1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  fs/userfaultfd.c
4 *
5 *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6 *  Copyright (C) 2008-2009 Red Hat, Inc.
7 *  Copyright (C) 2015  Red Hat, Inc.
8 *
9 *  Some part derived from fs/eventfd.c (anon inode setup) and
10 *  mm/ksm.c (mm hashing).
11 */
12
13#include <linux/list.h>
14#include <linux/hashtable.h>
15#include <linux/sched/signal.h>
16#include <linux/sched/mm.h>
17#include <linux/mm.h>
18#include <linux/mm_inline.h>
19#include <linux/mmu_notifier.h>
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
31#include <linux/hugetlb.h>
32#include <linux/swapops.h>
33#include <linux/miscdevice.h>
34#include <linux/uio.h>
35
36static int sysctl_unprivileged_userfaultfd __read_mostly;
37
38#ifdef CONFIG_SYSCTL
39static struct ctl_table vm_userfaultfd_table[] = {
40	{
41		.procname	= "unprivileged_userfaultfd",
42		.data		= &sysctl_unprivileged_userfaultfd,
43		.maxlen		= sizeof(sysctl_unprivileged_userfaultfd),
44		.mode		= 0644,
45		.proc_handler	= proc_dointvec_minmax,
46		.extra1		= SYSCTL_ZERO,
47		.extra2		= SYSCTL_ONE,
48	},
49};
50#endif
51
52static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
53
54struct userfaultfd_fork_ctx {
55	struct userfaultfd_ctx *orig;
56	struct userfaultfd_ctx *new;
57	struct list_head list;
58};
59
60struct userfaultfd_unmap_ctx {
61	struct userfaultfd_ctx *ctx;
62	unsigned long start;
63	unsigned long end;
64	struct list_head list;
65};
66
67struct userfaultfd_wait_queue {
68	struct uffd_msg msg;
69	wait_queue_entry_t wq;
70	struct userfaultfd_ctx *ctx;
71	bool waken;
72};
73
74struct userfaultfd_wake_range {
75	unsigned long start;
76	unsigned long len;
77};
78
79/* internal indication that UFFD_API ioctl was successfully executed */
80#define UFFD_FEATURE_INITIALIZED		(1u << 31)
81
82static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
83{
84	return ctx->features & UFFD_FEATURE_INITIALIZED;
85}
86
87static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
88{
89	return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
90}
91
92/*
93 * Whether WP_UNPOPULATED is enabled on the uffd context.  It is only
94 * meaningful when userfaultfd_wp()==true on the vma and when it's
95 * anonymous.
96 */
97bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
98{
99	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
100
101	if (!ctx)
102		return false;
103
104	return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
105}
106
107static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
108				     vm_flags_t flags)
109{
110	const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
111
112	vm_flags_reset(vma, flags);
113	/*
114	 * For shared mappings, we want to enable writenotify while
115	 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
116	 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
117	 */
118	if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
119		vma_set_page_prot(vma);
120}
121
122static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
123				     int wake_flags, void *key)
124{
125	struct userfaultfd_wake_range *range = key;
126	int ret;
127	struct userfaultfd_wait_queue *uwq;
128	unsigned long start, len;
129
130	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
131	ret = 0;
132	/* len == 0 means wake all */
133	start = range->start;
134	len = range->len;
135	if (len && (start > uwq->msg.arg.pagefault.address ||
136		    start + len <= uwq->msg.arg.pagefault.address))
137		goto out;
138	WRITE_ONCE(uwq->waken, true);
139	/*
140	 * The Program-Order guarantees provided by the scheduler
141	 * ensure uwq->waken is visible before the task is woken.
142	 */
143	ret = wake_up_state(wq->private, mode);
144	if (ret) {
145		/*
146		 * Wake only once, autoremove behavior.
147		 *
148		 * After the effect of list_del_init is visible to the other
149		 * CPUs, the waitqueue may disappear from under us, see the
150		 * !list_empty_careful() in handle_userfault().
151		 *
152		 * try_to_wake_up() has an implicit smp_mb(), and the
153		 * wq->private is read before calling the extern function
154		 * "wake_up_state" (which in turns calls try_to_wake_up).
155		 */
156		list_del_init(&wq->entry);
157	}
158out:
159	return ret;
160}
161
162/**
163 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
164 * context.
165 * @ctx: [in] Pointer to the userfaultfd context.
166 */
167static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
168{
169	refcount_inc(&ctx->refcount);
170}
171
172/**
173 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
174 * context.
175 * @ctx: [in] Pointer to userfaultfd context.
176 *
177 * The userfaultfd context reference must have been previously acquired either
178 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
179 */
180static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
181{
182	if (refcount_dec_and_test(&ctx->refcount)) {
183		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
184		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
185		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
186		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
187		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
188		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
189		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
190		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
191		mmdrop(ctx->mm);
192		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
193	}
194}
195
196static inline void msg_init(struct uffd_msg *msg)
197{
198	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
199	/*
200	 * Must use memset to zero out the paddings or kernel data is
201	 * leaked to userland.
202	 */
203	memset(msg, 0, sizeof(struct uffd_msg));
204}
205
206static inline struct uffd_msg userfault_msg(unsigned long address,
207					    unsigned long real_address,
208					    unsigned int flags,
209					    unsigned long reason,
210					    unsigned int features)
211{
212	struct uffd_msg msg;
213
214	msg_init(&msg);
215	msg.event = UFFD_EVENT_PAGEFAULT;
216
217	msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
218				    real_address : address;
219
220	/*
221	 * These flags indicate why the userfault occurred:
222	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
223	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
224	 * - Neither of these flags being set indicates a MISSING fault.
225	 *
226	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
227	 * fault. Otherwise, it was a read fault.
228	 */
229	if (flags & FAULT_FLAG_WRITE)
230		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
231	if (reason & VM_UFFD_WP)
232		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
233	if (reason & VM_UFFD_MINOR)
234		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
235	if (features & UFFD_FEATURE_THREAD_ID)
236		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
237	return msg;
238}
239
240#ifdef CONFIG_HUGETLB_PAGE
241/*
242 * Same functionality as userfaultfd_must_wait below with modifications for
243 * hugepmd ranges.
244 */
245static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
246					      struct vm_fault *vmf,
247					      unsigned long reason)
248{
249	struct vm_area_struct *vma = vmf->vma;
250	pte_t *ptep, pte;
251	bool ret = true;
252
253	assert_fault_locked(vmf);
254
255	ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
256	if (!ptep)
257		goto out;
258
259	ret = false;
260	pte = huge_ptep_get(ptep);
261
262	/*
263	 * Lockless access: we're in a wait_event so it's ok if it
264	 * changes under us.  PTE markers should be handled the same as none
265	 * ptes here.
266	 */
267	if (huge_pte_none_mostly(pte))
268		ret = true;
269	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
270		ret = true;
271out:
272	return ret;
273}
274#else
275static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
276					      struct vm_fault *vmf,
277					      unsigned long reason)
278{
279	return false;	/* should never get here */
280}
281#endif /* CONFIG_HUGETLB_PAGE */
282
283/*
284 * Verify the pagetables are still not ok after having reigstered into
285 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
286 * userfault that has already been resolved, if userfaultfd_read_iter and
287 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
288 * threads.
289 */
290static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
291					 struct vm_fault *vmf,
292					 unsigned long reason)
293{
294	struct mm_struct *mm = ctx->mm;
295	unsigned long address = vmf->address;
296	pgd_t *pgd;
297	p4d_t *p4d;
298	pud_t *pud;
299	pmd_t *pmd, _pmd;
300	pte_t *pte;
301	pte_t ptent;
302	bool ret = true;
303
304	assert_fault_locked(vmf);
305
306	pgd = pgd_offset(mm, address);
307	if (!pgd_present(*pgd))
308		goto out;
309	p4d = p4d_offset(pgd, address);
310	if (!p4d_present(*p4d))
311		goto out;
312	pud = pud_offset(p4d, address);
313	if (!pud_present(*pud))
314		goto out;
315	pmd = pmd_offset(pud, address);
316again:
317	_pmd = pmdp_get_lockless(pmd);
318	if (pmd_none(_pmd))
319		goto out;
320
321	ret = false;
322	if (!pmd_present(_pmd) || pmd_devmap(_pmd))
323		goto out;
324
325	if (pmd_trans_huge(_pmd)) {
326		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
327			ret = true;
328		goto out;
329	}
330
331	pte = pte_offset_map(pmd, address);
332	if (!pte) {
333		ret = true;
334		goto again;
335	}
336	/*
337	 * Lockless access: we're in a wait_event so it's ok if it
338	 * changes under us.  PTE markers should be handled the same as none
339	 * ptes here.
340	 */
341	ptent = ptep_get(pte);
342	if (pte_none_mostly(ptent))
343		ret = true;
344	if (!pte_write(ptent) && (reason & VM_UFFD_WP))
345		ret = true;
346	pte_unmap(pte);
347
348out:
349	return ret;
350}
351
352static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
353{
354	if (flags & FAULT_FLAG_INTERRUPTIBLE)
355		return TASK_INTERRUPTIBLE;
356
357	if (flags & FAULT_FLAG_KILLABLE)
358		return TASK_KILLABLE;
359
360	return TASK_UNINTERRUPTIBLE;
361}
362
363/*
364 * The locking rules involved in returning VM_FAULT_RETRY depending on
365 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
366 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
367 * recommendation in __lock_page_or_retry is not an understatement.
368 *
369 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
370 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
371 * not set.
372 *
373 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
374 * set, VM_FAULT_RETRY can still be returned if and only if there are
375 * fatal_signal_pending()s, and the mmap_lock must be released before
376 * returning it.
377 */
378vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
379{
380	struct vm_area_struct *vma = vmf->vma;
381	struct mm_struct *mm = vma->vm_mm;
382	struct userfaultfd_ctx *ctx;
383	struct userfaultfd_wait_queue uwq;
384	vm_fault_t ret = VM_FAULT_SIGBUS;
385	bool must_wait;
386	unsigned int blocking_state;
387
388	/*
389	 * We don't do userfault handling for the final child pid update.
390	 *
391	 * We also don't do userfault handling during
392	 * coredumping. hugetlbfs has the special
393	 * hugetlb_follow_page_mask() to skip missing pages in the
394	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
395	 * the no_page_table() helper in follow_page_mask(), but the
396	 * shmem_vm_ops->fault method is invoked even during
397	 * coredumping and it ends up here.
398	 */
399	if (current->flags & (PF_EXITING|PF_DUMPCORE))
400		goto out;
401
402	assert_fault_locked(vmf);
403
404	ctx = vma->vm_userfaultfd_ctx.ctx;
405	if (!ctx)
406		goto out;
407
408	BUG_ON(ctx->mm != mm);
409
410	/* Any unrecognized flag is a bug. */
411	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
412	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
413	VM_BUG_ON(!reason || (reason & (reason - 1)));
414
415	if (ctx->features & UFFD_FEATURE_SIGBUS)
416		goto out;
417	if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
418		goto out;
419
420	/*
421	 * If it's already released don't get it. This avoids to loop
422	 * in __get_user_pages if userfaultfd_release waits on the
423	 * caller of handle_userfault to release the mmap_lock.
424	 */
425	if (unlikely(READ_ONCE(ctx->released))) {
426		/*
427		 * Don't return VM_FAULT_SIGBUS in this case, so a non
428		 * cooperative manager can close the uffd after the
429		 * last UFFDIO_COPY, without risking to trigger an
430		 * involuntary SIGBUS if the process was starting the
431		 * userfaultfd while the userfaultfd was still armed
432		 * (but after the last UFFDIO_COPY). If the uffd
433		 * wasn't already closed when the userfault reached
434		 * this point, that would normally be solved by
435		 * userfaultfd_must_wait returning 'false'.
436		 *
437		 * If we were to return VM_FAULT_SIGBUS here, the non
438		 * cooperative manager would be instead forced to
439		 * always call UFFDIO_UNREGISTER before it can safely
440		 * close the uffd.
441		 */
442		ret = VM_FAULT_NOPAGE;
443		goto out;
444	}
445
446	/*
447	 * Check that we can return VM_FAULT_RETRY.
448	 *
449	 * NOTE: it should become possible to return VM_FAULT_RETRY
450	 * even if FAULT_FLAG_TRIED is set without leading to gup()
451	 * -EBUSY failures, if the userfaultfd is to be extended for
452	 * VM_UFFD_WP tracking and we intend to arm the userfault
453	 * without first stopping userland access to the memory. For
454	 * VM_UFFD_MISSING userfaults this is enough for now.
455	 */
456	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
457		/*
458		 * Validate the invariant that nowait must allow retry
459		 * to be sure not to return SIGBUS erroneously on
460		 * nowait invocations.
461		 */
462		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
463#ifdef CONFIG_DEBUG_VM
464		if (printk_ratelimit()) {
465			printk(KERN_WARNING
466			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
467			       vmf->flags);
468			dump_stack();
469		}
470#endif
471		goto out;
472	}
473
474	/*
475	 * Handle nowait, not much to do other than tell it to retry
476	 * and wait.
477	 */
478	ret = VM_FAULT_RETRY;
479	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
480		goto out;
481
482	/* take the reference before dropping the mmap_lock */
483	userfaultfd_ctx_get(ctx);
484
485	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
486	uwq.wq.private = current;
487	uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
488				reason, ctx->features);
489	uwq.ctx = ctx;
490	uwq.waken = false;
491
492	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
493
494        /*
495         * Take the vma lock now, in order to safely call
496         * userfaultfd_huge_must_wait() later. Since acquiring the
497         * (sleepable) vma lock can modify the current task state, that
498         * must be before explicitly calling set_current_state().
499         */
500	if (is_vm_hugetlb_page(vma))
501		hugetlb_vma_lock_read(vma);
502
503	spin_lock_irq(&ctx->fault_pending_wqh.lock);
504	/*
505	 * After the __add_wait_queue the uwq is visible to userland
506	 * through poll/read().
507	 */
508	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
509	/*
510	 * The smp_mb() after __set_current_state prevents the reads
511	 * following the spin_unlock to happen before the list_add in
512	 * __add_wait_queue.
513	 */
514	set_current_state(blocking_state);
515	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
516
517	if (!is_vm_hugetlb_page(vma))
518		must_wait = userfaultfd_must_wait(ctx, vmf, reason);
519	else
520		must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
521	if (is_vm_hugetlb_page(vma))
522		hugetlb_vma_unlock_read(vma);
523	release_fault_lock(vmf);
524
525	if (likely(must_wait && !READ_ONCE(ctx->released))) {
526		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
527		schedule();
528	}
529
530	__set_current_state(TASK_RUNNING);
531
532	/*
533	 * Here we race with the list_del; list_add in
534	 * userfaultfd_ctx_read(), however because we don't ever run
535	 * list_del_init() to refile across the two lists, the prev
536	 * and next pointers will never point to self. list_add also
537	 * would never let any of the two pointers to point to
538	 * self. So list_empty_careful won't risk to see both pointers
539	 * pointing to self at any time during the list refile. The
540	 * only case where list_del_init() is called is the full
541	 * removal in the wake function and there we don't re-list_add
542	 * and it's fine not to block on the spinlock. The uwq on this
543	 * kernel stack can be released after the list_del_init.
544	 */
545	if (!list_empty_careful(&uwq.wq.entry)) {
546		spin_lock_irq(&ctx->fault_pending_wqh.lock);
547		/*
548		 * No need of list_del_init(), the uwq on the stack
549		 * will be freed shortly anyway.
550		 */
551		list_del(&uwq.wq.entry);
552		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
553	}
554
555	/*
556	 * ctx may go away after this if the userfault pseudo fd is
557	 * already released.
558	 */
559	userfaultfd_ctx_put(ctx);
560
561out:
562	return ret;
563}
564
565static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
566					      struct userfaultfd_wait_queue *ewq)
567{
568	struct userfaultfd_ctx *release_new_ctx;
569
570	if (WARN_ON_ONCE(current->flags & PF_EXITING))
571		goto out;
572
573	ewq->ctx = ctx;
574	init_waitqueue_entry(&ewq->wq, current);
575	release_new_ctx = NULL;
576
577	spin_lock_irq(&ctx->event_wqh.lock);
578	/*
579	 * After the __add_wait_queue the uwq is visible to userland
580	 * through poll/read().
581	 */
582	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
583	for (;;) {
584		set_current_state(TASK_KILLABLE);
585		if (ewq->msg.event == 0)
586			break;
587		if (READ_ONCE(ctx->released) ||
588		    fatal_signal_pending(current)) {
589			/*
590			 * &ewq->wq may be queued in fork_event, but
591			 * __remove_wait_queue ignores the head
592			 * parameter. It would be a problem if it
593			 * didn't.
594			 */
595			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
596			if (ewq->msg.event == UFFD_EVENT_FORK) {
597				struct userfaultfd_ctx *new;
598
599				new = (struct userfaultfd_ctx *)
600					(unsigned long)
601					ewq->msg.arg.reserved.reserved1;
602				release_new_ctx = new;
603			}
604			break;
605		}
606
607		spin_unlock_irq(&ctx->event_wqh.lock);
608
609		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
610		schedule();
611
612		spin_lock_irq(&ctx->event_wqh.lock);
613	}
614	__set_current_state(TASK_RUNNING);
615	spin_unlock_irq(&ctx->event_wqh.lock);
616
617	if (release_new_ctx) {
618		struct vm_area_struct *vma;
619		struct mm_struct *mm = release_new_ctx->mm;
620		VMA_ITERATOR(vmi, mm, 0);
621
622		/* the various vma->vm_userfaultfd_ctx still points to it */
623		mmap_write_lock(mm);
624		for_each_vma(vmi, vma) {
625			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
626				vma_start_write(vma);
627				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
628				userfaultfd_set_vm_flags(vma,
629							 vma->vm_flags & ~__VM_UFFD_FLAGS);
630			}
631		}
632		mmap_write_unlock(mm);
633
634		userfaultfd_ctx_put(release_new_ctx);
635	}
636
637	/*
638	 * ctx may go away after this if the userfault pseudo fd is
639	 * already released.
640	 */
641out:
642	atomic_dec(&ctx->mmap_changing);
643	VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
644	userfaultfd_ctx_put(ctx);
645}
646
647static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
648				       struct userfaultfd_wait_queue *ewq)
649{
650	ewq->msg.event = 0;
651	wake_up_locked(&ctx->event_wqh);
652	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
653}
654
655int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
656{
657	struct userfaultfd_ctx *ctx = NULL, *octx;
658	struct userfaultfd_fork_ctx *fctx;
659
660	octx = vma->vm_userfaultfd_ctx.ctx;
661	if (!octx)
662		return 0;
663
664	if (!(octx->features & UFFD_FEATURE_EVENT_FORK)) {
665		vma_start_write(vma);
666		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
667		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
668		return 0;
669	}
670
671	list_for_each_entry(fctx, fcs, list)
672		if (fctx->orig == octx) {
673			ctx = fctx->new;
674			break;
675		}
676
677	if (!ctx) {
678		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
679		if (!fctx)
680			return -ENOMEM;
681
682		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
683		if (!ctx) {
684			kfree(fctx);
685			return -ENOMEM;
686		}
687
688		refcount_set(&ctx->refcount, 1);
689		ctx->flags = octx->flags;
690		ctx->features = octx->features;
691		ctx->released = false;
692		init_rwsem(&ctx->map_changing_lock);
693		atomic_set(&ctx->mmap_changing, 0);
694		ctx->mm = vma->vm_mm;
695		mmgrab(ctx->mm);
696
697		userfaultfd_ctx_get(octx);
698		down_write(&octx->map_changing_lock);
699		atomic_inc(&octx->mmap_changing);
700		up_write(&octx->map_changing_lock);
701		fctx->orig = octx;
702		fctx->new = ctx;
703		list_add_tail(&fctx->list, fcs);
704	}
705
706	vma->vm_userfaultfd_ctx.ctx = ctx;
707	return 0;
708}
709
710static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
711{
712	struct userfaultfd_ctx *ctx = fctx->orig;
713	struct userfaultfd_wait_queue ewq;
714
715	msg_init(&ewq.msg);
716
717	ewq.msg.event = UFFD_EVENT_FORK;
718	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
719
720	userfaultfd_event_wait_completion(ctx, &ewq);
721}
722
723void dup_userfaultfd_complete(struct list_head *fcs)
724{
725	struct userfaultfd_fork_ctx *fctx, *n;
726
727	list_for_each_entry_safe(fctx, n, fcs, list) {
728		dup_fctx(fctx);
729		list_del(&fctx->list);
730		kfree(fctx);
731	}
732}
733
734void mremap_userfaultfd_prep(struct vm_area_struct *vma,
735			     struct vm_userfaultfd_ctx *vm_ctx)
736{
737	struct userfaultfd_ctx *ctx;
738
739	ctx = vma->vm_userfaultfd_ctx.ctx;
740
741	if (!ctx)
742		return;
743
744	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
745		vm_ctx->ctx = ctx;
746		userfaultfd_ctx_get(ctx);
747		down_write(&ctx->map_changing_lock);
748		atomic_inc(&ctx->mmap_changing);
749		up_write(&ctx->map_changing_lock);
750	} else {
751		/* Drop uffd context if remap feature not enabled */
752		vma_start_write(vma);
753		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
754		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
755	}
756}
757
758void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
759				 unsigned long from, unsigned long to,
760				 unsigned long len)
761{
762	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
763	struct userfaultfd_wait_queue ewq;
764
765	if (!ctx)
766		return;
767
768	if (to & ~PAGE_MASK) {
769		userfaultfd_ctx_put(ctx);
770		return;
771	}
772
773	msg_init(&ewq.msg);
774
775	ewq.msg.event = UFFD_EVENT_REMAP;
776	ewq.msg.arg.remap.from = from;
777	ewq.msg.arg.remap.to = to;
778	ewq.msg.arg.remap.len = len;
779
780	userfaultfd_event_wait_completion(ctx, &ewq);
781}
782
783bool userfaultfd_remove(struct vm_area_struct *vma,
784			unsigned long start, unsigned long end)
785{
786	struct mm_struct *mm = vma->vm_mm;
787	struct userfaultfd_ctx *ctx;
788	struct userfaultfd_wait_queue ewq;
789
790	ctx = vma->vm_userfaultfd_ctx.ctx;
791	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
792		return true;
793
794	userfaultfd_ctx_get(ctx);
795	down_write(&ctx->map_changing_lock);
796	atomic_inc(&ctx->mmap_changing);
797	up_write(&ctx->map_changing_lock);
798	mmap_read_unlock(mm);
799
800	msg_init(&ewq.msg);
801
802	ewq.msg.event = UFFD_EVENT_REMOVE;
803	ewq.msg.arg.remove.start = start;
804	ewq.msg.arg.remove.end = end;
805
806	userfaultfd_event_wait_completion(ctx, &ewq);
807
808	return false;
809}
810
811static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
812			  unsigned long start, unsigned long end)
813{
814	struct userfaultfd_unmap_ctx *unmap_ctx;
815
816	list_for_each_entry(unmap_ctx, unmaps, list)
817		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
818		    unmap_ctx->end == end)
819			return true;
820
821	return false;
822}
823
824int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
825			   unsigned long end, struct list_head *unmaps)
826{
827	struct userfaultfd_unmap_ctx *unmap_ctx;
828	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
829
830	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
831	    has_unmap_ctx(ctx, unmaps, start, end))
832		return 0;
833
834	unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
835	if (!unmap_ctx)
836		return -ENOMEM;
837
838	userfaultfd_ctx_get(ctx);
839	down_write(&ctx->map_changing_lock);
840	atomic_inc(&ctx->mmap_changing);
841	up_write(&ctx->map_changing_lock);
842	unmap_ctx->ctx = ctx;
843	unmap_ctx->start = start;
844	unmap_ctx->end = end;
845	list_add_tail(&unmap_ctx->list, unmaps);
846
847	return 0;
848}
849
850void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
851{
852	struct userfaultfd_unmap_ctx *ctx, *n;
853	struct userfaultfd_wait_queue ewq;
854
855	list_for_each_entry_safe(ctx, n, uf, list) {
856		msg_init(&ewq.msg);
857
858		ewq.msg.event = UFFD_EVENT_UNMAP;
859		ewq.msg.arg.remove.start = ctx->start;
860		ewq.msg.arg.remove.end = ctx->end;
861
862		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
863
864		list_del(&ctx->list);
865		kfree(ctx);
866	}
867}
868
869static int userfaultfd_release(struct inode *inode, struct file *file)
870{
871	struct userfaultfd_ctx *ctx = file->private_data;
872	struct mm_struct *mm = ctx->mm;
873	struct vm_area_struct *vma, *prev;
874	/* len == 0 means wake all */
875	struct userfaultfd_wake_range range = { .len = 0, };
876	unsigned long new_flags;
877	VMA_ITERATOR(vmi, mm, 0);
878
879	WRITE_ONCE(ctx->released, true);
880
881	if (!mmget_not_zero(mm))
882		goto wakeup;
883
884	/*
885	 * Flush page faults out of all CPUs. NOTE: all page faults
886	 * must be retried without returning VM_FAULT_SIGBUS if
887	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
888	 * changes while handle_userfault released the mmap_lock. So
889	 * it's critical that released is set to true (above), before
890	 * taking the mmap_lock for writing.
891	 */
892	mmap_write_lock(mm);
893	prev = NULL;
894	for_each_vma(vmi, vma) {
895		cond_resched();
896		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
897		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
898		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
899			prev = vma;
900			continue;
901		}
902		/* Reset ptes for the whole vma range if wr-protected */
903		if (userfaultfd_wp(vma))
904			uffd_wp_range(vma, vma->vm_start,
905				      vma->vm_end - vma->vm_start, false);
906		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
907		vma = vma_modify_flags_uffd(&vmi, prev, vma, vma->vm_start,
908					    vma->vm_end, new_flags,
909					    NULL_VM_UFFD_CTX);
910
911		vma_start_write(vma);
912		userfaultfd_set_vm_flags(vma, new_flags);
913		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
914
915		prev = vma;
916	}
917	mmap_write_unlock(mm);
918	mmput(mm);
919wakeup:
920	/*
921	 * After no new page faults can wait on this fault_*wqh, flush
922	 * the last page faults that may have been already waiting on
923	 * the fault_*wqh.
924	 */
925	spin_lock_irq(&ctx->fault_pending_wqh.lock);
926	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
927	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
928	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
929
930	/* Flush pending events that may still wait on event_wqh */
931	wake_up_all(&ctx->event_wqh);
932
933	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
934	userfaultfd_ctx_put(ctx);
935	return 0;
936}
937
938/* fault_pending_wqh.lock must be hold by the caller */
939static inline struct userfaultfd_wait_queue *find_userfault_in(
940		wait_queue_head_t *wqh)
941{
942	wait_queue_entry_t *wq;
943	struct userfaultfd_wait_queue *uwq;
944
945	lockdep_assert_held(&wqh->lock);
946
947	uwq = NULL;
948	if (!waitqueue_active(wqh))
949		goto out;
950	/* walk in reverse to provide FIFO behavior to read userfaults */
951	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
952	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
953out:
954	return uwq;
955}
956
957static inline struct userfaultfd_wait_queue *find_userfault(
958		struct userfaultfd_ctx *ctx)
959{
960	return find_userfault_in(&ctx->fault_pending_wqh);
961}
962
963static inline struct userfaultfd_wait_queue *find_userfault_evt(
964		struct userfaultfd_ctx *ctx)
965{
966	return find_userfault_in(&ctx->event_wqh);
967}
968
969static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
970{
971	struct userfaultfd_ctx *ctx = file->private_data;
972	__poll_t ret;
973
974	poll_wait(file, &ctx->fd_wqh, wait);
975
976	if (!userfaultfd_is_initialized(ctx))
977		return EPOLLERR;
978
979	/*
980	 * poll() never guarantees that read won't block.
981	 * userfaults can be waken before they're read().
982	 */
983	if (unlikely(!(file->f_flags & O_NONBLOCK)))
984		return EPOLLERR;
985	/*
986	 * lockless access to see if there are pending faults
987	 * __pollwait last action is the add_wait_queue but
988	 * the spin_unlock would allow the waitqueue_active to
989	 * pass above the actual list_add inside
990	 * add_wait_queue critical section. So use a full
991	 * memory barrier to serialize the list_add write of
992	 * add_wait_queue() with the waitqueue_active read
993	 * below.
994	 */
995	ret = 0;
996	smp_mb();
997	if (waitqueue_active(&ctx->fault_pending_wqh))
998		ret = EPOLLIN;
999	else if (waitqueue_active(&ctx->event_wqh))
1000		ret = EPOLLIN;
1001
1002	return ret;
1003}
1004
1005static const struct file_operations userfaultfd_fops;
1006
1007static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1008				  struct inode *inode,
1009				  struct uffd_msg *msg)
1010{
1011	int fd;
1012
1013	fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
1014			O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1015	if (fd < 0)
1016		return fd;
1017
1018	msg->arg.reserved.reserved1 = 0;
1019	msg->arg.fork.ufd = fd;
1020	return 0;
1021}
1022
1023static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1024				    struct uffd_msg *msg, struct inode *inode)
1025{
1026	ssize_t ret;
1027	DECLARE_WAITQUEUE(wait, current);
1028	struct userfaultfd_wait_queue *uwq;
1029	/*
1030	 * Handling fork event requires sleeping operations, so
1031	 * we drop the event_wqh lock, then do these ops, then
1032	 * lock it back and wake up the waiter. While the lock is
1033	 * dropped the ewq may go away so we keep track of it
1034	 * carefully.
1035	 */
1036	LIST_HEAD(fork_event);
1037	struct userfaultfd_ctx *fork_nctx = NULL;
1038
1039	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1040	spin_lock_irq(&ctx->fd_wqh.lock);
1041	__add_wait_queue(&ctx->fd_wqh, &wait);
1042	for (;;) {
1043		set_current_state(TASK_INTERRUPTIBLE);
1044		spin_lock(&ctx->fault_pending_wqh.lock);
1045		uwq = find_userfault(ctx);
1046		if (uwq) {
1047			/*
1048			 * Use a seqcount to repeat the lockless check
1049			 * in wake_userfault() to avoid missing
1050			 * wakeups because during the refile both
1051			 * waitqueue could become empty if this is the
1052			 * only userfault.
1053			 */
1054			write_seqcount_begin(&ctx->refile_seq);
1055
1056			/*
1057			 * The fault_pending_wqh.lock prevents the uwq
1058			 * to disappear from under us.
1059			 *
1060			 * Refile this userfault from
1061			 * fault_pending_wqh to fault_wqh, it's not
1062			 * pending anymore after we read it.
1063			 *
1064			 * Use list_del() by hand (as
1065			 * userfaultfd_wake_function also uses
1066			 * list_del_init() by hand) to be sure nobody
1067			 * changes __remove_wait_queue() to use
1068			 * list_del_init() in turn breaking the
1069			 * !list_empty_careful() check in
1070			 * handle_userfault(). The uwq->wq.head list
1071			 * must never be empty at any time during the
1072			 * refile, or the waitqueue could disappear
1073			 * from under us. The "wait_queue_head_t"
1074			 * parameter of __remove_wait_queue() is unused
1075			 * anyway.
1076			 */
1077			list_del(&uwq->wq.entry);
1078			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1079
1080			write_seqcount_end(&ctx->refile_seq);
1081
1082			/* careful to always initialize msg if ret == 0 */
1083			*msg = uwq->msg;
1084			spin_unlock(&ctx->fault_pending_wqh.lock);
1085			ret = 0;
1086			break;
1087		}
1088		spin_unlock(&ctx->fault_pending_wqh.lock);
1089
1090		spin_lock(&ctx->event_wqh.lock);
1091		uwq = find_userfault_evt(ctx);
1092		if (uwq) {
1093			*msg = uwq->msg;
1094
1095			if (uwq->msg.event == UFFD_EVENT_FORK) {
1096				fork_nctx = (struct userfaultfd_ctx *)
1097					(unsigned long)
1098					uwq->msg.arg.reserved.reserved1;
1099				list_move(&uwq->wq.entry, &fork_event);
1100				/*
1101				 * fork_nctx can be freed as soon as
1102				 * we drop the lock, unless we take a
1103				 * reference on it.
1104				 */
1105				userfaultfd_ctx_get(fork_nctx);
1106				spin_unlock(&ctx->event_wqh.lock);
1107				ret = 0;
1108				break;
1109			}
1110
1111			userfaultfd_event_complete(ctx, uwq);
1112			spin_unlock(&ctx->event_wqh.lock);
1113			ret = 0;
1114			break;
1115		}
1116		spin_unlock(&ctx->event_wqh.lock);
1117
1118		if (signal_pending(current)) {
1119			ret = -ERESTARTSYS;
1120			break;
1121		}
1122		if (no_wait) {
1123			ret = -EAGAIN;
1124			break;
1125		}
1126		spin_unlock_irq(&ctx->fd_wqh.lock);
1127		schedule();
1128		spin_lock_irq(&ctx->fd_wqh.lock);
1129	}
1130	__remove_wait_queue(&ctx->fd_wqh, &wait);
1131	__set_current_state(TASK_RUNNING);
1132	spin_unlock_irq(&ctx->fd_wqh.lock);
1133
1134	if (!ret && msg->event == UFFD_EVENT_FORK) {
1135		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1136		spin_lock_irq(&ctx->event_wqh.lock);
1137		if (!list_empty(&fork_event)) {
1138			/*
1139			 * The fork thread didn't abort, so we can
1140			 * drop the temporary refcount.
1141			 */
1142			userfaultfd_ctx_put(fork_nctx);
1143
1144			uwq = list_first_entry(&fork_event,
1145					       typeof(*uwq),
1146					       wq.entry);
1147			/*
1148			 * If fork_event list wasn't empty and in turn
1149			 * the event wasn't already released by fork
1150			 * (the event is allocated on fork kernel
1151			 * stack), put the event back to its place in
1152			 * the event_wq. fork_event head will be freed
1153			 * as soon as we return so the event cannot
1154			 * stay queued there no matter the current
1155			 * "ret" value.
1156			 */
1157			list_del(&uwq->wq.entry);
1158			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1159
1160			/*
1161			 * Leave the event in the waitqueue and report
1162			 * error to userland if we failed to resolve
1163			 * the userfault fork.
1164			 */
1165			if (likely(!ret))
1166				userfaultfd_event_complete(ctx, uwq);
1167		} else {
1168			/*
1169			 * Here the fork thread aborted and the
1170			 * refcount from the fork thread on fork_nctx
1171			 * has already been released. We still hold
1172			 * the reference we took before releasing the
1173			 * lock above. If resolve_userfault_fork
1174			 * failed we've to drop it because the
1175			 * fork_nctx has to be freed in such case. If
1176			 * it succeeded we'll hold it because the new
1177			 * uffd references it.
1178			 */
1179			if (ret)
1180				userfaultfd_ctx_put(fork_nctx);
1181		}
1182		spin_unlock_irq(&ctx->event_wqh.lock);
1183	}
1184
1185	return ret;
1186}
1187
1188static ssize_t userfaultfd_read_iter(struct kiocb *iocb, struct iov_iter *to)
1189{
1190	struct file *file = iocb->ki_filp;
1191	struct userfaultfd_ctx *ctx = file->private_data;
1192	ssize_t _ret, ret = 0;
1193	struct uffd_msg msg;
1194	struct inode *inode = file_inode(file);
1195	bool no_wait;
1196
1197	if (!userfaultfd_is_initialized(ctx))
1198		return -EINVAL;
1199
1200	no_wait = file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT;
1201	for (;;) {
1202		if (iov_iter_count(to) < sizeof(msg))
1203			return ret ? ret : -EINVAL;
1204		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1205		if (_ret < 0)
1206			return ret ? ret : _ret;
1207		_ret = !copy_to_iter_full(&msg, sizeof(msg), to);
1208		if (_ret)
1209			return ret ? ret : -EFAULT;
1210		ret += sizeof(msg);
1211		/*
1212		 * Allow to read more than one fault at time but only
1213		 * block if waiting for the very first one.
1214		 */
1215		no_wait = true;
1216	}
1217}
1218
1219static void __wake_userfault(struct userfaultfd_ctx *ctx,
1220			     struct userfaultfd_wake_range *range)
1221{
1222	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1223	/* wake all in the range and autoremove */
1224	if (waitqueue_active(&ctx->fault_pending_wqh))
1225		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1226				     range);
1227	if (waitqueue_active(&ctx->fault_wqh))
1228		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1229	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1230}
1231
1232static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1233					   struct userfaultfd_wake_range *range)
1234{
1235	unsigned seq;
1236	bool need_wakeup;
1237
1238	/*
1239	 * To be sure waitqueue_active() is not reordered by the CPU
1240	 * before the pagetable update, use an explicit SMP memory
1241	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1242	 * have release semantics that can allow the
1243	 * waitqueue_active() to be reordered before the pte update.
1244	 */
1245	smp_mb();
1246
1247	/*
1248	 * Use waitqueue_active because it's very frequent to
1249	 * change the address space atomically even if there are no
1250	 * userfaults yet. So we take the spinlock only when we're
1251	 * sure we've userfaults to wake.
1252	 */
1253	do {
1254		seq = read_seqcount_begin(&ctx->refile_seq);
1255		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1256			waitqueue_active(&ctx->fault_wqh);
1257		cond_resched();
1258	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1259	if (need_wakeup)
1260		__wake_userfault(ctx, range);
1261}
1262
1263static __always_inline int validate_unaligned_range(
1264	struct mm_struct *mm, __u64 start, __u64 len)
1265{
1266	__u64 task_size = mm->task_size;
1267
1268	if (len & ~PAGE_MASK)
1269		return -EINVAL;
1270	if (!len)
1271		return -EINVAL;
1272	if (start < mmap_min_addr)
1273		return -EINVAL;
1274	if (start >= task_size)
1275		return -EINVAL;
1276	if (len > task_size - start)
1277		return -EINVAL;
1278	if (start + len <= start)
1279		return -EINVAL;
1280	return 0;
1281}
1282
1283static __always_inline int validate_range(struct mm_struct *mm,
1284					  __u64 start, __u64 len)
1285{
1286	if (start & ~PAGE_MASK)
1287		return -EINVAL;
1288
1289	return validate_unaligned_range(mm, start, len);
1290}
1291
1292static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1293				unsigned long arg)
1294{
1295	struct mm_struct *mm = ctx->mm;
1296	struct vm_area_struct *vma, *prev, *cur;
1297	int ret;
1298	struct uffdio_register uffdio_register;
1299	struct uffdio_register __user *user_uffdio_register;
1300	unsigned long vm_flags, new_flags;
1301	bool found;
1302	bool basic_ioctls;
1303	unsigned long start, end, vma_end;
1304	struct vma_iterator vmi;
1305	bool wp_async = userfaultfd_wp_async_ctx(ctx);
1306
1307	user_uffdio_register = (struct uffdio_register __user *) arg;
1308
1309	ret = -EFAULT;
1310	if (copy_from_user(&uffdio_register, user_uffdio_register,
1311			   sizeof(uffdio_register)-sizeof(__u64)))
1312		goto out;
1313
1314	ret = -EINVAL;
1315	if (!uffdio_register.mode)
1316		goto out;
1317	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1318		goto out;
1319	vm_flags = 0;
1320	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1321		vm_flags |= VM_UFFD_MISSING;
1322	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1323#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1324		goto out;
1325#endif
1326		vm_flags |= VM_UFFD_WP;
1327	}
1328	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1329#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1330		goto out;
1331#endif
1332		vm_flags |= VM_UFFD_MINOR;
1333	}
1334
1335	ret = validate_range(mm, uffdio_register.range.start,
1336			     uffdio_register.range.len);
1337	if (ret)
1338		goto out;
1339
1340	start = uffdio_register.range.start;
1341	end = start + uffdio_register.range.len;
1342
1343	ret = -ENOMEM;
1344	if (!mmget_not_zero(mm))
1345		goto out;
1346
1347	ret = -EINVAL;
1348	mmap_write_lock(mm);
1349	vma_iter_init(&vmi, mm, start);
1350	vma = vma_find(&vmi, end);
1351	if (!vma)
1352		goto out_unlock;
1353
1354	/*
1355	 * If the first vma contains huge pages, make sure start address
1356	 * is aligned to huge page size.
1357	 */
1358	if (is_vm_hugetlb_page(vma)) {
1359		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1360
1361		if (start & (vma_hpagesize - 1))
1362			goto out_unlock;
1363	}
1364
1365	/*
1366	 * Search for not compatible vmas.
1367	 */
1368	found = false;
1369	basic_ioctls = false;
1370	cur = vma;
1371	do {
1372		cond_resched();
1373
1374		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1375		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1376
1377		/* check not compatible vmas */
1378		ret = -EINVAL;
1379		if (!vma_can_userfault(cur, vm_flags, wp_async))
1380			goto out_unlock;
1381
1382		/*
1383		 * UFFDIO_COPY will fill file holes even without
1384		 * PROT_WRITE. This check enforces that if this is a
1385		 * MAP_SHARED, the process has write permission to the backing
1386		 * file. If VM_MAYWRITE is set it also enforces that on a
1387		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1388		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1389		 */
1390		ret = -EPERM;
1391		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1392			goto out_unlock;
1393
1394		/*
1395		 * If this vma contains ending address, and huge pages
1396		 * check alignment.
1397		 */
1398		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1399		    end > cur->vm_start) {
1400			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1401
1402			ret = -EINVAL;
1403
1404			if (end & (vma_hpagesize - 1))
1405				goto out_unlock;
1406		}
1407		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1408			goto out_unlock;
1409
1410		/*
1411		 * Check that this vma isn't already owned by a
1412		 * different userfaultfd. We can't allow more than one
1413		 * userfaultfd to own a single vma simultaneously or we
1414		 * wouldn't know which one to deliver the userfaults to.
1415		 */
1416		ret = -EBUSY;
1417		if (cur->vm_userfaultfd_ctx.ctx &&
1418		    cur->vm_userfaultfd_ctx.ctx != ctx)
1419			goto out_unlock;
1420
1421		/*
1422		 * Note vmas containing huge pages
1423		 */
1424		if (is_vm_hugetlb_page(cur))
1425			basic_ioctls = true;
1426
1427		found = true;
1428	} for_each_vma_range(vmi, cur, end);
1429	BUG_ON(!found);
1430
1431	vma_iter_set(&vmi, start);
1432	prev = vma_prev(&vmi);
1433	if (vma->vm_start < start)
1434		prev = vma;
1435
1436	ret = 0;
1437	for_each_vma_range(vmi, vma, end) {
1438		cond_resched();
1439
1440		BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async));
1441		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1442		       vma->vm_userfaultfd_ctx.ctx != ctx);
1443		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1444
1445		/*
1446		 * Nothing to do: this vma is already registered into this
1447		 * userfaultfd and with the right tracking mode too.
1448		 */
1449		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1450		    (vma->vm_flags & vm_flags) == vm_flags)
1451			goto skip;
1452
1453		if (vma->vm_start > start)
1454			start = vma->vm_start;
1455		vma_end = min(end, vma->vm_end);
1456
1457		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1458		vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1459					    new_flags,
1460					    (struct vm_userfaultfd_ctx){ctx});
1461		if (IS_ERR(vma)) {
1462			ret = PTR_ERR(vma);
1463			break;
1464		}
1465
1466		/*
1467		 * In the vma_merge() successful mprotect-like case 8:
1468		 * the next vma was merged into the current one and
1469		 * the current one has not been updated yet.
1470		 */
1471		vma_start_write(vma);
1472		userfaultfd_set_vm_flags(vma, new_flags);
1473		vma->vm_userfaultfd_ctx.ctx = ctx;
1474
1475		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1476			hugetlb_unshare_all_pmds(vma);
1477
1478	skip:
1479		prev = vma;
1480		start = vma->vm_end;
1481	}
1482
1483out_unlock:
1484	mmap_write_unlock(mm);
1485	mmput(mm);
1486	if (!ret) {
1487		__u64 ioctls_out;
1488
1489		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1490		    UFFD_API_RANGE_IOCTLS;
1491
1492		/*
1493		 * Declare the WP ioctl only if the WP mode is
1494		 * specified and all checks passed with the range
1495		 */
1496		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1497			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1498
1499		/* CONTINUE ioctl is only supported for MINOR ranges. */
1500		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1501			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1502
1503		/*
1504		 * Now that we scanned all vmas we can already tell
1505		 * userland which ioctls methods are guaranteed to
1506		 * succeed on this range.
1507		 */
1508		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1509			ret = -EFAULT;
1510	}
1511out:
1512	return ret;
1513}
1514
1515static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1516				  unsigned long arg)
1517{
1518	struct mm_struct *mm = ctx->mm;
1519	struct vm_area_struct *vma, *prev, *cur;
1520	int ret;
1521	struct uffdio_range uffdio_unregister;
1522	unsigned long new_flags;
1523	bool found;
1524	unsigned long start, end, vma_end;
1525	const void __user *buf = (void __user *)arg;
1526	struct vma_iterator vmi;
1527	bool wp_async = userfaultfd_wp_async_ctx(ctx);
1528
1529	ret = -EFAULT;
1530	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1531		goto out;
1532
1533	ret = validate_range(mm, uffdio_unregister.start,
1534			     uffdio_unregister.len);
1535	if (ret)
1536		goto out;
1537
1538	start = uffdio_unregister.start;
1539	end = start + uffdio_unregister.len;
1540
1541	ret = -ENOMEM;
1542	if (!mmget_not_zero(mm))
1543		goto out;
1544
1545	mmap_write_lock(mm);
1546	ret = -EINVAL;
1547	vma_iter_init(&vmi, mm, start);
1548	vma = vma_find(&vmi, end);
1549	if (!vma)
1550		goto out_unlock;
1551
1552	/*
1553	 * If the first vma contains huge pages, make sure start address
1554	 * is aligned to huge page size.
1555	 */
1556	if (is_vm_hugetlb_page(vma)) {
1557		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1558
1559		if (start & (vma_hpagesize - 1))
1560			goto out_unlock;
1561	}
1562
1563	/*
1564	 * Search for not compatible vmas.
1565	 */
1566	found = false;
1567	cur = vma;
1568	do {
1569		cond_resched();
1570
1571		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1572		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1573
1574		/*
1575		 * Check not compatible vmas, not strictly required
1576		 * here as not compatible vmas cannot have an
1577		 * userfaultfd_ctx registered on them, but this
1578		 * provides for more strict behavior to notice
1579		 * unregistration errors.
1580		 */
1581		if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
1582			goto out_unlock;
1583
1584		found = true;
1585	} for_each_vma_range(vmi, cur, end);
1586	BUG_ON(!found);
1587
1588	vma_iter_set(&vmi, start);
1589	prev = vma_prev(&vmi);
1590	if (vma->vm_start < start)
1591		prev = vma;
1592
1593	ret = 0;
1594	for_each_vma_range(vmi, vma, end) {
1595		cond_resched();
1596
1597		BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async));
1598
1599		/*
1600		 * Nothing to do: this vma is already registered into this
1601		 * userfaultfd and with the right tracking mode too.
1602		 */
1603		if (!vma->vm_userfaultfd_ctx.ctx)
1604			goto skip;
1605
1606		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1607
1608		if (vma->vm_start > start)
1609			start = vma->vm_start;
1610		vma_end = min(end, vma->vm_end);
1611
1612		if (userfaultfd_missing(vma)) {
1613			/*
1614			 * Wake any concurrent pending userfault while
1615			 * we unregister, so they will not hang
1616			 * permanently and it avoids userland to call
1617			 * UFFDIO_WAKE explicitly.
1618			 */
1619			struct userfaultfd_wake_range range;
1620			range.start = start;
1621			range.len = vma_end - start;
1622			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1623		}
1624
1625		/* Reset ptes for the whole vma range if wr-protected */
1626		if (userfaultfd_wp(vma))
1627			uffd_wp_range(vma, start, vma_end - start, false);
1628
1629		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1630		vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1631					    new_flags, NULL_VM_UFFD_CTX);
1632		if (IS_ERR(vma)) {
1633			ret = PTR_ERR(vma);
1634			break;
1635		}
1636
1637		/*
1638		 * In the vma_merge() successful mprotect-like case 8:
1639		 * the next vma was merged into the current one and
1640		 * the current one has not been updated yet.
1641		 */
1642		vma_start_write(vma);
1643		userfaultfd_set_vm_flags(vma, new_flags);
1644		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1645
1646	skip:
1647		prev = vma;
1648		start = vma->vm_end;
1649	}
1650
1651out_unlock:
1652	mmap_write_unlock(mm);
1653	mmput(mm);
1654out:
1655	return ret;
1656}
1657
1658/*
1659 * userfaultfd_wake may be used in combination with the
1660 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1661 */
1662static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1663			    unsigned long arg)
1664{
1665	int ret;
1666	struct uffdio_range uffdio_wake;
1667	struct userfaultfd_wake_range range;
1668	const void __user *buf = (void __user *)arg;
1669
1670	ret = -EFAULT;
1671	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1672		goto out;
1673
1674	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1675	if (ret)
1676		goto out;
1677
1678	range.start = uffdio_wake.start;
1679	range.len = uffdio_wake.len;
1680
1681	/*
1682	 * len == 0 means wake all and we don't want to wake all here,
1683	 * so check it again to be sure.
1684	 */
1685	VM_BUG_ON(!range.len);
1686
1687	wake_userfault(ctx, &range);
1688	ret = 0;
1689
1690out:
1691	return ret;
1692}
1693
1694static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1695			    unsigned long arg)
1696{
1697	__s64 ret;
1698	struct uffdio_copy uffdio_copy;
1699	struct uffdio_copy __user *user_uffdio_copy;
1700	struct userfaultfd_wake_range range;
1701	uffd_flags_t flags = 0;
1702
1703	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1704
1705	ret = -EAGAIN;
1706	if (atomic_read(&ctx->mmap_changing))
1707		goto out;
1708
1709	ret = -EFAULT;
1710	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1711			   /* don't copy "copy" last field */
1712			   sizeof(uffdio_copy)-sizeof(__s64)))
1713		goto out;
1714
1715	ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1716				       uffdio_copy.len);
1717	if (ret)
1718		goto out;
1719	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1720	if (ret)
1721		goto out;
1722
1723	ret = -EINVAL;
1724	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1725		goto out;
1726	if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1727		flags |= MFILL_ATOMIC_WP;
1728	if (mmget_not_zero(ctx->mm)) {
1729		ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src,
1730					uffdio_copy.len, flags);
1731		mmput(ctx->mm);
1732	} else {
1733		return -ESRCH;
1734	}
1735	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1736		return -EFAULT;
1737	if (ret < 0)
1738		goto out;
1739	BUG_ON(!ret);
1740	/* len == 0 would wake all */
1741	range.len = ret;
1742	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1743		range.start = uffdio_copy.dst;
1744		wake_userfault(ctx, &range);
1745	}
1746	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1747out:
1748	return ret;
1749}
1750
1751static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1752				unsigned long arg)
1753{
1754	__s64 ret;
1755	struct uffdio_zeropage uffdio_zeropage;
1756	struct uffdio_zeropage __user *user_uffdio_zeropage;
1757	struct userfaultfd_wake_range range;
1758
1759	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1760
1761	ret = -EAGAIN;
1762	if (atomic_read(&ctx->mmap_changing))
1763		goto out;
1764
1765	ret = -EFAULT;
1766	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1767			   /* don't copy "zeropage" last field */
1768			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1769		goto out;
1770
1771	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1772			     uffdio_zeropage.range.len);
1773	if (ret)
1774		goto out;
1775	ret = -EINVAL;
1776	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1777		goto out;
1778
1779	if (mmget_not_zero(ctx->mm)) {
1780		ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start,
1781					   uffdio_zeropage.range.len);
1782		mmput(ctx->mm);
1783	} else {
1784		return -ESRCH;
1785	}
1786	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1787		return -EFAULT;
1788	if (ret < 0)
1789		goto out;
1790	/* len == 0 would wake all */
1791	BUG_ON(!ret);
1792	range.len = ret;
1793	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1794		range.start = uffdio_zeropage.range.start;
1795		wake_userfault(ctx, &range);
1796	}
1797	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1798out:
1799	return ret;
1800}
1801
1802static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1803				    unsigned long arg)
1804{
1805	int ret;
1806	struct uffdio_writeprotect uffdio_wp;
1807	struct uffdio_writeprotect __user *user_uffdio_wp;
1808	struct userfaultfd_wake_range range;
1809	bool mode_wp, mode_dontwake;
1810
1811	if (atomic_read(&ctx->mmap_changing))
1812		return -EAGAIN;
1813
1814	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1815
1816	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1817			   sizeof(struct uffdio_writeprotect)))
1818		return -EFAULT;
1819
1820	ret = validate_range(ctx->mm, uffdio_wp.range.start,
1821			     uffdio_wp.range.len);
1822	if (ret)
1823		return ret;
1824
1825	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1826			       UFFDIO_WRITEPROTECT_MODE_WP))
1827		return -EINVAL;
1828
1829	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1830	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1831
1832	if (mode_wp && mode_dontwake)
1833		return -EINVAL;
1834
1835	if (mmget_not_zero(ctx->mm)) {
1836		ret = mwriteprotect_range(ctx, uffdio_wp.range.start,
1837					  uffdio_wp.range.len, mode_wp);
1838		mmput(ctx->mm);
1839	} else {
1840		return -ESRCH;
1841	}
1842
1843	if (ret)
1844		return ret;
1845
1846	if (!mode_wp && !mode_dontwake) {
1847		range.start = uffdio_wp.range.start;
1848		range.len = uffdio_wp.range.len;
1849		wake_userfault(ctx, &range);
1850	}
1851	return ret;
1852}
1853
1854static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1855{
1856	__s64 ret;
1857	struct uffdio_continue uffdio_continue;
1858	struct uffdio_continue __user *user_uffdio_continue;
1859	struct userfaultfd_wake_range range;
1860	uffd_flags_t flags = 0;
1861
1862	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1863
1864	ret = -EAGAIN;
1865	if (atomic_read(&ctx->mmap_changing))
1866		goto out;
1867
1868	ret = -EFAULT;
1869	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1870			   /* don't copy the output fields */
1871			   sizeof(uffdio_continue) - (sizeof(__s64))))
1872		goto out;
1873
1874	ret = validate_range(ctx->mm, uffdio_continue.range.start,
1875			     uffdio_continue.range.len);
1876	if (ret)
1877		goto out;
1878
1879	ret = -EINVAL;
1880	if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1881				     UFFDIO_CONTINUE_MODE_WP))
1882		goto out;
1883	if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1884		flags |= MFILL_ATOMIC_WP;
1885
1886	if (mmget_not_zero(ctx->mm)) {
1887		ret = mfill_atomic_continue(ctx, uffdio_continue.range.start,
1888					    uffdio_continue.range.len, flags);
1889		mmput(ctx->mm);
1890	} else {
1891		return -ESRCH;
1892	}
1893
1894	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1895		return -EFAULT;
1896	if (ret < 0)
1897		goto out;
1898
1899	/* len == 0 would wake all */
1900	BUG_ON(!ret);
1901	range.len = ret;
1902	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1903		range.start = uffdio_continue.range.start;
1904		wake_userfault(ctx, &range);
1905	}
1906	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1907
1908out:
1909	return ret;
1910}
1911
1912static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1913{
1914	__s64 ret;
1915	struct uffdio_poison uffdio_poison;
1916	struct uffdio_poison __user *user_uffdio_poison;
1917	struct userfaultfd_wake_range range;
1918
1919	user_uffdio_poison = (struct uffdio_poison __user *)arg;
1920
1921	ret = -EAGAIN;
1922	if (atomic_read(&ctx->mmap_changing))
1923		goto out;
1924
1925	ret = -EFAULT;
1926	if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1927			   /* don't copy the output fields */
1928			   sizeof(uffdio_poison) - (sizeof(__s64))))
1929		goto out;
1930
1931	ret = validate_range(ctx->mm, uffdio_poison.range.start,
1932			     uffdio_poison.range.len);
1933	if (ret)
1934		goto out;
1935
1936	ret = -EINVAL;
1937	if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1938		goto out;
1939
1940	if (mmget_not_zero(ctx->mm)) {
1941		ret = mfill_atomic_poison(ctx, uffdio_poison.range.start,
1942					  uffdio_poison.range.len, 0);
1943		mmput(ctx->mm);
1944	} else {
1945		return -ESRCH;
1946	}
1947
1948	if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1949		return -EFAULT;
1950	if (ret < 0)
1951		goto out;
1952
1953	/* len == 0 would wake all */
1954	BUG_ON(!ret);
1955	range.len = ret;
1956	if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1957		range.start = uffdio_poison.range.start;
1958		wake_userfault(ctx, &range);
1959	}
1960	ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1961
1962out:
1963	return ret;
1964}
1965
1966bool userfaultfd_wp_async(struct vm_area_struct *vma)
1967{
1968	return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1969}
1970
1971static inline unsigned int uffd_ctx_features(__u64 user_features)
1972{
1973	/*
1974	 * For the current set of features the bits just coincide. Set
1975	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1976	 */
1977	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1978}
1979
1980static int userfaultfd_move(struct userfaultfd_ctx *ctx,
1981			    unsigned long arg)
1982{
1983	__s64 ret;
1984	struct uffdio_move uffdio_move;
1985	struct uffdio_move __user *user_uffdio_move;
1986	struct userfaultfd_wake_range range;
1987	struct mm_struct *mm = ctx->mm;
1988
1989	user_uffdio_move = (struct uffdio_move __user *) arg;
1990
1991	if (atomic_read(&ctx->mmap_changing))
1992		return -EAGAIN;
1993
1994	if (copy_from_user(&uffdio_move, user_uffdio_move,
1995			   /* don't copy "move" last field */
1996			   sizeof(uffdio_move)-sizeof(__s64)))
1997		return -EFAULT;
1998
1999	/* Do not allow cross-mm moves. */
2000	if (mm != current->mm)
2001		return -EINVAL;
2002
2003	ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
2004	if (ret)
2005		return ret;
2006
2007	ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
2008	if (ret)
2009		return ret;
2010
2011	if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
2012				  UFFDIO_MOVE_MODE_DONTWAKE))
2013		return -EINVAL;
2014
2015	if (mmget_not_zero(mm)) {
2016		ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src,
2017				 uffdio_move.len, uffdio_move.mode);
2018		mmput(mm);
2019	} else {
2020		return -ESRCH;
2021	}
2022
2023	if (unlikely(put_user(ret, &user_uffdio_move->move)))
2024		return -EFAULT;
2025	if (ret < 0)
2026		goto out;
2027
2028	/* len == 0 would wake all */
2029	VM_WARN_ON(!ret);
2030	range.len = ret;
2031	if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
2032		range.start = uffdio_move.dst;
2033		wake_userfault(ctx, &range);
2034	}
2035	ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
2036
2037out:
2038	return ret;
2039}
2040
2041/*
2042 * userland asks for a certain API version and we return which bits
2043 * and ioctl commands are implemented in this kernel for such API
2044 * version or -EINVAL if unknown.
2045 */
2046static int userfaultfd_api(struct userfaultfd_ctx *ctx,
2047			   unsigned long arg)
2048{
2049	struct uffdio_api uffdio_api;
2050	void __user *buf = (void __user *)arg;
2051	unsigned int ctx_features;
2052	int ret;
2053	__u64 features;
2054
2055	ret = -EFAULT;
2056	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
2057		goto out;
2058	features = uffdio_api.features;
2059	ret = -EINVAL;
2060	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
2061		goto err_out;
2062	ret = -EPERM;
2063	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2064		goto err_out;
2065
2066	/* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
2067	if (features & UFFD_FEATURE_WP_ASYNC)
2068		features |= UFFD_FEATURE_WP_UNPOPULATED;
2069
2070	/* report all available features and ioctls to userland */
2071	uffdio_api.features = UFFD_API_FEATURES;
2072#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2073	uffdio_api.features &=
2074		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2075#endif
2076#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2077	uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2078#endif
2079#ifndef CONFIG_PTE_MARKER_UFFD_WP
2080	uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2081	uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2082	uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
2083#endif
2084	uffdio_api.ioctls = UFFD_API_IOCTLS;
2085	ret = -EFAULT;
2086	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2087		goto out;
2088
2089	/* only enable the requested features for this uffd context */
2090	ctx_features = uffd_ctx_features(features);
2091	ret = -EINVAL;
2092	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2093		goto err_out;
2094
2095	ret = 0;
2096out:
2097	return ret;
2098err_out:
2099	memset(&uffdio_api, 0, sizeof(uffdio_api));
2100	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2101		ret = -EFAULT;
2102	goto out;
2103}
2104
2105static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2106			      unsigned long arg)
2107{
2108	int ret = -EINVAL;
2109	struct userfaultfd_ctx *ctx = file->private_data;
2110
2111	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2112		return -EINVAL;
2113
2114	switch(cmd) {
2115	case UFFDIO_API:
2116		ret = userfaultfd_api(ctx, arg);
2117		break;
2118	case UFFDIO_REGISTER:
2119		ret = userfaultfd_register(ctx, arg);
2120		break;
2121	case UFFDIO_UNREGISTER:
2122		ret = userfaultfd_unregister(ctx, arg);
2123		break;
2124	case UFFDIO_WAKE:
2125		ret = userfaultfd_wake(ctx, arg);
2126		break;
2127	case UFFDIO_COPY:
2128		ret = userfaultfd_copy(ctx, arg);
2129		break;
2130	case UFFDIO_ZEROPAGE:
2131		ret = userfaultfd_zeropage(ctx, arg);
2132		break;
2133	case UFFDIO_MOVE:
2134		ret = userfaultfd_move(ctx, arg);
2135		break;
2136	case UFFDIO_WRITEPROTECT:
2137		ret = userfaultfd_writeprotect(ctx, arg);
2138		break;
2139	case UFFDIO_CONTINUE:
2140		ret = userfaultfd_continue(ctx, arg);
2141		break;
2142	case UFFDIO_POISON:
2143		ret = userfaultfd_poison(ctx, arg);
2144		break;
2145	}
2146	return ret;
2147}
2148
2149#ifdef CONFIG_PROC_FS
2150static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2151{
2152	struct userfaultfd_ctx *ctx = f->private_data;
2153	wait_queue_entry_t *wq;
2154	unsigned long pending = 0, total = 0;
2155
2156	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2157	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2158		pending++;
2159		total++;
2160	}
2161	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2162		total++;
2163	}
2164	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2165
2166	/*
2167	 * If more protocols will be added, there will be all shown
2168	 * separated by a space. Like this:
2169	 *	protocols: aa:... bb:...
2170	 */
2171	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2172		   pending, total, UFFD_API, ctx->features,
2173		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2174}
2175#endif
2176
2177static const struct file_operations userfaultfd_fops = {
2178#ifdef CONFIG_PROC_FS
2179	.show_fdinfo	= userfaultfd_show_fdinfo,
2180#endif
2181	.release	= userfaultfd_release,
2182	.poll		= userfaultfd_poll,
2183	.read_iter	= userfaultfd_read_iter,
2184	.unlocked_ioctl = userfaultfd_ioctl,
2185	.compat_ioctl	= compat_ptr_ioctl,
2186	.llseek		= noop_llseek,
2187};
2188
2189static void init_once_userfaultfd_ctx(void *mem)
2190{
2191	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2192
2193	init_waitqueue_head(&ctx->fault_pending_wqh);
2194	init_waitqueue_head(&ctx->fault_wqh);
2195	init_waitqueue_head(&ctx->event_wqh);
2196	init_waitqueue_head(&ctx->fd_wqh);
2197	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2198}
2199
2200static int new_userfaultfd(int flags)
2201{
2202	struct userfaultfd_ctx *ctx;
2203	struct file *file;
2204	int fd;
2205
2206	BUG_ON(!current->mm);
2207
2208	/* Check the UFFD_* constants for consistency.  */
2209	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2210	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2211	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2212
2213	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2214		return -EINVAL;
2215
2216	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2217	if (!ctx)
2218		return -ENOMEM;
2219
2220	refcount_set(&ctx->refcount, 1);
2221	ctx->flags = flags;
2222	ctx->features = 0;
2223	ctx->released = false;
2224	init_rwsem(&ctx->map_changing_lock);
2225	atomic_set(&ctx->mmap_changing, 0);
2226	ctx->mm = current->mm;
2227
2228	fd = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
2229	if (fd < 0)
2230		goto err_out;
2231
2232	/* Create a new inode so that the LSM can block the creation.  */
2233	file = anon_inode_create_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
2234			O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2235	if (IS_ERR(file)) {
2236		put_unused_fd(fd);
2237		fd = PTR_ERR(file);
2238		goto err_out;
2239	}
2240	/* prevent the mm struct to be freed */
2241	mmgrab(ctx->mm);
2242	file->f_mode |= FMODE_NOWAIT;
2243	fd_install(fd, file);
2244	return fd;
2245err_out:
2246	kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2247	return fd;
2248}
2249
2250static inline bool userfaultfd_syscall_allowed(int flags)
2251{
2252	/* Userspace-only page faults are always allowed */
2253	if (flags & UFFD_USER_MODE_ONLY)
2254		return true;
2255
2256	/*
2257	 * The user is requesting a userfaultfd which can handle kernel faults.
2258	 * Privileged users are always allowed to do this.
2259	 */
2260	if (capable(CAP_SYS_PTRACE))
2261		return true;
2262
2263	/* Otherwise, access to kernel fault handling is sysctl controlled. */
2264	return sysctl_unprivileged_userfaultfd;
2265}
2266
2267SYSCALL_DEFINE1(userfaultfd, int, flags)
2268{
2269	if (!userfaultfd_syscall_allowed(flags))
2270		return -EPERM;
2271
2272	return new_userfaultfd(flags);
2273}
2274
2275static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2276{
2277	if (cmd != USERFAULTFD_IOC_NEW)
2278		return -EINVAL;
2279
2280	return new_userfaultfd(flags);
2281}
2282
2283static const struct file_operations userfaultfd_dev_fops = {
2284	.unlocked_ioctl = userfaultfd_dev_ioctl,
2285	.compat_ioctl = userfaultfd_dev_ioctl,
2286	.owner = THIS_MODULE,
2287	.llseek = noop_llseek,
2288};
2289
2290static struct miscdevice userfaultfd_misc = {
2291	.minor = MISC_DYNAMIC_MINOR,
2292	.name = "userfaultfd",
2293	.fops = &userfaultfd_dev_fops
2294};
2295
2296static int __init userfaultfd_init(void)
2297{
2298	int ret;
2299
2300	ret = misc_register(&userfaultfd_misc);
2301	if (ret)
2302		return ret;
2303
2304	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2305						sizeof(struct userfaultfd_ctx),
2306						0,
2307						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2308						init_once_userfaultfd_ctx);
2309#ifdef CONFIG_SYSCTL
2310	register_sysctl_init("vm", vm_userfaultfd_table);
2311#endif
2312	return 0;
2313}
2314__initcall(userfaultfd_init);
2315