1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/fs/nfs/dir.c
4 *
5 *  Copyright (C) 1992  Rick Sladkey
6 *
7 *  nfs directory handling functions
8 *
9 * 10 Apr 1996	Added silly rename for unlink	--okir
10 * 28 Sep 1996	Improved directory cache --okir
11 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12 *              Re-implemented silly rename for unlink, newly implemented
13 *              silly rename for nfs_rename() following the suggestions
14 *              of Olaf Kirch (okir) found in this file.
15 *              Following Linus comments on my original hack, this version
16 *              depends only on the dcache stuff and doesn't touch the inode
17 *              layer (iput() and friends).
18 *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19 */
20
21#include <linux/compat.h>
22#include <linux/module.h>
23#include <linux/time.h>
24#include <linux/errno.h>
25#include <linux/stat.h>
26#include <linux/fcntl.h>
27#include <linux/string.h>
28#include <linux/kernel.h>
29#include <linux/slab.h>
30#include <linux/mm.h>
31#include <linux/sunrpc/clnt.h>
32#include <linux/nfs_fs.h>
33#include <linux/nfs_mount.h>
34#include <linux/pagemap.h>
35#include <linux/pagevec.h>
36#include <linux/namei.h>
37#include <linux/mount.h>
38#include <linux/swap.h>
39#include <linux/sched.h>
40#include <linux/kmemleak.h>
41#include <linux/xattr.h>
42#include <linux/hash.h>
43
44#include "delegation.h"
45#include "iostat.h"
46#include "internal.h"
47#include "fscache.h"
48
49#include "nfstrace.h"
50
51/* #define NFS_DEBUG_VERBOSE 1 */
52
53static int nfs_opendir(struct inode *, struct file *);
54static int nfs_closedir(struct inode *, struct file *);
55static int nfs_readdir(struct file *, struct dir_context *);
56static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58static void nfs_readdir_clear_array(struct folio *);
59static int nfs_do_create(struct inode *dir, struct dentry *dentry,
60			 umode_t mode, int open_flags);
61
62const struct file_operations nfs_dir_operations = {
63	.llseek		= nfs_llseek_dir,
64	.read		= generic_read_dir,
65	.iterate_shared	= nfs_readdir,
66	.open		= nfs_opendir,
67	.release	= nfs_closedir,
68	.fsync		= nfs_fsync_dir,
69};
70
71const struct address_space_operations nfs_dir_aops = {
72	.free_folio = nfs_readdir_clear_array,
73};
74
75#define NFS_INIT_DTSIZE PAGE_SIZE
76
77static struct nfs_open_dir_context *
78alloc_nfs_open_dir_context(struct inode *dir)
79{
80	struct nfs_inode *nfsi = NFS_I(dir);
81	struct nfs_open_dir_context *ctx;
82
83	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
84	if (ctx != NULL) {
85		ctx->attr_gencount = nfsi->attr_gencount;
86		ctx->dtsize = NFS_INIT_DTSIZE;
87		spin_lock(&dir->i_lock);
88		if (list_empty(&nfsi->open_files) &&
89		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
90			nfs_set_cache_invalid(dir,
91					      NFS_INO_INVALID_DATA |
92						      NFS_INO_REVAL_FORCED);
93		list_add_tail_rcu(&ctx->list, &nfsi->open_files);
94		memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
95		spin_unlock(&dir->i_lock);
96		return ctx;
97	}
98	return  ERR_PTR(-ENOMEM);
99}
100
101static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
102{
103	spin_lock(&dir->i_lock);
104	list_del_rcu(&ctx->list);
105	spin_unlock(&dir->i_lock);
106	kfree_rcu(ctx, rcu_head);
107}
108
109/*
110 * Open file
111 */
112static int
113nfs_opendir(struct inode *inode, struct file *filp)
114{
115	int res = 0;
116	struct nfs_open_dir_context *ctx;
117
118	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
119
120	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
121
122	ctx = alloc_nfs_open_dir_context(inode);
123	if (IS_ERR(ctx)) {
124		res = PTR_ERR(ctx);
125		goto out;
126	}
127	filp->private_data = ctx;
128out:
129	return res;
130}
131
132static int
133nfs_closedir(struct inode *inode, struct file *filp)
134{
135	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
136	return 0;
137}
138
139struct nfs_cache_array_entry {
140	u64 cookie;
141	u64 ino;
142	const char *name;
143	unsigned int name_len;
144	unsigned char d_type;
145};
146
147struct nfs_cache_array {
148	u64 change_attr;
149	u64 last_cookie;
150	unsigned int size;
151	unsigned char folio_full : 1,
152		      folio_is_eof : 1,
153		      cookies_are_ordered : 1;
154	struct nfs_cache_array_entry array[];
155};
156
157struct nfs_readdir_descriptor {
158	struct file	*file;
159	struct folio	*folio;
160	struct dir_context *ctx;
161	pgoff_t		folio_index;
162	pgoff_t		folio_index_max;
163	u64		dir_cookie;
164	u64		last_cookie;
165	loff_t		current_index;
166
167	__be32		verf[NFS_DIR_VERIFIER_SIZE];
168	unsigned long	dir_verifier;
169	unsigned long	timestamp;
170	unsigned long	gencount;
171	unsigned long	attr_gencount;
172	unsigned int	cache_entry_index;
173	unsigned int	buffer_fills;
174	unsigned int	dtsize;
175	bool clear_cache;
176	bool plus;
177	bool eob;
178	bool eof;
179};
180
181static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
182{
183	struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
184	unsigned int maxsize = server->dtsize;
185
186	if (sz > maxsize)
187		sz = maxsize;
188	if (sz < NFS_MIN_FILE_IO_SIZE)
189		sz = NFS_MIN_FILE_IO_SIZE;
190	desc->dtsize = sz;
191}
192
193static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
194{
195	nfs_set_dtsize(desc, desc->dtsize >> 1);
196}
197
198static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
199{
200	nfs_set_dtsize(desc, desc->dtsize << 1);
201}
202
203static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie,
204					 u64 change_attr)
205{
206	struct nfs_cache_array *array;
207
208	array = kmap_local_folio(folio, 0);
209	array->change_attr = change_attr;
210	array->last_cookie = last_cookie;
211	array->size = 0;
212	array->folio_full = 0;
213	array->folio_is_eof = 0;
214	array->cookies_are_ordered = 1;
215	kunmap_local(array);
216}
217
218/*
219 * we are freeing strings created by nfs_add_to_readdir_array()
220 */
221static void nfs_readdir_clear_array(struct folio *folio)
222{
223	struct nfs_cache_array *array;
224	unsigned int i;
225
226	array = kmap_local_folio(folio, 0);
227	for (i = 0; i < array->size; i++)
228		kfree(array->array[i].name);
229	array->size = 0;
230	kunmap_local(array);
231}
232
233static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie,
234					   u64 change_attr)
235{
236	nfs_readdir_clear_array(folio);
237	nfs_readdir_folio_init_array(folio, last_cookie, change_attr);
238}
239
240static struct folio *
241nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags)
242{
243	struct folio *folio = folio_alloc(gfp_flags, 0);
244	if (folio)
245		nfs_readdir_folio_init_array(folio, last_cookie, 0);
246	return folio;
247}
248
249static void nfs_readdir_folio_array_free(struct folio *folio)
250{
251	if (folio) {
252		nfs_readdir_clear_array(folio);
253		folio_put(folio);
254	}
255}
256
257static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
258{
259	return array->size == 0 ? array->last_cookie : array->array[0].cookie;
260}
261
262static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
263{
264	array->folio_is_eof = 1;
265	array->folio_full = 1;
266}
267
268static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
269{
270	return array->folio_full;
271}
272
273/*
274 * the caller is responsible for freeing qstr.name
275 * when called by nfs_readdir_add_to_array, the strings will be freed in
276 * nfs_clear_readdir_array()
277 */
278static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
279{
280	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
281
282	/*
283	 * Avoid a kmemleak false positive. The pointer to the name is stored
284	 * in a page cache page which kmemleak does not scan.
285	 */
286	if (ret != NULL)
287		kmemleak_not_leak(ret);
288	return ret;
289}
290
291static size_t nfs_readdir_array_maxentries(void)
292{
293	return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
294	       sizeof(struct nfs_cache_array_entry);
295}
296
297/*
298 * Check that the next array entry lies entirely within the page bounds
299 */
300static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
301{
302	if (array->folio_full)
303		return -ENOSPC;
304	if (array->size == nfs_readdir_array_maxentries()) {
305		array->folio_full = 1;
306		return -ENOSPC;
307	}
308	return 0;
309}
310
311static int nfs_readdir_folio_array_append(struct folio *folio,
312					  const struct nfs_entry *entry,
313					  u64 *cookie)
314{
315	struct nfs_cache_array *array;
316	struct nfs_cache_array_entry *cache_entry;
317	const char *name;
318	int ret = -ENOMEM;
319
320	name = nfs_readdir_copy_name(entry->name, entry->len);
321
322	array = kmap_local_folio(folio, 0);
323	if (!name)
324		goto out;
325	ret = nfs_readdir_array_can_expand(array);
326	if (ret) {
327		kfree(name);
328		goto out;
329	}
330
331	cache_entry = &array->array[array->size];
332	cache_entry->cookie = array->last_cookie;
333	cache_entry->ino = entry->ino;
334	cache_entry->d_type = entry->d_type;
335	cache_entry->name_len = entry->len;
336	cache_entry->name = name;
337	array->last_cookie = entry->cookie;
338	if (array->last_cookie <= cache_entry->cookie)
339		array->cookies_are_ordered = 0;
340	array->size++;
341	if (entry->eof != 0)
342		nfs_readdir_array_set_eof(array);
343out:
344	*cookie = array->last_cookie;
345	kunmap_local(array);
346	return ret;
347}
348
349#define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
350/*
351 * Hash algorithm allowing content addressible access to sequences
352 * of directory cookies. Content is addressed by the value of the
353 * cookie index of the first readdir entry in a page.
354 *
355 * We select only the first 18 bits to avoid issues with excessive
356 * memory use for the page cache XArray. 18 bits should allow the caching
357 * of 262144 pages of sequences of readdir entries. Since each page holds
358 * 127 readdir entries for a typical 64-bit system, that works out to a
359 * cache of ~ 33 million entries per directory.
360 */
361static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie)
362{
363	if (cookie == 0)
364		return 0;
365	return hash_64(cookie, 18);
366}
367
368static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie,
369				       u64 change_attr)
370{
371	struct nfs_cache_array *array = kmap_local_folio(folio, 0);
372	int ret = true;
373
374	if (array->change_attr != change_attr)
375		ret = false;
376	if (nfs_readdir_array_index_cookie(array) != last_cookie)
377		ret = false;
378	kunmap_local(array);
379	return ret;
380}
381
382static void nfs_readdir_folio_unlock_and_put(struct folio *folio)
383{
384	folio_unlock(folio);
385	folio_put(folio);
386}
387
388static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie,
389						u64 change_attr)
390{
391	if (folio_test_uptodate(folio)) {
392		if (nfs_readdir_folio_validate(folio, cookie, change_attr))
393			return;
394		nfs_readdir_clear_array(folio);
395	}
396	nfs_readdir_folio_init_array(folio, cookie, change_attr);
397	folio_mark_uptodate(folio);
398}
399
400static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping,
401						  u64 cookie, u64 change_attr)
402{
403	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
404	struct folio *folio;
405
406	folio = filemap_grab_folio(mapping, index);
407	if (IS_ERR(folio))
408		return NULL;
409	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
410	return folio;
411}
412
413static u64 nfs_readdir_folio_last_cookie(struct folio *folio)
414{
415	struct nfs_cache_array *array;
416	u64 ret;
417
418	array = kmap_local_folio(folio, 0);
419	ret = array->last_cookie;
420	kunmap_local(array);
421	return ret;
422}
423
424static bool nfs_readdir_folio_needs_filling(struct folio *folio)
425{
426	struct nfs_cache_array *array;
427	bool ret;
428
429	array = kmap_local_folio(folio, 0);
430	ret = !nfs_readdir_array_is_full(array);
431	kunmap_local(array);
432	return ret;
433}
434
435static void nfs_readdir_folio_set_eof(struct folio *folio)
436{
437	struct nfs_cache_array *array;
438
439	array = kmap_local_folio(folio, 0);
440	nfs_readdir_array_set_eof(array);
441	kunmap_local(array);
442}
443
444static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping,
445						u64 cookie, u64 change_attr)
446{
447	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
448	struct folio *folio;
449
450	folio = __filemap_get_folio(mapping, index,
451			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
452			mapping_gfp_mask(mapping));
453	if (IS_ERR(folio))
454		return NULL;
455	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
456	if (nfs_readdir_folio_last_cookie(folio) != cookie)
457		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
458	return folio;
459}
460
461static inline
462int is_32bit_api(void)
463{
464#ifdef CONFIG_COMPAT
465	return in_compat_syscall();
466#else
467	return (BITS_PER_LONG == 32);
468#endif
469}
470
471static
472bool nfs_readdir_use_cookie(const struct file *filp)
473{
474	if ((filp->f_mode & FMODE_32BITHASH) ||
475	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
476		return false;
477	return true;
478}
479
480static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
481					struct nfs_readdir_descriptor *desc)
482{
483	if (array->folio_full) {
484		desc->last_cookie = array->last_cookie;
485		desc->current_index += array->size;
486		desc->cache_entry_index = 0;
487		desc->folio_index++;
488	} else
489		desc->last_cookie = nfs_readdir_array_index_cookie(array);
490}
491
492static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
493{
494	desc->current_index = 0;
495	desc->last_cookie = 0;
496	desc->folio_index = 0;
497}
498
499static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
500				      struct nfs_readdir_descriptor *desc)
501{
502	loff_t diff = desc->ctx->pos - desc->current_index;
503	unsigned int index;
504
505	if (diff < 0)
506		goto out_eof;
507	if (diff >= array->size) {
508		if (array->folio_is_eof)
509			goto out_eof;
510		nfs_readdir_seek_next_array(array, desc);
511		return -EAGAIN;
512	}
513
514	index = (unsigned int)diff;
515	desc->dir_cookie = array->array[index].cookie;
516	desc->cache_entry_index = index;
517	return 0;
518out_eof:
519	desc->eof = true;
520	return -EBADCOOKIE;
521}
522
523static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
524					      u64 cookie)
525{
526	if (!array->cookies_are_ordered)
527		return true;
528	/* Optimisation for monotonically increasing cookies */
529	if (cookie >= array->last_cookie)
530		return false;
531	if (array->size && cookie < array->array[0].cookie)
532		return false;
533	return true;
534}
535
536static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
537					 struct nfs_readdir_descriptor *desc)
538{
539	unsigned int i;
540	int status = -EAGAIN;
541
542	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
543		goto check_eof;
544
545	for (i = 0; i < array->size; i++) {
546		if (array->array[i].cookie == desc->dir_cookie) {
547			if (nfs_readdir_use_cookie(desc->file))
548				desc->ctx->pos = desc->dir_cookie;
549			else
550				desc->ctx->pos = desc->current_index + i;
551			desc->cache_entry_index = i;
552			return 0;
553		}
554	}
555check_eof:
556	if (array->folio_is_eof) {
557		status = -EBADCOOKIE;
558		if (desc->dir_cookie == array->last_cookie)
559			desc->eof = true;
560	} else
561		nfs_readdir_seek_next_array(array, desc);
562	return status;
563}
564
565static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
566{
567	struct nfs_cache_array *array;
568	int status;
569
570	array = kmap_local_folio(desc->folio, 0);
571
572	if (desc->dir_cookie == 0)
573		status = nfs_readdir_search_for_pos(array, desc);
574	else
575		status = nfs_readdir_search_for_cookie(array, desc);
576
577	kunmap_local(array);
578	return status;
579}
580
581/* Fill a page with xdr information before transferring to the cache page */
582static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
583				  __be32 *verf, u64 cookie,
584				  struct page **pages, size_t bufsize,
585				  __be32 *verf_res)
586{
587	struct inode *inode = file_inode(desc->file);
588	struct nfs_readdir_arg arg = {
589		.dentry = file_dentry(desc->file),
590		.cred = desc->file->f_cred,
591		.verf = verf,
592		.cookie = cookie,
593		.pages = pages,
594		.page_len = bufsize,
595		.plus = desc->plus,
596	};
597	struct nfs_readdir_res res = {
598		.verf = verf_res,
599	};
600	unsigned long	timestamp, gencount;
601	int		error;
602
603 again:
604	timestamp = jiffies;
605	gencount = nfs_inc_attr_generation_counter();
606	desc->dir_verifier = nfs_save_change_attribute(inode);
607	error = NFS_PROTO(inode)->readdir(&arg, &res);
608	if (error < 0) {
609		/* We requested READDIRPLUS, but the server doesn't grok it */
610		if (error == -ENOTSUPP && desc->plus) {
611			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
612			desc->plus = arg.plus = false;
613			goto again;
614		}
615		goto error;
616	}
617	desc->timestamp = timestamp;
618	desc->gencount = gencount;
619error:
620	return error;
621}
622
623static int xdr_decode(struct nfs_readdir_descriptor *desc,
624		      struct nfs_entry *entry, struct xdr_stream *xdr)
625{
626	struct inode *inode = file_inode(desc->file);
627	int error;
628
629	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
630	if (error)
631		return error;
632	entry->fattr->time_start = desc->timestamp;
633	entry->fattr->gencount = desc->gencount;
634	return 0;
635}
636
637/* Match file and dirent using either filehandle or fileid
638 * Note: caller is responsible for checking the fsid
639 */
640static
641int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
642{
643	struct inode *inode;
644	struct nfs_inode *nfsi;
645
646	if (d_really_is_negative(dentry))
647		return 0;
648
649	inode = d_inode(dentry);
650	if (is_bad_inode(inode) || NFS_STALE(inode))
651		return 0;
652
653	nfsi = NFS_I(inode);
654	if (entry->fattr->fileid != nfsi->fileid)
655		return 0;
656	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
657		return 0;
658	return 1;
659}
660
661#define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
662
663static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
664				unsigned int cache_hits,
665				unsigned int cache_misses)
666{
667	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
668		return false;
669	if (ctx->pos == 0 ||
670	    cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
671		return true;
672	return false;
673}
674
675/*
676 * This function is called by the getattr code to request the
677 * use of readdirplus to accelerate any future lookups in the same
678 * directory.
679 */
680void nfs_readdir_record_entry_cache_hit(struct inode *dir)
681{
682	struct nfs_inode *nfsi = NFS_I(dir);
683	struct nfs_open_dir_context *ctx;
684
685	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
686	    S_ISDIR(dir->i_mode)) {
687		rcu_read_lock();
688		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
689			atomic_inc(&ctx->cache_hits);
690		rcu_read_unlock();
691	}
692}
693
694/*
695 * This function is mainly for use by nfs_getattr().
696 *
697 * If this is an 'ls -l', we want to force use of readdirplus.
698 */
699void nfs_readdir_record_entry_cache_miss(struct inode *dir)
700{
701	struct nfs_inode *nfsi = NFS_I(dir);
702	struct nfs_open_dir_context *ctx;
703
704	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
705	    S_ISDIR(dir->i_mode)) {
706		rcu_read_lock();
707		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
708			atomic_inc(&ctx->cache_misses);
709		rcu_read_unlock();
710	}
711}
712
713static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
714						unsigned int flags)
715{
716	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
717		return;
718	if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
719		return;
720	nfs_readdir_record_entry_cache_miss(dir);
721}
722
723static
724void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
725		unsigned long dir_verifier)
726{
727	struct qstr filename = QSTR_INIT(entry->name, entry->len);
728	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
729	struct dentry *dentry;
730	struct dentry *alias;
731	struct inode *inode;
732	int status;
733
734	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
735		return;
736	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
737		return;
738	if (filename.len == 0)
739		return;
740	/* Validate that the name doesn't contain any illegal '\0' */
741	if (strnlen(filename.name, filename.len) != filename.len)
742		return;
743	/* ...or '/' */
744	if (strnchr(filename.name, filename.len, '/'))
745		return;
746	if (filename.name[0] == '.') {
747		if (filename.len == 1)
748			return;
749		if (filename.len == 2 && filename.name[1] == '.')
750			return;
751	}
752	filename.hash = full_name_hash(parent, filename.name, filename.len);
753
754	dentry = d_lookup(parent, &filename);
755again:
756	if (!dentry) {
757		dentry = d_alloc_parallel(parent, &filename, &wq);
758		if (IS_ERR(dentry))
759			return;
760	}
761	if (!d_in_lookup(dentry)) {
762		/* Is there a mountpoint here? If so, just exit */
763		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
764					&entry->fattr->fsid))
765			goto out;
766		if (nfs_same_file(dentry, entry)) {
767			if (!entry->fh->size)
768				goto out;
769			nfs_set_verifier(dentry, dir_verifier);
770			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
771			if (!status)
772				nfs_setsecurity(d_inode(dentry), entry->fattr);
773			trace_nfs_readdir_lookup_revalidate(d_inode(parent),
774							    dentry, 0, status);
775			goto out;
776		} else {
777			trace_nfs_readdir_lookup_revalidate_failed(
778				d_inode(parent), dentry, 0);
779			d_invalidate(dentry);
780			dput(dentry);
781			dentry = NULL;
782			goto again;
783		}
784	}
785	if (!entry->fh->size) {
786		d_lookup_done(dentry);
787		goto out;
788	}
789
790	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
791	alias = d_splice_alias(inode, dentry);
792	d_lookup_done(dentry);
793	if (alias) {
794		if (IS_ERR(alias))
795			goto out;
796		dput(dentry);
797		dentry = alias;
798	}
799	nfs_set_verifier(dentry, dir_verifier);
800	trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
801out:
802	dput(dentry);
803}
804
805static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
806				    struct nfs_entry *entry,
807				    struct xdr_stream *stream)
808{
809	int ret;
810
811	if (entry->fattr->label)
812		entry->fattr->label->len = NFS4_MAXLABELLEN;
813	ret = xdr_decode(desc, entry, stream);
814	if (ret || !desc->plus)
815		return ret;
816	nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
817	return 0;
818}
819
820/* Perform conversion from xdr to cache array */
821static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
822				    struct nfs_entry *entry,
823				    struct page **xdr_pages, unsigned int buflen,
824				    struct folio **arrays, size_t narrays,
825				    u64 change_attr)
826{
827	struct address_space *mapping = desc->file->f_mapping;
828	struct folio *new, *folio = *arrays;
829	struct xdr_stream stream;
830	struct page *scratch;
831	struct xdr_buf buf;
832	u64 cookie;
833	int status;
834
835	scratch = alloc_page(GFP_KERNEL);
836	if (scratch == NULL)
837		return -ENOMEM;
838
839	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
840	xdr_set_scratch_page(&stream, scratch);
841
842	do {
843		status = nfs_readdir_entry_decode(desc, entry, &stream);
844		if (status != 0)
845			break;
846
847		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
848		if (status != -ENOSPC)
849			continue;
850
851		if (folio->mapping != mapping) {
852			if (!--narrays)
853				break;
854			new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL);
855			if (!new)
856				break;
857			arrays++;
858			*arrays = folio = new;
859		} else {
860			new = nfs_readdir_folio_get_next(mapping, cookie,
861							 change_attr);
862			if (!new)
863				break;
864			if (folio != *arrays)
865				nfs_readdir_folio_unlock_and_put(folio);
866			folio = new;
867		}
868		desc->folio_index_max++;
869		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
870	} while (!status && !entry->eof);
871
872	switch (status) {
873	case -EBADCOOKIE:
874		if (!entry->eof)
875			break;
876		nfs_readdir_folio_set_eof(folio);
877		fallthrough;
878	case -EAGAIN:
879		status = 0;
880		break;
881	case -ENOSPC:
882		status = 0;
883		if (!desc->plus)
884			break;
885		while (!nfs_readdir_entry_decode(desc, entry, &stream))
886			;
887	}
888
889	if (folio != *arrays)
890		nfs_readdir_folio_unlock_and_put(folio);
891
892	put_page(scratch);
893	return status;
894}
895
896static void nfs_readdir_free_pages(struct page **pages, size_t npages)
897{
898	while (npages--)
899		put_page(pages[npages]);
900	kfree(pages);
901}
902
903/*
904 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
905 * to nfs_readdir_free_pages()
906 */
907static struct page **nfs_readdir_alloc_pages(size_t npages)
908{
909	struct page **pages;
910	size_t i;
911
912	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
913	if (!pages)
914		return NULL;
915	for (i = 0; i < npages; i++) {
916		struct page *page = alloc_page(GFP_KERNEL);
917		if (page == NULL)
918			goto out_freepages;
919		pages[i] = page;
920	}
921	return pages;
922
923out_freepages:
924	nfs_readdir_free_pages(pages, i);
925	return NULL;
926}
927
928static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
929				    __be32 *verf_arg, __be32 *verf_res,
930				    struct folio **arrays, size_t narrays)
931{
932	u64 change_attr;
933	struct page **pages;
934	struct folio *folio = *arrays;
935	struct nfs_entry *entry;
936	size_t array_size;
937	struct inode *inode = file_inode(desc->file);
938	unsigned int dtsize = desc->dtsize;
939	unsigned int pglen;
940	int status = -ENOMEM;
941
942	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
943	if (!entry)
944		return -ENOMEM;
945	entry->cookie = nfs_readdir_folio_last_cookie(folio);
946	entry->fh = nfs_alloc_fhandle();
947	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
948	entry->server = NFS_SERVER(inode);
949	if (entry->fh == NULL || entry->fattr == NULL)
950		goto out;
951
952	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
953	pages = nfs_readdir_alloc_pages(array_size);
954	if (!pages)
955		goto out;
956
957	change_attr = inode_peek_iversion_raw(inode);
958	status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
959					dtsize, verf_res);
960	if (status < 0)
961		goto free_pages;
962
963	pglen = status;
964	if (pglen != 0)
965		status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
966						  arrays, narrays, change_attr);
967	else
968		nfs_readdir_folio_set_eof(folio);
969	desc->buffer_fills++;
970
971free_pages:
972	nfs_readdir_free_pages(pages, array_size);
973out:
974	nfs_free_fattr(entry->fattr);
975	nfs_free_fhandle(entry->fh);
976	kfree(entry);
977	return status;
978}
979
980static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
981{
982	folio_put(desc->folio);
983	desc->folio = NULL;
984}
985
986static void
987nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
988{
989	folio_unlock(desc->folio);
990	nfs_readdir_folio_put(desc);
991}
992
993static struct folio *
994nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
995{
996	struct address_space *mapping = desc->file->f_mapping;
997	u64 change_attr = inode_peek_iversion_raw(mapping->host);
998	u64 cookie = desc->last_cookie;
999	struct folio *folio;
1000
1001	folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr);
1002	if (!folio)
1003		return NULL;
1004	if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio))
1005		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
1006	return folio;
1007}
1008
1009/*
1010 * Returns 0 if desc->dir_cookie was found on page desc->page_index
1011 * and locks the page to prevent removal from the page cache.
1012 */
1013static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1014{
1015	struct inode *inode = file_inode(desc->file);
1016	struct nfs_inode *nfsi = NFS_I(inode);
1017	__be32 verf[NFS_DIR_VERIFIER_SIZE];
1018	int res;
1019
1020	desc->folio = nfs_readdir_folio_get_cached(desc);
1021	if (!desc->folio)
1022		return -ENOMEM;
1023	if (nfs_readdir_folio_needs_filling(desc->folio)) {
1024		/* Grow the dtsize if we had to go back for more pages */
1025		if (desc->folio_index == desc->folio_index_max)
1026			nfs_grow_dtsize(desc);
1027		desc->folio_index_max = desc->folio_index;
1028		trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1029					     desc->last_cookie,
1030					     desc->folio->index, desc->dtsize);
1031		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1032					       &desc->folio, 1);
1033		if (res < 0) {
1034			nfs_readdir_folio_unlock_and_put_cached(desc);
1035			trace_nfs_readdir_cache_fill_done(inode, res);
1036			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1037				invalidate_inode_pages2(desc->file->f_mapping);
1038				nfs_readdir_rewind_search(desc);
1039				trace_nfs_readdir_invalidate_cache_range(
1040					inode, 0, MAX_LFS_FILESIZE);
1041				return -EAGAIN;
1042			}
1043			return res;
1044		}
1045		/*
1046		 * Set the cookie verifier if the page cache was empty
1047		 */
1048		if (desc->last_cookie == 0 &&
1049		    memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1050			memcpy(nfsi->cookieverf, verf,
1051			       sizeof(nfsi->cookieverf));
1052			invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1053						      -1);
1054			trace_nfs_readdir_invalidate_cache_range(
1055				inode, 1, MAX_LFS_FILESIZE);
1056		}
1057		desc->clear_cache = false;
1058	}
1059	res = nfs_readdir_search_array(desc);
1060	if (res == 0)
1061		return 0;
1062	nfs_readdir_folio_unlock_and_put_cached(desc);
1063	return res;
1064}
1065
1066/* Search for desc->dir_cookie from the beginning of the page cache */
1067static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1068{
1069	int res;
1070
1071	do {
1072		res = find_and_lock_cache_page(desc);
1073	} while (res == -EAGAIN);
1074	return res;
1075}
1076
1077#define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1078
1079/*
1080 * Once we've found the start of the dirent within a page: fill 'er up...
1081 */
1082static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1083			   const __be32 *verf)
1084{
1085	struct file	*file = desc->file;
1086	struct nfs_cache_array *array;
1087	unsigned int i;
1088	bool first_emit = !desc->dir_cookie;
1089
1090	array = kmap_local_folio(desc->folio, 0);
1091	for (i = desc->cache_entry_index; i < array->size; i++) {
1092		struct nfs_cache_array_entry *ent;
1093
1094		/*
1095		 * nfs_readdir_handle_cache_misses return force clear at
1096		 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for
1097		 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1
1098		 * entries need be emitted here.
1099		 */
1100		if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) {
1101			desc->eob = true;
1102			break;
1103		}
1104
1105		ent = &array->array[i];
1106		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1107		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1108			desc->eob = true;
1109			break;
1110		}
1111		memcpy(desc->verf, verf, sizeof(desc->verf));
1112		if (i == array->size - 1) {
1113			desc->dir_cookie = array->last_cookie;
1114			nfs_readdir_seek_next_array(array, desc);
1115		} else {
1116			desc->dir_cookie = array->array[i + 1].cookie;
1117			desc->last_cookie = array->array[0].cookie;
1118		}
1119		if (nfs_readdir_use_cookie(file))
1120			desc->ctx->pos = desc->dir_cookie;
1121		else
1122			desc->ctx->pos++;
1123	}
1124	if (array->folio_is_eof)
1125		desc->eof = !desc->eob;
1126
1127	kunmap_local(array);
1128	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1129			(unsigned long long)desc->dir_cookie);
1130}
1131
1132/*
1133 * If we cannot find a cookie in our cache, we suspect that this is
1134 * because it points to a deleted file, so we ask the server to return
1135 * whatever it thinks is the next entry. We then feed this to filldir.
1136 * If all goes well, we should then be able to find our way round the
1137 * cache on the next call to readdir_search_pagecache();
1138 *
1139 * NOTE: we cannot add the anonymous page to the pagecache because
1140 *	 the data it contains might not be page aligned. Besides,
1141 *	 we should already have a complete representation of the
1142 *	 directory in the page cache by the time we get here.
1143 */
1144static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1145{
1146	struct folio	**arrays;
1147	size_t		i, sz = 512;
1148	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1149	int		status = -ENOMEM;
1150
1151	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1152			(unsigned long long)desc->dir_cookie);
1153
1154	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1155	if (!arrays)
1156		goto out;
1157	arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL);
1158	if (!arrays[0])
1159		goto out;
1160
1161	desc->folio_index = 0;
1162	desc->cache_entry_index = 0;
1163	desc->last_cookie = desc->dir_cookie;
1164	desc->folio_index_max = 0;
1165
1166	trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1167				   -1, desc->dtsize);
1168
1169	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1170	if (status < 0) {
1171		trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1172		goto out_free;
1173	}
1174
1175	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1176		desc->folio = arrays[i];
1177		nfs_do_filldir(desc, verf);
1178	}
1179	desc->folio = NULL;
1180
1181	/*
1182	 * Grow the dtsize if we have to go back for more pages,
1183	 * or shrink it if we're reading too many.
1184	 */
1185	if (!desc->eof) {
1186		if (!desc->eob)
1187			nfs_grow_dtsize(desc);
1188		else if (desc->buffer_fills == 1 &&
1189			 i < (desc->folio_index_max >> 1))
1190			nfs_shrink_dtsize(desc);
1191	}
1192out_free:
1193	for (i = 0; i < sz && arrays[i]; i++)
1194		nfs_readdir_folio_array_free(arrays[i]);
1195out:
1196	if (!nfs_readdir_use_cookie(desc->file))
1197		nfs_readdir_rewind_search(desc);
1198	desc->folio_index_max = -1;
1199	kfree(arrays);
1200	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1201	return status;
1202}
1203
1204static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1205					    struct nfs_readdir_descriptor *desc,
1206					    unsigned int cache_misses,
1207					    bool force_clear)
1208{
1209	if (desc->ctx->pos == 0 || !desc->plus)
1210		return false;
1211	if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1212		return false;
1213	trace_nfs_readdir_force_readdirplus(inode);
1214	return true;
1215}
1216
1217/* The file offset position represents the dirent entry number.  A
1218   last cookie cache takes care of the common case of reading the
1219   whole directory.
1220 */
1221static int nfs_readdir(struct file *file, struct dir_context *ctx)
1222{
1223	struct dentry	*dentry = file_dentry(file);
1224	struct inode	*inode = d_inode(dentry);
1225	struct nfs_inode *nfsi = NFS_I(inode);
1226	struct nfs_open_dir_context *dir_ctx = file->private_data;
1227	struct nfs_readdir_descriptor *desc;
1228	unsigned int cache_hits, cache_misses;
1229	bool force_clear;
1230	int res;
1231
1232	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1233			file, (long long)ctx->pos);
1234	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1235
1236	/*
1237	 * ctx->pos points to the dirent entry number.
1238	 * *desc->dir_cookie has the cookie for the next entry. We have
1239	 * to either find the entry with the appropriate number or
1240	 * revalidate the cookie.
1241	 */
1242	nfs_revalidate_mapping(inode, file->f_mapping);
1243
1244	res = -ENOMEM;
1245	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1246	if (!desc)
1247		goto out;
1248	desc->file = file;
1249	desc->ctx = ctx;
1250	desc->folio_index_max = -1;
1251
1252	spin_lock(&file->f_lock);
1253	desc->dir_cookie = dir_ctx->dir_cookie;
1254	desc->folio_index = dir_ctx->page_index;
1255	desc->last_cookie = dir_ctx->last_cookie;
1256	desc->attr_gencount = dir_ctx->attr_gencount;
1257	desc->eof = dir_ctx->eof;
1258	nfs_set_dtsize(desc, dir_ctx->dtsize);
1259	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1260	cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1261	cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1262	force_clear = dir_ctx->force_clear;
1263	spin_unlock(&file->f_lock);
1264
1265	if (desc->eof) {
1266		res = 0;
1267		goto out_free;
1268	}
1269
1270	desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1271	force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1272						      force_clear);
1273	desc->clear_cache = force_clear;
1274
1275	do {
1276		res = readdir_search_pagecache(desc);
1277
1278		if (res == -EBADCOOKIE) {
1279			res = 0;
1280			/* This means either end of directory */
1281			if (desc->dir_cookie && !desc->eof) {
1282				/* Or that the server has 'lost' a cookie */
1283				res = uncached_readdir(desc);
1284				if (res == 0)
1285					continue;
1286				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1287					res = 0;
1288			}
1289			break;
1290		}
1291		if (res == -ETOOSMALL && desc->plus) {
1292			nfs_zap_caches(inode);
1293			desc->plus = false;
1294			desc->eof = false;
1295			continue;
1296		}
1297		if (res < 0)
1298			break;
1299
1300		nfs_do_filldir(desc, nfsi->cookieverf);
1301		nfs_readdir_folio_unlock_and_put_cached(desc);
1302		if (desc->folio_index == desc->folio_index_max)
1303			desc->clear_cache = force_clear;
1304	} while (!desc->eob && !desc->eof);
1305
1306	spin_lock(&file->f_lock);
1307	dir_ctx->dir_cookie = desc->dir_cookie;
1308	dir_ctx->last_cookie = desc->last_cookie;
1309	dir_ctx->attr_gencount = desc->attr_gencount;
1310	dir_ctx->page_index = desc->folio_index;
1311	dir_ctx->force_clear = force_clear;
1312	dir_ctx->eof = desc->eof;
1313	dir_ctx->dtsize = desc->dtsize;
1314	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1315	spin_unlock(&file->f_lock);
1316out_free:
1317	kfree(desc);
1318
1319out:
1320	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1321	return res;
1322}
1323
1324static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1325{
1326	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1327
1328	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1329			filp, offset, whence);
1330
1331	switch (whence) {
1332	default:
1333		return -EINVAL;
1334	case SEEK_SET:
1335		if (offset < 0)
1336			return -EINVAL;
1337		spin_lock(&filp->f_lock);
1338		break;
1339	case SEEK_CUR:
1340		if (offset == 0)
1341			return filp->f_pos;
1342		spin_lock(&filp->f_lock);
1343		offset += filp->f_pos;
1344		if (offset < 0) {
1345			spin_unlock(&filp->f_lock);
1346			return -EINVAL;
1347		}
1348	}
1349	if (offset != filp->f_pos) {
1350		filp->f_pos = offset;
1351		dir_ctx->page_index = 0;
1352		if (!nfs_readdir_use_cookie(filp)) {
1353			dir_ctx->dir_cookie = 0;
1354			dir_ctx->last_cookie = 0;
1355		} else {
1356			dir_ctx->dir_cookie = offset;
1357			dir_ctx->last_cookie = offset;
1358		}
1359		dir_ctx->eof = false;
1360	}
1361	spin_unlock(&filp->f_lock);
1362	return offset;
1363}
1364
1365/*
1366 * All directory operations under NFS are synchronous, so fsync()
1367 * is a dummy operation.
1368 */
1369static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1370			 int datasync)
1371{
1372	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1373
1374	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1375	return 0;
1376}
1377
1378/**
1379 * nfs_force_lookup_revalidate - Mark the directory as having changed
1380 * @dir: pointer to directory inode
1381 *
1382 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1383 * full lookup on all child dentries of 'dir' whenever a change occurs
1384 * on the server that might have invalidated our dcache.
1385 *
1386 * Note that we reserve bit '0' as a tag to let us know when a dentry
1387 * was revalidated while holding a delegation on its inode.
1388 *
1389 * The caller should be holding dir->i_lock
1390 */
1391void nfs_force_lookup_revalidate(struct inode *dir)
1392{
1393	NFS_I(dir)->cache_change_attribute += 2;
1394}
1395EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1396
1397/**
1398 * nfs_verify_change_attribute - Detects NFS remote directory changes
1399 * @dir: pointer to parent directory inode
1400 * @verf: previously saved change attribute
1401 *
1402 * Return "false" if the verifiers doesn't match the change attribute.
1403 * This would usually indicate that the directory contents have changed on
1404 * the server, and that any dentries need revalidating.
1405 */
1406static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1407{
1408	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1409}
1410
1411static void nfs_set_verifier_delegated(unsigned long *verf)
1412{
1413	*verf |= 1UL;
1414}
1415
1416#if IS_ENABLED(CONFIG_NFS_V4)
1417static void nfs_unset_verifier_delegated(unsigned long *verf)
1418{
1419	*verf &= ~1UL;
1420}
1421#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1422
1423static bool nfs_test_verifier_delegated(unsigned long verf)
1424{
1425	return verf & 1;
1426}
1427
1428static bool nfs_verifier_is_delegated(struct dentry *dentry)
1429{
1430	return nfs_test_verifier_delegated(dentry->d_time);
1431}
1432
1433static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1434{
1435	struct inode *inode = d_inode(dentry);
1436	struct inode *dir = d_inode_rcu(dentry->d_parent);
1437
1438	if (!dir || !nfs_verify_change_attribute(dir, verf))
1439		return;
1440	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1441		nfs_set_verifier_delegated(&verf);
1442	dentry->d_time = verf;
1443}
1444
1445/**
1446 * nfs_set_verifier - save a parent directory verifier in the dentry
1447 * @dentry: pointer to dentry
1448 * @verf: verifier to save
1449 *
1450 * Saves the parent directory verifier in @dentry. If the inode has
1451 * a delegation, we also tag the dentry as having been revalidated
1452 * while holding a delegation so that we know we don't have to
1453 * look it up again after a directory change.
1454 */
1455void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1456{
1457
1458	spin_lock(&dentry->d_lock);
1459	nfs_set_verifier_locked(dentry, verf);
1460	spin_unlock(&dentry->d_lock);
1461}
1462EXPORT_SYMBOL_GPL(nfs_set_verifier);
1463
1464#if IS_ENABLED(CONFIG_NFS_V4)
1465/**
1466 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1467 * @inode: pointer to inode
1468 *
1469 * Iterates through the dentries in the inode alias list and clears
1470 * the tag used to indicate that the dentry has been revalidated
1471 * while holding a delegation.
1472 * This function is intended for use when the delegation is being
1473 * returned or revoked.
1474 */
1475void nfs_clear_verifier_delegated(struct inode *inode)
1476{
1477	struct dentry *alias;
1478
1479	if (!inode)
1480		return;
1481	spin_lock(&inode->i_lock);
1482	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1483		spin_lock(&alias->d_lock);
1484		nfs_unset_verifier_delegated(&alias->d_time);
1485		spin_unlock(&alias->d_lock);
1486	}
1487	spin_unlock(&inode->i_lock);
1488}
1489EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1490#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1491
1492static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1493{
1494	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1495	    d_really_is_negative(dentry))
1496		return dentry->d_time == inode_peek_iversion_raw(dir);
1497	return nfs_verify_change_attribute(dir, dentry->d_time);
1498}
1499
1500/*
1501 * A check for whether or not the parent directory has changed.
1502 * In the case it has, we assume that the dentries are untrustworthy
1503 * and may need to be looked up again.
1504 * If rcu_walk prevents us from performing a full check, return 0.
1505 */
1506static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1507			      int rcu_walk)
1508{
1509	if (IS_ROOT(dentry))
1510		return 1;
1511	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1512		return 0;
1513	if (!nfs_dentry_verify_change(dir, dentry))
1514		return 0;
1515	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1516	if (nfs_mapping_need_revalidate_inode(dir)) {
1517		if (rcu_walk)
1518			return 0;
1519		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1520			return 0;
1521	}
1522	if (!nfs_dentry_verify_change(dir, dentry))
1523		return 0;
1524	return 1;
1525}
1526
1527/*
1528 * Use intent information to check whether or not we're going to do
1529 * an O_EXCL create using this path component.
1530 */
1531static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1532{
1533	if (NFS_PROTO(dir)->version == 2)
1534		return 0;
1535	return flags & LOOKUP_EXCL;
1536}
1537
1538/*
1539 * Inode and filehandle revalidation for lookups.
1540 *
1541 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1542 * or if the intent information indicates that we're about to open this
1543 * particular file and the "nocto" mount flag is not set.
1544 *
1545 */
1546static
1547int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1548{
1549	struct nfs_server *server = NFS_SERVER(inode);
1550	int ret;
1551
1552	if (IS_AUTOMOUNT(inode))
1553		return 0;
1554
1555	if (flags & LOOKUP_OPEN) {
1556		switch (inode->i_mode & S_IFMT) {
1557		case S_IFREG:
1558			/* A NFSv4 OPEN will revalidate later */
1559			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1560				goto out;
1561			fallthrough;
1562		case S_IFDIR:
1563			if (server->flags & NFS_MOUNT_NOCTO)
1564				break;
1565			/* NFS close-to-open cache consistency validation */
1566			goto out_force;
1567		}
1568	}
1569
1570	/* VFS wants an on-the-wire revalidation */
1571	if (flags & LOOKUP_REVAL)
1572		goto out_force;
1573out:
1574	if (inode->i_nlink > 0 ||
1575	    (inode->i_nlink == 0 &&
1576	     test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1577		return 0;
1578	else
1579		return -ESTALE;
1580out_force:
1581	if (flags & LOOKUP_RCU)
1582		return -ECHILD;
1583	ret = __nfs_revalidate_inode(server, inode);
1584	if (ret != 0)
1585		return ret;
1586	goto out;
1587}
1588
1589static void nfs_mark_dir_for_revalidate(struct inode *inode)
1590{
1591	spin_lock(&inode->i_lock);
1592	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1593	spin_unlock(&inode->i_lock);
1594}
1595
1596/*
1597 * We judge how long we want to trust negative
1598 * dentries by looking at the parent inode mtime.
1599 *
1600 * If parent mtime has changed, we revalidate, else we wait for a
1601 * period corresponding to the parent's attribute cache timeout value.
1602 *
1603 * If LOOKUP_RCU prevents us from performing a full check, return 1
1604 * suggesting a reval is needed.
1605 *
1606 * Note that when creating a new file, or looking up a rename target,
1607 * then it shouldn't be necessary to revalidate a negative dentry.
1608 */
1609static inline
1610int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1611		       unsigned int flags)
1612{
1613	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1614		return 0;
1615	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1616		return 1;
1617	/* Case insensitive server? Revalidate negative dentries */
1618	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1619		return 1;
1620	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1621}
1622
1623static int
1624nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1625			   struct inode *inode, int error)
1626{
1627	switch (error) {
1628	case 1:
1629		break;
1630	case 0:
1631		/*
1632		 * We can't d_drop the root of a disconnected tree:
1633		 * its d_hash is on the s_anon list and d_drop() would hide
1634		 * it from shrink_dcache_for_unmount(), leading to busy
1635		 * inodes on unmount and further oopses.
1636		 */
1637		if (inode && IS_ROOT(dentry))
1638			error = 1;
1639		break;
1640	}
1641	trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1642	return error;
1643}
1644
1645static int
1646nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1647			       unsigned int flags)
1648{
1649	int ret = 1;
1650	if (nfs_neg_need_reval(dir, dentry, flags)) {
1651		if (flags & LOOKUP_RCU)
1652			return -ECHILD;
1653		ret = 0;
1654	}
1655	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1656}
1657
1658static int
1659nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1660				struct inode *inode)
1661{
1662	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1663	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1664}
1665
1666static int nfs_lookup_revalidate_dentry(struct inode *dir,
1667					struct dentry *dentry,
1668					struct inode *inode, unsigned int flags)
1669{
1670	struct nfs_fh *fhandle;
1671	struct nfs_fattr *fattr;
1672	unsigned long dir_verifier;
1673	int ret;
1674
1675	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1676
1677	ret = -ENOMEM;
1678	fhandle = nfs_alloc_fhandle();
1679	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1680	if (fhandle == NULL || fattr == NULL)
1681		goto out;
1682
1683	dir_verifier = nfs_save_change_attribute(dir);
1684	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1685	if (ret < 0) {
1686		switch (ret) {
1687		case -ESTALE:
1688		case -ENOENT:
1689			ret = 0;
1690			break;
1691		case -ETIMEDOUT:
1692			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1693				ret = 1;
1694		}
1695		goto out;
1696	}
1697
1698	/* Request help from readdirplus */
1699	nfs_lookup_advise_force_readdirplus(dir, flags);
1700
1701	ret = 0;
1702	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1703		goto out;
1704	if (nfs_refresh_inode(inode, fattr) < 0)
1705		goto out;
1706
1707	nfs_setsecurity(inode, fattr);
1708	nfs_set_verifier(dentry, dir_verifier);
1709
1710	ret = 1;
1711out:
1712	nfs_free_fattr(fattr);
1713	nfs_free_fhandle(fhandle);
1714
1715	/*
1716	 * If the lookup failed despite the dentry change attribute being
1717	 * a match, then we should revalidate the directory cache.
1718	 */
1719	if (!ret && nfs_dentry_verify_change(dir, dentry))
1720		nfs_mark_dir_for_revalidate(dir);
1721	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1722}
1723
1724/*
1725 * This is called every time the dcache has a lookup hit,
1726 * and we should check whether we can really trust that
1727 * lookup.
1728 *
1729 * NOTE! The hit can be a negative hit too, don't assume
1730 * we have an inode!
1731 *
1732 * If the parent directory is seen to have changed, we throw out the
1733 * cached dentry and do a new lookup.
1734 */
1735static int
1736nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1737			 unsigned int flags)
1738{
1739	struct inode *inode;
1740	int error;
1741
1742	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1743	inode = d_inode(dentry);
1744
1745	if (!inode)
1746		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1747
1748	if (is_bad_inode(inode)) {
1749		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1750				__func__, dentry);
1751		goto out_bad;
1752	}
1753
1754	if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1755	    nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1756		goto out_bad;
1757
1758	if (nfs_verifier_is_delegated(dentry))
1759		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1760
1761	/* Force a full look up iff the parent directory has changed */
1762	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1763	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1764		error = nfs_lookup_verify_inode(inode, flags);
1765		if (error) {
1766			if (error == -ESTALE)
1767				nfs_mark_dir_for_revalidate(dir);
1768			goto out_bad;
1769		}
1770		goto out_valid;
1771	}
1772
1773	if (flags & LOOKUP_RCU)
1774		return -ECHILD;
1775
1776	if (NFS_STALE(inode))
1777		goto out_bad;
1778
1779	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1780out_valid:
1781	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1782out_bad:
1783	if (flags & LOOKUP_RCU)
1784		return -ECHILD;
1785	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1786}
1787
1788static int
1789__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1790			int (*reval)(struct inode *, struct dentry *, unsigned int))
1791{
1792	struct dentry *parent;
1793	struct inode *dir;
1794	int ret;
1795
1796	if (flags & LOOKUP_RCU) {
1797		if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1798			return -ECHILD;
1799		parent = READ_ONCE(dentry->d_parent);
1800		dir = d_inode_rcu(parent);
1801		if (!dir)
1802			return -ECHILD;
1803		ret = reval(dir, dentry, flags);
1804		if (parent != READ_ONCE(dentry->d_parent))
1805			return -ECHILD;
1806	} else {
1807		/* Wait for unlink to complete */
1808		wait_var_event(&dentry->d_fsdata,
1809			       dentry->d_fsdata != NFS_FSDATA_BLOCKED);
1810		parent = dget_parent(dentry);
1811		ret = reval(d_inode(parent), dentry, flags);
1812		dput(parent);
1813	}
1814	return ret;
1815}
1816
1817static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1818{
1819	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1820}
1821
1822/*
1823 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1824 * when we don't really care about the dentry name. This is called when a
1825 * pathwalk ends on a dentry that was not found via a normal lookup in the
1826 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1827 *
1828 * In this situation, we just want to verify that the inode itself is OK
1829 * since the dentry might have changed on the server.
1830 */
1831static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1832{
1833	struct inode *inode = d_inode(dentry);
1834	int error = 0;
1835
1836	/*
1837	 * I believe we can only get a negative dentry here in the case of a
1838	 * procfs-style symlink. Just assume it's correct for now, but we may
1839	 * eventually need to do something more here.
1840	 */
1841	if (!inode) {
1842		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1843				__func__, dentry);
1844		return 1;
1845	}
1846
1847	if (is_bad_inode(inode)) {
1848		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1849				__func__, dentry);
1850		return 0;
1851	}
1852
1853	error = nfs_lookup_verify_inode(inode, flags);
1854	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1855			__func__, inode->i_ino, error ? "invalid" : "valid");
1856	return !error;
1857}
1858
1859/*
1860 * This is called from dput() when d_count is going to 0.
1861 */
1862static int nfs_dentry_delete(const struct dentry *dentry)
1863{
1864	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1865		dentry, dentry->d_flags);
1866
1867	/* Unhash any dentry with a stale inode */
1868	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1869		return 1;
1870
1871	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1872		/* Unhash it, so that ->d_iput() would be called */
1873		return 1;
1874	}
1875	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1876		/* Unhash it, so that ancestors of killed async unlink
1877		 * files will be cleaned up during umount */
1878		return 1;
1879	}
1880	return 0;
1881
1882}
1883
1884/* Ensure that we revalidate inode->i_nlink */
1885static void nfs_drop_nlink(struct inode *inode)
1886{
1887	spin_lock(&inode->i_lock);
1888	/* drop the inode if we're reasonably sure this is the last link */
1889	if (inode->i_nlink > 0)
1890		drop_nlink(inode);
1891	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1892	nfs_set_cache_invalid(
1893		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1894			       NFS_INO_INVALID_NLINK);
1895	spin_unlock(&inode->i_lock);
1896}
1897
1898/*
1899 * Called when the dentry loses inode.
1900 * We use it to clean up silly-renamed files.
1901 */
1902static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1903{
1904	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1905		nfs_complete_unlink(dentry, inode);
1906		nfs_drop_nlink(inode);
1907	}
1908	iput(inode);
1909}
1910
1911static void nfs_d_release(struct dentry *dentry)
1912{
1913	/* free cached devname value, if it survived that far */
1914	if (unlikely(dentry->d_fsdata)) {
1915		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1916			WARN_ON(1);
1917		else
1918			kfree(dentry->d_fsdata);
1919	}
1920}
1921
1922const struct dentry_operations nfs_dentry_operations = {
1923	.d_revalidate	= nfs_lookup_revalidate,
1924	.d_weak_revalidate	= nfs_weak_revalidate,
1925	.d_delete	= nfs_dentry_delete,
1926	.d_iput		= nfs_dentry_iput,
1927	.d_automount	= nfs_d_automount,
1928	.d_release	= nfs_d_release,
1929};
1930EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1931
1932struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1933{
1934	struct dentry *res;
1935	struct inode *inode = NULL;
1936	struct nfs_fh *fhandle = NULL;
1937	struct nfs_fattr *fattr = NULL;
1938	unsigned long dir_verifier;
1939	int error;
1940
1941	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1942	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1943
1944	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1945		return ERR_PTR(-ENAMETOOLONG);
1946
1947	/*
1948	 * If we're doing an exclusive create, optimize away the lookup
1949	 * but don't hash the dentry.
1950	 */
1951	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1952		return NULL;
1953
1954	res = ERR_PTR(-ENOMEM);
1955	fhandle = nfs_alloc_fhandle();
1956	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1957	if (fhandle == NULL || fattr == NULL)
1958		goto out;
1959
1960	dir_verifier = nfs_save_change_attribute(dir);
1961	trace_nfs_lookup_enter(dir, dentry, flags);
1962	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1963	if (error == -ENOENT) {
1964		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1965			dir_verifier = inode_peek_iversion_raw(dir);
1966		goto no_entry;
1967	}
1968	if (error < 0) {
1969		res = ERR_PTR(error);
1970		goto out;
1971	}
1972	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1973	res = ERR_CAST(inode);
1974	if (IS_ERR(res))
1975		goto out;
1976
1977	/* Notify readdir to use READDIRPLUS */
1978	nfs_lookup_advise_force_readdirplus(dir, flags);
1979
1980no_entry:
1981	res = d_splice_alias(inode, dentry);
1982	if (res != NULL) {
1983		if (IS_ERR(res))
1984			goto out;
1985		dentry = res;
1986	}
1987	nfs_set_verifier(dentry, dir_verifier);
1988out:
1989	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1990	nfs_free_fattr(fattr);
1991	nfs_free_fhandle(fhandle);
1992	return res;
1993}
1994EXPORT_SYMBOL_GPL(nfs_lookup);
1995
1996void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1997{
1998	/* Case insensitive server? Revalidate dentries */
1999	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
2000		d_prune_aliases(inode);
2001}
2002EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
2003
2004#if IS_ENABLED(CONFIG_NFS_V4)
2005static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
2006
2007const struct dentry_operations nfs4_dentry_operations = {
2008	.d_revalidate	= nfs4_lookup_revalidate,
2009	.d_weak_revalidate	= nfs_weak_revalidate,
2010	.d_delete	= nfs_dentry_delete,
2011	.d_iput		= nfs_dentry_iput,
2012	.d_automount	= nfs_d_automount,
2013	.d_release	= nfs_d_release,
2014};
2015EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2016
2017static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2018{
2019	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2020}
2021
2022static int do_open(struct inode *inode, struct file *filp)
2023{
2024	nfs_fscache_open_file(inode, filp);
2025	return 0;
2026}
2027
2028static int nfs_finish_open(struct nfs_open_context *ctx,
2029			   struct dentry *dentry,
2030			   struct file *file, unsigned open_flags)
2031{
2032	int err;
2033
2034	err = finish_open(file, dentry, do_open);
2035	if (err)
2036		goto out;
2037	if (S_ISREG(file_inode(file)->i_mode))
2038		nfs_file_set_open_context(file, ctx);
2039	else
2040		err = -EOPENSTALE;
2041out:
2042	return err;
2043}
2044
2045int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2046		    struct file *file, unsigned open_flags,
2047		    umode_t mode)
2048{
2049	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2050	struct nfs_open_context *ctx;
2051	struct dentry *res;
2052	struct iattr attr = { .ia_valid = ATTR_OPEN };
2053	struct inode *inode;
2054	unsigned int lookup_flags = 0;
2055	unsigned long dir_verifier;
2056	bool switched = false;
2057	int created = 0;
2058	int err;
2059
2060	/* Expect a negative dentry */
2061	BUG_ON(d_inode(dentry));
2062
2063	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2064			dir->i_sb->s_id, dir->i_ino, dentry);
2065
2066	err = nfs_check_flags(open_flags);
2067	if (err)
2068		return err;
2069
2070	/* NFS only supports OPEN on regular files */
2071	if ((open_flags & O_DIRECTORY)) {
2072		if (!d_in_lookup(dentry)) {
2073			/*
2074			 * Hashed negative dentry with O_DIRECTORY: dentry was
2075			 * revalidated and is fine, no need to perform lookup
2076			 * again
2077			 */
2078			return -ENOENT;
2079		}
2080		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2081		goto no_open;
2082	}
2083
2084	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2085		return -ENAMETOOLONG;
2086
2087	if (open_flags & O_CREAT) {
2088		struct nfs_server *server = NFS_SERVER(dir);
2089
2090		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2091			mode &= ~current_umask();
2092
2093		attr.ia_valid |= ATTR_MODE;
2094		attr.ia_mode = mode;
2095	}
2096	if (open_flags & O_TRUNC) {
2097		attr.ia_valid |= ATTR_SIZE;
2098		attr.ia_size = 0;
2099	}
2100
2101	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2102		d_drop(dentry);
2103		switched = true;
2104		dentry = d_alloc_parallel(dentry->d_parent,
2105					  &dentry->d_name, &wq);
2106		if (IS_ERR(dentry))
2107			return PTR_ERR(dentry);
2108		if (unlikely(!d_in_lookup(dentry)))
2109			return finish_no_open(file, dentry);
2110	}
2111
2112	ctx = create_nfs_open_context(dentry, open_flags, file);
2113	err = PTR_ERR(ctx);
2114	if (IS_ERR(ctx))
2115		goto out;
2116
2117	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2118	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2119	if (created)
2120		file->f_mode |= FMODE_CREATED;
2121	if (IS_ERR(inode)) {
2122		err = PTR_ERR(inode);
2123		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2124		put_nfs_open_context(ctx);
2125		d_drop(dentry);
2126		switch (err) {
2127		case -ENOENT:
2128			d_splice_alias(NULL, dentry);
2129			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2130				dir_verifier = inode_peek_iversion_raw(dir);
2131			else
2132				dir_verifier = nfs_save_change_attribute(dir);
2133			nfs_set_verifier(dentry, dir_verifier);
2134			break;
2135		case -EISDIR:
2136		case -ENOTDIR:
2137			goto no_open;
2138		case -ELOOP:
2139			if (!(open_flags & O_NOFOLLOW))
2140				goto no_open;
2141			break;
2142			/* case -EINVAL: */
2143		default:
2144			break;
2145		}
2146		goto out;
2147	}
2148	file->f_mode |= FMODE_CAN_ODIRECT;
2149
2150	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2151	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2152	put_nfs_open_context(ctx);
2153out:
2154	if (unlikely(switched)) {
2155		d_lookup_done(dentry);
2156		dput(dentry);
2157	}
2158	return err;
2159
2160no_open:
2161	res = nfs_lookup(dir, dentry, lookup_flags);
2162	if (!res) {
2163		inode = d_inode(dentry);
2164		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2165		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2166			res = ERR_PTR(-ENOTDIR);
2167		else if (inode && S_ISREG(inode->i_mode))
2168			res = ERR_PTR(-EOPENSTALE);
2169	} else if (!IS_ERR(res)) {
2170		inode = d_inode(res);
2171		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2172		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2173			dput(res);
2174			res = ERR_PTR(-ENOTDIR);
2175		} else if (inode && S_ISREG(inode->i_mode)) {
2176			dput(res);
2177			res = ERR_PTR(-EOPENSTALE);
2178		}
2179	}
2180	if (switched) {
2181		d_lookup_done(dentry);
2182		if (!res)
2183			res = dentry;
2184		else
2185			dput(dentry);
2186	}
2187	if (IS_ERR(res))
2188		return PTR_ERR(res);
2189	return finish_no_open(file, res);
2190}
2191EXPORT_SYMBOL_GPL(nfs_atomic_open);
2192
2193static int
2194nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2195			  unsigned int flags)
2196{
2197	struct inode *inode;
2198
2199	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
2200
2201	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2202		goto full_reval;
2203	if (d_mountpoint(dentry))
2204		goto full_reval;
2205
2206	inode = d_inode(dentry);
2207
2208	/* We can't create new files in nfs_open_revalidate(), so we
2209	 * optimize away revalidation of negative dentries.
2210	 */
2211	if (inode == NULL)
2212		goto full_reval;
2213
2214	if (nfs_verifier_is_delegated(dentry))
2215		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2216
2217	/* NFS only supports OPEN on regular files */
2218	if (!S_ISREG(inode->i_mode))
2219		goto full_reval;
2220
2221	/* We cannot do exclusive creation on a positive dentry */
2222	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2223		goto reval_dentry;
2224
2225	/* Check if the directory changed */
2226	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2227		goto reval_dentry;
2228
2229	/* Let f_op->open() actually open (and revalidate) the file */
2230	return 1;
2231reval_dentry:
2232	if (flags & LOOKUP_RCU)
2233		return -ECHILD;
2234	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2235
2236full_reval:
2237	return nfs_do_lookup_revalidate(dir, dentry, flags);
2238}
2239
2240static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2241{
2242	return __nfs_lookup_revalidate(dentry, flags,
2243			nfs4_do_lookup_revalidate);
2244}
2245
2246#endif /* CONFIG_NFSV4 */
2247
2248int nfs_atomic_open_v23(struct inode *dir, struct dentry *dentry,
2249			struct file *file, unsigned int open_flags,
2250			umode_t mode)
2251{
2252
2253	/* Same as look+open from lookup_open(), but with different O_TRUNC
2254	 * handling.
2255	 */
2256	int error = 0;
2257
2258	if (open_flags & O_CREAT) {
2259		file->f_mode |= FMODE_CREATED;
2260		error = nfs_do_create(dir, dentry, mode, open_flags);
2261		if (error)
2262			return error;
2263		return finish_open(file, dentry, NULL);
2264	} else if (d_in_lookup(dentry)) {
2265		/* The only flags nfs_lookup considers are
2266		 * LOOKUP_EXCL and LOOKUP_RENAME_TARGET, and
2267		 * we want those to be zero so the lookup isn't skipped.
2268		 */
2269		struct dentry *res = nfs_lookup(dir, dentry, 0);
2270
2271		d_lookup_done(dentry);
2272		if (unlikely(res)) {
2273			if (IS_ERR(res))
2274				return PTR_ERR(res);
2275			return finish_no_open(file, res);
2276		}
2277	}
2278	return finish_no_open(file, NULL);
2279
2280}
2281EXPORT_SYMBOL_GPL(nfs_atomic_open_v23);
2282
2283struct dentry *
2284nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2285				struct nfs_fattr *fattr)
2286{
2287	struct dentry *parent = dget_parent(dentry);
2288	struct inode *dir = d_inode(parent);
2289	struct inode *inode;
2290	struct dentry *d;
2291	int error;
2292
2293	d_drop(dentry);
2294
2295	if (fhandle->size == 0) {
2296		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2297		if (error)
2298			goto out_error;
2299	}
2300	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2301	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2302		struct nfs_server *server = NFS_SB(dentry->d_sb);
2303		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2304				fattr, NULL);
2305		if (error < 0)
2306			goto out_error;
2307	}
2308	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2309	d = d_splice_alias(inode, dentry);
2310out:
2311	dput(parent);
2312	return d;
2313out_error:
2314	d = ERR_PTR(error);
2315	goto out;
2316}
2317EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2318
2319/*
2320 * Code common to create, mkdir, and mknod.
2321 */
2322int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2323				struct nfs_fattr *fattr)
2324{
2325	struct dentry *d;
2326
2327	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2328	if (IS_ERR(d))
2329		return PTR_ERR(d);
2330
2331	/* Callers don't care */
2332	dput(d);
2333	return 0;
2334}
2335EXPORT_SYMBOL_GPL(nfs_instantiate);
2336
2337/*
2338 * Following a failed create operation, we drop the dentry rather
2339 * than retain a negative dentry. This avoids a problem in the event
2340 * that the operation succeeded on the server, but an error in the
2341 * reply path made it appear to have failed.
2342 */
2343static int nfs_do_create(struct inode *dir, struct dentry *dentry,
2344			 umode_t mode, int open_flags)
2345{
2346	struct iattr attr;
2347	int error;
2348
2349	open_flags |= O_CREAT;
2350
2351	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2352			dir->i_sb->s_id, dir->i_ino, dentry);
2353
2354	attr.ia_mode = mode;
2355	attr.ia_valid = ATTR_MODE;
2356	if (open_flags & O_TRUNC) {
2357		attr.ia_size = 0;
2358		attr.ia_valid |= ATTR_SIZE;
2359	}
2360
2361	trace_nfs_create_enter(dir, dentry, open_flags);
2362	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2363	trace_nfs_create_exit(dir, dentry, open_flags, error);
2364	if (error != 0)
2365		goto out_err;
2366	return 0;
2367out_err:
2368	d_drop(dentry);
2369	return error;
2370}
2371
2372int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2373	       struct dentry *dentry, umode_t mode, bool excl)
2374{
2375	return nfs_do_create(dir, dentry, mode, excl ? O_EXCL : 0);
2376}
2377EXPORT_SYMBOL_GPL(nfs_create);
2378
2379/*
2380 * See comments for nfs_proc_create regarding failed operations.
2381 */
2382int
2383nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2384	  struct dentry *dentry, umode_t mode, dev_t rdev)
2385{
2386	struct iattr attr;
2387	int status;
2388
2389	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2390			dir->i_sb->s_id, dir->i_ino, dentry);
2391
2392	attr.ia_mode = mode;
2393	attr.ia_valid = ATTR_MODE;
2394
2395	trace_nfs_mknod_enter(dir, dentry);
2396	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2397	trace_nfs_mknod_exit(dir, dentry, status);
2398	if (status != 0)
2399		goto out_err;
2400	return 0;
2401out_err:
2402	d_drop(dentry);
2403	return status;
2404}
2405EXPORT_SYMBOL_GPL(nfs_mknod);
2406
2407/*
2408 * See comments for nfs_proc_create regarding failed operations.
2409 */
2410int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2411	      struct dentry *dentry, umode_t mode)
2412{
2413	struct iattr attr;
2414	int error;
2415
2416	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2417			dir->i_sb->s_id, dir->i_ino, dentry);
2418
2419	attr.ia_valid = ATTR_MODE;
2420	attr.ia_mode = mode | S_IFDIR;
2421
2422	trace_nfs_mkdir_enter(dir, dentry);
2423	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2424	trace_nfs_mkdir_exit(dir, dentry, error);
2425	if (error != 0)
2426		goto out_err;
2427	return 0;
2428out_err:
2429	d_drop(dentry);
2430	return error;
2431}
2432EXPORT_SYMBOL_GPL(nfs_mkdir);
2433
2434static void nfs_dentry_handle_enoent(struct dentry *dentry)
2435{
2436	if (simple_positive(dentry))
2437		d_delete(dentry);
2438}
2439
2440static void nfs_dentry_remove_handle_error(struct inode *dir,
2441					   struct dentry *dentry, int error)
2442{
2443	switch (error) {
2444	case -ENOENT:
2445		if (d_really_is_positive(dentry))
2446			d_delete(dentry);
2447		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2448		break;
2449	case 0:
2450		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2451		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2452	}
2453}
2454
2455int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2456{
2457	int error;
2458
2459	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2460			dir->i_sb->s_id, dir->i_ino, dentry);
2461
2462	trace_nfs_rmdir_enter(dir, dentry);
2463	if (d_really_is_positive(dentry)) {
2464		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2465		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2466		/* Ensure the VFS deletes this inode */
2467		switch (error) {
2468		case 0:
2469			clear_nlink(d_inode(dentry));
2470			break;
2471		case -ENOENT:
2472			nfs_dentry_handle_enoent(dentry);
2473		}
2474		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2475	} else
2476		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2477	nfs_dentry_remove_handle_error(dir, dentry, error);
2478	trace_nfs_rmdir_exit(dir, dentry, error);
2479
2480	return error;
2481}
2482EXPORT_SYMBOL_GPL(nfs_rmdir);
2483
2484/*
2485 * Remove a file after making sure there are no pending writes,
2486 * and after checking that the file has only one user.
2487 *
2488 * We invalidate the attribute cache and free the inode prior to the operation
2489 * to avoid possible races if the server reuses the inode.
2490 */
2491static int nfs_safe_remove(struct dentry *dentry)
2492{
2493	struct inode *dir = d_inode(dentry->d_parent);
2494	struct inode *inode = d_inode(dentry);
2495	int error = -EBUSY;
2496
2497	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2498
2499	/* If the dentry was sillyrenamed, we simply call d_delete() */
2500	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2501		error = 0;
2502		goto out;
2503	}
2504
2505	trace_nfs_remove_enter(dir, dentry);
2506	if (inode != NULL) {
2507		error = NFS_PROTO(dir)->remove(dir, dentry);
2508		if (error == 0)
2509			nfs_drop_nlink(inode);
2510	} else
2511		error = NFS_PROTO(dir)->remove(dir, dentry);
2512	if (error == -ENOENT)
2513		nfs_dentry_handle_enoent(dentry);
2514	trace_nfs_remove_exit(dir, dentry, error);
2515out:
2516	return error;
2517}
2518
2519/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2520 *  belongs to an active ".nfs..." file and we return -EBUSY.
2521 *
2522 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2523 */
2524int nfs_unlink(struct inode *dir, struct dentry *dentry)
2525{
2526	int error;
2527
2528	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2529		dir->i_ino, dentry);
2530
2531	trace_nfs_unlink_enter(dir, dentry);
2532	spin_lock(&dentry->d_lock);
2533	if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2534					     &NFS_I(d_inode(dentry))->flags)) {
2535		spin_unlock(&dentry->d_lock);
2536		/* Start asynchronous writeout of the inode */
2537		write_inode_now(d_inode(dentry), 0);
2538		error = nfs_sillyrename(dir, dentry);
2539		goto out;
2540	}
2541	/* We must prevent any concurrent open until the unlink
2542	 * completes.  ->d_revalidate will wait for ->d_fsdata
2543	 * to clear.  We set it here to ensure no lookup succeeds until
2544	 * the unlink is complete on the server.
2545	 */
2546	error = -ETXTBSY;
2547	if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2548	    WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2549		spin_unlock(&dentry->d_lock);
2550		goto out;
2551	}
2552	/* old devname */
2553	kfree(dentry->d_fsdata);
2554	dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2555
2556	spin_unlock(&dentry->d_lock);
2557	error = nfs_safe_remove(dentry);
2558	nfs_dentry_remove_handle_error(dir, dentry, error);
2559	dentry->d_fsdata = NULL;
2560	wake_up_var(&dentry->d_fsdata);
2561out:
2562	trace_nfs_unlink_exit(dir, dentry, error);
2563	return error;
2564}
2565EXPORT_SYMBOL_GPL(nfs_unlink);
2566
2567/*
2568 * To create a symbolic link, most file systems instantiate a new inode,
2569 * add a page to it containing the path, then write it out to the disk
2570 * using prepare_write/commit_write.
2571 *
2572 * Unfortunately the NFS client can't create the in-core inode first
2573 * because it needs a file handle to create an in-core inode (see
2574 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2575 * symlink request has completed on the server.
2576 *
2577 * So instead we allocate a raw page, copy the symname into it, then do
2578 * the SYMLINK request with the page as the buffer.  If it succeeds, we
2579 * now have a new file handle and can instantiate an in-core NFS inode
2580 * and move the raw page into its mapping.
2581 */
2582int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2583		struct dentry *dentry, const char *symname)
2584{
2585	struct folio *folio;
2586	char *kaddr;
2587	struct iattr attr;
2588	unsigned int pathlen = strlen(symname);
2589	int error;
2590
2591	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2592		dir->i_ino, dentry, symname);
2593
2594	if (pathlen > PAGE_SIZE)
2595		return -ENAMETOOLONG;
2596
2597	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2598	attr.ia_valid = ATTR_MODE;
2599
2600	folio = folio_alloc(GFP_USER, 0);
2601	if (!folio)
2602		return -ENOMEM;
2603
2604	kaddr = folio_address(folio);
2605	memcpy(kaddr, symname, pathlen);
2606	if (pathlen < PAGE_SIZE)
2607		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2608
2609	trace_nfs_symlink_enter(dir, dentry);
2610	error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr);
2611	trace_nfs_symlink_exit(dir, dentry, error);
2612	if (error != 0) {
2613		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2614			dir->i_sb->s_id, dir->i_ino,
2615			dentry, symname, error);
2616		d_drop(dentry);
2617		folio_put(folio);
2618		return error;
2619	}
2620
2621	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2622
2623	/*
2624	 * No big deal if we can't add this page to the page cache here.
2625	 * READLINK will get the missing page from the server if needed.
2626	 */
2627	if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0,
2628							GFP_KERNEL) == 0) {
2629		folio_mark_uptodate(folio);
2630		folio_unlock(folio);
2631	}
2632
2633	folio_put(folio);
2634	return 0;
2635}
2636EXPORT_SYMBOL_GPL(nfs_symlink);
2637
2638int
2639nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2640{
2641	struct inode *inode = d_inode(old_dentry);
2642	int error;
2643
2644	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2645		old_dentry, dentry);
2646
2647	trace_nfs_link_enter(inode, dir, dentry);
2648	d_drop(dentry);
2649	if (S_ISREG(inode->i_mode))
2650		nfs_sync_inode(inode);
2651	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2652	if (error == 0) {
2653		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2654		ihold(inode);
2655		d_add(dentry, inode);
2656	}
2657	trace_nfs_link_exit(inode, dir, dentry, error);
2658	return error;
2659}
2660EXPORT_SYMBOL_GPL(nfs_link);
2661
2662static void
2663nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2664{
2665	struct dentry *new_dentry = data->new_dentry;
2666
2667	new_dentry->d_fsdata = NULL;
2668	wake_up_var(&new_dentry->d_fsdata);
2669}
2670
2671/*
2672 * RENAME
2673 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2674 * different file handle for the same inode after a rename (e.g. when
2675 * moving to a different directory). A fail-safe method to do so would
2676 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2677 * rename the old file using the sillyrename stuff. This way, the original
2678 * file in old_dir will go away when the last process iput()s the inode.
2679 *
2680 * FIXED.
2681 *
2682 * It actually works quite well. One needs to have the possibility for
2683 * at least one ".nfs..." file in each directory the file ever gets
2684 * moved or linked to which happens automagically with the new
2685 * implementation that only depends on the dcache stuff instead of
2686 * using the inode layer
2687 *
2688 * Unfortunately, things are a little more complicated than indicated
2689 * above. For a cross-directory move, we want to make sure we can get
2690 * rid of the old inode after the operation.  This means there must be
2691 * no pending writes (if it's a file), and the use count must be 1.
2692 * If these conditions are met, we can drop the dentries before doing
2693 * the rename.
2694 */
2695int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2696	       struct dentry *old_dentry, struct inode *new_dir,
2697	       struct dentry *new_dentry, unsigned int flags)
2698{
2699	struct inode *old_inode = d_inode(old_dentry);
2700	struct inode *new_inode = d_inode(new_dentry);
2701	struct dentry *dentry = NULL;
2702	struct rpc_task *task;
2703	bool must_unblock = false;
2704	int error = -EBUSY;
2705
2706	if (flags)
2707		return -EINVAL;
2708
2709	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2710		 old_dentry, new_dentry,
2711		 d_count(new_dentry));
2712
2713	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2714	/*
2715	 * For non-directories, check whether the target is busy and if so,
2716	 * make a copy of the dentry and then do a silly-rename. If the
2717	 * silly-rename succeeds, the copied dentry is hashed and becomes
2718	 * the new target.
2719	 */
2720	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2721		/* We must prevent any concurrent open until the unlink
2722		 * completes.  ->d_revalidate will wait for ->d_fsdata
2723		 * to clear.  We set it here to ensure no lookup succeeds until
2724		 * the unlink is complete on the server.
2725		 */
2726		error = -ETXTBSY;
2727		if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2728		    WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2729			goto out;
2730		if (new_dentry->d_fsdata) {
2731			/* old devname */
2732			kfree(new_dentry->d_fsdata);
2733			new_dentry->d_fsdata = NULL;
2734		}
2735
2736		spin_lock(&new_dentry->d_lock);
2737		if (d_count(new_dentry) > 2) {
2738			int err;
2739
2740			spin_unlock(&new_dentry->d_lock);
2741
2742			/* copy the target dentry's name */
2743			dentry = d_alloc(new_dentry->d_parent,
2744					 &new_dentry->d_name);
2745			if (!dentry)
2746				goto out;
2747
2748			/* silly-rename the existing target ... */
2749			err = nfs_sillyrename(new_dir, new_dentry);
2750			if (err)
2751				goto out;
2752
2753			new_dentry = dentry;
2754			new_inode = NULL;
2755		} else {
2756			new_dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2757			must_unblock = true;
2758			spin_unlock(&new_dentry->d_lock);
2759		}
2760
2761	}
2762
2763	if (S_ISREG(old_inode->i_mode))
2764		nfs_sync_inode(old_inode);
2765	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2766				must_unblock ? nfs_unblock_rename : NULL);
2767	if (IS_ERR(task)) {
2768		error = PTR_ERR(task);
2769		goto out;
2770	}
2771
2772	error = rpc_wait_for_completion_task(task);
2773	if (error != 0) {
2774		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2775		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2776		smp_wmb();
2777	} else
2778		error = task->tk_status;
2779	rpc_put_task(task);
2780	/* Ensure the inode attributes are revalidated */
2781	if (error == 0) {
2782		spin_lock(&old_inode->i_lock);
2783		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2784		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2785							 NFS_INO_INVALID_CTIME |
2786							 NFS_INO_REVAL_FORCED);
2787		spin_unlock(&old_inode->i_lock);
2788	}
2789out:
2790	trace_nfs_rename_exit(old_dir, old_dentry,
2791			new_dir, new_dentry, error);
2792	if (!error) {
2793		if (new_inode != NULL)
2794			nfs_drop_nlink(new_inode);
2795		/*
2796		 * The d_move() should be here instead of in an async RPC completion
2797		 * handler because we need the proper locks to move the dentry.  If
2798		 * we're interrupted by a signal, the async RPC completion handler
2799		 * should mark the directories for revalidation.
2800		 */
2801		d_move(old_dentry, new_dentry);
2802		nfs_set_verifier(old_dentry,
2803					nfs_save_change_attribute(new_dir));
2804	} else if (error == -ENOENT)
2805		nfs_dentry_handle_enoent(old_dentry);
2806
2807	/* new dentry created? */
2808	if (dentry)
2809		dput(dentry);
2810	return error;
2811}
2812EXPORT_SYMBOL_GPL(nfs_rename);
2813
2814static DEFINE_SPINLOCK(nfs_access_lru_lock);
2815static LIST_HEAD(nfs_access_lru_list);
2816static atomic_long_t nfs_access_nr_entries;
2817
2818static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2819module_param(nfs_access_max_cachesize, ulong, 0644);
2820MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2821
2822static void nfs_access_free_entry(struct nfs_access_entry *entry)
2823{
2824	put_group_info(entry->group_info);
2825	kfree_rcu(entry, rcu_head);
2826	smp_mb__before_atomic();
2827	atomic_long_dec(&nfs_access_nr_entries);
2828	smp_mb__after_atomic();
2829}
2830
2831static void nfs_access_free_list(struct list_head *head)
2832{
2833	struct nfs_access_entry *cache;
2834
2835	while (!list_empty(head)) {
2836		cache = list_entry(head->next, struct nfs_access_entry, lru);
2837		list_del(&cache->lru);
2838		nfs_access_free_entry(cache);
2839	}
2840}
2841
2842static unsigned long
2843nfs_do_access_cache_scan(unsigned int nr_to_scan)
2844{
2845	LIST_HEAD(head);
2846	struct nfs_inode *nfsi, *next;
2847	struct nfs_access_entry *cache;
2848	long freed = 0;
2849
2850	spin_lock(&nfs_access_lru_lock);
2851	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2852		struct inode *inode;
2853
2854		if (nr_to_scan-- == 0)
2855			break;
2856		inode = &nfsi->vfs_inode;
2857		spin_lock(&inode->i_lock);
2858		if (list_empty(&nfsi->access_cache_entry_lru))
2859			goto remove_lru_entry;
2860		cache = list_entry(nfsi->access_cache_entry_lru.next,
2861				struct nfs_access_entry, lru);
2862		list_move(&cache->lru, &head);
2863		rb_erase(&cache->rb_node, &nfsi->access_cache);
2864		freed++;
2865		if (!list_empty(&nfsi->access_cache_entry_lru))
2866			list_move_tail(&nfsi->access_cache_inode_lru,
2867					&nfs_access_lru_list);
2868		else {
2869remove_lru_entry:
2870			list_del_init(&nfsi->access_cache_inode_lru);
2871			smp_mb__before_atomic();
2872			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2873			smp_mb__after_atomic();
2874		}
2875		spin_unlock(&inode->i_lock);
2876	}
2877	spin_unlock(&nfs_access_lru_lock);
2878	nfs_access_free_list(&head);
2879	return freed;
2880}
2881
2882unsigned long
2883nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2884{
2885	int nr_to_scan = sc->nr_to_scan;
2886	gfp_t gfp_mask = sc->gfp_mask;
2887
2888	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2889		return SHRINK_STOP;
2890	return nfs_do_access_cache_scan(nr_to_scan);
2891}
2892
2893
2894unsigned long
2895nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2896{
2897	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2898}
2899
2900static void
2901nfs_access_cache_enforce_limit(void)
2902{
2903	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2904	unsigned long diff;
2905	unsigned int nr_to_scan;
2906
2907	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2908		return;
2909	nr_to_scan = 100;
2910	diff = nr_entries - nfs_access_max_cachesize;
2911	if (diff < nr_to_scan)
2912		nr_to_scan = diff;
2913	nfs_do_access_cache_scan(nr_to_scan);
2914}
2915
2916static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2917{
2918	struct rb_root *root_node = &nfsi->access_cache;
2919	struct rb_node *n;
2920	struct nfs_access_entry *entry;
2921
2922	/* Unhook entries from the cache */
2923	while ((n = rb_first(root_node)) != NULL) {
2924		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2925		rb_erase(n, root_node);
2926		list_move(&entry->lru, head);
2927	}
2928	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2929}
2930
2931void nfs_access_zap_cache(struct inode *inode)
2932{
2933	LIST_HEAD(head);
2934
2935	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2936		return;
2937	/* Remove from global LRU init */
2938	spin_lock(&nfs_access_lru_lock);
2939	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2940		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2941
2942	spin_lock(&inode->i_lock);
2943	__nfs_access_zap_cache(NFS_I(inode), &head);
2944	spin_unlock(&inode->i_lock);
2945	spin_unlock(&nfs_access_lru_lock);
2946	nfs_access_free_list(&head);
2947}
2948EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2949
2950static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2951{
2952	struct group_info *ga, *gb;
2953	int g;
2954
2955	if (uid_lt(a->fsuid, b->fsuid))
2956		return -1;
2957	if (uid_gt(a->fsuid, b->fsuid))
2958		return 1;
2959
2960	if (gid_lt(a->fsgid, b->fsgid))
2961		return -1;
2962	if (gid_gt(a->fsgid, b->fsgid))
2963		return 1;
2964
2965	ga = a->group_info;
2966	gb = b->group_info;
2967	if (ga == gb)
2968		return 0;
2969	if (ga == NULL)
2970		return -1;
2971	if (gb == NULL)
2972		return 1;
2973	if (ga->ngroups < gb->ngroups)
2974		return -1;
2975	if (ga->ngroups > gb->ngroups)
2976		return 1;
2977
2978	for (g = 0; g < ga->ngroups; g++) {
2979		if (gid_lt(ga->gid[g], gb->gid[g]))
2980			return -1;
2981		if (gid_gt(ga->gid[g], gb->gid[g]))
2982			return 1;
2983	}
2984	return 0;
2985}
2986
2987static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2988{
2989	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2990
2991	while (n != NULL) {
2992		struct nfs_access_entry *entry =
2993			rb_entry(n, struct nfs_access_entry, rb_node);
2994		int cmp = access_cmp(cred, entry);
2995
2996		if (cmp < 0)
2997			n = n->rb_left;
2998		else if (cmp > 0)
2999			n = n->rb_right;
3000		else
3001			return entry;
3002	}
3003	return NULL;
3004}
3005
3006static u64 nfs_access_login_time(const struct task_struct *task,
3007				 const struct cred *cred)
3008{
3009	const struct task_struct *parent;
3010	const struct cred *pcred;
3011	u64 ret;
3012
3013	rcu_read_lock();
3014	for (;;) {
3015		parent = rcu_dereference(task->real_parent);
3016		pcred = __task_cred(parent);
3017		if (parent == task || cred_fscmp(pcred, cred) != 0)
3018			break;
3019		task = parent;
3020	}
3021	ret = task->start_time;
3022	rcu_read_unlock();
3023	return ret;
3024}
3025
3026static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
3027{
3028	struct nfs_inode *nfsi = NFS_I(inode);
3029	u64 login_time = nfs_access_login_time(current, cred);
3030	struct nfs_access_entry *cache;
3031	bool retry = true;
3032	int err;
3033
3034	spin_lock(&inode->i_lock);
3035	for(;;) {
3036		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3037			goto out_zap;
3038		cache = nfs_access_search_rbtree(inode, cred);
3039		err = -ENOENT;
3040		if (cache == NULL)
3041			goto out;
3042		/* Found an entry, is our attribute cache valid? */
3043		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3044			break;
3045		if (!retry)
3046			break;
3047		err = -ECHILD;
3048		if (!may_block)
3049			goto out;
3050		spin_unlock(&inode->i_lock);
3051		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3052		if (err)
3053			return err;
3054		spin_lock(&inode->i_lock);
3055		retry = false;
3056	}
3057	err = -ENOENT;
3058	if ((s64)(login_time - cache->timestamp) > 0)
3059		goto out;
3060	*mask = cache->mask;
3061	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3062	err = 0;
3063out:
3064	spin_unlock(&inode->i_lock);
3065	return err;
3066out_zap:
3067	spin_unlock(&inode->i_lock);
3068	nfs_access_zap_cache(inode);
3069	return -ENOENT;
3070}
3071
3072static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3073{
3074	/* Only check the most recently returned cache entry,
3075	 * but do it without locking.
3076	 */
3077	struct nfs_inode *nfsi = NFS_I(inode);
3078	u64 login_time = nfs_access_login_time(current, cred);
3079	struct nfs_access_entry *cache;
3080	int err = -ECHILD;
3081	struct list_head *lh;
3082
3083	rcu_read_lock();
3084	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3085		goto out;
3086	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3087	cache = list_entry(lh, struct nfs_access_entry, lru);
3088	if (lh == &nfsi->access_cache_entry_lru ||
3089	    access_cmp(cred, cache) != 0)
3090		cache = NULL;
3091	if (cache == NULL)
3092		goto out;
3093	if ((s64)(login_time - cache->timestamp) > 0)
3094		goto out;
3095	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3096		goto out;
3097	*mask = cache->mask;
3098	err = 0;
3099out:
3100	rcu_read_unlock();
3101	return err;
3102}
3103
3104int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3105			  u32 *mask, bool may_block)
3106{
3107	int status;
3108
3109	status = nfs_access_get_cached_rcu(inode, cred, mask);
3110	if (status != 0)
3111		status = nfs_access_get_cached_locked(inode, cred, mask,
3112		    may_block);
3113
3114	return status;
3115}
3116EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3117
3118static void nfs_access_add_rbtree(struct inode *inode,
3119				  struct nfs_access_entry *set,
3120				  const struct cred *cred)
3121{
3122	struct nfs_inode *nfsi = NFS_I(inode);
3123	struct rb_root *root_node = &nfsi->access_cache;
3124	struct rb_node **p = &root_node->rb_node;
3125	struct rb_node *parent = NULL;
3126	struct nfs_access_entry *entry;
3127	int cmp;
3128
3129	spin_lock(&inode->i_lock);
3130	while (*p != NULL) {
3131		parent = *p;
3132		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3133		cmp = access_cmp(cred, entry);
3134
3135		if (cmp < 0)
3136			p = &parent->rb_left;
3137		else if (cmp > 0)
3138			p = &parent->rb_right;
3139		else
3140			goto found;
3141	}
3142	rb_link_node(&set->rb_node, parent, p);
3143	rb_insert_color(&set->rb_node, root_node);
3144	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3145	spin_unlock(&inode->i_lock);
3146	return;
3147found:
3148	rb_replace_node(parent, &set->rb_node, root_node);
3149	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3150	list_del(&entry->lru);
3151	spin_unlock(&inode->i_lock);
3152	nfs_access_free_entry(entry);
3153}
3154
3155void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3156			  const struct cred *cred)
3157{
3158	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3159	if (cache == NULL)
3160		return;
3161	RB_CLEAR_NODE(&cache->rb_node);
3162	cache->fsuid = cred->fsuid;
3163	cache->fsgid = cred->fsgid;
3164	cache->group_info = get_group_info(cred->group_info);
3165	cache->mask = set->mask;
3166	cache->timestamp = ktime_get_ns();
3167
3168	/* The above field assignments must be visible
3169	 * before this item appears on the lru.  We cannot easily
3170	 * use rcu_assign_pointer, so just force the memory barrier.
3171	 */
3172	smp_wmb();
3173	nfs_access_add_rbtree(inode, cache, cred);
3174
3175	/* Update accounting */
3176	smp_mb__before_atomic();
3177	atomic_long_inc(&nfs_access_nr_entries);
3178	smp_mb__after_atomic();
3179
3180	/* Add inode to global LRU list */
3181	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3182		spin_lock(&nfs_access_lru_lock);
3183		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3184			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3185					&nfs_access_lru_list);
3186		spin_unlock(&nfs_access_lru_lock);
3187	}
3188	nfs_access_cache_enforce_limit();
3189}
3190EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3191
3192#define NFS_MAY_READ (NFS_ACCESS_READ)
3193#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3194		NFS_ACCESS_EXTEND | \
3195		NFS_ACCESS_DELETE)
3196#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3197		NFS_ACCESS_EXTEND)
3198#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3199#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3200#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3201static int
3202nfs_access_calc_mask(u32 access_result, umode_t umode)
3203{
3204	int mask = 0;
3205
3206	if (access_result & NFS_MAY_READ)
3207		mask |= MAY_READ;
3208	if (S_ISDIR(umode)) {
3209		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3210			mask |= MAY_WRITE;
3211		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3212			mask |= MAY_EXEC;
3213	} else if (S_ISREG(umode)) {
3214		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3215			mask |= MAY_WRITE;
3216		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3217			mask |= MAY_EXEC;
3218	} else if (access_result & NFS_MAY_WRITE)
3219			mask |= MAY_WRITE;
3220	return mask;
3221}
3222
3223void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3224{
3225	entry->mask = access_result;
3226}
3227EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3228
3229static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3230{
3231	struct nfs_access_entry cache;
3232	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3233	int cache_mask = -1;
3234	int status;
3235
3236	trace_nfs_access_enter(inode);
3237
3238	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3239	if (status == 0)
3240		goto out_cached;
3241
3242	status = -ECHILD;
3243	if (!may_block)
3244		goto out;
3245
3246	/*
3247	 * Determine which access bits we want to ask for...
3248	 */
3249	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3250		     nfs_access_xattr_mask(NFS_SERVER(inode));
3251	if (S_ISDIR(inode->i_mode))
3252		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3253	else
3254		cache.mask |= NFS_ACCESS_EXECUTE;
3255	status = NFS_PROTO(inode)->access(inode, &cache, cred);
3256	if (status != 0) {
3257		if (status == -ESTALE) {
3258			if (!S_ISDIR(inode->i_mode))
3259				nfs_set_inode_stale(inode);
3260			else
3261				nfs_zap_caches(inode);
3262		}
3263		goto out;
3264	}
3265	nfs_access_add_cache(inode, &cache, cred);
3266out_cached:
3267	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3268	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3269		status = -EACCES;
3270out:
3271	trace_nfs_access_exit(inode, mask, cache_mask, status);
3272	return status;
3273}
3274
3275static int nfs_open_permission_mask(int openflags)
3276{
3277	int mask = 0;
3278
3279	if (openflags & __FMODE_EXEC) {
3280		/* ONLY check exec rights */
3281		mask = MAY_EXEC;
3282	} else {
3283		if ((openflags & O_ACCMODE) != O_WRONLY)
3284			mask |= MAY_READ;
3285		if ((openflags & O_ACCMODE) != O_RDONLY)
3286			mask |= MAY_WRITE;
3287	}
3288
3289	return mask;
3290}
3291
3292int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3293{
3294	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3295}
3296EXPORT_SYMBOL_GPL(nfs_may_open);
3297
3298static int nfs_execute_ok(struct inode *inode, int mask)
3299{
3300	struct nfs_server *server = NFS_SERVER(inode);
3301	int ret = 0;
3302
3303	if (S_ISDIR(inode->i_mode))
3304		return 0;
3305	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3306		if (mask & MAY_NOT_BLOCK)
3307			return -ECHILD;
3308		ret = __nfs_revalidate_inode(server, inode);
3309	}
3310	if (ret == 0 && !execute_ok(inode))
3311		ret = -EACCES;
3312	return ret;
3313}
3314
3315int nfs_permission(struct mnt_idmap *idmap,
3316		   struct inode *inode,
3317		   int mask)
3318{
3319	const struct cred *cred = current_cred();
3320	int res = 0;
3321
3322	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3323
3324	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3325		goto out;
3326	/* Is this sys_access() ? */
3327	if (mask & (MAY_ACCESS | MAY_CHDIR))
3328		goto force_lookup;
3329
3330	switch (inode->i_mode & S_IFMT) {
3331		case S_IFLNK:
3332			goto out;
3333		case S_IFREG:
3334			if ((mask & MAY_OPEN) &&
3335			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3336				return 0;
3337			break;
3338		case S_IFDIR:
3339			/*
3340			 * Optimize away all write operations, since the server
3341			 * will check permissions when we perform the op.
3342			 */
3343			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3344				goto out;
3345	}
3346
3347force_lookup:
3348	if (!NFS_PROTO(inode)->access)
3349		goto out_notsup;
3350
3351	res = nfs_do_access(inode, cred, mask);
3352out:
3353	if (!res && (mask & MAY_EXEC))
3354		res = nfs_execute_ok(inode, mask);
3355
3356	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3357		inode->i_sb->s_id, inode->i_ino, mask, res);
3358	return res;
3359out_notsup:
3360	if (mask & MAY_NOT_BLOCK)
3361		return -ECHILD;
3362
3363	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3364						  NFS_INO_INVALID_OTHER);
3365	if (res == 0)
3366		res = generic_permission(&nop_mnt_idmap, inode, mask);
3367	goto out;
3368}
3369EXPORT_SYMBOL_GPL(nfs_permission);
3370