1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_inode.h"
16#include "xfs_dir2.h"
17#include "xfs_ialloc.h"
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
24#include "xfs_log_priv.h"
25#include "xfs_error.h"
26#include "xfs_quota.h"
27#include "xfs_fsops.h"
28#include "xfs_icache.h"
29#include "xfs_sysfs.h"
30#include "xfs_rmap_btree.h"
31#include "xfs_refcount_btree.h"
32#include "xfs_reflink.h"
33#include "xfs_extent_busy.h"
34#include "xfs_health.h"
35#include "xfs_trace.h"
36#include "xfs_ag.h"
37#include "xfs_rtbitmap.h"
38#include "scrub/stats.h"
39
40static DEFINE_MUTEX(xfs_uuid_table_mutex);
41static int xfs_uuid_table_size;
42static uuid_t *xfs_uuid_table;
43
44void
45xfs_uuid_table_free(void)
46{
47	if (xfs_uuid_table_size == 0)
48		return;
49	kfree(xfs_uuid_table);
50	xfs_uuid_table = NULL;
51	xfs_uuid_table_size = 0;
52}
53
54/*
55 * See if the UUID is unique among mounted XFS filesystems.
56 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
57 */
58STATIC int
59xfs_uuid_mount(
60	struct xfs_mount	*mp)
61{
62	uuid_t			*uuid = &mp->m_sb.sb_uuid;
63	int			hole, i;
64
65	/* Publish UUID in struct super_block */
66	super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
67
68	if (xfs_has_nouuid(mp))
69		return 0;
70
71	if (uuid_is_null(uuid)) {
72		xfs_warn(mp, "Filesystem has null UUID - can't mount");
73		return -EINVAL;
74	}
75
76	mutex_lock(&xfs_uuid_table_mutex);
77	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
78		if (uuid_is_null(&xfs_uuid_table[i])) {
79			hole = i;
80			continue;
81		}
82		if (uuid_equal(uuid, &xfs_uuid_table[i]))
83			goto out_duplicate;
84	}
85
86	if (hole < 0) {
87		xfs_uuid_table = krealloc(xfs_uuid_table,
88			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
89			GFP_KERNEL | __GFP_NOFAIL);
90		hole = xfs_uuid_table_size++;
91	}
92	xfs_uuid_table[hole] = *uuid;
93	mutex_unlock(&xfs_uuid_table_mutex);
94
95	return 0;
96
97 out_duplicate:
98	mutex_unlock(&xfs_uuid_table_mutex);
99	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
100	return -EINVAL;
101}
102
103STATIC void
104xfs_uuid_unmount(
105	struct xfs_mount	*mp)
106{
107	uuid_t			*uuid = &mp->m_sb.sb_uuid;
108	int			i;
109
110	if (xfs_has_nouuid(mp))
111		return;
112
113	mutex_lock(&xfs_uuid_table_mutex);
114	for (i = 0; i < xfs_uuid_table_size; i++) {
115		if (uuid_is_null(&xfs_uuid_table[i]))
116			continue;
117		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
118			continue;
119		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
120		break;
121	}
122	ASSERT(i < xfs_uuid_table_size);
123	mutex_unlock(&xfs_uuid_table_mutex);
124}
125
126/*
127 * Check size of device based on the (data/realtime) block count.
128 * Note: this check is used by the growfs code as well as mount.
129 */
130int
131xfs_sb_validate_fsb_count(
132	xfs_sb_t	*sbp,
133	uint64_t	nblocks)
134{
135	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
136	ASSERT(sbp->sb_blocklog >= BBSHIFT);
137
138	/* Limited by ULONG_MAX of page cache index */
139	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
140		return -EFBIG;
141	return 0;
142}
143
144/*
145 * xfs_readsb
146 *
147 * Does the initial read of the superblock.
148 */
149int
150xfs_readsb(
151	struct xfs_mount *mp,
152	int		flags)
153{
154	unsigned int	sector_size;
155	struct xfs_buf	*bp;
156	struct xfs_sb	*sbp = &mp->m_sb;
157	int		error;
158	int		loud = !(flags & XFS_MFSI_QUIET);
159	const struct xfs_buf_ops *buf_ops;
160
161	ASSERT(mp->m_sb_bp == NULL);
162	ASSERT(mp->m_ddev_targp != NULL);
163
164	/*
165	 * For the initial read, we must guess at the sector
166	 * size based on the block device.  It's enough to
167	 * get the sb_sectsize out of the superblock and
168	 * then reread with the proper length.
169	 * We don't verify it yet, because it may not be complete.
170	 */
171	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
172	buf_ops = NULL;
173
174	/*
175	 * Allocate a (locked) buffer to hold the superblock. This will be kept
176	 * around at all times to optimize access to the superblock. Therefore,
177	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
178	 * elevated.
179	 */
180reread:
181	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
182				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
183				      buf_ops);
184	if (error) {
185		if (loud)
186			xfs_warn(mp, "SB validate failed with error %d.", error);
187		/* bad CRC means corrupted metadata */
188		if (error == -EFSBADCRC)
189			error = -EFSCORRUPTED;
190		return error;
191	}
192
193	/*
194	 * Initialize the mount structure from the superblock.
195	 */
196	xfs_sb_from_disk(sbp, bp->b_addr);
197
198	/*
199	 * If we haven't validated the superblock, do so now before we try
200	 * to check the sector size and reread the superblock appropriately.
201	 */
202	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
203		if (loud)
204			xfs_warn(mp, "Invalid superblock magic number");
205		error = -EINVAL;
206		goto release_buf;
207	}
208
209	/*
210	 * We must be able to do sector-sized and sector-aligned IO.
211	 */
212	if (sector_size > sbp->sb_sectsize) {
213		if (loud)
214			xfs_warn(mp, "device supports %u byte sectors (not %u)",
215				sector_size, sbp->sb_sectsize);
216		error = -ENOSYS;
217		goto release_buf;
218	}
219
220	if (buf_ops == NULL) {
221		/*
222		 * Re-read the superblock so the buffer is correctly sized,
223		 * and properly verified.
224		 */
225		xfs_buf_relse(bp);
226		sector_size = sbp->sb_sectsize;
227		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
228		goto reread;
229	}
230
231	mp->m_features |= xfs_sb_version_to_features(sbp);
232	xfs_reinit_percpu_counters(mp);
233
234	/*
235	 * If logged xattrs are enabled after log recovery finishes, then set
236	 * the opstate so that log recovery will work properly.
237	 */
238	if (xfs_sb_version_haslogxattrs(&mp->m_sb))
239		xfs_set_using_logged_xattrs(mp);
240
241	/* no need to be quiet anymore, so reset the buf ops */
242	bp->b_ops = &xfs_sb_buf_ops;
243
244	mp->m_sb_bp = bp;
245	xfs_buf_unlock(bp);
246	return 0;
247
248release_buf:
249	xfs_buf_relse(bp);
250	return error;
251}
252
253/*
254 * If the sunit/swidth change would move the precomputed root inode value, we
255 * must reject the ondisk change because repair will stumble over that.
256 * However, we allow the mount to proceed because we never rejected this
257 * combination before.  Returns true to update the sb, false otherwise.
258 */
259static inline int
260xfs_check_new_dalign(
261	struct xfs_mount	*mp,
262	int			new_dalign,
263	bool			*update_sb)
264{
265	struct xfs_sb		*sbp = &mp->m_sb;
266	xfs_ino_t		calc_ino;
267
268	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
269	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
270
271	if (sbp->sb_rootino == calc_ino) {
272		*update_sb = true;
273		return 0;
274	}
275
276	xfs_warn(mp,
277"Cannot change stripe alignment; would require moving root inode.");
278
279	/*
280	 * XXX: Next time we add a new incompat feature, this should start
281	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
282	 * that we're ignoring the administrator's instructions.
283	 */
284	xfs_warn(mp, "Skipping superblock stripe alignment update.");
285	*update_sb = false;
286	return 0;
287}
288
289/*
290 * If we were provided with new sunit/swidth values as mount options, make sure
291 * that they pass basic alignment and superblock feature checks, and convert
292 * them into the same units (FSB) that everything else expects.  This step
293 * /must/ be done before computing the inode geometry.
294 */
295STATIC int
296xfs_validate_new_dalign(
297	struct xfs_mount	*mp)
298{
299	if (mp->m_dalign == 0)
300		return 0;
301
302	/*
303	 * If stripe unit and stripe width are not multiples
304	 * of the fs blocksize turn off alignment.
305	 */
306	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
307	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
308		xfs_warn(mp,
309	"alignment check failed: sunit/swidth vs. blocksize(%d)",
310			mp->m_sb.sb_blocksize);
311		return -EINVAL;
312	}
313
314	/*
315	 * Convert the stripe unit and width to FSBs.
316	 */
317	mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
318	if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
319		xfs_warn(mp,
320	"alignment check failed: sunit/swidth vs. agsize(%d)",
321			mp->m_sb.sb_agblocks);
322		return -EINVAL;
323	}
324
325	if (!mp->m_dalign) {
326		xfs_warn(mp,
327	"alignment check failed: sunit(%d) less than bsize(%d)",
328			mp->m_dalign, mp->m_sb.sb_blocksize);
329		return -EINVAL;
330	}
331
332	mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
333
334	if (!xfs_has_dalign(mp)) {
335		xfs_warn(mp,
336"cannot change alignment: superblock does not support data alignment");
337		return -EINVAL;
338	}
339
340	return 0;
341}
342
343/* Update alignment values based on mount options and sb values. */
344STATIC int
345xfs_update_alignment(
346	struct xfs_mount	*mp)
347{
348	struct xfs_sb		*sbp = &mp->m_sb;
349
350	if (mp->m_dalign) {
351		bool		update_sb;
352		int		error;
353
354		if (sbp->sb_unit == mp->m_dalign &&
355		    sbp->sb_width == mp->m_swidth)
356			return 0;
357
358		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
359		if (error || !update_sb)
360			return error;
361
362		sbp->sb_unit = mp->m_dalign;
363		sbp->sb_width = mp->m_swidth;
364		mp->m_update_sb = true;
365	} else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
366		mp->m_dalign = sbp->sb_unit;
367		mp->m_swidth = sbp->sb_width;
368	}
369
370	return 0;
371}
372
373/*
374 * precalculate the low space thresholds for dynamic speculative preallocation.
375 */
376void
377xfs_set_low_space_thresholds(
378	struct xfs_mount	*mp)
379{
380	uint64_t		dblocks = mp->m_sb.sb_dblocks;
381	uint64_t		rtexts = mp->m_sb.sb_rextents;
382	int			i;
383
384	do_div(dblocks, 100);
385	do_div(rtexts, 100);
386
387	for (i = 0; i < XFS_LOWSP_MAX; i++) {
388		mp->m_low_space[i] = dblocks * (i + 1);
389		mp->m_low_rtexts[i] = rtexts * (i + 1);
390	}
391}
392
393/*
394 * Check that the data (and log if separate) is an ok size.
395 */
396STATIC int
397xfs_check_sizes(
398	struct xfs_mount *mp)
399{
400	struct xfs_buf	*bp;
401	xfs_daddr_t	d;
402	int		error;
403
404	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
405	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
406		xfs_warn(mp, "filesystem size mismatch detected");
407		return -EFBIG;
408	}
409	error = xfs_buf_read_uncached(mp->m_ddev_targp,
410					d - XFS_FSS_TO_BB(mp, 1),
411					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
412	if (error) {
413		xfs_warn(mp, "last sector read failed");
414		return error;
415	}
416	xfs_buf_relse(bp);
417
418	if (mp->m_logdev_targp == mp->m_ddev_targp)
419		return 0;
420
421	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
422	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
423		xfs_warn(mp, "log size mismatch detected");
424		return -EFBIG;
425	}
426	error = xfs_buf_read_uncached(mp->m_logdev_targp,
427					d - XFS_FSB_TO_BB(mp, 1),
428					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
429	if (error) {
430		xfs_warn(mp, "log device read failed");
431		return error;
432	}
433	xfs_buf_relse(bp);
434	return 0;
435}
436
437/*
438 * Clear the quotaflags in memory and in the superblock.
439 */
440int
441xfs_mount_reset_sbqflags(
442	struct xfs_mount	*mp)
443{
444	mp->m_qflags = 0;
445
446	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
447	if (mp->m_sb.sb_qflags == 0)
448		return 0;
449	spin_lock(&mp->m_sb_lock);
450	mp->m_sb.sb_qflags = 0;
451	spin_unlock(&mp->m_sb_lock);
452
453	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
454		return 0;
455
456	return xfs_sync_sb(mp, false);
457}
458
459uint64_t
460xfs_default_resblks(xfs_mount_t *mp)
461{
462	uint64_t resblks;
463
464	/*
465	 * We default to 5% or 8192 fsbs of space reserved, whichever is
466	 * smaller.  This is intended to cover concurrent allocation
467	 * transactions when we initially hit enospc. These each require a 4
468	 * block reservation. Hence by default we cover roughly 2000 concurrent
469	 * allocation reservations.
470	 */
471	resblks = mp->m_sb.sb_dblocks;
472	do_div(resblks, 20);
473	resblks = min_t(uint64_t, resblks, 8192);
474	return resblks;
475}
476
477/* Ensure the summary counts are correct. */
478STATIC int
479xfs_check_summary_counts(
480	struct xfs_mount	*mp)
481{
482	int			error = 0;
483
484	/*
485	 * The AG0 superblock verifier rejects in-progress filesystems,
486	 * so we should never see the flag set this far into mounting.
487	 */
488	if (mp->m_sb.sb_inprogress) {
489		xfs_err(mp, "sb_inprogress set after log recovery??");
490		WARN_ON(1);
491		return -EFSCORRUPTED;
492	}
493
494	/*
495	 * Now the log is mounted, we know if it was an unclean shutdown or
496	 * not. If it was, with the first phase of recovery has completed, we
497	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
498	 * but they are recovered transactionally in the second recovery phase
499	 * later.
500	 *
501	 * If the log was clean when we mounted, we can check the summary
502	 * counters.  If any of them are obviously incorrect, we can recompute
503	 * them from the AGF headers in the next step.
504	 */
505	if (xfs_is_clean(mp) &&
506	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
507	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
508	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
509		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
510
511	/*
512	 * We can safely re-initialise incore superblock counters from the
513	 * per-ag data. These may not be correct if the filesystem was not
514	 * cleanly unmounted, so we waited for recovery to finish before doing
515	 * this.
516	 *
517	 * If the filesystem was cleanly unmounted or the previous check did
518	 * not flag anything weird, then we can trust the values in the
519	 * superblock to be correct and we don't need to do anything here.
520	 * Otherwise, recalculate the summary counters.
521	 */
522	if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
523	    xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
524		error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
525		if (error)
526			return error;
527	}
528
529	/*
530	 * Older kernels misused sb_frextents to reflect both incore
531	 * reservations made by running transactions and the actual count of
532	 * free rt extents in the ondisk metadata.  Transactions committed
533	 * during runtime can therefore contain a superblock update that
534	 * undercounts the number of free rt extents tracked in the rt bitmap.
535	 * A clean unmount record will have the correct frextents value since
536	 * there can be no other transactions running at that point.
537	 *
538	 * If we're mounting the rt volume after recovering the log, recompute
539	 * frextents from the rtbitmap file to fix the inconsistency.
540	 */
541	if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
542		error = xfs_rtalloc_reinit_frextents(mp);
543		if (error)
544			return error;
545	}
546
547	return 0;
548}
549
550static void
551xfs_unmount_check(
552	struct xfs_mount	*mp)
553{
554	if (xfs_is_shutdown(mp))
555		return;
556
557	if (percpu_counter_sum(&mp->m_ifree) >
558			percpu_counter_sum(&mp->m_icount)) {
559		xfs_alert(mp, "ifree/icount mismatch at unmount");
560		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
561	}
562}
563
564/*
565 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
566 * internal inode structures can be sitting in the CIL and AIL at this point,
567 * so we need to unpin them, write them back and/or reclaim them before unmount
568 * can proceed.  In other words, callers are required to have inactivated all
569 * inodes.
570 *
571 * An inode cluster that has been freed can have its buffer still pinned in
572 * memory because the transaction is still sitting in a iclog. The stale inodes
573 * on that buffer will be pinned to the buffer until the transaction hits the
574 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
575 * may never see the pinned buffer, so nothing will push out the iclog and
576 * unpin the buffer.
577 *
578 * Hence we need to force the log to unpin everything first. However, log
579 * forces don't wait for the discards they issue to complete, so we have to
580 * explicitly wait for them to complete here as well.
581 *
582 * Then we can tell the world we are unmounting so that error handling knows
583 * that the filesystem is going away and we should error out anything that we
584 * have been retrying in the background.  This will prevent never-ending
585 * retries in AIL pushing from hanging the unmount.
586 *
587 * Finally, we can push the AIL to clean all the remaining dirty objects, then
588 * reclaim the remaining inodes that are still in memory at this point in time.
589 */
590static void
591xfs_unmount_flush_inodes(
592	struct xfs_mount	*mp)
593{
594	xfs_log_force(mp, XFS_LOG_SYNC);
595	xfs_extent_busy_wait_all(mp);
596	flush_workqueue(xfs_discard_wq);
597
598	set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
599
600	xfs_ail_push_all_sync(mp->m_ail);
601	xfs_inodegc_stop(mp);
602	cancel_delayed_work_sync(&mp->m_reclaim_work);
603	xfs_reclaim_inodes(mp);
604	xfs_health_unmount(mp);
605}
606
607static void
608xfs_mount_setup_inode_geom(
609	struct xfs_mount	*mp)
610{
611	struct xfs_ino_geometry *igeo = M_IGEO(mp);
612
613	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
614	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
615
616	xfs_ialloc_setup_geometry(mp);
617}
618
619/* Compute maximum possible height for per-AG btree types for this fs. */
620static inline void
621xfs_agbtree_compute_maxlevels(
622	struct xfs_mount	*mp)
623{
624	unsigned int		levels;
625
626	levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
627	levels = max(levels, mp->m_rmap_maxlevels);
628	mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
629}
630
631/*
632 * This function does the following on an initial mount of a file system:
633 *	- reads the superblock from disk and init the mount struct
634 *	- if we're a 32-bit kernel, do a size check on the superblock
635 *		so we don't mount terabyte filesystems
636 *	- init mount struct realtime fields
637 *	- allocate inode hash table for fs
638 *	- init directory manager
639 *	- perform recovery and init the log manager
640 */
641int
642xfs_mountfs(
643	struct xfs_mount	*mp)
644{
645	struct xfs_sb		*sbp = &(mp->m_sb);
646	struct xfs_inode	*rip;
647	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
648	uint			quotamount = 0;
649	uint			quotaflags = 0;
650	int			error = 0;
651
652	xfs_sb_mount_common(mp, sbp);
653
654	/*
655	 * Check for a mismatched features2 values.  Older kernels read & wrote
656	 * into the wrong sb offset for sb_features2 on some platforms due to
657	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
658	 * which made older superblock reading/writing routines swap it as a
659	 * 64-bit value.
660	 *
661	 * For backwards compatibility, we make both slots equal.
662	 *
663	 * If we detect a mismatched field, we OR the set bits into the existing
664	 * features2 field in case it has already been modified; we don't want
665	 * to lose any features.  We then update the bad location with the ORed
666	 * value so that older kernels will see any features2 flags. The
667	 * superblock writeback code ensures the new sb_features2 is copied to
668	 * sb_bad_features2 before it is logged or written to disk.
669	 */
670	if (xfs_sb_has_mismatched_features2(sbp)) {
671		xfs_warn(mp, "correcting sb_features alignment problem");
672		sbp->sb_features2 |= sbp->sb_bad_features2;
673		mp->m_update_sb = true;
674	}
675
676
677	/* always use v2 inodes by default now */
678	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
679		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
680		mp->m_features |= XFS_FEAT_NLINK;
681		mp->m_update_sb = true;
682	}
683
684	/*
685	 * If we were given new sunit/swidth options, do some basic validation
686	 * checks and convert the incore dalign and swidth values to the
687	 * same units (FSB) that everything else uses.  This /must/ happen
688	 * before computing the inode geometry.
689	 */
690	error = xfs_validate_new_dalign(mp);
691	if (error)
692		goto out;
693
694	xfs_alloc_compute_maxlevels(mp);
695	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
696	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
697	xfs_mount_setup_inode_geom(mp);
698	xfs_rmapbt_compute_maxlevels(mp);
699	xfs_refcountbt_compute_maxlevels(mp);
700
701	xfs_agbtree_compute_maxlevels(mp);
702
703	/*
704	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
705	 * is NOT aligned turn off m_dalign since allocator alignment is within
706	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
707	 * we must compute the free space and rmap btree geometry before doing
708	 * this.
709	 */
710	error = xfs_update_alignment(mp);
711	if (error)
712		goto out;
713
714	/* enable fail_at_unmount as default */
715	mp->m_fail_unmount = true;
716
717	super_set_sysfs_name_id(mp->m_super);
718
719	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
720			       NULL, mp->m_super->s_id);
721	if (error)
722		goto out;
723
724	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
725			       &mp->m_kobj, "stats");
726	if (error)
727		goto out_remove_sysfs;
728
729	xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
730
731	error = xfs_error_sysfs_init(mp);
732	if (error)
733		goto out_remove_scrub_stats;
734
735	error = xfs_errortag_init(mp);
736	if (error)
737		goto out_remove_error_sysfs;
738
739	error = xfs_uuid_mount(mp);
740	if (error)
741		goto out_remove_errortag;
742
743	/*
744	 * Update the preferred write size based on the information from the
745	 * on-disk superblock.
746	 */
747	mp->m_allocsize_log =
748		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
749	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
750
751	/* set the low space thresholds for dynamic preallocation */
752	xfs_set_low_space_thresholds(mp);
753
754	/*
755	 * If enabled, sparse inode chunk alignment is expected to match the
756	 * cluster size. Full inode chunk alignment must match the chunk size,
757	 * but that is checked on sb read verification...
758	 */
759	if (xfs_has_sparseinodes(mp) &&
760	    mp->m_sb.sb_spino_align !=
761			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
762		xfs_warn(mp,
763	"Sparse inode block alignment (%u) must match cluster size (%llu).",
764			 mp->m_sb.sb_spino_align,
765			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
766		error = -EINVAL;
767		goto out_remove_uuid;
768	}
769
770	/*
771	 * Check that the data (and log if separate) is an ok size.
772	 */
773	error = xfs_check_sizes(mp);
774	if (error)
775		goto out_remove_uuid;
776
777	/*
778	 * Initialize realtime fields in the mount structure
779	 */
780	error = xfs_rtmount_init(mp);
781	if (error) {
782		xfs_warn(mp, "RT mount failed");
783		goto out_remove_uuid;
784	}
785
786	/*
787	 *  Copies the low order bits of the timestamp and the randomly
788	 *  set "sequence" number out of a UUID.
789	 */
790	mp->m_fixedfsid[0] =
791		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
792		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
793	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
794
795	error = xfs_da_mount(mp);
796	if (error) {
797		xfs_warn(mp, "Failed dir/attr init: %d", error);
798		goto out_remove_uuid;
799	}
800
801	/*
802	 * Initialize the precomputed transaction reservations values.
803	 */
804	xfs_trans_init(mp);
805
806	/*
807	 * Allocate and initialize the per-ag data.
808	 */
809	error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
810			&mp->m_maxagi);
811	if (error) {
812		xfs_warn(mp, "Failed per-ag init: %d", error);
813		goto out_free_dir;
814	}
815
816	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
817		xfs_warn(mp, "no log defined");
818		error = -EFSCORRUPTED;
819		goto out_free_perag;
820	}
821
822	error = xfs_inodegc_register_shrinker(mp);
823	if (error)
824		goto out_fail_wait;
825
826	/*
827	 * Log's mount-time initialization. The first part of recovery can place
828	 * some items on the AIL, to be handled when recovery is finished or
829	 * cancelled.
830	 */
831	error = xfs_log_mount(mp, mp->m_logdev_targp,
832			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
833			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
834	if (error) {
835		xfs_warn(mp, "log mount failed");
836		goto out_inodegc_shrinker;
837	}
838
839	/*
840	 * If logged xattrs are still enabled after log recovery finishes, then
841	 * they'll be available until unmount.  Otherwise, turn them off.
842	 */
843	if (xfs_sb_version_haslogxattrs(&mp->m_sb))
844		xfs_set_using_logged_xattrs(mp);
845	else
846		xfs_clear_using_logged_xattrs(mp);
847
848	/* Enable background inode inactivation workers. */
849	xfs_inodegc_start(mp);
850	xfs_blockgc_start(mp);
851
852	/*
853	 * Now that we've recovered any pending superblock feature bit
854	 * additions, we can finish setting up the attr2 behaviour for the
855	 * mount. The noattr2 option overrides the superblock flag, so only
856	 * check the superblock feature flag if the mount option is not set.
857	 */
858	if (xfs_has_noattr2(mp)) {
859		mp->m_features &= ~XFS_FEAT_ATTR2;
860	} else if (!xfs_has_attr2(mp) &&
861		   (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
862		mp->m_features |= XFS_FEAT_ATTR2;
863	}
864
865	/*
866	 * Get and sanity-check the root inode.
867	 * Save the pointer to it in the mount structure.
868	 */
869	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
870			 XFS_ILOCK_EXCL, &rip);
871	if (error) {
872		xfs_warn(mp,
873			"Failed to read root inode 0x%llx, error %d",
874			sbp->sb_rootino, -error);
875		goto out_log_dealloc;
876	}
877
878	ASSERT(rip != NULL);
879
880	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
881		xfs_warn(mp, "corrupted root inode %llu: not a directory",
882			(unsigned long long)rip->i_ino);
883		xfs_iunlock(rip, XFS_ILOCK_EXCL);
884		error = -EFSCORRUPTED;
885		goto out_rele_rip;
886	}
887	mp->m_rootip = rip;	/* save it */
888
889	xfs_iunlock(rip, XFS_ILOCK_EXCL);
890
891	/*
892	 * Initialize realtime inode pointers in the mount structure
893	 */
894	error = xfs_rtmount_inodes(mp);
895	if (error) {
896		/*
897		 * Free up the root inode.
898		 */
899		xfs_warn(mp, "failed to read RT inodes");
900		goto out_rele_rip;
901	}
902
903	/* Make sure the summary counts are ok. */
904	error = xfs_check_summary_counts(mp);
905	if (error)
906		goto out_rtunmount;
907
908	/*
909	 * If this is a read-only mount defer the superblock updates until
910	 * the next remount into writeable mode.  Otherwise we would never
911	 * perform the update e.g. for the root filesystem.
912	 */
913	if (mp->m_update_sb && !xfs_is_readonly(mp)) {
914		error = xfs_sync_sb(mp, false);
915		if (error) {
916			xfs_warn(mp, "failed to write sb changes");
917			goto out_rtunmount;
918		}
919	}
920
921	/*
922	 * Initialise the XFS quota management subsystem for this mount
923	 */
924	if (XFS_IS_QUOTA_ON(mp)) {
925		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
926		if (error)
927			goto out_rtunmount;
928	} else {
929		/*
930		 * If a file system had quotas running earlier, but decided to
931		 * mount without -o uquota/pquota/gquota options, revoke the
932		 * quotachecked license.
933		 */
934		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
935			xfs_notice(mp, "resetting quota flags");
936			error = xfs_mount_reset_sbqflags(mp);
937			if (error)
938				goto out_rtunmount;
939		}
940	}
941
942	/*
943	 * Finish recovering the file system.  This part needed to be delayed
944	 * until after the root and real-time bitmap inodes were consistently
945	 * read in.  Temporarily create per-AG space reservations for metadata
946	 * btree shape changes because space freeing transactions (for inode
947	 * inactivation) require the per-AG reservation in lieu of reserving
948	 * blocks.
949	 */
950	error = xfs_fs_reserve_ag_blocks(mp);
951	if (error && error == -ENOSPC)
952		xfs_warn(mp,
953	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
954	error = xfs_log_mount_finish(mp);
955	xfs_fs_unreserve_ag_blocks(mp);
956	if (error) {
957		xfs_warn(mp, "log mount finish failed");
958		goto out_rtunmount;
959	}
960
961	/*
962	 * Now the log is fully replayed, we can transition to full read-only
963	 * mode for read-only mounts. This will sync all the metadata and clean
964	 * the log so that the recovery we just performed does not have to be
965	 * replayed again on the next mount.
966	 *
967	 * We use the same quiesce mechanism as the rw->ro remount, as they are
968	 * semantically identical operations.
969	 */
970	if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
971		xfs_log_clean(mp);
972
973	/*
974	 * Complete the quota initialisation, post-log-replay component.
975	 */
976	if (quotamount) {
977		ASSERT(mp->m_qflags == 0);
978		mp->m_qflags = quotaflags;
979
980		xfs_qm_mount_quotas(mp);
981	}
982
983	/*
984	 * Now we are mounted, reserve a small amount of unused space for
985	 * privileged transactions. This is needed so that transaction
986	 * space required for critical operations can dip into this pool
987	 * when at ENOSPC. This is needed for operations like create with
988	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
989	 * are not allowed to use this reserved space.
990	 *
991	 * This may drive us straight to ENOSPC on mount, but that implies
992	 * we were already there on the last unmount. Warn if this occurs.
993	 */
994	if (!xfs_is_readonly(mp)) {
995		error = xfs_reserve_blocks(mp, xfs_default_resblks(mp));
996		if (error)
997			xfs_warn(mp,
998	"Unable to allocate reserve blocks. Continuing without reserve pool.");
999
1000		/* Reserve AG blocks for future btree expansion. */
1001		error = xfs_fs_reserve_ag_blocks(mp);
1002		if (error && error != -ENOSPC)
1003			goto out_agresv;
1004	}
1005
1006	return 0;
1007
1008 out_agresv:
1009	xfs_fs_unreserve_ag_blocks(mp);
1010	xfs_qm_unmount_quotas(mp);
1011 out_rtunmount:
1012	xfs_rtunmount_inodes(mp);
1013 out_rele_rip:
1014	xfs_irele(rip);
1015	/* Clean out dquots that might be in memory after quotacheck. */
1016	xfs_qm_unmount(mp);
1017
1018	/*
1019	 * Inactivate all inodes that might still be in memory after a log
1020	 * intent recovery failure so that reclaim can free them.  Metadata
1021	 * inodes and the root directory shouldn't need inactivation, but the
1022	 * mount failed for some reason, so pull down all the state and flee.
1023	 */
1024	xfs_inodegc_flush(mp);
1025
1026	/*
1027	 * Flush all inode reclamation work and flush the log.
1028	 * We have to do this /after/ rtunmount and qm_unmount because those
1029	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1030	 *
1031	 * This is slightly different from the unmountfs call sequence
1032	 * because we could be tearing down a partially set up mount.  In
1033	 * particular, if log_mount_finish fails we bail out without calling
1034	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1035	 * quota inodes.
1036	 */
1037	xfs_unmount_flush_inodes(mp);
1038 out_log_dealloc:
1039	xfs_log_mount_cancel(mp);
1040 out_inodegc_shrinker:
1041	shrinker_free(mp->m_inodegc_shrinker);
1042 out_fail_wait:
1043	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1044		xfs_buftarg_drain(mp->m_logdev_targp);
1045	xfs_buftarg_drain(mp->m_ddev_targp);
1046 out_free_perag:
1047	xfs_free_perag(mp);
1048 out_free_dir:
1049	xfs_da_unmount(mp);
1050 out_remove_uuid:
1051	xfs_uuid_unmount(mp);
1052 out_remove_errortag:
1053	xfs_errortag_del(mp);
1054 out_remove_error_sysfs:
1055	xfs_error_sysfs_del(mp);
1056 out_remove_scrub_stats:
1057	xchk_stats_unregister(mp->m_scrub_stats);
1058	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1059 out_remove_sysfs:
1060	xfs_sysfs_del(&mp->m_kobj);
1061 out:
1062	return error;
1063}
1064
1065/*
1066 * This flushes out the inodes,dquots and the superblock, unmounts the
1067 * log and makes sure that incore structures are freed.
1068 */
1069void
1070xfs_unmountfs(
1071	struct xfs_mount	*mp)
1072{
1073	int			error;
1074
1075	/*
1076	 * Perform all on-disk metadata updates required to inactivate inodes
1077	 * that the VFS evicted earlier in the unmount process.  Freeing inodes
1078	 * and discarding CoW fork preallocations can cause shape changes to
1079	 * the free inode and refcount btrees, respectively, so we must finish
1080	 * this before we discard the metadata space reservations.  Metadata
1081	 * inodes and the root directory do not require inactivation.
1082	 */
1083	xfs_inodegc_flush(mp);
1084
1085	xfs_blockgc_stop(mp);
1086	xfs_fs_unreserve_ag_blocks(mp);
1087	xfs_qm_unmount_quotas(mp);
1088	xfs_rtunmount_inodes(mp);
1089	xfs_irele(mp->m_rootip);
1090
1091	xfs_unmount_flush_inodes(mp);
1092
1093	xfs_qm_unmount(mp);
1094
1095	/*
1096	 * Unreserve any blocks we have so that when we unmount we don't account
1097	 * the reserved free space as used. This is really only necessary for
1098	 * lazy superblock counting because it trusts the incore superblock
1099	 * counters to be absolutely correct on clean unmount.
1100	 *
1101	 * We don't bother correcting this elsewhere for lazy superblock
1102	 * counting because on mount of an unclean filesystem we reconstruct the
1103	 * correct counter value and this is irrelevant.
1104	 *
1105	 * For non-lazy counter filesystems, this doesn't matter at all because
1106	 * we only every apply deltas to the superblock and hence the incore
1107	 * value does not matter....
1108	 */
1109	error = xfs_reserve_blocks(mp, 0);
1110	if (error)
1111		xfs_warn(mp, "Unable to free reserved block pool. "
1112				"Freespace may not be correct on next mount.");
1113	xfs_unmount_check(mp);
1114
1115	/*
1116	 * Indicate that it's ok to clear log incompat bits before cleaning
1117	 * the log and writing the unmount record.
1118	 */
1119	xfs_set_done_with_log_incompat(mp);
1120	xfs_log_unmount(mp);
1121	xfs_da_unmount(mp);
1122	xfs_uuid_unmount(mp);
1123
1124#if defined(DEBUG)
1125	xfs_errortag_clearall(mp);
1126#endif
1127	shrinker_free(mp->m_inodegc_shrinker);
1128	xfs_free_perag(mp);
1129
1130	xfs_errortag_del(mp);
1131	xfs_error_sysfs_del(mp);
1132	xchk_stats_unregister(mp->m_scrub_stats);
1133	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1134	xfs_sysfs_del(&mp->m_kobj);
1135}
1136
1137/*
1138 * Determine whether modifications can proceed. The caller specifies the minimum
1139 * freeze level for which modifications should not be allowed. This allows
1140 * certain operations to proceed while the freeze sequence is in progress, if
1141 * necessary.
1142 */
1143bool
1144xfs_fs_writable(
1145	struct xfs_mount	*mp,
1146	int			level)
1147{
1148	ASSERT(level > SB_UNFROZEN);
1149	if ((mp->m_super->s_writers.frozen >= level) ||
1150	    xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1151		return false;
1152
1153	return true;
1154}
1155
1156void
1157xfs_add_freecounter(
1158	struct xfs_mount	*mp,
1159	struct percpu_counter	*counter,
1160	uint64_t		delta)
1161{
1162	bool			has_resv_pool = (counter == &mp->m_fdblocks);
1163	uint64_t		res_used;
1164
1165	/*
1166	 * If the reserve pool is depleted, put blocks back into it first.
1167	 * Most of the time the pool is full.
1168	 */
1169	if (!has_resv_pool || mp->m_resblks == mp->m_resblks_avail) {
1170		percpu_counter_add(counter, delta);
1171		return;
1172	}
1173
1174	spin_lock(&mp->m_sb_lock);
1175	res_used = mp->m_resblks - mp->m_resblks_avail;
1176	if (res_used > delta) {
1177		mp->m_resblks_avail += delta;
1178	} else {
1179		delta -= res_used;
1180		mp->m_resblks_avail = mp->m_resblks;
1181		percpu_counter_add(counter, delta);
1182	}
1183	spin_unlock(&mp->m_sb_lock);
1184}
1185
1186int
1187xfs_dec_freecounter(
1188	struct xfs_mount	*mp,
1189	struct percpu_counter	*counter,
1190	uint64_t		delta,
1191	bool			rsvd)
1192{
1193	int64_t			lcounter;
1194	uint64_t		set_aside = 0;
1195	s32			batch;
1196	bool			has_resv_pool;
1197
1198	ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1199	has_resv_pool = (counter == &mp->m_fdblocks);
1200	if (rsvd)
1201		ASSERT(has_resv_pool);
1202
1203	/*
1204	 * Taking blocks away, need to be more accurate the closer we
1205	 * are to zero.
1206	 *
1207	 * If the counter has a value of less than 2 * max batch size,
1208	 * then make everything serialise as we are real close to
1209	 * ENOSPC.
1210	 */
1211	if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1212				     XFS_FDBLOCKS_BATCH) < 0)
1213		batch = 1;
1214	else
1215		batch = XFS_FDBLOCKS_BATCH;
1216
1217	/*
1218	 * Set aside allocbt blocks because these blocks are tracked as free
1219	 * space but not available for allocation. Technically this means that a
1220	 * single reservation cannot consume all remaining free space, but the
1221	 * ratio of allocbt blocks to usable free blocks should be rather small.
1222	 * The tradeoff without this is that filesystems that maintain high
1223	 * perag block reservations can over reserve physical block availability
1224	 * and fail physical allocation, which leads to much more serious
1225	 * problems (i.e. transaction abort, pagecache discards, etc.) than
1226	 * slightly premature -ENOSPC.
1227	 */
1228	if (has_resv_pool)
1229		set_aside = xfs_fdblocks_unavailable(mp);
1230	percpu_counter_add_batch(counter, -((int64_t)delta), batch);
1231	if (__percpu_counter_compare(counter, set_aside,
1232				     XFS_FDBLOCKS_BATCH) >= 0) {
1233		/* we had space! */
1234		return 0;
1235	}
1236
1237	/*
1238	 * lock up the sb for dipping into reserves before releasing the space
1239	 * that took us to ENOSPC.
1240	 */
1241	spin_lock(&mp->m_sb_lock);
1242	percpu_counter_add(counter, delta);
1243	if (!has_resv_pool || !rsvd)
1244		goto fdblocks_enospc;
1245
1246	lcounter = (long long)mp->m_resblks_avail - delta;
1247	if (lcounter >= 0) {
1248		mp->m_resblks_avail = lcounter;
1249		spin_unlock(&mp->m_sb_lock);
1250		return 0;
1251	}
1252	xfs_warn_once(mp,
1253"Reserve blocks depleted! Consider increasing reserve pool size.");
1254
1255fdblocks_enospc:
1256	spin_unlock(&mp->m_sb_lock);
1257	return -ENOSPC;
1258}
1259
1260/*
1261 * Used to free the superblock along various error paths.
1262 */
1263void
1264xfs_freesb(
1265	struct xfs_mount	*mp)
1266{
1267	struct xfs_buf		*bp = mp->m_sb_bp;
1268
1269	xfs_buf_lock(bp);
1270	mp->m_sb_bp = NULL;
1271	xfs_buf_relse(bp);
1272}
1273
1274/*
1275 * If the underlying (data/log/rt) device is readonly, there are some
1276 * operations that cannot proceed.
1277 */
1278int
1279xfs_dev_is_read_only(
1280	struct xfs_mount	*mp,
1281	char			*message)
1282{
1283	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1284	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1285	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1286		xfs_notice(mp, "%s required on read-only device.", message);
1287		xfs_notice(mp, "write access unavailable, cannot proceed.");
1288		return -EROFS;
1289	}
1290	return 0;
1291}
1292
1293/* Force the summary counters to be recalculated at next mount. */
1294void
1295xfs_force_summary_recalc(
1296	struct xfs_mount	*mp)
1297{
1298	if (!xfs_has_lazysbcount(mp))
1299		return;
1300
1301	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1302}
1303
1304/*
1305 * Enable a log incompat feature flag in the primary superblock.  The caller
1306 * cannot have any other transactions in progress.
1307 */
1308int
1309xfs_add_incompat_log_feature(
1310	struct xfs_mount	*mp,
1311	uint32_t		feature)
1312{
1313	struct xfs_dsb		*dsb;
1314	int			error;
1315
1316	ASSERT(hweight32(feature) == 1);
1317	ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1318
1319	/*
1320	 * Force the log to disk and kick the background AIL thread to reduce
1321	 * the chances that the bwrite will stall waiting for the AIL to unpin
1322	 * the primary superblock buffer.  This isn't a data integrity
1323	 * operation, so we don't need a synchronous push.
1324	 */
1325	error = xfs_log_force(mp, XFS_LOG_SYNC);
1326	if (error)
1327		return error;
1328	xfs_ail_push_all(mp->m_ail);
1329
1330	/*
1331	 * Lock the primary superblock buffer to serialize all callers that
1332	 * are trying to set feature bits.
1333	 */
1334	xfs_buf_lock(mp->m_sb_bp);
1335	xfs_buf_hold(mp->m_sb_bp);
1336
1337	if (xfs_is_shutdown(mp)) {
1338		error = -EIO;
1339		goto rele;
1340	}
1341
1342	if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1343		goto rele;
1344
1345	/*
1346	 * Write the primary superblock to disk immediately, because we need
1347	 * the log_incompat bit to be set in the primary super now to protect
1348	 * the log items that we're going to commit later.
1349	 */
1350	dsb = mp->m_sb_bp->b_addr;
1351	xfs_sb_to_disk(dsb, &mp->m_sb);
1352	dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1353	error = xfs_bwrite(mp->m_sb_bp);
1354	if (error)
1355		goto shutdown;
1356
1357	/*
1358	 * Add the feature bits to the incore superblock before we unlock the
1359	 * buffer.
1360	 */
1361	xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1362	xfs_buf_relse(mp->m_sb_bp);
1363
1364	/* Log the superblock to disk. */
1365	return xfs_sync_sb(mp, false);
1366shutdown:
1367	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1368rele:
1369	xfs_buf_relse(mp->m_sb_bp);
1370	return error;
1371}
1372
1373/*
1374 * Clear all the log incompat flags from the superblock.
1375 *
1376 * The caller cannot be in a transaction, must ensure that the log does not
1377 * contain any log items protected by any log incompat bit, and must ensure
1378 * that there are no other threads that depend on the state of the log incompat
1379 * feature flags in the primary super.
1380 *
1381 * Returns true if the superblock is dirty.
1382 */
1383bool
1384xfs_clear_incompat_log_features(
1385	struct xfs_mount	*mp)
1386{
1387	bool			ret = false;
1388
1389	if (!xfs_has_crc(mp) ||
1390	    !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1391				XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1392	    xfs_is_shutdown(mp) ||
1393	    !xfs_is_done_with_log_incompat(mp))
1394		return false;
1395
1396	/*
1397	 * Update the incore superblock.  We synchronize on the primary super
1398	 * buffer lock to be consistent with the add function, though at least
1399	 * in theory this shouldn't be necessary.
1400	 */
1401	xfs_buf_lock(mp->m_sb_bp);
1402	xfs_buf_hold(mp->m_sb_bp);
1403
1404	if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1405				XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1406		xfs_sb_remove_incompat_log_features(&mp->m_sb);
1407		ret = true;
1408	}
1409
1410	xfs_buf_relse(mp->m_sb_bp);
1411	return ret;
1412}
1413
1414/*
1415 * Update the in-core delayed block counter.
1416 *
1417 * We prefer to update the counter without having to take a spinlock for every
1418 * counter update (i.e. batching).  Each change to delayed allocation
1419 * reservations can change can easily exceed the default percpu counter
1420 * batching, so we use a larger batch factor here.
1421 *
1422 * Note that we don't currently have any callers requiring fast summation
1423 * (e.g. percpu_counter_read) so we can use a big batch value here.
1424 */
1425#define XFS_DELALLOC_BATCH	(4096)
1426void
1427xfs_mod_delalloc(
1428	struct xfs_inode	*ip,
1429	int64_t			data_delta,
1430	int64_t			ind_delta)
1431{
1432	struct xfs_mount	*mp = ip->i_mount;
1433
1434	if (XFS_IS_REALTIME_INODE(ip)) {
1435		percpu_counter_add_batch(&mp->m_delalloc_rtextents,
1436				xfs_rtb_to_rtx(mp, data_delta),
1437				XFS_DELALLOC_BATCH);
1438		if (!ind_delta)
1439			return;
1440		data_delta = 0;
1441	}
1442	percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta,
1443			XFS_DELALLOC_BATCH);
1444}
1445