1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/sched/stat.h>
14#include <linux/bug.h>
15#include <linux/minmax.h>
16#include <linux/mm.h>
17#include <linux/mmu_notifier.h>
18#include <linux/preempt.h>
19#include <linux/msi.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22#include <linux/rcupdate.h>
23#include <linux/ratelimit.h>
24#include <linux/err.h>
25#include <linux/irqflags.h>
26#include <linux/context_tracking.h>
27#include <linux/irqbypass.h>
28#include <linux/rcuwait.h>
29#include <linux/refcount.h>
30#include <linux/nospec.h>
31#include <linux/notifier.h>
32#include <linux/ftrace.h>
33#include <linux/hashtable.h>
34#include <linux/instrumentation.h>
35#include <linux/interval_tree.h>
36#include <linux/rbtree.h>
37#include <linux/xarray.h>
38#include <asm/signal.h>
39
40#include <linux/kvm.h>
41#include <linux/kvm_para.h>
42
43#include <linux/kvm_types.h>
44
45#include <asm/kvm_host.h>
46#include <linux/kvm_dirty_ring.h>
47
48#ifndef KVM_MAX_VCPU_IDS
49#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50#endif
51
52/*
53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54 * used in kvm, other bits are visible for userspace which are defined in
55 * include/linux/kvm_h.
56 */
57#define KVM_MEMSLOT_INVALID	(1UL << 16)
58
59/*
60 * Bit 63 of the memslot generation number is an "update in-progress flag",
61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62 * This flag effectively creates a unique generation number that is used to
63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64 * i.e. may (or may not) have come from the previous memslots generation.
65 *
66 * This is necessary because the actual memslots update is not atomic with
67 * respect to the generation number update.  Updating the generation number
68 * first would allow a vCPU to cache a spte from the old memslots using the
69 * new generation number, and updating the generation number after switching
70 * to the new memslots would allow cache hits using the old generation number
71 * to reference the defunct memslots.
72 *
73 * This mechanism is used to prevent getting hits in KVM's caches while a
74 * memslot update is in-progress, and to prevent cache hits *after* updating
75 * the actual generation number against accesses that were inserted into the
76 * cache *before* the memslots were updated.
77 */
78#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79
80/* Two fragments for cross MMIO pages. */
81#define KVM_MAX_MMIO_FRAGMENTS	2
82
83#ifndef KVM_MAX_NR_ADDRESS_SPACES
84#define KVM_MAX_NR_ADDRESS_SPACES	1
85#endif
86
87/*
88 * For the normal pfn, the highest 12 bits should be zero,
89 * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90 * mask bit 63 to indicate the noslot pfn.
91 */
92#define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93#define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94#define KVM_PFN_NOSLOT		(0x1ULL << 63)
95
96#define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97#define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98#define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99#define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
100
101/*
102 * error pfns indicate that the gfn is in slot but faild to
103 * translate it to pfn on host.
104 */
105static inline bool is_error_pfn(kvm_pfn_t pfn)
106{
107	return !!(pfn & KVM_PFN_ERR_MASK);
108}
109
110/*
111 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112 * by a pending signal.  Note, the signal may or may not be fatal.
113 */
114static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115{
116	return pfn == KVM_PFN_ERR_SIGPENDING;
117}
118
119/*
120 * error_noslot pfns indicate that the gfn can not be
121 * translated to pfn - it is not in slot or failed to
122 * translate it to pfn.
123 */
124static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125{
126	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127}
128
129/* noslot pfn indicates that the gfn is not in slot. */
130static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131{
132	return pfn == KVM_PFN_NOSLOT;
133}
134
135/*
136 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137 * provide own defines and kvm_is_error_hva
138 */
139#ifndef KVM_HVA_ERR_BAD
140
141#define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
142#define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
143
144static inline bool kvm_is_error_hva(unsigned long addr)
145{
146	return addr >= PAGE_OFFSET;
147}
148
149#endif
150
151static inline bool kvm_is_error_gpa(gpa_t gpa)
152{
153	return gpa == INVALID_GPA;
154}
155
156#define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
157
158static inline bool is_error_page(struct page *page)
159{
160	return IS_ERR(page);
161}
162
163#define KVM_REQUEST_MASK           GENMASK(7,0)
164#define KVM_REQUEST_NO_WAKEUP      BIT(8)
165#define KVM_REQUEST_WAIT           BIT(9)
166#define KVM_REQUEST_NO_ACTION      BIT(10)
167/*
168 * Architecture-independent vcpu->requests bit members
169 * Bits 3-7 are reserved for more arch-independent bits.
170 */
171#define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
172#define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
173#define KVM_REQ_UNBLOCK			2
174#define KVM_REQ_DIRTY_RING_SOFT_FULL	3
175#define KVM_REQUEST_ARCH_BASE		8
176
177/*
178 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
179 * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
180 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
181 * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
182 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
183 * guarantee the vCPU received an IPI and has actually exited guest mode.
184 */
185#define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
186
187#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
188	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
189	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
190})
191#define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
192
193bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
194				 unsigned long *vcpu_bitmap);
195bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
196
197#define KVM_USERSPACE_IRQ_SOURCE_ID		0
198#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
199
200extern struct mutex kvm_lock;
201extern struct list_head vm_list;
202
203struct kvm_io_range {
204	gpa_t addr;
205	int len;
206	struct kvm_io_device *dev;
207};
208
209#define NR_IOBUS_DEVS 1000
210
211struct kvm_io_bus {
212	int dev_count;
213	int ioeventfd_count;
214	struct kvm_io_range range[];
215};
216
217enum kvm_bus {
218	KVM_MMIO_BUS,
219	KVM_PIO_BUS,
220	KVM_VIRTIO_CCW_NOTIFY_BUS,
221	KVM_FAST_MMIO_BUS,
222	KVM_NR_BUSES
223};
224
225int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
226		     int len, const void *val);
227int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
228			    gpa_t addr, int len, const void *val, long cookie);
229int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
230		    int len, void *val);
231int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
232			    int len, struct kvm_io_device *dev);
233int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
234			      struct kvm_io_device *dev);
235struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
236					 gpa_t addr);
237
238#ifdef CONFIG_KVM_ASYNC_PF
239struct kvm_async_pf {
240	struct work_struct work;
241	struct list_head link;
242	struct list_head queue;
243	struct kvm_vcpu *vcpu;
244	gpa_t cr2_or_gpa;
245	unsigned long addr;
246	struct kvm_arch_async_pf arch;
247	bool   wakeup_all;
248	bool notpresent_injected;
249};
250
251void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
252void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
253bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
254			unsigned long hva, struct kvm_arch_async_pf *arch);
255int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
256#endif
257
258#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
259union kvm_mmu_notifier_arg {
260	unsigned long attributes;
261};
262
263struct kvm_gfn_range {
264	struct kvm_memory_slot *slot;
265	gfn_t start;
266	gfn_t end;
267	union kvm_mmu_notifier_arg arg;
268	bool may_block;
269};
270bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
271bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
272bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
273#endif
274
275enum {
276	OUTSIDE_GUEST_MODE,
277	IN_GUEST_MODE,
278	EXITING_GUEST_MODE,
279	READING_SHADOW_PAGE_TABLES,
280};
281
282#define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
283
284struct kvm_host_map {
285	/*
286	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
287	 * a 'struct page' for it. When using mem= kernel parameter some memory
288	 * can be used as guest memory but they are not managed by host
289	 * kernel).
290	 * If 'pfn' is not managed by the host kernel, this field is
291	 * initialized to KVM_UNMAPPED_PAGE.
292	 */
293	struct page *page;
294	void *hva;
295	kvm_pfn_t pfn;
296	kvm_pfn_t gfn;
297};
298
299/*
300 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
301 * directly to check for that.
302 */
303static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
304{
305	return !!map->hva;
306}
307
308static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
309{
310	return single_task_running() && !need_resched() && ktime_before(cur, stop);
311}
312
313/*
314 * Sometimes a large or cross-page mmio needs to be broken up into separate
315 * exits for userspace servicing.
316 */
317struct kvm_mmio_fragment {
318	gpa_t gpa;
319	void *data;
320	unsigned len;
321};
322
323struct kvm_vcpu {
324	struct kvm *kvm;
325#ifdef CONFIG_PREEMPT_NOTIFIERS
326	struct preempt_notifier preempt_notifier;
327#endif
328	int cpu;
329	int vcpu_id; /* id given by userspace at creation */
330	int vcpu_idx; /* index into kvm->vcpu_array */
331	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
332#ifdef CONFIG_PROVE_RCU
333	int srcu_depth;
334#endif
335	int mode;
336	u64 requests;
337	unsigned long guest_debug;
338
339	struct mutex mutex;
340	struct kvm_run *run;
341
342#ifndef __KVM_HAVE_ARCH_WQP
343	struct rcuwait wait;
344#endif
345	struct pid __rcu *pid;
346	int sigset_active;
347	sigset_t sigset;
348	unsigned int halt_poll_ns;
349	bool valid_wakeup;
350
351#ifdef CONFIG_HAS_IOMEM
352	int mmio_needed;
353	int mmio_read_completed;
354	int mmio_is_write;
355	int mmio_cur_fragment;
356	int mmio_nr_fragments;
357	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
358#endif
359
360#ifdef CONFIG_KVM_ASYNC_PF
361	struct {
362		u32 queued;
363		struct list_head queue;
364		struct list_head done;
365		spinlock_t lock;
366	} async_pf;
367#endif
368
369#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
370	/*
371	 * Cpu relax intercept or pause loop exit optimization
372	 * in_spin_loop: set when a vcpu does a pause loop exit
373	 *  or cpu relax intercepted.
374	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
375	 */
376	struct {
377		bool in_spin_loop;
378		bool dy_eligible;
379	} spin_loop;
380#endif
381	bool preempted;
382	bool ready;
383	struct kvm_vcpu_arch arch;
384	struct kvm_vcpu_stat stat;
385	char stats_id[KVM_STATS_NAME_SIZE];
386	struct kvm_dirty_ring dirty_ring;
387
388	/*
389	 * The most recently used memslot by this vCPU and the slots generation
390	 * for which it is valid.
391	 * No wraparound protection is needed since generations won't overflow in
392	 * thousands of years, even assuming 1M memslot operations per second.
393	 */
394	struct kvm_memory_slot *last_used_slot;
395	u64 last_used_slot_gen;
396};
397
398/*
399 * Start accounting time towards a guest.
400 * Must be called before entering guest context.
401 */
402static __always_inline void guest_timing_enter_irqoff(void)
403{
404	/*
405	 * This is running in ioctl context so its safe to assume that it's the
406	 * stime pending cputime to flush.
407	 */
408	instrumentation_begin();
409	vtime_account_guest_enter();
410	instrumentation_end();
411}
412
413/*
414 * Enter guest context and enter an RCU extended quiescent state.
415 *
416 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
417 * unsafe to use any code which may directly or indirectly use RCU, tracing
418 * (including IRQ flag tracing), or lockdep. All code in this period must be
419 * non-instrumentable.
420 */
421static __always_inline void guest_context_enter_irqoff(void)
422{
423	/*
424	 * KVM does not hold any references to rcu protected data when it
425	 * switches CPU into a guest mode. In fact switching to a guest mode
426	 * is very similar to exiting to userspace from rcu point of view. In
427	 * addition CPU may stay in a guest mode for quite a long time (up to
428	 * one time slice). Lets treat guest mode as quiescent state, just like
429	 * we do with user-mode execution.
430	 */
431	if (!context_tracking_guest_enter()) {
432		instrumentation_begin();
433		rcu_virt_note_context_switch();
434		instrumentation_end();
435	}
436}
437
438/*
439 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
440 * guest_state_enter_irqoff().
441 */
442static __always_inline void guest_enter_irqoff(void)
443{
444	guest_timing_enter_irqoff();
445	guest_context_enter_irqoff();
446}
447
448/**
449 * guest_state_enter_irqoff - Fixup state when entering a guest
450 *
451 * Entry to a guest will enable interrupts, but the kernel state is interrupts
452 * disabled when this is invoked. Also tell RCU about it.
453 *
454 * 1) Trace interrupts on state
455 * 2) Invoke context tracking if enabled to adjust RCU state
456 * 3) Tell lockdep that interrupts are enabled
457 *
458 * Invoked from architecture specific code before entering a guest.
459 * Must be called with interrupts disabled and the caller must be
460 * non-instrumentable.
461 * The caller has to invoke guest_timing_enter_irqoff() before this.
462 *
463 * Note: this is analogous to exit_to_user_mode().
464 */
465static __always_inline void guest_state_enter_irqoff(void)
466{
467	instrumentation_begin();
468	trace_hardirqs_on_prepare();
469	lockdep_hardirqs_on_prepare();
470	instrumentation_end();
471
472	guest_context_enter_irqoff();
473	lockdep_hardirqs_on(CALLER_ADDR0);
474}
475
476/*
477 * Exit guest context and exit an RCU extended quiescent state.
478 *
479 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
480 * unsafe to use any code which may directly or indirectly use RCU, tracing
481 * (including IRQ flag tracing), or lockdep. All code in this period must be
482 * non-instrumentable.
483 */
484static __always_inline void guest_context_exit_irqoff(void)
485{
486	context_tracking_guest_exit();
487}
488
489/*
490 * Stop accounting time towards a guest.
491 * Must be called after exiting guest context.
492 */
493static __always_inline void guest_timing_exit_irqoff(void)
494{
495	instrumentation_begin();
496	/* Flush the guest cputime we spent on the guest */
497	vtime_account_guest_exit();
498	instrumentation_end();
499}
500
501/*
502 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
503 * guest_timing_exit_irqoff().
504 */
505static __always_inline void guest_exit_irqoff(void)
506{
507	guest_context_exit_irqoff();
508	guest_timing_exit_irqoff();
509}
510
511static inline void guest_exit(void)
512{
513	unsigned long flags;
514
515	local_irq_save(flags);
516	guest_exit_irqoff();
517	local_irq_restore(flags);
518}
519
520/**
521 * guest_state_exit_irqoff - Establish state when returning from guest mode
522 *
523 * Entry from a guest disables interrupts, but guest mode is traced as
524 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
525 *
526 * 1) Tell lockdep that interrupts are disabled
527 * 2) Invoke context tracking if enabled to reactivate RCU
528 * 3) Trace interrupts off state
529 *
530 * Invoked from architecture specific code after exiting a guest.
531 * Must be invoked with interrupts disabled and the caller must be
532 * non-instrumentable.
533 * The caller has to invoke guest_timing_exit_irqoff() after this.
534 *
535 * Note: this is analogous to enter_from_user_mode().
536 */
537static __always_inline void guest_state_exit_irqoff(void)
538{
539	lockdep_hardirqs_off(CALLER_ADDR0);
540	guest_context_exit_irqoff();
541
542	instrumentation_begin();
543	trace_hardirqs_off_finish();
544	instrumentation_end();
545}
546
547static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
548{
549	/*
550	 * The memory barrier ensures a previous write to vcpu->requests cannot
551	 * be reordered with the read of vcpu->mode.  It pairs with the general
552	 * memory barrier following the write of vcpu->mode in VCPU RUN.
553	 */
554	smp_mb__before_atomic();
555	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
556}
557
558/*
559 * Some of the bitops functions do not support too long bitmaps.
560 * This number must be determined not to exceed such limits.
561 */
562#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
563
564/*
565 * Since at idle each memslot belongs to two memslot sets it has to contain
566 * two embedded nodes for each data structure that it forms a part of.
567 *
568 * Two memslot sets (one active and one inactive) are necessary so the VM
569 * continues to run on one memslot set while the other is being modified.
570 *
571 * These two memslot sets normally point to the same set of memslots.
572 * They can, however, be desynchronized when performing a memslot management
573 * operation by replacing the memslot to be modified by its copy.
574 * After the operation is complete, both memslot sets once again point to
575 * the same, common set of memslot data.
576 *
577 * The memslots themselves are independent of each other so they can be
578 * individually added or deleted.
579 */
580struct kvm_memory_slot {
581	struct hlist_node id_node[2];
582	struct interval_tree_node hva_node[2];
583	struct rb_node gfn_node[2];
584	gfn_t base_gfn;
585	unsigned long npages;
586	unsigned long *dirty_bitmap;
587	struct kvm_arch_memory_slot arch;
588	unsigned long userspace_addr;
589	u32 flags;
590	short id;
591	u16 as_id;
592
593#ifdef CONFIG_KVM_PRIVATE_MEM
594	struct {
595		struct file __rcu *file;
596		pgoff_t pgoff;
597	} gmem;
598#endif
599};
600
601static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
602{
603	return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
604}
605
606static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
607{
608	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
609}
610
611static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
612{
613	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
614}
615
616static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
617{
618	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
619
620	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
621}
622
623#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
624#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
625#endif
626
627struct kvm_s390_adapter_int {
628	u64 ind_addr;
629	u64 summary_addr;
630	u64 ind_offset;
631	u32 summary_offset;
632	u32 adapter_id;
633};
634
635struct kvm_hv_sint {
636	u32 vcpu;
637	u32 sint;
638};
639
640struct kvm_xen_evtchn {
641	u32 port;
642	u32 vcpu_id;
643	int vcpu_idx;
644	u32 priority;
645};
646
647struct kvm_kernel_irq_routing_entry {
648	u32 gsi;
649	u32 type;
650	int (*set)(struct kvm_kernel_irq_routing_entry *e,
651		   struct kvm *kvm, int irq_source_id, int level,
652		   bool line_status);
653	union {
654		struct {
655			unsigned irqchip;
656			unsigned pin;
657		} irqchip;
658		struct {
659			u32 address_lo;
660			u32 address_hi;
661			u32 data;
662			u32 flags;
663			u32 devid;
664		} msi;
665		struct kvm_s390_adapter_int adapter;
666		struct kvm_hv_sint hv_sint;
667		struct kvm_xen_evtchn xen_evtchn;
668	};
669	struct hlist_node link;
670};
671
672#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
673struct kvm_irq_routing_table {
674	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
675	u32 nr_rt_entries;
676	/*
677	 * Array indexed by gsi. Each entry contains list of irq chips
678	 * the gsi is connected to.
679	 */
680	struct hlist_head map[] __counted_by(nr_rt_entries);
681};
682#endif
683
684bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
685
686#ifndef KVM_INTERNAL_MEM_SLOTS
687#define KVM_INTERNAL_MEM_SLOTS 0
688#endif
689
690#define KVM_MEM_SLOTS_NUM SHRT_MAX
691#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
692
693#if KVM_MAX_NR_ADDRESS_SPACES == 1
694static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
695{
696	return KVM_MAX_NR_ADDRESS_SPACES;
697}
698
699static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
700{
701	return 0;
702}
703#endif
704
705/*
706 * Arch code must define kvm_arch_has_private_mem if support for private memory
707 * is enabled.
708 */
709#if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
710static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
711{
712	return false;
713}
714#endif
715
716struct kvm_memslots {
717	u64 generation;
718	atomic_long_t last_used_slot;
719	struct rb_root_cached hva_tree;
720	struct rb_root gfn_tree;
721	/*
722	 * The mapping table from slot id to memslot.
723	 *
724	 * 7-bit bucket count matches the size of the old id to index array for
725	 * 512 slots, while giving good performance with this slot count.
726	 * Higher bucket counts bring only small performance improvements but
727	 * always result in higher memory usage (even for lower memslot counts).
728	 */
729	DECLARE_HASHTABLE(id_hash, 7);
730	int node_idx;
731};
732
733struct kvm {
734#ifdef KVM_HAVE_MMU_RWLOCK
735	rwlock_t mmu_lock;
736#else
737	spinlock_t mmu_lock;
738#endif /* KVM_HAVE_MMU_RWLOCK */
739
740	struct mutex slots_lock;
741
742	/*
743	 * Protects the arch-specific fields of struct kvm_memory_slots in
744	 * use by the VM. To be used under the slots_lock (above) or in a
745	 * kvm->srcu critical section where acquiring the slots_lock would
746	 * lead to deadlock with the synchronize_srcu in
747	 * kvm_swap_active_memslots().
748	 */
749	struct mutex slots_arch_lock;
750	struct mm_struct *mm; /* userspace tied to this vm */
751	unsigned long nr_memslot_pages;
752	/* The two memslot sets - active and inactive (per address space) */
753	struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
754	/* The current active memslot set for each address space */
755	struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
756	struct xarray vcpu_array;
757	/*
758	 * Protected by slots_lock, but can be read outside if an
759	 * incorrect answer is acceptable.
760	 */
761	atomic_t nr_memslots_dirty_logging;
762
763	/* Used to wait for completion of MMU notifiers.  */
764	spinlock_t mn_invalidate_lock;
765	unsigned long mn_active_invalidate_count;
766	struct rcuwait mn_memslots_update_rcuwait;
767
768	/* For management / invalidation of gfn_to_pfn_caches */
769	spinlock_t gpc_lock;
770	struct list_head gpc_list;
771
772	/*
773	 * created_vcpus is protected by kvm->lock, and is incremented
774	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
775	 * incremented after storing the kvm_vcpu pointer in vcpus,
776	 * and is accessed atomically.
777	 */
778	atomic_t online_vcpus;
779	int max_vcpus;
780	int created_vcpus;
781	int last_boosted_vcpu;
782	struct list_head vm_list;
783	struct mutex lock;
784	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
785#ifdef CONFIG_HAVE_KVM_IRQCHIP
786	struct {
787		spinlock_t        lock;
788		struct list_head  items;
789		/* resampler_list update side is protected by resampler_lock. */
790		struct list_head  resampler_list;
791		struct mutex      resampler_lock;
792	} irqfds;
793#endif
794	struct list_head ioeventfds;
795	struct kvm_vm_stat stat;
796	struct kvm_arch arch;
797	refcount_t users_count;
798#ifdef CONFIG_KVM_MMIO
799	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
800	spinlock_t ring_lock;
801	struct list_head coalesced_zones;
802#endif
803
804	struct mutex irq_lock;
805#ifdef CONFIG_HAVE_KVM_IRQCHIP
806	/*
807	 * Update side is protected by irq_lock.
808	 */
809	struct kvm_irq_routing_table __rcu *irq_routing;
810
811	struct hlist_head irq_ack_notifier_list;
812#endif
813
814#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
815	struct mmu_notifier mmu_notifier;
816	unsigned long mmu_invalidate_seq;
817	long mmu_invalidate_in_progress;
818	gfn_t mmu_invalidate_range_start;
819	gfn_t mmu_invalidate_range_end;
820#endif
821	struct list_head devices;
822	u64 manual_dirty_log_protect;
823	struct dentry *debugfs_dentry;
824	struct kvm_stat_data **debugfs_stat_data;
825	struct srcu_struct srcu;
826	struct srcu_struct irq_srcu;
827	pid_t userspace_pid;
828	bool override_halt_poll_ns;
829	unsigned int max_halt_poll_ns;
830	u32 dirty_ring_size;
831	bool dirty_ring_with_bitmap;
832	bool vm_bugged;
833	bool vm_dead;
834
835#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
836	struct notifier_block pm_notifier;
837#endif
838#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
839	/* Protected by slots_locks (for writes) and RCU (for reads) */
840	struct xarray mem_attr_array;
841#endif
842	char stats_id[KVM_STATS_NAME_SIZE];
843};
844
845#define kvm_err(fmt, ...) \
846	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
847#define kvm_info(fmt, ...) \
848	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
849#define kvm_debug(fmt, ...) \
850	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
851#define kvm_debug_ratelimited(fmt, ...) \
852	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
853			     ## __VA_ARGS__)
854#define kvm_pr_unimpl(fmt, ...) \
855	pr_err_ratelimited("kvm [%i]: " fmt, \
856			   task_tgid_nr(current), ## __VA_ARGS__)
857
858/* The guest did something we don't support. */
859#define vcpu_unimpl(vcpu, fmt, ...)					\
860	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
861			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
862
863#define vcpu_debug(vcpu, fmt, ...)					\
864	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
865#define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
866	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
867			      ## __VA_ARGS__)
868#define vcpu_err(vcpu, fmt, ...)					\
869	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
870
871static inline void kvm_vm_dead(struct kvm *kvm)
872{
873	kvm->vm_dead = true;
874	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
875}
876
877static inline void kvm_vm_bugged(struct kvm *kvm)
878{
879	kvm->vm_bugged = true;
880	kvm_vm_dead(kvm);
881}
882
883
884#define KVM_BUG(cond, kvm, fmt...)				\
885({								\
886	bool __ret = !!(cond);					\
887								\
888	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
889		kvm_vm_bugged(kvm);				\
890	unlikely(__ret);					\
891})
892
893#define KVM_BUG_ON(cond, kvm)					\
894({								\
895	bool __ret = !!(cond);					\
896								\
897	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
898		kvm_vm_bugged(kvm);				\
899	unlikely(__ret);					\
900})
901
902/*
903 * Note, "data corruption" refers to corruption of host kernel data structures,
904 * not guest data.  Guest data corruption, suspected or confirmed, that is tied
905 * and contained to a single VM should *never* BUG() and potentially panic the
906 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
907 * is corrupted and that corruption can have a cascading effect to other parts
908 * of the hosts and/or to other VMs.
909 */
910#define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm)			\
911({								\
912	bool __ret = !!(cond);					\
913								\
914	if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION))		\
915		BUG_ON(__ret);					\
916	else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))	\
917		kvm_vm_bugged(kvm);				\
918	unlikely(__ret);					\
919})
920
921static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
922{
923#ifdef CONFIG_PROVE_RCU
924	WARN_ONCE(vcpu->srcu_depth++,
925		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
926#endif
927	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
928}
929
930static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
931{
932	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
933
934#ifdef CONFIG_PROVE_RCU
935	WARN_ONCE(--vcpu->srcu_depth,
936		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
937#endif
938}
939
940static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
941{
942	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
943}
944
945static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
946{
947	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
948				      lockdep_is_held(&kvm->slots_lock) ||
949				      !refcount_read(&kvm->users_count));
950}
951
952static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
953{
954	int num_vcpus = atomic_read(&kvm->online_vcpus);
955	i = array_index_nospec(i, num_vcpus);
956
957	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
958	smp_rmb();
959	return xa_load(&kvm->vcpu_array, i);
960}
961
962#define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
963	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
964			  (atomic_read(&kvm->online_vcpus) - 1))
965
966static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
967{
968	struct kvm_vcpu *vcpu = NULL;
969	unsigned long i;
970
971	if (id < 0)
972		return NULL;
973	if (id < KVM_MAX_VCPUS)
974		vcpu = kvm_get_vcpu(kvm, id);
975	if (vcpu && vcpu->vcpu_id == id)
976		return vcpu;
977	kvm_for_each_vcpu(i, vcpu, kvm)
978		if (vcpu->vcpu_id == id)
979			return vcpu;
980	return NULL;
981}
982
983void kvm_destroy_vcpus(struct kvm *kvm);
984
985void vcpu_load(struct kvm_vcpu *vcpu);
986void vcpu_put(struct kvm_vcpu *vcpu);
987
988#ifdef __KVM_HAVE_IOAPIC
989void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
990void kvm_arch_post_irq_routing_update(struct kvm *kvm);
991#else
992static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
993{
994}
995static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
996{
997}
998#endif
999
1000#ifdef CONFIG_HAVE_KVM_IRQCHIP
1001int kvm_irqfd_init(void);
1002void kvm_irqfd_exit(void);
1003#else
1004static inline int kvm_irqfd_init(void)
1005{
1006	return 0;
1007}
1008
1009static inline void kvm_irqfd_exit(void)
1010{
1011}
1012#endif
1013int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1014void kvm_exit(void);
1015
1016void kvm_get_kvm(struct kvm *kvm);
1017bool kvm_get_kvm_safe(struct kvm *kvm);
1018void kvm_put_kvm(struct kvm *kvm);
1019bool file_is_kvm(struct file *file);
1020void kvm_put_kvm_no_destroy(struct kvm *kvm);
1021
1022static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1023{
1024	as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1025	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1026			lockdep_is_held(&kvm->slots_lock) ||
1027			!refcount_read(&kvm->users_count));
1028}
1029
1030static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1031{
1032	return __kvm_memslots(kvm, 0);
1033}
1034
1035static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1036{
1037	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1038
1039	return __kvm_memslots(vcpu->kvm, as_id);
1040}
1041
1042static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1043{
1044	return RB_EMPTY_ROOT(&slots->gfn_tree);
1045}
1046
1047bool kvm_are_all_memslots_empty(struct kvm *kvm);
1048
1049#define kvm_for_each_memslot(memslot, bkt, slots)			      \
1050	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1051		if (WARN_ON_ONCE(!memslot->npages)) {			      \
1052		} else
1053
1054static inline
1055struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1056{
1057	struct kvm_memory_slot *slot;
1058	int idx = slots->node_idx;
1059
1060	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1061		if (slot->id == id)
1062			return slot;
1063	}
1064
1065	return NULL;
1066}
1067
1068/* Iterator used for walking memslots that overlap a gfn range. */
1069struct kvm_memslot_iter {
1070	struct kvm_memslots *slots;
1071	struct rb_node *node;
1072	struct kvm_memory_slot *slot;
1073};
1074
1075static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1076{
1077	iter->node = rb_next(iter->node);
1078	if (!iter->node)
1079		return;
1080
1081	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1082}
1083
1084static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1085					  struct kvm_memslots *slots,
1086					  gfn_t start)
1087{
1088	int idx = slots->node_idx;
1089	struct rb_node *tmp;
1090	struct kvm_memory_slot *slot;
1091
1092	iter->slots = slots;
1093
1094	/*
1095	 * Find the so called "upper bound" of a key - the first node that has
1096	 * its key strictly greater than the searched one (the start gfn in our case).
1097	 */
1098	iter->node = NULL;
1099	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1100		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1101		if (start < slot->base_gfn) {
1102			iter->node = tmp;
1103			tmp = tmp->rb_left;
1104		} else {
1105			tmp = tmp->rb_right;
1106		}
1107	}
1108
1109	/*
1110	 * Find the slot with the lowest gfn that can possibly intersect with
1111	 * the range, so we'll ideally have slot start <= range start
1112	 */
1113	if (iter->node) {
1114		/*
1115		 * A NULL previous node means that the very first slot
1116		 * already has a higher start gfn.
1117		 * In this case slot start > range start.
1118		 */
1119		tmp = rb_prev(iter->node);
1120		if (tmp)
1121			iter->node = tmp;
1122	} else {
1123		/* a NULL node below means no slots */
1124		iter->node = rb_last(&slots->gfn_tree);
1125	}
1126
1127	if (iter->node) {
1128		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1129
1130		/*
1131		 * It is possible in the slot start < range start case that the
1132		 * found slot ends before or at range start (slot end <= range start)
1133		 * and so it does not overlap the requested range.
1134		 *
1135		 * In such non-overlapping case the next slot (if it exists) will
1136		 * already have slot start > range start, otherwise the logic above
1137		 * would have found it instead of the current slot.
1138		 */
1139		if (iter->slot->base_gfn + iter->slot->npages <= start)
1140			kvm_memslot_iter_next(iter);
1141	}
1142}
1143
1144static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1145{
1146	if (!iter->node)
1147		return false;
1148
1149	/*
1150	 * If this slot starts beyond or at the end of the range so does
1151	 * every next one
1152	 */
1153	return iter->slot->base_gfn < end;
1154}
1155
1156/* Iterate over each memslot at least partially intersecting [start, end) range */
1157#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1158	for (kvm_memslot_iter_start(iter, slots, start);		\
1159	     kvm_memslot_iter_is_valid(iter, end);			\
1160	     kvm_memslot_iter_next(iter))
1161
1162/*
1163 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1164 * - create a new memory slot
1165 * - delete an existing memory slot
1166 * - modify an existing memory slot
1167 *   -- move it in the guest physical memory space
1168 *   -- just change its flags
1169 *
1170 * Since flags can be changed by some of these operations, the following
1171 * differentiation is the best we can do for __kvm_set_memory_region():
1172 */
1173enum kvm_mr_change {
1174	KVM_MR_CREATE,
1175	KVM_MR_DELETE,
1176	KVM_MR_MOVE,
1177	KVM_MR_FLAGS_ONLY,
1178};
1179
1180int kvm_set_memory_region(struct kvm *kvm,
1181			  const struct kvm_userspace_memory_region2 *mem);
1182int __kvm_set_memory_region(struct kvm *kvm,
1183			    const struct kvm_userspace_memory_region2 *mem);
1184void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1185void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1186int kvm_arch_prepare_memory_region(struct kvm *kvm,
1187				const struct kvm_memory_slot *old,
1188				struct kvm_memory_slot *new,
1189				enum kvm_mr_change change);
1190void kvm_arch_commit_memory_region(struct kvm *kvm,
1191				struct kvm_memory_slot *old,
1192				const struct kvm_memory_slot *new,
1193				enum kvm_mr_change change);
1194/* flush all memory translations */
1195void kvm_arch_flush_shadow_all(struct kvm *kvm);
1196/* flush memory translations pointing to 'slot' */
1197void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1198				   struct kvm_memory_slot *slot);
1199
1200int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1201			    struct page **pages, int nr_pages);
1202
1203struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1204unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1205unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1206unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1207unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1208				      bool *writable);
1209void kvm_release_page_clean(struct page *page);
1210void kvm_release_page_dirty(struct page *page);
1211
1212kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1213kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1214		      bool *writable);
1215kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1216kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1217kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1218			       bool atomic, bool interruptible, bool *async,
1219			       bool write_fault, bool *writable, hva_t *hva);
1220
1221void kvm_release_pfn_clean(kvm_pfn_t pfn);
1222void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1223void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1224void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1225
1226void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1227int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1228			int len);
1229int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1230int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1231			   void *data, unsigned long len);
1232int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1233				 void *data, unsigned int offset,
1234				 unsigned long len);
1235int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1236			 int offset, int len);
1237int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1238		    unsigned long len);
1239int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1240			   void *data, unsigned long len);
1241int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1242				  void *data, unsigned int offset,
1243				  unsigned long len);
1244int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1245			      gpa_t gpa, unsigned long len);
1246
1247#define __kvm_get_guest(kvm, gfn, offset, v)				\
1248({									\
1249	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1250	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1251	int __ret = -EFAULT;						\
1252									\
1253	if (!kvm_is_error_hva(__addr))					\
1254		__ret = get_user(v, __uaddr);				\
1255	__ret;								\
1256})
1257
1258#define kvm_get_guest(kvm, gpa, v)					\
1259({									\
1260	gpa_t __gpa = gpa;						\
1261	struct kvm *__kvm = kvm;					\
1262									\
1263	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1264			offset_in_page(__gpa), v);			\
1265})
1266
1267#define __kvm_put_guest(kvm, gfn, offset, v)				\
1268({									\
1269	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1270	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1271	int __ret = -EFAULT;						\
1272									\
1273	if (!kvm_is_error_hva(__addr))					\
1274		__ret = put_user(v, __uaddr);				\
1275	if (!__ret)							\
1276		mark_page_dirty(kvm, gfn);				\
1277	__ret;								\
1278})
1279
1280#define kvm_put_guest(kvm, gpa, v)					\
1281({									\
1282	gpa_t __gpa = gpa;						\
1283	struct kvm *__kvm = kvm;					\
1284									\
1285	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1286			offset_in_page(__gpa), v);			\
1287})
1288
1289int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1290struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1291bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1292bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1293unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1294void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1295void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1296
1297struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1298struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1299kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1300kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1301int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1302void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1303unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1304unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1305int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1306			     int len);
1307int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1308			       unsigned long len);
1309int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1310			unsigned long len);
1311int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1312			      int offset, int len);
1313int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1314			 unsigned long len);
1315void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1316
1317/**
1318 * kvm_gpc_init - initialize gfn_to_pfn_cache.
1319 *
1320 * @gpc:	   struct gfn_to_pfn_cache object.
1321 * @kvm:	   pointer to kvm instance.
1322 *
1323 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1324 * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1325 * the caller before init).
1326 */
1327void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1328
1329/**
1330 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1331 *                    physical address.
1332 *
1333 * @gpc:	   struct gfn_to_pfn_cache object.
1334 * @gpa:	   guest physical address to map.
1335 * @len:	   sanity check; the range being access must fit a single page.
1336 *
1337 * @return:	   0 for success.
1338 *		   -EINVAL for a mapping which would cross a page boundary.
1339 *		   -EFAULT for an untranslatable guest physical address.
1340 *
1341 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1342 * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1343 * to ensure that the cache is valid before accessing the target page.
1344 */
1345int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1346
1347/**
1348 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1349 *
1350 * @gpc:          struct gfn_to_pfn_cache object.
1351 * @hva:          userspace virtual address to map.
1352 * @len:          sanity check; the range being access must fit a single page.
1353 *
1354 * @return:       0 for success.
1355 *                -EINVAL for a mapping which would cross a page boundary.
1356 *                -EFAULT for an untranslatable guest physical address.
1357 *
1358 * The semantics of this function are the same as those of kvm_gpc_activate(). It
1359 * merely bypasses a layer of address translation.
1360 */
1361int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1362
1363/**
1364 * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1365 *
1366 * @gpc:	   struct gfn_to_pfn_cache object.
1367 * @len:	   sanity check; the range being access must fit a single page.
1368 *
1369 * @return:	   %true if the cache is still valid and the address matches.
1370 *		   %false if the cache is not valid.
1371 *
1372 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1373 * while calling this function, and then continue to hold the lock until the
1374 * access is complete.
1375 *
1376 * Callers in IN_GUEST_MODE may do so without locking, although they should
1377 * still hold a read lock on kvm->scru for the memslot checks.
1378 */
1379bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1380
1381/**
1382 * kvm_gpc_refresh - update a previously initialized cache.
1383 *
1384 * @gpc:	   struct gfn_to_pfn_cache object.
1385 * @len:	   sanity check; the range being access must fit a single page.
1386 *
1387 * @return:	   0 for success.
1388 *		   -EINVAL for a mapping which would cross a page boundary.
1389 *		   -EFAULT for an untranslatable guest physical address.
1390 *
1391 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1392 * return from this function does not mean the page can be immediately
1393 * accessed because it may have raced with an invalidation. Callers must
1394 * still lock and check the cache status, as this function does not return
1395 * with the lock still held to permit access.
1396 */
1397int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1398
1399/**
1400 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1401 *
1402 * @gpc:	   struct gfn_to_pfn_cache object.
1403 *
1404 * This removes a cache from the VM's list to be processed on MMU notifier
1405 * invocation.
1406 */
1407void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1408
1409static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1410{
1411	return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1412}
1413
1414static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1415{
1416	return gpc->active && kvm_is_error_gpa(gpc->gpa);
1417}
1418
1419void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1420void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1421
1422void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1423bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1424void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1425void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1426bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1427void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1428int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1429void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1430
1431void kvm_flush_remote_tlbs(struct kvm *kvm);
1432void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1433void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1434				   const struct kvm_memory_slot *memslot);
1435
1436#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1437int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1438int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1439int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1440void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1441void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1442#endif
1443
1444void kvm_mmu_invalidate_begin(struct kvm *kvm);
1445void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1446void kvm_mmu_invalidate_end(struct kvm *kvm);
1447bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1448
1449long kvm_arch_dev_ioctl(struct file *filp,
1450			unsigned int ioctl, unsigned long arg);
1451long kvm_arch_vcpu_ioctl(struct file *filp,
1452			 unsigned int ioctl, unsigned long arg);
1453vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1454
1455int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1456
1457void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1458					struct kvm_memory_slot *slot,
1459					gfn_t gfn_offset,
1460					unsigned long mask);
1461void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1462
1463#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1464int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1465int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1466		      int *is_dirty, struct kvm_memory_slot **memslot);
1467#endif
1468
1469int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1470			bool line_status);
1471int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1472			    struct kvm_enable_cap *cap);
1473int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1474long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1475			      unsigned long arg);
1476
1477int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1478int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1479
1480int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1481				    struct kvm_translation *tr);
1482
1483int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1484int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1485int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1486				  struct kvm_sregs *sregs);
1487int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1488				  struct kvm_sregs *sregs);
1489int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1490				    struct kvm_mp_state *mp_state);
1491int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1492				    struct kvm_mp_state *mp_state);
1493int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1494					struct kvm_guest_debug *dbg);
1495int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1496
1497void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1498
1499void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1500void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1501int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1502int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1503void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1504void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1505
1506#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1507int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1508#endif
1509
1510#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1511void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1512#else
1513static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1514#endif
1515
1516#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1517int kvm_arch_hardware_enable(void);
1518void kvm_arch_hardware_disable(void);
1519#endif
1520int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1521bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1522int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1523bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1524bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1525bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1526int kvm_arch_post_init_vm(struct kvm *kvm);
1527void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1528void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1529
1530#ifndef __KVM_HAVE_ARCH_VM_ALLOC
1531/*
1532 * All architectures that want to use vzalloc currently also
1533 * need their own kvm_arch_alloc_vm implementation.
1534 */
1535static inline struct kvm *kvm_arch_alloc_vm(void)
1536{
1537	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1538}
1539#endif
1540
1541static inline void __kvm_arch_free_vm(struct kvm *kvm)
1542{
1543	kvfree(kvm);
1544}
1545
1546#ifndef __KVM_HAVE_ARCH_VM_FREE
1547static inline void kvm_arch_free_vm(struct kvm *kvm)
1548{
1549	__kvm_arch_free_vm(kvm);
1550}
1551#endif
1552
1553#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1554static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1555{
1556	return -ENOTSUPP;
1557}
1558#else
1559int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1560#endif
1561
1562#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1563static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1564						    gfn_t gfn, u64 nr_pages)
1565{
1566	return -EOPNOTSUPP;
1567}
1568#else
1569int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1570#endif
1571
1572#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1573void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1574void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1575bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1576#else
1577static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1578{
1579}
1580
1581static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1582{
1583}
1584
1585static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1586{
1587	return false;
1588}
1589#endif
1590#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1591void kvm_arch_start_assignment(struct kvm *kvm);
1592void kvm_arch_end_assignment(struct kvm *kvm);
1593bool kvm_arch_has_assigned_device(struct kvm *kvm);
1594#else
1595static inline void kvm_arch_start_assignment(struct kvm *kvm)
1596{
1597}
1598
1599static inline void kvm_arch_end_assignment(struct kvm *kvm)
1600{
1601}
1602
1603static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1604{
1605	return false;
1606}
1607#endif
1608
1609static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1610{
1611#ifdef __KVM_HAVE_ARCH_WQP
1612	return vcpu->arch.waitp;
1613#else
1614	return &vcpu->wait;
1615#endif
1616}
1617
1618/*
1619 * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1620 * true if the vCPU was blocking and was awakened, false otherwise.
1621 */
1622static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1623{
1624	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1625}
1626
1627static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1628{
1629	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1630}
1631
1632#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1633/*
1634 * returns true if the virtual interrupt controller is initialized and
1635 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1636 * controller is dynamically instantiated and this is not always true.
1637 */
1638bool kvm_arch_intc_initialized(struct kvm *kvm);
1639#else
1640static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1641{
1642	return true;
1643}
1644#endif
1645
1646#ifdef CONFIG_GUEST_PERF_EVENTS
1647unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1648
1649void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1650void kvm_unregister_perf_callbacks(void);
1651#else
1652static inline void kvm_register_perf_callbacks(void *ign) {}
1653static inline void kvm_unregister_perf_callbacks(void) {}
1654#endif /* CONFIG_GUEST_PERF_EVENTS */
1655
1656int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1657void kvm_arch_destroy_vm(struct kvm *kvm);
1658void kvm_arch_sync_events(struct kvm *kvm);
1659
1660int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1661
1662struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1663bool kvm_is_zone_device_page(struct page *page);
1664
1665struct kvm_irq_ack_notifier {
1666	struct hlist_node link;
1667	unsigned gsi;
1668	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1669};
1670
1671int kvm_irq_map_gsi(struct kvm *kvm,
1672		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1673int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1674
1675int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1676		bool line_status);
1677int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1678		int irq_source_id, int level, bool line_status);
1679int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1680			       struct kvm *kvm, int irq_source_id,
1681			       int level, bool line_status);
1682bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1683void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1684void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1685void kvm_register_irq_ack_notifier(struct kvm *kvm,
1686				   struct kvm_irq_ack_notifier *kian);
1687void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1688				   struct kvm_irq_ack_notifier *kian);
1689int kvm_request_irq_source_id(struct kvm *kvm);
1690void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1691bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1692
1693/*
1694 * Returns a pointer to the memslot if it contains gfn.
1695 * Otherwise returns NULL.
1696 */
1697static inline struct kvm_memory_slot *
1698try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1699{
1700	if (!slot)
1701		return NULL;
1702
1703	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1704		return slot;
1705	else
1706		return NULL;
1707}
1708
1709/*
1710 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1711 *
1712 * With "approx" set returns the memslot also when the address falls
1713 * in a hole. In that case one of the memslots bordering the hole is
1714 * returned.
1715 */
1716static inline struct kvm_memory_slot *
1717search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1718{
1719	struct kvm_memory_slot *slot;
1720	struct rb_node *node;
1721	int idx = slots->node_idx;
1722
1723	slot = NULL;
1724	for (node = slots->gfn_tree.rb_node; node; ) {
1725		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1726		if (gfn >= slot->base_gfn) {
1727			if (gfn < slot->base_gfn + slot->npages)
1728				return slot;
1729			node = node->rb_right;
1730		} else
1731			node = node->rb_left;
1732	}
1733
1734	return approx ? slot : NULL;
1735}
1736
1737static inline struct kvm_memory_slot *
1738____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1739{
1740	struct kvm_memory_slot *slot;
1741
1742	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1743	slot = try_get_memslot(slot, gfn);
1744	if (slot)
1745		return slot;
1746
1747	slot = search_memslots(slots, gfn, approx);
1748	if (slot) {
1749		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1750		return slot;
1751	}
1752
1753	return NULL;
1754}
1755
1756/*
1757 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1758 * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1759 * because that would bloat other code too much.
1760 */
1761static inline struct kvm_memory_slot *
1762__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1763{
1764	return ____gfn_to_memslot(slots, gfn, false);
1765}
1766
1767static inline unsigned long
1768__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1769{
1770	/*
1771	 * The index was checked originally in search_memslots.  To avoid
1772	 * that a malicious guest builds a Spectre gadget out of e.g. page
1773	 * table walks, do not let the processor speculate loads outside
1774	 * the guest's registered memslots.
1775	 */
1776	unsigned long offset = gfn - slot->base_gfn;
1777	offset = array_index_nospec(offset, slot->npages);
1778	return slot->userspace_addr + offset * PAGE_SIZE;
1779}
1780
1781static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1782{
1783	return gfn_to_memslot(kvm, gfn)->id;
1784}
1785
1786static inline gfn_t
1787hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1788{
1789	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1790
1791	return slot->base_gfn + gfn_offset;
1792}
1793
1794static inline gpa_t gfn_to_gpa(gfn_t gfn)
1795{
1796	return (gpa_t)gfn << PAGE_SHIFT;
1797}
1798
1799static inline gfn_t gpa_to_gfn(gpa_t gpa)
1800{
1801	return (gfn_t)(gpa >> PAGE_SHIFT);
1802}
1803
1804static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1805{
1806	return (hpa_t)pfn << PAGE_SHIFT;
1807}
1808
1809static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1810{
1811	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1812
1813	return !kvm_is_error_hva(hva);
1814}
1815
1816static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1817{
1818	lockdep_assert_held(&gpc->lock);
1819
1820	if (!gpc->memslot)
1821		return;
1822
1823	mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1824}
1825
1826enum kvm_stat_kind {
1827	KVM_STAT_VM,
1828	KVM_STAT_VCPU,
1829};
1830
1831struct kvm_stat_data {
1832	struct kvm *kvm;
1833	const struct _kvm_stats_desc *desc;
1834	enum kvm_stat_kind kind;
1835};
1836
1837struct _kvm_stats_desc {
1838	struct kvm_stats_desc desc;
1839	char name[KVM_STATS_NAME_SIZE];
1840};
1841
1842#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1843	.flags = type | unit | base |					       \
1844		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1845		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1846		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1847	.exponent = exp,						       \
1848	.size = sz,							       \
1849	.bucket_size = bsz
1850
1851#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1852	{								       \
1853		{							       \
1854			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1855			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1856		},							       \
1857		.name = #stat,						       \
1858	}
1859#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1860	{								       \
1861		{							       \
1862			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1863			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1864		},							       \
1865		.name = #stat,						       \
1866	}
1867#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1868	{								       \
1869		{							       \
1870			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1871			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1872		},							       \
1873		.name = #stat,						       \
1874	}
1875#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1876	{								       \
1877		{							       \
1878			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1879			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1880		},							       \
1881		.name = #stat,						       \
1882	}
1883/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1884#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1885	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1886
1887#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1888	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1889		unit, base, exponent, 1, 0)
1890#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1891	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1892		unit, base, exponent, 1, 0)
1893#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1894	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1895		unit, base, exponent, 1, 0)
1896#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1897	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1898		unit, base, exponent, sz, bsz)
1899#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1900	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1901		unit, base, exponent, sz, 0)
1902
1903/* Cumulative counter, read/write */
1904#define STATS_DESC_COUNTER(SCOPE, name)					       \
1905	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1906		KVM_STATS_BASE_POW10, 0)
1907/* Instantaneous counter, read only */
1908#define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1909	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1910		KVM_STATS_BASE_POW10, 0)
1911/* Peak counter, read/write */
1912#define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1913	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1914		KVM_STATS_BASE_POW10, 0)
1915
1916/* Instantaneous boolean value, read only */
1917#define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
1918	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1919		KVM_STATS_BASE_POW10, 0)
1920/* Peak (sticky) boolean value, read/write */
1921#define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
1922	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1923		KVM_STATS_BASE_POW10, 0)
1924
1925/* Cumulative time in nanosecond */
1926#define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1927	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1928		KVM_STATS_BASE_POW10, -9)
1929/* Linear histogram for time in nanosecond */
1930#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
1931	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1932		KVM_STATS_BASE_POW10, -9, sz, bsz)
1933/* Logarithmic histogram for time in nanosecond */
1934#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
1935	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1936		KVM_STATS_BASE_POW10, -9, sz)
1937
1938#define KVM_GENERIC_VM_STATS()						       \
1939	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
1940	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1941
1942#define KVM_GENERIC_VCPU_STATS()					       \
1943	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
1944	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
1945	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
1946	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
1947	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
1948	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
1949	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
1950	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1951			HALT_POLL_HIST_COUNT),				       \
1952	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
1953			HALT_POLL_HIST_COUNT),				       \
1954	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
1955			HALT_POLL_HIST_COUNT),				       \
1956	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1957
1958extern struct dentry *kvm_debugfs_dir;
1959
1960ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1961		       const struct _kvm_stats_desc *desc,
1962		       void *stats, size_t size_stats,
1963		       char __user *user_buffer, size_t size, loff_t *offset);
1964
1965/**
1966 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1967 * statistics data.
1968 *
1969 * @data: start address of the stats data
1970 * @size: the number of bucket of the stats data
1971 * @value: the new value used to update the linear histogram's bucket
1972 * @bucket_size: the size (width) of a bucket
1973 */
1974static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1975						u64 value, size_t bucket_size)
1976{
1977	size_t index = div64_u64(value, bucket_size);
1978
1979	index = min(index, size - 1);
1980	++data[index];
1981}
1982
1983/**
1984 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1985 * statistics data.
1986 *
1987 * @data: start address of the stats data
1988 * @size: the number of bucket of the stats data
1989 * @value: the new value used to update the logarithmic histogram's bucket
1990 */
1991static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1992{
1993	size_t index = fls64(value);
1994
1995	index = min(index, size - 1);
1996	++data[index];
1997}
1998
1999#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
2000	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2001#define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
2002	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2003
2004
2005extern const struct kvm_stats_header kvm_vm_stats_header;
2006extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2007extern const struct kvm_stats_header kvm_vcpu_stats_header;
2008extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2009
2010#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
2011static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2012{
2013	if (unlikely(kvm->mmu_invalidate_in_progress))
2014		return 1;
2015	/*
2016	 * Ensure the read of mmu_invalidate_in_progress happens before
2017	 * the read of mmu_invalidate_seq.  This interacts with the
2018	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2019	 * that the caller either sees the old (non-zero) value of
2020	 * mmu_invalidate_in_progress or the new (incremented) value of
2021	 * mmu_invalidate_seq.
2022	 *
2023	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2024	 * than under kvm->mmu_lock, for scalability, so can't rely on
2025	 * kvm->mmu_lock to keep things ordered.
2026	 */
2027	smp_rmb();
2028	if (kvm->mmu_invalidate_seq != mmu_seq)
2029		return 1;
2030	return 0;
2031}
2032
2033static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2034					   unsigned long mmu_seq,
2035					   gfn_t gfn)
2036{
2037	lockdep_assert_held(&kvm->mmu_lock);
2038	/*
2039	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2040	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2041	 * that might be being invalidated. Note that it may include some false
2042	 * positives, due to shortcuts when handing concurrent invalidations.
2043	 */
2044	if (unlikely(kvm->mmu_invalidate_in_progress)) {
2045		/*
2046		 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2047		 * but before updating the range is a KVM bug.
2048		 */
2049		if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2050				 kvm->mmu_invalidate_range_end == INVALID_GPA))
2051			return 1;
2052
2053		if (gfn >= kvm->mmu_invalidate_range_start &&
2054		    gfn < kvm->mmu_invalidate_range_end)
2055			return 1;
2056	}
2057
2058	if (kvm->mmu_invalidate_seq != mmu_seq)
2059		return 1;
2060	return 0;
2061}
2062
2063/*
2064 * This lockless version of the range-based retry check *must* be paired with a
2065 * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2066 * use only as a pre-check to avoid contending mmu_lock.  This version *will*
2067 * get false negatives and false positives.
2068 */
2069static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2070						   unsigned long mmu_seq,
2071						   gfn_t gfn)
2072{
2073	/*
2074	 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2075	 * are always read from memory, e.g. so that checking for retry in a
2076	 * loop won't result in an infinite retry loop.  Don't force loads for
2077	 * start+end, as the key to avoiding infinite retry loops is observing
2078	 * the 1=>0 transition of in-progress, i.e. getting false negatives
2079	 * due to stale start+end values is acceptable.
2080	 */
2081	if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2082	    gfn >= kvm->mmu_invalidate_range_start &&
2083	    gfn < kvm->mmu_invalidate_range_end)
2084		return true;
2085
2086	return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2087}
2088#endif
2089
2090#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2091
2092#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2093
2094bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2095int kvm_set_irq_routing(struct kvm *kvm,
2096			const struct kvm_irq_routing_entry *entries,
2097			unsigned nr,
2098			unsigned flags);
2099int kvm_set_routing_entry(struct kvm *kvm,
2100			  struct kvm_kernel_irq_routing_entry *e,
2101			  const struct kvm_irq_routing_entry *ue);
2102void kvm_free_irq_routing(struct kvm *kvm);
2103
2104#else
2105
2106static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2107
2108#endif
2109
2110int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2111
2112void kvm_eventfd_init(struct kvm *kvm);
2113int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2114
2115#ifdef CONFIG_HAVE_KVM_IRQCHIP
2116int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2117void kvm_irqfd_release(struct kvm *kvm);
2118bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2119				unsigned int irqchip,
2120				unsigned int pin);
2121void kvm_irq_routing_update(struct kvm *);
2122#else
2123static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2124{
2125	return -EINVAL;
2126}
2127
2128static inline void kvm_irqfd_release(struct kvm *kvm) {}
2129
2130static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2131					      unsigned int irqchip,
2132					      unsigned int pin)
2133{
2134	return false;
2135}
2136#endif /* CONFIG_HAVE_KVM_IRQCHIP */
2137
2138void kvm_arch_irq_routing_update(struct kvm *kvm);
2139
2140static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2141{
2142	/*
2143	 * Ensure the rest of the request is published to kvm_check_request's
2144	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2145	 */
2146	smp_wmb();
2147	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2148}
2149
2150static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2151{
2152	/*
2153	 * Request that don't require vCPU action should never be logged in
2154	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2155	 * logged indefinitely and prevent the vCPU from entering the guest.
2156	 */
2157	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2158		     (req & KVM_REQUEST_NO_ACTION));
2159
2160	__kvm_make_request(req, vcpu);
2161}
2162
2163static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2164{
2165	return READ_ONCE(vcpu->requests);
2166}
2167
2168static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2169{
2170	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2171}
2172
2173static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2174{
2175	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2176}
2177
2178static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2179{
2180	if (kvm_test_request(req, vcpu)) {
2181		kvm_clear_request(req, vcpu);
2182
2183		/*
2184		 * Ensure the rest of the request is visible to kvm_check_request's
2185		 * caller.  Paired with the smp_wmb in kvm_make_request.
2186		 */
2187		smp_mb__after_atomic();
2188		return true;
2189	} else {
2190		return false;
2191	}
2192}
2193
2194#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2195extern bool kvm_rebooting;
2196#endif
2197
2198extern unsigned int halt_poll_ns;
2199extern unsigned int halt_poll_ns_grow;
2200extern unsigned int halt_poll_ns_grow_start;
2201extern unsigned int halt_poll_ns_shrink;
2202
2203struct kvm_device {
2204	const struct kvm_device_ops *ops;
2205	struct kvm *kvm;
2206	void *private;
2207	struct list_head vm_node;
2208};
2209
2210/* create, destroy, and name are mandatory */
2211struct kvm_device_ops {
2212	const char *name;
2213
2214	/*
2215	 * create is called holding kvm->lock and any operations not suitable
2216	 * to do while holding the lock should be deferred to init (see
2217	 * below).
2218	 */
2219	int (*create)(struct kvm_device *dev, u32 type);
2220
2221	/*
2222	 * init is called after create if create is successful and is called
2223	 * outside of holding kvm->lock.
2224	 */
2225	void (*init)(struct kvm_device *dev);
2226
2227	/*
2228	 * Destroy is responsible for freeing dev.
2229	 *
2230	 * Destroy may be called before or after destructors are called
2231	 * on emulated I/O regions, depending on whether a reference is
2232	 * held by a vcpu or other kvm component that gets destroyed
2233	 * after the emulated I/O.
2234	 */
2235	void (*destroy)(struct kvm_device *dev);
2236
2237	/*
2238	 * Release is an alternative method to free the device. It is
2239	 * called when the device file descriptor is closed. Once
2240	 * release is called, the destroy method will not be called
2241	 * anymore as the device is removed from the device list of
2242	 * the VM. kvm->lock is held.
2243	 */
2244	void (*release)(struct kvm_device *dev);
2245
2246	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2247	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2248	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2249	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2250		      unsigned long arg);
2251	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2252};
2253
2254struct kvm_device *kvm_device_from_filp(struct file *filp);
2255int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2256void kvm_unregister_device_ops(u32 type);
2257
2258extern struct kvm_device_ops kvm_mpic_ops;
2259extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2260extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2261
2262#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2263
2264static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2265{
2266	vcpu->spin_loop.in_spin_loop = val;
2267}
2268static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2269{
2270	vcpu->spin_loop.dy_eligible = val;
2271}
2272
2273#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2274
2275static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2276{
2277}
2278
2279static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2280{
2281}
2282#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2283
2284static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2285{
2286	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2287		!(memslot->flags & KVM_MEMSLOT_INVALID));
2288}
2289
2290struct kvm_vcpu *kvm_get_running_vcpu(void);
2291struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2292
2293#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2294bool kvm_arch_has_irq_bypass(void);
2295int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2296			   struct irq_bypass_producer *);
2297void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2298			   struct irq_bypass_producer *);
2299void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2300void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2301int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2302				  uint32_t guest_irq, bool set);
2303bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2304				  struct kvm_kernel_irq_routing_entry *);
2305#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2306
2307#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2308/* If we wakeup during the poll time, was it a sucessful poll? */
2309static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2310{
2311	return vcpu->valid_wakeup;
2312}
2313
2314#else
2315static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2316{
2317	return true;
2318}
2319#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2320
2321#ifdef CONFIG_HAVE_KVM_NO_POLL
2322/* Callback that tells if we must not poll */
2323bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2324#else
2325static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2326{
2327	return false;
2328}
2329#endif /* CONFIG_HAVE_KVM_NO_POLL */
2330
2331#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2332long kvm_arch_vcpu_async_ioctl(struct file *filp,
2333			       unsigned int ioctl, unsigned long arg);
2334#else
2335static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2336					     unsigned int ioctl,
2337					     unsigned long arg)
2338{
2339	return -ENOIOCTLCMD;
2340}
2341#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2342
2343void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2344
2345#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2346int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2347#else
2348static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2349{
2350	return 0;
2351}
2352#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2353
2354typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2355
2356int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2357				uintptr_t data, const char *name,
2358				struct task_struct **thread_ptr);
2359
2360#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2361static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2362{
2363	vcpu->run->exit_reason = KVM_EXIT_INTR;
2364	vcpu->stat.signal_exits++;
2365}
2366#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2367
2368/*
2369 * If more than one page is being (un)accounted, @virt must be the address of
2370 * the first page of a block of pages what were allocated together (i.e
2371 * accounted together).
2372 *
2373 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2374 * is thread-safe.
2375 */
2376static inline void kvm_account_pgtable_pages(void *virt, int nr)
2377{
2378	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2379}
2380
2381/*
2382 * This defines how many reserved entries we want to keep before we
2383 * kick the vcpu to the userspace to avoid dirty ring full.  This
2384 * value can be tuned to higher if e.g. PML is enabled on the host.
2385 */
2386#define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2387
2388/* Max number of entries allowed for each kvm dirty ring */
2389#define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2390
2391static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2392						 gpa_t gpa, gpa_t size,
2393						 bool is_write, bool is_exec,
2394						 bool is_private)
2395{
2396	vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2397	vcpu->run->memory_fault.gpa = gpa;
2398	vcpu->run->memory_fault.size = size;
2399
2400	/* RWX flags are not (yet) defined or communicated to userspace. */
2401	vcpu->run->memory_fault.flags = 0;
2402	if (is_private)
2403		vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2404}
2405
2406#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2407static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2408{
2409	return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2410}
2411
2412bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2413				     unsigned long attrs);
2414bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2415					struct kvm_gfn_range *range);
2416bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2417					 struct kvm_gfn_range *range);
2418
2419static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2420{
2421	return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2422	       kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2423}
2424#else
2425static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2426{
2427	return false;
2428}
2429#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2430
2431#ifdef CONFIG_KVM_PRIVATE_MEM
2432int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2433		     gfn_t gfn, kvm_pfn_t *pfn, int *max_order);
2434#else
2435static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2436				   struct kvm_memory_slot *slot, gfn_t gfn,
2437				   kvm_pfn_t *pfn, int *max_order)
2438{
2439	KVM_BUG_ON(1, kvm);
2440	return -EIO;
2441}
2442#endif /* CONFIG_KVM_PRIVATE_MEM */
2443
2444#endif
2445