
8299	}
8300	return 0;
8301}
8302
8303/* This function must be invoked only from initcalls/module init functions */
8304int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
8305				struct module *owner)
8306{
8307	struct btf_id_dtor_kfunc_tab *tab;
8308	struct btf *btf;
8309	u32 tab_cnt;
8310	int ret;
8311
8312	btf = btf_get_module_btf(owner);
8313	if (!btf)
8314		return check_btf_kconfigs(owner, "dtor kfuncs");
8315	if (IS_ERR(btf))
8316		return PTR_ERR(btf);
8317
8318	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8319		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8320		ret = -E2BIG;
8321		goto end;
8322	}
8323
8324	/* Ensure that the prototype of dtor kfuncs being registered is sane */
8325	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8326	if (ret < 0)
8327		goto end;
8328
8329	tab = btf->dtor_kfunc_tab;
8330	/* Only one call allowed for modules */
8331	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8332		ret = -EINVAL;
8333		goto end;
8334	}
8335
8336	tab_cnt = tab ? tab->cnt : 0;
8337	if (tab_cnt > U32_MAX - add_cnt) {
8338		ret = -EOVERFLOW;
8339		goto end;
8340	}
8341	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8342		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8343		ret = -E2BIG;
8344		goto end;
8345	}
8346
8347	tab = krealloc(btf->dtor_kfunc_tab,
8348		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8349		       GFP_KERNEL | __GFP_NOWARN);
8350	if (!tab) {
8351		ret = -ENOMEM;
8352		goto end;
8353	}
8354
8355	if (!btf->dtor_kfunc_tab)
8356		tab->cnt = 0;
8357	btf->dtor_kfunc_tab = tab;
8358
8359	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8360	tab->cnt += add_cnt;
8361
8362	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8363
8364end:
8365	if (ret)
8366		btf_free_dtor_kfunc_tab(btf);
8367	btf_put(btf);
8368	return ret;
8369}
8370EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8371
8372#define MAX_TYPES_ARE_COMPAT_DEPTH 2
8373
8374/* Check local and target types for compatibility. This check is used for
8375 * type-based CO-RE relocations and follow slightly different rules than
8376 * field-based relocations. This function assumes that root types were already
8377 * checked for name match. Beyond that initial root-level name check, names
8378 * are completely ignored. Compatibility rules are as follows:
8379 *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8380 *     kind should match for local and target types (i.e., STRUCT is not
8381 *     compatible with UNION);
8382 *   - for ENUMs/ENUM64s, the size is ignored;
8383 *   - for INT, size and signedness are ignored;
8384 *   - for ARRAY, dimensionality is ignored, element types are checked for
8385 *     compatibility recursively;
8386 *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
8387 *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8388 *   - FUNC_PROTOs are compatible if they have compatible signature: same
8389 *     number of input args and compatible return and argument types.
8390 * These rules are not set in stone and probably will be adjusted as we get
8391 * more experience with using BPF CO-RE relocations.
8392 */
8393int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8394			      const struct btf *targ_btf, __u32 targ_id)
8395{
8396	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8397					   MAX_TYPES_ARE_COMPAT_DEPTH);
8398}
8399
8400#define MAX_TYPES_MATCH_DEPTH 2
8401
8402int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8403			 const struct btf *targ_btf, u32 targ_id)
8404{
8405	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8406				      MAX_TYPES_MATCH_DEPTH);
8407}
8408
8409static bool bpf_core_is_flavor_sep(const char *s)
8410{
8411	/* check X___Y name pattern, where X and Y are not underscores */
8412	return s[0] != '_' &&				      /* X */
8413	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
8414	       s[4] != '_';				      /* Y */
8415}
8416
8417size_t bpf_core_essential_name_len(const char *name)
8418{
8419	size_t n = strlen(name);
8420	int i;
8421
8422	for (i = n - 5; i >= 0; i--) {
8423		if (bpf_core_is_flavor_sep(name + i))
8424			return i + 1;
8425	}
8426	return n;
8427}
8428
8429static void bpf_free_cands(struct bpf_cand_cache *cands)
8430{
8431	if (!cands->cnt)
8432		/* empty candidate array was allocated on stack */
8433		return;
8434	kfree(cands);
8435}
8436
8437static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8438{
8439	kfree(cands->name);
8440	kfree(cands);
8441}
8442
8443#define VMLINUX_CAND_CACHE_SIZE 31
8444static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8445
8446#define MODULE_CAND_CACHE_SIZE 31
8447static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8448
8449static void __print_cand_cache(struct bpf_verifier_log *log,
8450			       struct bpf_cand_cache **cache,
8451			       int cache_size)
8452{
8453	struct bpf_cand_cache *cc;
8454	int i, j;
8455
8456	for (i = 0; i < cache_size; i++) {
8457		cc = cache[i];
8458		if (!cc)
8459			continue;
8460		bpf_log(log, "[%d]%s(", i, cc->name);
8461		for (j = 0; j < cc->cnt; j++) {
8462			bpf_log(log, "%d", cc->cands[j].id);
8463			if (j < cc->cnt - 1)
8464				bpf_log(log, " ");
8465		}
8466		bpf_log(log, "), ");
8467	}
8468}
8469
8470static void print_cand_cache(struct bpf_verifier_log *log)
8471{
8472	mutex_lock(&cand_cache_mutex);
8473	bpf_log(log, "vmlinux_cand_cache:");
8474	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8475	bpf_log(log, "\nmodule_cand_cache:");
8476	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8477	bpf_log(log, "\n");
8478	mutex_unlock(&cand_cache_mutex);
8479}
8480
8481static u32 hash_cands(struct bpf_cand_cache *cands)
8482{
8483	return jhash(cands->name, cands->name_len, 0);
8484}
8485
8486static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8487					       struct bpf_cand_cache **cache,
8488					       int cache_size)
8489{
8490	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8491
8492	if (cc && cc->name_len == cands->name_len &&
8493	    !strncmp(cc->name, cands->name, cands->name_len))
8494		return cc;
8495	return NULL;
8496}
8497
8498static size_t sizeof_cands(int cnt)
8499{
8500	return offsetof(struct bpf_cand_cache, cands[cnt]);
8501}
8502
8503static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8504						  struct bpf_cand_cache **cache,
8505						  int cache_size)
8506{
8507	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8508
8509	if (*cc) {
8510		bpf_free_cands_from_cache(*cc);
8511		*cc = NULL;
8512	}
8513	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8514	if (!new_cands) {
8515		bpf_free_cands(cands);
8516		return ERR_PTR(-ENOMEM);
8517	}
8518	/* strdup the name, since it will stay in cache.
8519	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8520	 */
8521	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8522	bpf_free_cands(cands);
8523	if (!new_cands->name) {
8524		kfree(new_cands);
8525		return ERR_PTR(-ENOMEM);
8526	}
8527	*cc = new_cands;
8528	return new_cands;
8529}
8530
8531#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8532static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8533			       int cache_size)
8534{
8535	struct bpf_cand_cache *cc;
8536	int i, j;
8537
8538	for (i = 0; i < cache_size; i++) {
8539		cc = cache[i];
8540		if (!cc)
8541			continue;
8542		if (!btf) {
8543			/* when new module is loaded purge all of module_cand_cache,
8544			 * since new module might have candidates with the name
8545			 * that matches cached cands.
8546			 */
8547			bpf_free_cands_from_cache(cc);
8548			cache[i] = NULL;
8549			continue;
8550		}
8551		/* when module is unloaded purge cache entries
8552		 * that match module's btf
8553		 */
8554		for (j = 0; j < cc->cnt; j++)
8555			if (cc->cands[j].btf == btf) {
8556				bpf_free_cands_from_cache(cc);
8557				cache[i] = NULL;
8558				break;
8559			}
8560	}
8561
8562}
8563
8564static void purge_cand_cache(struct btf *btf)
8565{
8566	mutex_lock(&cand_cache_mutex);
8567	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8568	mutex_unlock(&cand_cache_mutex);
8569}
8570#endif
8571
8572static struct bpf_cand_cache *
8573bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8574		   int targ_start_id)
8575{
8576	struct bpf_cand_cache *new_cands;
8577	const struct btf_type *t;
8578	const char *targ_name;
8579	size_t targ_essent_len;
8580	int n, i;
8581
8582	n = btf_nr_types(targ_btf);
8583	for (i = targ_start_id; i < n; i++) {
8584		t = btf_type_by_id(targ_btf, i);
8585		if (btf_kind(t) != cands->kind)
8586			continue;
8587
8588		targ_name = btf_name_by_offset(targ_btf, t->name_off);
8589		if (!targ_name)
8590			continue;
8591
8592		/* the resched point is before strncmp to make sure that search
8593		 * for non-existing name will have a chance to schedule().
8594		 */
8595		cond_resched();
8596
8597		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8598			continue;
8599
8600		targ_essent_len = bpf_core_essential_name_len(targ_name);
8601		if (targ_essent_len != cands->name_len)
8602			continue;
8603
8604		/* most of the time there is only one candidate for a given kind+name pair */
8605		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8606		if (!new_cands) {
8607			bpf_free_cands(cands);
8608			return ERR_PTR(-ENOMEM);
8609		}
8610
8611		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8612		bpf_free_cands(cands);
8613		cands = new_cands;
8614		cands->cands[cands->cnt].btf = targ_btf;
8615		cands->cands[cands->cnt].id = i;
8616		cands->cnt++;
8617	}
8618	return cands;
8619}
8620
8621static struct bpf_cand_cache *
8622bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8623{
8624	struct bpf_cand_cache *cands, *cc, local_cand = {};
8625	const struct btf *local_btf = ctx->btf;
8626	const struct btf_type *local_type;
8627	const struct btf *main_btf;
8628	size_t local_essent_len;
8629	struct btf *mod_btf;
8630	const char *name;
8631	int id;
8632
8633	main_btf = bpf_get_btf_vmlinux();
8634	if (IS_ERR(main_btf))
8635		return ERR_CAST(main_btf);
8636	if (!main_btf)
8637		return ERR_PTR(-EINVAL);
8638
8639	local_type = btf_type_by_id(local_btf, local_type_id);
8640	if (!local_type)
8641		return ERR_PTR(-EINVAL);
8642
8643	name = btf_name_by_offset(local_btf, local_type->name_off);
8644	if (str_is_empty(name))
8645		return ERR_PTR(-EINVAL);
8646	local_essent_len = bpf_core_essential_name_len(name);
8647
8648	cands = &local_cand;
8649	cands->name = name;
8650	cands->kind = btf_kind(local_type);
8651	cands->name_len = local_essent_len;
8652
8653	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8654	/* cands is a pointer to stack here */
8655	if (cc) {
8656		if (cc->cnt)
8657			return cc;
8658		goto check_modules;
8659	}
8660
8661	/* Attempt to find target candidates in vmlinux BTF first */
8662	cands = bpf_core_add_cands(cands, main_btf, 1);
8663	if (IS_ERR(cands))
8664		return ERR_CAST(cands);
8665
8666	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8667
8668	/* populate cache even when cands->cnt == 0 */
8669	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8670	if (IS_ERR(cc))
8671		return ERR_CAST(cc);
8672
8673	/* if vmlinux BTF has any candidate, don't go for module BTFs */
8674	if (cc->cnt)
8675		return cc;
8676
8677check_modules:
8678	/* cands is a pointer to stack here and cands->cnt == 0 */
8679	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8680	if (cc)
8681		/* if cache has it return it even if cc->cnt == 0 */
8682		return cc;
8683
8684	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8685	spin_lock_bh(&btf_idr_lock);
8686	idr_for_each_entry(&btf_idr, mod_btf, id) {
8687		if (!btf_is_module(mod_btf))
8688			continue;
8689		/* linear search could be slow hence unlock/lock
8690		 * the IDR to avoiding holding it for too long
8691		 */
8692		btf_get(mod_btf);
8693		spin_unlock_bh(&btf_idr_lock);
8694		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8695		btf_put(mod_btf);
8696		if (IS_ERR(cands))
8697			return ERR_CAST(cands);
8698		spin_lock_bh(&btf_idr_lock);
8699	}
8700	spin_unlock_bh(&btf_idr_lock);
8701	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
8702	 * or pointer to stack if cands->cnd == 0.
8703	 * Copy it into the cache even when cands->cnt == 0 and
8704	 * return the result.
8705	 */
8706	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8707}
8708
8709int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8710		   int relo_idx, void *insn)
8711{
8712	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8713	struct bpf_core_cand_list cands = {};
8714	struct bpf_core_relo_res targ_res;
8715	struct bpf_core_spec *specs;
8716	int err;
8717
8718	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8719	 * into arrays of btf_ids of struct fields and array indices.
8720	 */
8721	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8722	if (!specs)
8723		return -ENOMEM;
8724
8725	if (need_cands) {
8726		struct bpf_cand_cache *cc;
8727		int i;
8728
8729		mutex_lock(&cand_cache_mutex);
8730		cc = bpf_core_find_cands(ctx, relo->type_id);
8731		if (IS_ERR(cc)) {
8732			bpf_log(ctx->log, "target candidate search failed for %d\n",
8733				relo->type_id);
8734			err = PTR_ERR(cc);
8735			goto out;
8736		}
8737		if (cc->cnt) {
8738			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8739			if (!cands.cands) {
8740				err = -ENOMEM;
8741				goto out;
8742			}
8743		}
8744		for (i = 0; i < cc->cnt; i++) {
8745			bpf_log(ctx->log,
8746				"CO-RE relocating %s %s: found target candidate [%d]\n",
8747				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8748			cands.cands[i].btf = cc->cands[i].btf;
8749			cands.cands[i].id = cc->cands[i].id;
8750		}
8751		cands.len = cc->cnt;
8752		/* cand_cache_mutex needs to span the cache lookup and
8753		 * copy of btf pointer into bpf_core_cand_list,
8754		 * since module can be unloaded while bpf_core_calc_relo_insn
8755		 * is working with module's btf.
8756		 */
8757	}
8758
8759	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8760				      &targ_res);
8761	if (err)
8762		goto out;
8763
8764	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8765				  &targ_res);
8766
8767out:
8768	kfree(specs);
8769	if (need_cands) {
8770		kfree(cands.cands);
8771		mutex_unlock(&cand_cache_mutex);
8772		if (ctx->log->level & BPF_LOG_LEVEL2)
8773			print_cand_cache(ctx->log);
8774	}
8775	return err;
8776}
8777
8778bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
8779				const struct bpf_reg_state *reg,
8780				const char *field_name, u32 btf_id, const char *suffix)
8781{
8782	struct btf *btf = reg->btf;
8783	const struct btf_type *walk_type, *safe_type;
8784	const char *tname;
8785	char safe_tname[64];
8786	long ret, safe_id;
8787	const struct btf_member *member;
8788	u32 i;
8789
8790	walk_type = btf_type_by_id(btf, reg->btf_id);
8791	if (!walk_type)
8792		return false;
8793
8794	tname = btf_name_by_offset(btf, walk_type->name_off);
8795
8796	ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
8797	if (ret >= sizeof(safe_tname))
8798		return false;
8799
8800	safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
8801	if (safe_id < 0)
8802		return false;
8803
8804	safe_type = btf_type_by_id(btf, safe_id);
8805	if (!safe_type)
8806		return false;
8807
8808	for_each_member(i, safe_type, member) {
8809		const char *m_name = __btf_name_by_offset(btf, member->name_off);
8810		const struct btf_type *mtype = btf_type_by_id(btf, member->type);
8811		u32 id;
8812
8813		if (!btf_type_is_ptr(mtype))
8814			continue;
8815
8816		btf_type_skip_modifiers(btf, mtype->type, &id);
8817		/* If we match on both type and name, the field is considered trusted. */
8818		if (btf_id == id && !strcmp(field_name, m_name))
8819			return true;
8820	}
8821
8822	return false;
8823}
8824
8825bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
8826			       const struct btf *reg_btf, u32 reg_id,
8827			       const struct btf *arg_btf, u32 arg_id)
8828{
8829	const char *reg_name, *arg_name, *search_needle;
8830	const struct btf_type *reg_type, *arg_type;
8831	int reg_len, arg_len, cmp_len;
8832	size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
8833
8834	reg_type = btf_type_by_id(reg_btf, reg_id);
8835	if (!reg_type)
8836		return false;
8837
8838	arg_type = btf_type_by_id(arg_btf, arg_id);
8839	if (!arg_type)
8840		return false;
8841
8842	reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
8843	arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
8844
8845	reg_len = strlen(reg_name);
8846	arg_len = strlen(arg_name);
8847
8848	/* Exactly one of the two type names may be suffixed with ___init, so
8849	 * if the strings are the same size, they can't possibly be no-cast
8850	 * aliases of one another. If you have two of the same type names, e.g.
8851	 * they're both nf_conn___init, it would be improper to return true
8852	 * because they are _not_ no-cast aliases, they are the same type.
8853	 */
8854	if (reg_len == arg_len)
8855		return false;
8856
8857	/* Either of the two names must be the other name, suffixed with ___init. */
8858	if ((reg_len != arg_len + pattern_len) &&
8859	    (arg_len != reg_len + pattern_len))
8860		return false;
8861
8862	if (reg_len < arg_len) {
8863		search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
8864		cmp_len = reg_len;
8865	} else {
8866		search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
8867		cmp_len = arg_len;
8868	}
8869
8870	if (!search_needle)
8871		return false;
8872
8873	/* ___init suffix must come at the end of the name */
8874	if (*(search_needle + pattern_len) != '\0')
8875		return false;
8876
8877	return !strncmp(reg_name, arg_name, cmp_len);
8878}
8879
8880#ifdef CONFIG_BPF_JIT
8881static int
8882btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops,
8883		   struct bpf_verifier_log *log)
8884{
8885	struct btf_struct_ops_tab *tab, *new_tab;
8886	int i, err;
8887
8888	tab = btf->struct_ops_tab;
8889	if (!tab) {
8890		tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]),
8891			      GFP_KERNEL);
8892		if (!tab)
8893			return -ENOMEM;
8894		tab->capacity = 4;
8895		btf->struct_ops_tab = tab;
8896	}
8897
8898	for (i = 0; i < tab->cnt; i++)
8899		if (tab->ops[i].st_ops == st_ops)
8900			return -EEXIST;
8901
8902	if (tab->cnt == tab->capacity) {
8903		new_tab = krealloc(tab,
8904				   offsetof(struct btf_struct_ops_tab,
8905					    ops[tab->capacity * 2]),
8906				   GFP_KERNEL);
8907		if (!new_tab)
8908			return -ENOMEM;
8909		tab = new_tab;
8910		tab->capacity *= 2;
8911		btf->struct_ops_tab = tab;
8912	}
8913
8914	tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops;
8915
8916	err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log);
8917	if (err)
8918		return err;
8919
8920	btf->struct_ops_tab->cnt++;
8921
8922	return 0;
8923}
8924
8925const struct bpf_struct_ops_desc *
8926bpf_struct_ops_find_value(struct btf *btf, u32 value_id)
8927{
8928	const struct bpf_struct_ops_desc *st_ops_list;
8929	unsigned int i;
8930	u32 cnt;
8931
8932	if (!value_id)
8933		return NULL;
8934	if (!btf->struct_ops_tab)
8935		return NULL;
8936
8937	cnt = btf->struct_ops_tab->cnt;
8938	st_ops_list = btf->struct_ops_tab->ops;
8939	for (i = 0; i < cnt; i++) {
8940		if (st_ops_list[i].value_id == value_id)
8941			return &st_ops_list[i];
8942	}
8943
8944	return NULL;
8945}
8946
8947const struct bpf_struct_ops_desc *
8948bpf_struct_ops_find(struct btf *btf, u32 type_id)
8949{
8950	const struct bpf_struct_ops_desc *st_ops_list;
8951	unsigned int i;
8952	u32 cnt;
8953
8954	if (!type_id)
8955		return NULL;
8956	if (!btf->struct_ops_tab)
8957		return NULL;
8958
8959	cnt = btf->struct_ops_tab->cnt;
8960	st_ops_list = btf->struct_ops_tab->ops;
8961	for (i = 0; i < cnt; i++) {
8962		if (st_ops_list[i].type_id == type_id)
8963			return &st_ops_list[i];
8964	}
8965
8966	return NULL;
8967}
8968
8969int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops)
8970{
8971	struct bpf_verifier_log *log;
8972	struct btf *btf;
8973	int err = 0;
8974
8975	btf = btf_get_module_btf(st_ops->owner);
8976	if (!btf)
8977		return check_btf_kconfigs(st_ops->owner, "struct_ops");
8978	if (IS_ERR(btf))
8979		return PTR_ERR(btf);
8980
8981	log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN);
8982	if (!log) {
8983		err = -ENOMEM;
8984		goto errout;
8985	}
8986
8987	log->level = BPF_LOG_KERNEL;
8988
8989	err = btf_add_struct_ops(btf, st_ops, log);
8990
8991errout:
8992	kfree(log);
8993	btf_put(btf);
8994
8995	return err;
8996}
8997EXPORT_SYMBOL_GPL(__register_bpf_struct_ops);
8998#endif
8999
9000bool btf_param_match_suffix(const struct btf *btf,
9001			    const struct btf_param *arg,
9002			    const char *suffix)
9003{
9004	int suffix_len = strlen(suffix), len;
9005	const char *param_name;
9006
9007	/* In the future, this can be ported to use BTF tagging */
9008	param_name = btf_name_by_offset(btf, arg->name_off);
9009	if (str_is_empty(param_name))
9010		return false;
9011	len = strlen(param_name);
9012	if (len <= suffix_len)
9013		return false;
9014	param_name += len - suffix_len;
9015	return !strncmp(param_name, suffix, suffix_len);
9016}
9017