1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 *             http://www.samsung.com/
7 */
8#ifndef _LINUX_F2FS_H
9#define _LINUX_F2FS_H
10
11#include <linux/uio.h>
12#include <linux/types.h>
13#include <linux/page-flags.h>
14#include <linux/buffer_head.h>
15#include <linux/slab.h>
16#include <linux/crc32.h>
17#include <linux/magic.h>
18#include <linux/kobject.h>
19#include <linux/sched.h>
20#include <linux/cred.h>
21#include <linux/sched/mm.h>
22#include <linux/vmalloc.h>
23#include <linux/bio.h>
24#include <linux/blkdev.h>
25#include <linux/quotaops.h>
26#include <linux/part_stat.h>
27#include <linux/rw_hint.h>
28#include <crypto/hash.h>
29
30#include <linux/fscrypt.h>
31#include <linux/fsverity.h>
32
33struct pagevec;
34
35#ifdef CONFIG_F2FS_CHECK_FS
36#define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
37#else
38#define f2fs_bug_on(sbi, condition)					\
39	do {								\
40		if (WARN_ON(condition))					\
41			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
42	} while (0)
43#endif
44
45enum {
46	FAULT_KMALLOC,
47	FAULT_KVMALLOC,
48	FAULT_PAGE_ALLOC,
49	FAULT_PAGE_GET,
50	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
51	FAULT_ALLOC_NID,
52	FAULT_ORPHAN,
53	FAULT_BLOCK,
54	FAULT_DIR_DEPTH,
55	FAULT_EVICT_INODE,
56	FAULT_TRUNCATE,
57	FAULT_READ_IO,
58	FAULT_CHECKPOINT,
59	FAULT_DISCARD,
60	FAULT_WRITE_IO,
61	FAULT_SLAB_ALLOC,
62	FAULT_DQUOT_INIT,
63	FAULT_LOCK_OP,
64	FAULT_BLKADDR_VALIDITY,
65	FAULT_BLKADDR_CONSISTENCE,
66	FAULT_NO_SEGMENT,
67	FAULT_MAX,
68};
69
70#ifdef CONFIG_F2FS_FAULT_INJECTION
71#define F2FS_ALL_FAULT_TYPE		(GENMASK(FAULT_MAX - 1, 0))
72
73struct f2fs_fault_info {
74	atomic_t inject_ops;
75	int inject_rate;
76	unsigned int inject_type;
77};
78
79extern const char *f2fs_fault_name[FAULT_MAX];
80#define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
81
82/* maximum retry count for injected failure */
83#define DEFAULT_FAILURE_RETRY_COUNT		8
84#else
85#define DEFAULT_FAILURE_RETRY_COUNT		1
86#endif
87
88/*
89 * For mount options
90 */
91#define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000001
92#define F2FS_MOUNT_DISCARD		0x00000002
93#define F2FS_MOUNT_NOHEAP		0x00000004
94#define F2FS_MOUNT_XATTR_USER		0x00000008
95#define F2FS_MOUNT_POSIX_ACL		0x00000010
96#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000020
97#define F2FS_MOUNT_INLINE_XATTR		0x00000040
98#define F2FS_MOUNT_INLINE_DATA		0x00000080
99#define F2FS_MOUNT_INLINE_DENTRY	0x00000100
100#define F2FS_MOUNT_FLUSH_MERGE		0x00000200
101#define F2FS_MOUNT_NOBARRIER		0x00000400
102#define F2FS_MOUNT_FASTBOOT		0x00000800
103#define F2FS_MOUNT_READ_EXTENT_CACHE	0x00001000
104#define F2FS_MOUNT_DATA_FLUSH		0x00002000
105#define F2FS_MOUNT_FAULT_INJECTION	0x00004000
106#define F2FS_MOUNT_USRQUOTA		0x00008000
107#define F2FS_MOUNT_GRPQUOTA		0x00010000
108#define F2FS_MOUNT_PRJQUOTA		0x00020000
109#define F2FS_MOUNT_QUOTA		0x00040000
110#define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00080000
111#define F2FS_MOUNT_RESERVE_ROOT		0x00100000
112#define F2FS_MOUNT_DISABLE_CHECKPOINT	0x00200000
113#define F2FS_MOUNT_NORECOVERY		0x00400000
114#define F2FS_MOUNT_ATGC			0x00800000
115#define F2FS_MOUNT_MERGE_CHECKPOINT	0x01000000
116#define	F2FS_MOUNT_GC_MERGE		0x02000000
117#define F2FS_MOUNT_COMPRESS_CACHE	0x04000000
118#define F2FS_MOUNT_AGE_EXTENT_CACHE	0x08000000
119
120#define F2FS_OPTION(sbi)	((sbi)->mount_opt)
121#define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
122#define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
123#define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
124
125#define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
126		typecheck(unsigned long long, b) &&			\
127		((long long)((a) - (b)) > 0))
128
129typedef u32 block_t;	/*
130			 * should not change u32, since it is the on-disk block
131			 * address format, __le32.
132			 */
133typedef u32 nid_t;
134
135#define COMPRESS_EXT_NUM		16
136
137/*
138 * An implementation of an rwsem that is explicitly unfair to readers. This
139 * prevents priority inversion when a low-priority reader acquires the read lock
140 * while sleeping on the write lock but the write lock is needed by
141 * higher-priority clients.
142 */
143
144struct f2fs_rwsem {
145        struct rw_semaphore internal_rwsem;
146#ifdef CONFIG_F2FS_UNFAIR_RWSEM
147        wait_queue_head_t read_waiters;
148#endif
149};
150
151struct f2fs_mount_info {
152	unsigned int opt;
153	block_t root_reserved_blocks;	/* root reserved blocks */
154	kuid_t s_resuid;		/* reserved blocks for uid */
155	kgid_t s_resgid;		/* reserved blocks for gid */
156	int active_logs;		/* # of active logs */
157	int inline_xattr_size;		/* inline xattr size */
158#ifdef CONFIG_F2FS_FAULT_INJECTION
159	struct f2fs_fault_info fault_info;	/* For fault injection */
160#endif
161#ifdef CONFIG_QUOTA
162	/* Names of quota files with journalled quota */
163	char *s_qf_names[MAXQUOTAS];
164	int s_jquota_fmt;			/* Format of quota to use */
165#endif
166	/* For which write hints are passed down to block layer */
167	int alloc_mode;			/* segment allocation policy */
168	int fsync_mode;			/* fsync policy */
169	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
170	int bggc_mode;			/* bggc mode: off, on or sync */
171	int memory_mode;		/* memory mode */
172	int errors;			/* errors parameter */
173	int discard_unit;		/*
174					 * discard command's offset/size should
175					 * be aligned to this unit: block,
176					 * segment or section
177					 */
178	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
179	block_t unusable_cap_perc;	/* percentage for cap */
180	block_t unusable_cap;		/* Amount of space allowed to be
181					 * unusable when disabling checkpoint
182					 */
183
184	/* For compression */
185	unsigned char compress_algorithm;	/* algorithm type */
186	unsigned char compress_log_size;	/* cluster log size */
187	unsigned char compress_level;		/* compress level */
188	bool compress_chksum;			/* compressed data chksum */
189	unsigned char compress_ext_cnt;		/* extension count */
190	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
191	int compress_mode;			/* compression mode */
192	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
193	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
194};
195
196#define F2FS_FEATURE_ENCRYPT			0x00000001
197#define F2FS_FEATURE_BLKZONED			0x00000002
198#define F2FS_FEATURE_ATOMIC_WRITE		0x00000004
199#define F2FS_FEATURE_EXTRA_ATTR			0x00000008
200#define F2FS_FEATURE_PRJQUOTA			0x00000010
201#define F2FS_FEATURE_INODE_CHKSUM		0x00000020
202#define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x00000040
203#define F2FS_FEATURE_QUOTA_INO			0x00000080
204#define F2FS_FEATURE_INODE_CRTIME		0x00000100
205#define F2FS_FEATURE_LOST_FOUND			0x00000200
206#define F2FS_FEATURE_VERITY			0x00000400
207#define F2FS_FEATURE_SB_CHKSUM			0x00000800
208#define F2FS_FEATURE_CASEFOLD			0x00001000
209#define F2FS_FEATURE_COMPRESSION		0x00002000
210#define F2FS_FEATURE_RO				0x00004000
211
212#define __F2FS_HAS_FEATURE(raw_super, mask)				\
213	((raw_super->feature & cpu_to_le32(mask)) != 0)
214#define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
215
216/*
217 * Default values for user and/or group using reserved blocks
218 */
219#define	F2FS_DEF_RESUID		0
220#define	F2FS_DEF_RESGID		0
221
222/*
223 * For checkpoint manager
224 */
225enum {
226	NAT_BITMAP,
227	SIT_BITMAP
228};
229
230#define	CP_UMOUNT	0x00000001
231#define	CP_FASTBOOT	0x00000002
232#define	CP_SYNC		0x00000004
233#define	CP_RECOVERY	0x00000008
234#define	CP_DISCARD	0x00000010
235#define CP_TRIMMED	0x00000020
236#define CP_PAUSE	0x00000040
237#define CP_RESIZE 	0x00000080
238
239#define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
240#define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
241#define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
242#define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
243#define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
244#define DEF_CP_INTERVAL			60	/* 60 secs */
245#define DEF_IDLE_INTERVAL		5	/* 5 secs */
246#define DEF_DISABLE_INTERVAL		5	/* 5 secs */
247#define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
248#define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
249
250struct cp_control {
251	int reason;
252	__u64 trim_start;
253	__u64 trim_end;
254	__u64 trim_minlen;
255};
256
257/*
258 * indicate meta/data type
259 */
260enum {
261	META_CP,
262	META_NAT,
263	META_SIT,
264	META_SSA,
265	META_MAX,
266	META_POR,
267	DATA_GENERIC,		/* check range only */
268	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
269	DATA_GENERIC_ENHANCE_READ,	/*
270					 * strong check on range and segment
271					 * bitmap but no warning due to race
272					 * condition of read on truncated area
273					 * by extent_cache
274					 */
275	DATA_GENERIC_ENHANCE_UPDATE,	/*
276					 * strong check on range and segment
277					 * bitmap for update case
278					 */
279	META_GENERIC,
280};
281
282/* for the list of ino */
283enum {
284	ORPHAN_INO,		/* for orphan ino list */
285	APPEND_INO,		/* for append ino list */
286	UPDATE_INO,		/* for update ino list */
287	TRANS_DIR_INO,		/* for transactions dir ino list */
288	FLUSH_INO,		/* for multiple device flushing */
289	MAX_INO_ENTRY,		/* max. list */
290};
291
292struct ino_entry {
293	struct list_head list;		/* list head */
294	nid_t ino;			/* inode number */
295	unsigned int dirty_device;	/* dirty device bitmap */
296};
297
298/* for the list of inodes to be GCed */
299struct inode_entry {
300	struct list_head list;	/* list head */
301	struct inode *inode;	/* vfs inode pointer */
302};
303
304struct fsync_node_entry {
305	struct list_head list;	/* list head */
306	struct page *page;	/* warm node page pointer */
307	unsigned int seq_id;	/* sequence id */
308};
309
310struct ckpt_req {
311	struct completion wait;		/* completion for checkpoint done */
312	struct llist_node llnode;	/* llist_node to be linked in wait queue */
313	int ret;			/* return code of checkpoint */
314	ktime_t queue_time;		/* request queued time */
315};
316
317struct ckpt_req_control {
318	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
319	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
320	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
321	atomic_t issued_ckpt;		/* # of actually issued ckpts */
322	atomic_t total_ckpt;		/* # of total ckpts */
323	atomic_t queued_ckpt;		/* # of queued ckpts */
324	struct llist_head issue_list;	/* list for command issue */
325	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
326	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
327	unsigned int peak_time;		/* peak wait time in msec until now */
328};
329
330/* for the bitmap indicate blocks to be discarded */
331struct discard_entry {
332	struct list_head list;	/* list head */
333	block_t start_blkaddr;	/* start blockaddr of current segment */
334	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
335};
336
337/* minimum discard granularity, unit: block count */
338#define MIN_DISCARD_GRANULARITY		1
339/* default discard granularity of inner discard thread, unit: block count */
340#define DEFAULT_DISCARD_GRANULARITY		16
341/* default maximum discard granularity of ordered discard, unit: block count */
342#define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
343
344/* max discard pend list number */
345#define MAX_PLIST_NUM		512
346#define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
347					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
348
349enum {
350	D_PREP,			/* initial */
351	D_PARTIAL,		/* partially submitted */
352	D_SUBMIT,		/* all submitted */
353	D_DONE,			/* finished */
354};
355
356struct discard_info {
357	block_t lstart;			/* logical start address */
358	block_t len;			/* length */
359	block_t start;			/* actual start address in dev */
360};
361
362struct discard_cmd {
363	struct rb_node rb_node;		/* rb node located in rb-tree */
364	struct discard_info di;		/* discard info */
365	struct list_head list;		/* command list */
366	struct completion wait;		/* compleation */
367	struct block_device *bdev;	/* bdev */
368	unsigned short ref;		/* reference count */
369	unsigned char state;		/* state */
370	unsigned char queued;		/* queued discard */
371	int error;			/* bio error */
372	spinlock_t lock;		/* for state/bio_ref updating */
373	unsigned short bio_ref;		/* bio reference count */
374};
375
376enum {
377	DPOLICY_BG,
378	DPOLICY_FORCE,
379	DPOLICY_FSTRIM,
380	DPOLICY_UMOUNT,
381	MAX_DPOLICY,
382};
383
384enum {
385	DPOLICY_IO_AWARE_DISABLE,	/* force to not be aware of IO */
386	DPOLICY_IO_AWARE_ENABLE,	/* force to be aware of IO */
387	DPOLICY_IO_AWARE_MAX,
388};
389
390struct discard_policy {
391	int type;			/* type of discard */
392	unsigned int min_interval;	/* used for candidates exist */
393	unsigned int mid_interval;	/* used for device busy */
394	unsigned int max_interval;	/* used for candidates not exist */
395	unsigned int max_requests;	/* # of discards issued per round */
396	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
397	bool io_aware;			/* issue discard in idle time */
398	bool sync;			/* submit discard with REQ_SYNC flag */
399	bool ordered;			/* issue discard by lba order */
400	bool timeout;			/* discard timeout for put_super */
401	unsigned int granularity;	/* discard granularity */
402};
403
404struct discard_cmd_control {
405	struct task_struct *f2fs_issue_discard;	/* discard thread */
406	struct list_head entry_list;		/* 4KB discard entry list */
407	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
408	struct list_head wait_list;		/* store on-flushing entries */
409	struct list_head fstrim_list;		/* in-flight discard from fstrim */
410	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
411	struct mutex cmd_lock;
412	unsigned int nr_discards;		/* # of discards in the list */
413	unsigned int max_discards;		/* max. discards to be issued */
414	unsigned int max_discard_request;	/* max. discard request per round */
415	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
416	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
417	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
418	unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
419	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
420	unsigned int discard_granularity;	/* discard granularity */
421	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
422	unsigned int discard_io_aware;		/* io_aware policy */
423	unsigned int undiscard_blks;		/* # of undiscard blocks */
424	unsigned int next_pos;			/* next discard position */
425	atomic_t issued_discard;		/* # of issued discard */
426	atomic_t queued_discard;		/* # of queued discard */
427	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
428	struct rb_root_cached root;		/* root of discard rb-tree */
429	bool rbtree_check;			/* config for consistence check */
430	bool discard_wake;			/* to wake up discard thread */
431};
432
433/* for the list of fsync inodes, used only during recovery */
434struct fsync_inode_entry {
435	struct list_head list;	/* list head */
436	struct inode *inode;	/* vfs inode pointer */
437	block_t blkaddr;	/* block address locating the last fsync */
438	block_t last_dentry;	/* block address locating the last dentry */
439};
440
441#define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
442#define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
443
444#define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
445#define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
446#define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
447#define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
448
449#define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
450#define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
451
452static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
453{
454	int before = nats_in_cursum(journal);
455
456	journal->n_nats = cpu_to_le16(before + i);
457	return before;
458}
459
460static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
461{
462	int before = sits_in_cursum(journal);
463
464	journal->n_sits = cpu_to_le16(before + i);
465	return before;
466}
467
468static inline bool __has_cursum_space(struct f2fs_journal *journal,
469							int size, int type)
470{
471	if (type == NAT_JOURNAL)
472		return size <= MAX_NAT_JENTRIES(journal);
473	return size <= MAX_SIT_JENTRIES(journal);
474}
475
476/* for inline stuff */
477#define DEF_INLINE_RESERVED_SIZE	1
478static inline int get_extra_isize(struct inode *inode);
479static inline int get_inline_xattr_addrs(struct inode *inode);
480#define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
481				(CUR_ADDRS_PER_INODE(inode) -		\
482				get_inline_xattr_addrs(inode) -	\
483				DEF_INLINE_RESERVED_SIZE))
484
485/* for inline dir */
486#define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
487				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
488				BITS_PER_BYTE + 1))
489#define INLINE_DENTRY_BITMAP_SIZE(inode) \
490	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
491#define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
492				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
493				NR_INLINE_DENTRY(inode) + \
494				INLINE_DENTRY_BITMAP_SIZE(inode)))
495
496/*
497 * For INODE and NODE manager
498 */
499/* for directory operations */
500
501struct f2fs_filename {
502	/*
503	 * The filename the user specified.  This is NULL for some
504	 * filesystem-internal operations, e.g. converting an inline directory
505	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
506	 */
507	const struct qstr *usr_fname;
508
509	/*
510	 * The on-disk filename.  For encrypted directories, this is encrypted.
511	 * This may be NULL for lookups in an encrypted dir without the key.
512	 */
513	struct fscrypt_str disk_name;
514
515	/* The dirhash of this filename */
516	f2fs_hash_t hash;
517
518#ifdef CONFIG_FS_ENCRYPTION
519	/*
520	 * For lookups in encrypted directories: either the buffer backing
521	 * disk_name, or a buffer that holds the decoded no-key name.
522	 */
523	struct fscrypt_str crypto_buf;
524#endif
525#if IS_ENABLED(CONFIG_UNICODE)
526	/*
527	 * For casefolded directories: the casefolded name, but it's left NULL
528	 * if the original name is not valid Unicode, if the original name is
529	 * "." or "..", if the directory is both casefolded and encrypted and
530	 * its encryption key is unavailable, or if the filesystem is doing an
531	 * internal operation where usr_fname is also NULL.  In all these cases
532	 * we fall back to treating the name as an opaque byte sequence.
533	 */
534	struct fscrypt_str cf_name;
535#endif
536};
537
538struct f2fs_dentry_ptr {
539	struct inode *inode;
540	void *bitmap;
541	struct f2fs_dir_entry *dentry;
542	__u8 (*filename)[F2FS_SLOT_LEN];
543	int max;
544	int nr_bitmap;
545};
546
547static inline void make_dentry_ptr_block(struct inode *inode,
548		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
549{
550	d->inode = inode;
551	d->max = NR_DENTRY_IN_BLOCK;
552	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
553	d->bitmap = t->dentry_bitmap;
554	d->dentry = t->dentry;
555	d->filename = t->filename;
556}
557
558static inline void make_dentry_ptr_inline(struct inode *inode,
559					struct f2fs_dentry_ptr *d, void *t)
560{
561	int entry_cnt = NR_INLINE_DENTRY(inode);
562	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
563	int reserved_size = INLINE_RESERVED_SIZE(inode);
564
565	d->inode = inode;
566	d->max = entry_cnt;
567	d->nr_bitmap = bitmap_size;
568	d->bitmap = t;
569	d->dentry = t + bitmap_size + reserved_size;
570	d->filename = t + bitmap_size + reserved_size +
571					SIZE_OF_DIR_ENTRY * entry_cnt;
572}
573
574/*
575 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
576 * as its node offset to distinguish from index node blocks.
577 * But some bits are used to mark the node block.
578 */
579#define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
580				>> OFFSET_BIT_SHIFT)
581enum {
582	ALLOC_NODE,			/* allocate a new node page if needed */
583	LOOKUP_NODE,			/* look up a node without readahead */
584	LOOKUP_NODE_RA,			/*
585					 * look up a node with readahead called
586					 * by get_data_block.
587					 */
588};
589
590#define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
591
592/* congestion wait timeout value, default: 20ms */
593#define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
594
595/* maximum retry quota flush count */
596#define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
597
598/* maximum retry of EIO'ed page */
599#define MAX_RETRY_PAGE_EIO			100
600
601#define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
602
603#define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
604
605/* dirty segments threshold for triggering CP */
606#define DEFAULT_DIRTY_THRESHOLD		4
607
608#define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
609#define RECOVERY_MIN_RA_BLOCKS		1
610
611#define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
612
613/* for in-memory extent cache entry */
614#define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
615
616/* number of extent info in extent cache we try to shrink */
617#define READ_EXTENT_CACHE_SHRINK_NUMBER	128
618
619/* number of age extent info in extent cache we try to shrink */
620#define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
621#define LAST_AGE_WEIGHT			30
622#define SAME_AGE_REGION			1024
623
624/*
625 * Define data block with age less than 1GB as hot data
626 * define data block with age less than 10GB but more than 1GB as warm data
627 */
628#define DEF_HOT_DATA_AGE_THRESHOLD	262144
629#define DEF_WARM_DATA_AGE_THRESHOLD	2621440
630
631/* extent cache type */
632enum extent_type {
633	EX_READ,
634	EX_BLOCK_AGE,
635	NR_EXTENT_CACHES,
636};
637
638struct extent_info {
639	unsigned int fofs;		/* start offset in a file */
640	unsigned int len;		/* length of the extent */
641	union {
642		/* read extent_cache */
643		struct {
644			/* start block address of the extent */
645			block_t blk;
646#ifdef CONFIG_F2FS_FS_COMPRESSION
647			/* physical extent length of compressed blocks */
648			unsigned int c_len;
649#endif
650		};
651		/* block age extent_cache */
652		struct {
653			/* block age of the extent */
654			unsigned long long age;
655			/* last total blocks allocated */
656			unsigned long long last_blocks;
657		};
658	};
659};
660
661struct extent_node {
662	struct rb_node rb_node;		/* rb node located in rb-tree */
663	struct extent_info ei;		/* extent info */
664	struct list_head list;		/* node in global extent list of sbi */
665	struct extent_tree *et;		/* extent tree pointer */
666};
667
668struct extent_tree {
669	nid_t ino;			/* inode number */
670	enum extent_type type;		/* keep the extent tree type */
671	struct rb_root_cached root;	/* root of extent info rb-tree */
672	struct extent_node *cached_en;	/* recently accessed extent node */
673	struct list_head list;		/* to be used by sbi->zombie_list */
674	rwlock_t lock;			/* protect extent info rb-tree */
675	atomic_t node_cnt;		/* # of extent node in rb-tree*/
676	bool largest_updated;		/* largest extent updated */
677	struct extent_info largest;	/* largest cached extent for EX_READ */
678};
679
680struct extent_tree_info {
681	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
682	struct mutex extent_tree_lock;	/* locking extent radix tree */
683	struct list_head extent_list;		/* lru list for shrinker */
684	spinlock_t extent_lock;			/* locking extent lru list */
685	atomic_t total_ext_tree;		/* extent tree count */
686	struct list_head zombie_list;		/* extent zombie tree list */
687	atomic_t total_zombie_tree;		/* extent zombie tree count */
688	atomic_t total_ext_node;		/* extent info count */
689};
690
691/*
692 * State of block returned by f2fs_map_blocks.
693 */
694#define F2FS_MAP_NEW		(1U << 0)
695#define F2FS_MAP_MAPPED		(1U << 1)
696#define F2FS_MAP_DELALLOC	(1U << 2)
697#define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
698				F2FS_MAP_DELALLOC)
699
700struct f2fs_map_blocks {
701	struct block_device *m_bdev;	/* for multi-device dio */
702	block_t m_pblk;
703	block_t m_lblk;
704	unsigned int m_len;
705	unsigned int m_flags;
706	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
707	pgoff_t *m_next_extent;		/* point to next possible extent */
708	int m_seg_type;
709	bool m_may_create;		/* indicate it is from write path */
710	bool m_multidev_dio;		/* indicate it allows multi-device dio */
711};
712
713/* for flag in get_data_block */
714enum {
715	F2FS_GET_BLOCK_DEFAULT,
716	F2FS_GET_BLOCK_FIEMAP,
717	F2FS_GET_BLOCK_BMAP,
718	F2FS_GET_BLOCK_DIO,
719	F2FS_GET_BLOCK_PRE_DIO,
720	F2FS_GET_BLOCK_PRE_AIO,
721	F2FS_GET_BLOCK_PRECACHE,
722};
723
724/*
725 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
726 */
727#define FADVISE_COLD_BIT	0x01
728#define FADVISE_LOST_PINO_BIT	0x02
729#define FADVISE_ENCRYPT_BIT	0x04
730#define FADVISE_ENC_NAME_BIT	0x08
731#define FADVISE_KEEP_SIZE_BIT	0x10
732#define FADVISE_HOT_BIT		0x20
733#define FADVISE_VERITY_BIT	0x40
734#define FADVISE_TRUNC_BIT	0x80
735
736#define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
737
738#define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
739#define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
740#define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
741
742#define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
743#define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
744#define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
745
746#define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
747#define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
748
749#define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
750#define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
751
752#define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
753#define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
754
755#define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
756#define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
757#define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
758
759#define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
760#define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
761
762#define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
763#define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
764#define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
765
766#define DEF_DIR_LEVEL		0
767
768/* used for f2fs_inode_info->flags */
769enum {
770	FI_NEW_INODE,		/* indicate newly allocated inode */
771	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
772	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
773	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
774	FI_INC_LINK,		/* need to increment i_nlink */
775	FI_ACL_MODE,		/* indicate acl mode */
776	FI_NO_ALLOC,		/* should not allocate any blocks */
777	FI_FREE_NID,		/* free allocated nide */
778	FI_NO_EXTENT,		/* not to use the extent cache */
779	FI_INLINE_XATTR,	/* used for inline xattr */
780	FI_INLINE_DATA,		/* used for inline data*/
781	FI_INLINE_DENTRY,	/* used for inline dentry */
782	FI_APPEND_WRITE,	/* inode has appended data */
783	FI_UPDATE_WRITE,	/* inode has in-place-update data */
784	FI_NEED_IPU,		/* used for ipu per file */
785	FI_ATOMIC_FILE,		/* indicate atomic file */
786	FI_DATA_EXIST,		/* indicate data exists */
787	FI_INLINE_DOTS,		/* indicate inline dot dentries */
788	FI_SKIP_WRITES,		/* should skip data page writeback */
789	FI_OPU_WRITE,		/* used for opu per file */
790	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
791	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
792	FI_HOT_DATA,		/* indicate file is hot */
793	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
794	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
795	FI_PIN_FILE,		/* indicate file should not be gced */
796	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
797	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
798	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
799	FI_MMAP_FILE,		/* indicate file was mmapped */
800	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
801	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
802	FI_ALIGNED_WRITE,	/* enable aligned write */
803	FI_COW_FILE,		/* indicate COW file */
804	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
805	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
806	FI_MAX,			/* max flag, never be used */
807};
808
809struct f2fs_inode_info {
810	struct inode vfs_inode;		/* serve a vfs inode */
811	unsigned long i_flags;		/* keep an inode flags for ioctl */
812	unsigned char i_advise;		/* use to give file attribute hints */
813	unsigned char i_dir_level;	/* use for dentry level for large dir */
814	union {
815		unsigned int i_current_depth;	/* only for directory depth */
816		unsigned short i_gc_failures;	/* for gc failure statistic */
817	};
818	unsigned int i_pino;		/* parent inode number */
819	umode_t i_acl_mode;		/* keep file acl mode temporarily */
820
821	/* Use below internally in f2fs*/
822	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
823	struct f2fs_rwsem i_sem;	/* protect fi info */
824	atomic_t dirty_pages;		/* # of dirty pages */
825	f2fs_hash_t chash;		/* hash value of given file name */
826	unsigned int clevel;		/* maximum level of given file name */
827	struct task_struct *task;	/* lookup and create consistency */
828	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
829	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
830	nid_t i_xattr_nid;		/* node id that contains xattrs */
831	loff_t	last_disk_size;		/* lastly written file size */
832	spinlock_t i_size_lock;		/* protect last_disk_size */
833
834#ifdef CONFIG_QUOTA
835	struct dquot __rcu *i_dquot[MAXQUOTAS];
836
837	/* quota space reservation, managed internally by quota code */
838	qsize_t i_reserved_quota;
839#endif
840	struct list_head dirty_list;	/* dirty list for dirs and files */
841	struct list_head gdirty_list;	/* linked in global dirty list */
842	struct task_struct *atomic_write_task;	/* store atomic write task */
843	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
844					/* cached extent_tree entry */
845	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
846
847	/* avoid racing between foreground op and gc */
848	struct f2fs_rwsem i_gc_rwsem[2];
849	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
850
851	int i_extra_isize;		/* size of extra space located in i_addr */
852	kprojid_t i_projid;		/* id for project quota */
853	int i_inline_xattr_size;	/* inline xattr size */
854	struct timespec64 i_crtime;	/* inode creation time */
855	struct timespec64 i_disk_time[3];/* inode disk times */
856
857	/* for file compress */
858	atomic_t i_compr_blocks;		/* # of compressed blocks */
859	unsigned char i_compress_algorithm;	/* algorithm type */
860	unsigned char i_log_cluster_size;	/* log of cluster size */
861	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
862	unsigned char i_compress_flag;		/* compress flag */
863	unsigned int i_cluster_size;		/* cluster size */
864
865	unsigned int atomic_write_cnt;
866	loff_t original_i_size;		/* original i_size before atomic write */
867};
868
869static inline void get_read_extent_info(struct extent_info *ext,
870					struct f2fs_extent *i_ext)
871{
872	ext->fofs = le32_to_cpu(i_ext->fofs);
873	ext->blk = le32_to_cpu(i_ext->blk);
874	ext->len = le32_to_cpu(i_ext->len);
875}
876
877static inline void set_raw_read_extent(struct extent_info *ext,
878					struct f2fs_extent *i_ext)
879{
880	i_ext->fofs = cpu_to_le32(ext->fofs);
881	i_ext->blk = cpu_to_le32(ext->blk);
882	i_ext->len = cpu_to_le32(ext->len);
883}
884
885static inline bool __is_discard_mergeable(struct discard_info *back,
886			struct discard_info *front, unsigned int max_len)
887{
888	return (back->lstart + back->len == front->lstart) &&
889		(back->len + front->len <= max_len);
890}
891
892static inline bool __is_discard_back_mergeable(struct discard_info *cur,
893			struct discard_info *back, unsigned int max_len)
894{
895	return __is_discard_mergeable(back, cur, max_len);
896}
897
898static inline bool __is_discard_front_mergeable(struct discard_info *cur,
899			struct discard_info *front, unsigned int max_len)
900{
901	return __is_discard_mergeable(cur, front, max_len);
902}
903
904/*
905 * For free nid management
906 */
907enum nid_state {
908	FREE_NID,		/* newly added to free nid list */
909	PREALLOC_NID,		/* it is preallocated */
910	MAX_NID_STATE,
911};
912
913enum nat_state {
914	TOTAL_NAT,
915	DIRTY_NAT,
916	RECLAIMABLE_NAT,
917	MAX_NAT_STATE,
918};
919
920struct f2fs_nm_info {
921	block_t nat_blkaddr;		/* base disk address of NAT */
922	nid_t max_nid;			/* maximum possible node ids */
923	nid_t available_nids;		/* # of available node ids */
924	nid_t next_scan_nid;		/* the next nid to be scanned */
925	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
926	unsigned int ram_thresh;	/* control the memory footprint */
927	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
928	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
929
930	/* NAT cache management */
931	struct radix_tree_root nat_root;/* root of the nat entry cache */
932	struct radix_tree_root nat_set_root;/* root of the nat set cache */
933	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
934	struct list_head nat_entries;	/* cached nat entry list (clean) */
935	spinlock_t nat_list_lock;	/* protect clean nat entry list */
936	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
937	unsigned int nat_blocks;	/* # of nat blocks */
938
939	/* free node ids management */
940	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
941	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
942	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
943	spinlock_t nid_list_lock;	/* protect nid lists ops */
944	struct mutex build_lock;	/* lock for build free nids */
945	unsigned char **free_nid_bitmap;
946	unsigned char *nat_block_bitmap;
947	unsigned short *free_nid_count;	/* free nid count of NAT block */
948
949	/* for checkpoint */
950	char *nat_bitmap;		/* NAT bitmap pointer */
951
952	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
953	unsigned char *nat_bits;	/* NAT bits blocks */
954	unsigned char *full_nat_bits;	/* full NAT pages */
955	unsigned char *empty_nat_bits;	/* empty NAT pages */
956#ifdef CONFIG_F2FS_CHECK_FS
957	char *nat_bitmap_mir;		/* NAT bitmap mirror */
958#endif
959	int bitmap_size;		/* bitmap size */
960};
961
962/*
963 * this structure is used as one of function parameters.
964 * all the information are dedicated to a given direct node block determined
965 * by the data offset in a file.
966 */
967struct dnode_of_data {
968	struct inode *inode;		/* vfs inode pointer */
969	struct page *inode_page;	/* its inode page, NULL is possible */
970	struct page *node_page;		/* cached direct node page */
971	nid_t nid;			/* node id of the direct node block */
972	unsigned int ofs_in_node;	/* data offset in the node page */
973	bool inode_page_locked;		/* inode page is locked or not */
974	bool node_changed;		/* is node block changed */
975	char cur_level;			/* level of hole node page */
976	char max_level;			/* level of current page located */
977	block_t	data_blkaddr;		/* block address of the node block */
978};
979
980static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
981		struct page *ipage, struct page *npage, nid_t nid)
982{
983	memset(dn, 0, sizeof(*dn));
984	dn->inode = inode;
985	dn->inode_page = ipage;
986	dn->node_page = npage;
987	dn->nid = nid;
988}
989
990/*
991 * For SIT manager
992 *
993 * By default, there are 6 active log areas across the whole main area.
994 * When considering hot and cold data separation to reduce cleaning overhead,
995 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
996 * respectively.
997 * In the current design, you should not change the numbers intentionally.
998 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
999 * logs individually according to the underlying devices. (default: 6)
1000 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1001 * data and 8 for node logs.
1002 */
1003#define	NR_CURSEG_DATA_TYPE	(3)
1004#define NR_CURSEG_NODE_TYPE	(3)
1005#define NR_CURSEG_INMEM_TYPE	(2)
1006#define NR_CURSEG_RO_TYPE	(2)
1007#define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1008#define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1009
1010enum {
1011	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1012	CURSEG_WARM_DATA,	/* data blocks */
1013	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1014	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1015	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1016	CURSEG_COLD_NODE,	/* indirect node blocks */
1017	NR_PERSISTENT_LOG,	/* number of persistent log */
1018	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1019				/* pinned file that needs consecutive block address */
1020	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1021	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1022};
1023
1024struct flush_cmd {
1025	struct completion wait;
1026	struct llist_node llnode;
1027	nid_t ino;
1028	int ret;
1029};
1030
1031struct flush_cmd_control {
1032	struct task_struct *f2fs_issue_flush;	/* flush thread */
1033	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1034	atomic_t issued_flush;			/* # of issued flushes */
1035	atomic_t queued_flush;			/* # of queued flushes */
1036	struct llist_head issue_list;		/* list for command issue */
1037	struct llist_node *dispatch_list;	/* list for command dispatch */
1038};
1039
1040struct f2fs_sm_info {
1041	struct sit_info *sit_info;		/* whole segment information */
1042	struct free_segmap_info *free_info;	/* free segment information */
1043	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1044	struct curseg_info *curseg_array;	/* active segment information */
1045
1046	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1047
1048	block_t seg0_blkaddr;		/* block address of 0'th segment */
1049	block_t main_blkaddr;		/* start block address of main area */
1050	block_t ssa_blkaddr;		/* start block address of SSA area */
1051
1052	unsigned int segment_count;	/* total # of segments */
1053	unsigned int main_segments;	/* # of segments in main area */
1054	unsigned int reserved_segments;	/* # of reserved segments */
1055	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1056	unsigned int ovp_segments;	/* # of overprovision segments */
1057
1058	/* a threshold to reclaim prefree segments */
1059	unsigned int rec_prefree_segments;
1060
1061	struct list_head sit_entry_set;	/* sit entry set list */
1062
1063	unsigned int ipu_policy;	/* in-place-update policy */
1064	unsigned int min_ipu_util;	/* in-place-update threshold */
1065	unsigned int min_fsync_blocks;	/* threshold for fsync */
1066	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1067	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1068	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1069
1070	/* for flush command control */
1071	struct flush_cmd_control *fcc_info;
1072
1073	/* for discard command control */
1074	struct discard_cmd_control *dcc_info;
1075};
1076
1077/*
1078 * For superblock
1079 */
1080/*
1081 * COUNT_TYPE for monitoring
1082 *
1083 * f2fs monitors the number of several block types such as on-writeback,
1084 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1085 */
1086#define WB_DATA_TYPE(p, f)			\
1087	(f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1088enum count_type {
1089	F2FS_DIRTY_DENTS,
1090	F2FS_DIRTY_DATA,
1091	F2FS_DIRTY_QDATA,
1092	F2FS_DIRTY_NODES,
1093	F2FS_DIRTY_META,
1094	F2FS_DIRTY_IMETA,
1095	F2FS_WB_CP_DATA,
1096	F2FS_WB_DATA,
1097	F2FS_RD_DATA,
1098	F2FS_RD_NODE,
1099	F2FS_RD_META,
1100	F2FS_DIO_WRITE,
1101	F2FS_DIO_READ,
1102	NR_COUNT_TYPE,
1103};
1104
1105/*
1106 * The below are the page types of bios used in submit_bio().
1107 * The available types are:
1108 * DATA			User data pages. It operates as async mode.
1109 * NODE			Node pages. It operates as async mode.
1110 * META			FS metadata pages such as SIT, NAT, CP.
1111 * NR_PAGE_TYPE		The number of page types.
1112 * META_FLUSH		Make sure the previous pages are written
1113 *			with waiting the bio's completion
1114 * ...			Only can be used with META.
1115 */
1116#define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1117#define PAGE_TYPE_ON_MAIN(type)	((type) == DATA || (type) == NODE)
1118enum page_type {
1119	DATA = 0,
1120	NODE = 1,	/* should not change this */
1121	META,
1122	NR_PAGE_TYPE,
1123	META_FLUSH,
1124	IPU,		/* the below types are used by tracepoints only. */
1125	OPU,
1126};
1127
1128enum temp_type {
1129	HOT = 0,	/* must be zero for meta bio */
1130	WARM,
1131	COLD,
1132	NR_TEMP_TYPE,
1133};
1134
1135enum need_lock_type {
1136	LOCK_REQ = 0,
1137	LOCK_DONE,
1138	LOCK_RETRY,
1139};
1140
1141enum cp_reason_type {
1142	CP_NO_NEEDED,
1143	CP_NON_REGULAR,
1144	CP_COMPRESSED,
1145	CP_HARDLINK,
1146	CP_SB_NEED_CP,
1147	CP_WRONG_PINO,
1148	CP_NO_SPC_ROLL,
1149	CP_NODE_NEED_CP,
1150	CP_FASTBOOT_MODE,
1151	CP_SPEC_LOG_NUM,
1152	CP_RECOVER_DIR,
1153};
1154
1155enum iostat_type {
1156	/* WRITE IO */
1157	APP_DIRECT_IO,			/* app direct write IOs */
1158	APP_BUFFERED_IO,		/* app buffered write IOs */
1159	APP_WRITE_IO,			/* app write IOs */
1160	APP_MAPPED_IO,			/* app mapped IOs */
1161	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1162	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1163	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1164	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1165	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1166	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1167	FS_GC_DATA_IO,			/* data IOs from forground gc */
1168	FS_GC_NODE_IO,			/* node IOs from forground gc */
1169	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1170	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1171	FS_CP_META_IO,			/* meta IOs from checkpoint */
1172
1173	/* READ IO */
1174	APP_DIRECT_READ_IO,		/* app direct read IOs */
1175	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1176	APP_READ_IO,			/* app read IOs */
1177	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1178	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1179	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1180	FS_DATA_READ_IO,		/* data read IOs */
1181	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1182	FS_CDATA_READ_IO,		/* compressed data read IOs */
1183	FS_NODE_READ_IO,		/* node read IOs */
1184	FS_META_READ_IO,		/* meta read IOs */
1185
1186	/* other */
1187	FS_DISCARD_IO,			/* discard */
1188	FS_FLUSH_IO,			/* flush */
1189	FS_ZONE_RESET_IO,		/* zone reset */
1190	NR_IO_TYPE,
1191};
1192
1193struct f2fs_io_info {
1194	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1195	nid_t ino;		/* inode number */
1196	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1197	enum temp_type temp;	/* contains HOT/WARM/COLD */
1198	enum req_op op;		/* contains REQ_OP_ */
1199	blk_opf_t op_flags;	/* req_flag_bits */
1200	block_t new_blkaddr;	/* new block address to be written */
1201	block_t old_blkaddr;	/* old block address before Cow */
1202	struct page *page;	/* page to be written */
1203	struct page *encrypted_page;	/* encrypted page */
1204	struct page *compressed_page;	/* compressed page */
1205	struct list_head list;		/* serialize IOs */
1206	unsigned int compr_blocks;	/* # of compressed block addresses */
1207	unsigned int need_lock:8;	/* indicate we need to lock cp_rwsem */
1208	unsigned int version:8;		/* version of the node */
1209	unsigned int submitted:1;	/* indicate IO submission */
1210	unsigned int in_list:1;		/* indicate fio is in io_list */
1211	unsigned int is_por:1;		/* indicate IO is from recovery or not */
1212	unsigned int encrypted:1;	/* indicate file is encrypted */
1213	unsigned int post_read:1;	/* require post read */
1214	enum iostat_type io_type;	/* io type */
1215	struct writeback_control *io_wbc; /* writeback control */
1216	struct bio **bio;		/* bio for ipu */
1217	sector_t *last_block;		/* last block number in bio */
1218};
1219
1220struct bio_entry {
1221	struct bio *bio;
1222	struct list_head list;
1223};
1224
1225#define is_read_io(rw) ((rw) == READ)
1226struct f2fs_bio_info {
1227	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1228	struct bio *bio;		/* bios to merge */
1229	sector_t last_block_in_bio;	/* last block number */
1230	struct f2fs_io_info fio;	/* store buffered io info. */
1231#ifdef CONFIG_BLK_DEV_ZONED
1232	struct completion zone_wait;	/* condition value for the previous open zone to close */
1233	struct bio *zone_pending_bio;	/* pending bio for the previous zone */
1234	void *bi_private;		/* previous bi_private for pending bio */
1235#endif
1236	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1237	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1238	struct list_head io_list;	/* track fios */
1239	struct list_head bio_list;	/* bio entry list head */
1240	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1241};
1242
1243#define FDEV(i)				(sbi->devs[i])
1244#define RDEV(i)				(raw_super->devs[i])
1245struct f2fs_dev_info {
1246	struct file *bdev_file;
1247	struct block_device *bdev;
1248	char path[MAX_PATH_LEN];
1249	unsigned int total_segments;
1250	block_t start_blk;
1251	block_t end_blk;
1252#ifdef CONFIG_BLK_DEV_ZONED
1253	unsigned int nr_blkz;		/* Total number of zones */
1254	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1255#endif
1256};
1257
1258enum inode_type {
1259	DIR_INODE,			/* for dirty dir inode */
1260	FILE_INODE,			/* for dirty regular/symlink inode */
1261	DIRTY_META,			/* for all dirtied inode metadata */
1262	NR_INODE_TYPE,
1263};
1264
1265/* for inner inode cache management */
1266struct inode_management {
1267	struct radix_tree_root ino_root;	/* ino entry array */
1268	spinlock_t ino_lock;			/* for ino entry lock */
1269	struct list_head ino_list;		/* inode list head */
1270	unsigned long ino_num;			/* number of entries */
1271};
1272
1273/* for GC_AT */
1274struct atgc_management {
1275	bool atgc_enabled;			/* ATGC is enabled or not */
1276	struct rb_root_cached root;		/* root of victim rb-tree */
1277	struct list_head victim_list;		/* linked with all victim entries */
1278	unsigned int victim_count;		/* victim count in rb-tree */
1279	unsigned int candidate_ratio;		/* candidate ratio */
1280	unsigned int max_candidate_count;	/* max candidate count */
1281	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1282	unsigned long long age_threshold;	/* age threshold */
1283};
1284
1285struct f2fs_gc_control {
1286	unsigned int victim_segno;	/* target victim segment number */
1287	int init_gc_type;		/* FG_GC or BG_GC */
1288	bool no_bg_gc;			/* check the space and stop bg_gc */
1289	bool should_migrate_blocks;	/* should migrate blocks */
1290	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1291	unsigned int nr_free_secs;	/* # of free sections to do GC */
1292};
1293
1294/*
1295 * For s_flag in struct f2fs_sb_info
1296 * Modification on enum should be synchronized with s_flag array
1297 */
1298enum {
1299	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1300	SBI_IS_CLOSE,				/* specify unmounting */
1301	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1302	SBI_POR_DOING,				/* recovery is doing or not */
1303	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1304	SBI_NEED_CP,				/* need to checkpoint */
1305	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1306	SBI_IS_RECOVERED,			/* recovered orphan/data */
1307	SBI_CP_DISABLED,			/* CP was disabled last mount */
1308	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1309	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1310	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1311	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1312	SBI_IS_RESIZEFS,			/* resizefs is in process */
1313	SBI_IS_FREEZING,			/* freezefs is in process */
1314	SBI_IS_WRITABLE,			/* remove ro mountoption transiently */
1315	MAX_SBI_FLAG,
1316};
1317
1318enum {
1319	CP_TIME,
1320	REQ_TIME,
1321	DISCARD_TIME,
1322	GC_TIME,
1323	DISABLE_TIME,
1324	UMOUNT_DISCARD_TIMEOUT,
1325	MAX_TIME,
1326};
1327
1328/* Note that you need to keep synchronization with this gc_mode_names array */
1329enum {
1330	GC_NORMAL,
1331	GC_IDLE_CB,
1332	GC_IDLE_GREEDY,
1333	GC_IDLE_AT,
1334	GC_URGENT_HIGH,
1335	GC_URGENT_LOW,
1336	GC_URGENT_MID,
1337	MAX_GC_MODE,
1338};
1339
1340enum {
1341	BGGC_MODE_ON,		/* background gc is on */
1342	BGGC_MODE_OFF,		/* background gc is off */
1343	BGGC_MODE_SYNC,		/*
1344				 * background gc is on, migrating blocks
1345				 * like foreground gc
1346				 */
1347};
1348
1349enum {
1350	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1351	FS_MODE_LFS,			/* use lfs allocation only */
1352	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1353	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1354};
1355
1356enum {
1357	ALLOC_MODE_DEFAULT,	/* stay default */
1358	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1359};
1360
1361enum fsync_mode {
1362	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1363	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1364	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1365};
1366
1367enum {
1368	COMPR_MODE_FS,		/*
1369				 * automatically compress compression
1370				 * enabled files
1371				 */
1372	COMPR_MODE_USER,	/*
1373				 * automatical compression is disabled.
1374				 * user can control the file compression
1375				 * using ioctls
1376				 */
1377};
1378
1379enum {
1380	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1381	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1382	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1383};
1384
1385enum {
1386	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1387	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1388};
1389
1390enum errors_option {
1391	MOUNT_ERRORS_READONLY,	/* remount fs ro on errors */
1392	MOUNT_ERRORS_CONTINUE,	/* continue on errors */
1393	MOUNT_ERRORS_PANIC,	/* panic on errors */
1394};
1395
1396enum {
1397	BACKGROUND,
1398	FOREGROUND,
1399	MAX_CALL_TYPE,
1400	TOTAL_CALL = FOREGROUND,
1401};
1402
1403static inline int f2fs_test_bit(unsigned int nr, char *addr);
1404static inline void f2fs_set_bit(unsigned int nr, char *addr);
1405static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1406
1407/*
1408 * Layout of f2fs page.private:
1409 *
1410 * Layout A: lowest bit should be 1
1411 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1412 * bit 0	PAGE_PRIVATE_NOT_POINTER
1413 * bit 1	PAGE_PRIVATE_ONGOING_MIGRATION
1414 * bit 2	PAGE_PRIVATE_INLINE_INODE
1415 * bit 3	PAGE_PRIVATE_REF_RESOURCE
1416 * bit 4-	f2fs private data
1417 *
1418 * Layout B: lowest bit should be 0
1419 * page.private is a wrapped pointer.
1420 */
1421enum {
1422	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1423	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1424	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1425	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1426	PAGE_PRIVATE_MAX
1427};
1428
1429/* For compression */
1430enum compress_algorithm_type {
1431	COMPRESS_LZO,
1432	COMPRESS_LZ4,
1433	COMPRESS_ZSTD,
1434	COMPRESS_LZORLE,
1435	COMPRESS_MAX,
1436};
1437
1438enum compress_flag {
1439	COMPRESS_CHKSUM,
1440	COMPRESS_MAX_FLAG,
1441};
1442
1443#define	COMPRESS_WATERMARK			20
1444#define	COMPRESS_PERCENT			20
1445
1446#define COMPRESS_DATA_RESERVED_SIZE		4
1447struct compress_data {
1448	__le32 clen;			/* compressed data size */
1449	__le32 chksum;			/* compressed data chksum */
1450	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1451	u8 cdata[];			/* compressed data */
1452};
1453
1454#define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1455
1456#define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1457
1458#define F2FS_ZSTD_DEFAULT_CLEVEL	1
1459
1460#define	COMPRESS_LEVEL_OFFSET	8
1461
1462/* compress context */
1463struct compress_ctx {
1464	struct inode *inode;		/* inode the context belong to */
1465	pgoff_t cluster_idx;		/* cluster index number */
1466	unsigned int cluster_size;	/* page count in cluster */
1467	unsigned int log_cluster_size;	/* log of cluster size */
1468	struct page **rpages;		/* pages store raw data in cluster */
1469	unsigned int nr_rpages;		/* total page number in rpages */
1470	struct page **cpages;		/* pages store compressed data in cluster */
1471	unsigned int nr_cpages;		/* total page number in cpages */
1472	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1473	void *rbuf;			/* virtual mapped address on rpages */
1474	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1475	size_t rlen;			/* valid data length in rbuf */
1476	size_t clen;			/* valid data length in cbuf */
1477	void *private;			/* payload buffer for specified compression algorithm */
1478	void *private2;			/* extra payload buffer */
1479};
1480
1481/* compress context for write IO path */
1482struct compress_io_ctx {
1483	u32 magic;			/* magic number to indicate page is compressed */
1484	struct inode *inode;		/* inode the context belong to */
1485	struct page **rpages;		/* pages store raw data in cluster */
1486	unsigned int nr_rpages;		/* total page number in rpages */
1487	atomic_t pending_pages;		/* in-flight compressed page count */
1488};
1489
1490/* Context for decompressing one cluster on the read IO path */
1491struct decompress_io_ctx {
1492	u32 magic;			/* magic number to indicate page is compressed */
1493	struct inode *inode;		/* inode the context belong to */
1494	pgoff_t cluster_idx;		/* cluster index number */
1495	unsigned int cluster_size;	/* page count in cluster */
1496	unsigned int log_cluster_size;	/* log of cluster size */
1497	struct page **rpages;		/* pages store raw data in cluster */
1498	unsigned int nr_rpages;		/* total page number in rpages */
1499	struct page **cpages;		/* pages store compressed data in cluster */
1500	unsigned int nr_cpages;		/* total page number in cpages */
1501	struct page **tpages;		/* temp pages to pad holes in cluster */
1502	void *rbuf;			/* virtual mapped address on rpages */
1503	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1504	size_t rlen;			/* valid data length in rbuf */
1505	size_t clen;			/* valid data length in cbuf */
1506
1507	/*
1508	 * The number of compressed pages remaining to be read in this cluster.
1509	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1510	 * has been read (or failed to be read).  When it reaches 0, the cluster
1511	 * is decompressed (or an error is reported).
1512	 *
1513	 * If an error occurs before all the pages have been submitted for I/O,
1514	 * then this will never reach 0.  In this case the I/O submitter is
1515	 * responsible for calling f2fs_decompress_end_io() instead.
1516	 */
1517	atomic_t remaining_pages;
1518
1519	/*
1520	 * Number of references to this decompress_io_ctx.
1521	 *
1522	 * One reference is held for I/O completion.  This reference is dropped
1523	 * after the pagecache pages are updated and unlocked -- either after
1524	 * decompression (and verity if enabled), or after an error.
1525	 *
1526	 * In addition, each compressed page holds a reference while it is in a
1527	 * bio.  These references are necessary prevent compressed pages from
1528	 * being freed while they are still in a bio.
1529	 */
1530	refcount_t refcnt;
1531
1532	bool failed;			/* IO error occurred before decompression? */
1533	bool need_verity;		/* need fs-verity verification after decompression? */
1534	void *private;			/* payload buffer for specified decompression algorithm */
1535	void *private2;			/* extra payload buffer */
1536	struct work_struct verity_work;	/* work to verify the decompressed pages */
1537	struct work_struct free_work;	/* work for late free this structure itself */
1538};
1539
1540#define NULL_CLUSTER			((unsigned int)(~0))
1541#define MIN_COMPRESS_LOG_SIZE		2
1542#define MAX_COMPRESS_LOG_SIZE		8
1543#define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1544
1545struct f2fs_sb_info {
1546	struct super_block *sb;			/* pointer to VFS super block */
1547	struct proc_dir_entry *s_proc;		/* proc entry */
1548	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1549	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1550	int valid_super_block;			/* valid super block no */
1551	unsigned long s_flag;				/* flags for sbi */
1552	struct mutex writepages;		/* mutex for writepages() */
1553
1554#ifdef CONFIG_BLK_DEV_ZONED
1555	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1556	unsigned int max_open_zones;		/* max open zone resources of the zoned device */
1557#endif
1558
1559	/* for node-related operations */
1560	struct f2fs_nm_info *nm_info;		/* node manager */
1561	struct inode *node_inode;		/* cache node blocks */
1562
1563	/* for segment-related operations */
1564	struct f2fs_sm_info *sm_info;		/* segment manager */
1565
1566	/* for bio operations */
1567	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1568	/* keep migration IO order for LFS mode */
1569	struct f2fs_rwsem io_order_lock;
1570	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1571	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1572
1573	/* for checkpoint */
1574	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1575	int cur_cp_pack;			/* remain current cp pack */
1576	spinlock_t cp_lock;			/* for flag in ckpt */
1577	struct inode *meta_inode;		/* cache meta blocks */
1578	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1579	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1580	struct f2fs_rwsem node_write;		/* locking node writes */
1581	struct f2fs_rwsem node_change;	/* locking node change */
1582	wait_queue_head_t cp_wait;
1583	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1584	long interval_time[MAX_TIME];		/* to store thresholds */
1585	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1586
1587	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1588
1589	spinlock_t fsync_node_lock;		/* for node entry lock */
1590	struct list_head fsync_node_list;	/* node list head */
1591	unsigned int fsync_seg_id;		/* sequence id */
1592	unsigned int fsync_node_num;		/* number of node entries */
1593
1594	/* for orphan inode, use 0'th array */
1595	unsigned int max_orphans;		/* max orphan inodes */
1596
1597	/* for inode management */
1598	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1599	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1600	struct mutex flush_lock;		/* for flush exclusion */
1601
1602	/* for extent tree cache */
1603	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1604	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1605
1606	/* The threshold used for hot and warm data seperation*/
1607	unsigned int hot_data_age_threshold;
1608	unsigned int warm_data_age_threshold;
1609	unsigned int last_age_weight;
1610
1611	/* basic filesystem units */
1612	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1613	unsigned int log_blocksize;		/* log2 block size */
1614	unsigned int blocksize;			/* block size */
1615	unsigned int root_ino_num;		/* root inode number*/
1616	unsigned int node_ino_num;		/* node inode number*/
1617	unsigned int meta_ino_num;		/* meta inode number*/
1618	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1619	unsigned int blocks_per_seg;		/* blocks per segment */
1620	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1621	unsigned int segs_per_sec;		/* segments per section */
1622	unsigned int secs_per_zone;		/* sections per zone */
1623	unsigned int total_sections;		/* total section count */
1624	unsigned int total_node_count;		/* total node block count */
1625	unsigned int total_valid_node_count;	/* valid node block count */
1626	int dir_level;				/* directory level */
1627	bool readdir_ra;			/* readahead inode in readdir */
1628	u64 max_io_bytes;			/* max io bytes to merge IOs */
1629
1630	block_t user_block_count;		/* # of user blocks */
1631	block_t total_valid_block_count;	/* # of valid blocks */
1632	block_t discard_blks;			/* discard command candidats */
1633	block_t last_valid_block_count;		/* for recovery */
1634	block_t reserved_blocks;		/* configurable reserved blocks */
1635	block_t current_reserved_blocks;	/* current reserved blocks */
1636
1637	/* Additional tracking for no checkpoint mode */
1638	block_t unusable_block_count;		/* # of blocks saved by last cp */
1639
1640	unsigned int nquota_files;		/* # of quota sysfile */
1641	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1642
1643	/* # of pages, see count_type */
1644	atomic_t nr_pages[NR_COUNT_TYPE];
1645	/* # of allocated blocks */
1646	struct percpu_counter alloc_valid_block_count;
1647	/* # of node block writes as roll forward recovery */
1648	struct percpu_counter rf_node_block_count;
1649
1650	/* writeback control */
1651	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1652
1653	/* valid inode count */
1654	struct percpu_counter total_valid_inode_count;
1655
1656	struct f2fs_mount_info mount_opt;	/* mount options */
1657
1658	/* for cleaning operations */
1659	struct f2fs_rwsem gc_lock;		/*
1660						 * semaphore for GC, avoid
1661						 * race between GC and GC or CP
1662						 */
1663	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1664	struct atgc_management am;		/* atgc management */
1665	unsigned int cur_victim_sec;		/* current victim section num */
1666	unsigned int gc_mode;			/* current GC state */
1667	unsigned int next_victim_seg[2];	/* next segment in victim section */
1668	spinlock_t gc_remaining_trials_lock;
1669	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1670	unsigned int gc_remaining_trials;
1671
1672	/* for skip statistic */
1673	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1674
1675	/* threshold for gc trials on pinned files */
1676	unsigned short gc_pin_file_threshold;
1677	struct f2fs_rwsem pin_sem;
1678
1679	/* maximum # of trials to find a victim segment for SSR and GC */
1680	unsigned int max_victim_search;
1681	/* migration granularity of garbage collection, unit: segment */
1682	unsigned int migration_granularity;
1683
1684	/*
1685	 * for stat information.
1686	 * one is for the LFS mode, and the other is for the SSR mode.
1687	 */
1688#ifdef CONFIG_F2FS_STAT_FS
1689	struct f2fs_stat_info *stat_info;	/* FS status information */
1690	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1691	unsigned int segment_count[2];		/* # of allocated segments */
1692	unsigned int block_count[2];		/* # of allocated blocks */
1693	atomic_t inplace_count;		/* # of inplace update */
1694	/* # of lookup extent cache */
1695	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1696	/* # of hit rbtree extent node */
1697	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1698	/* # of hit cached extent node */
1699	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1700	/* # of hit largest extent node in read extent cache */
1701	atomic64_t read_hit_largest;
1702	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1703	atomic_t inline_inode;			/* # of inline_data inodes */
1704	atomic_t inline_dir;			/* # of inline_dentry inodes */
1705	atomic_t compr_inode;			/* # of compressed inodes */
1706	atomic64_t compr_blocks;		/* # of compressed blocks */
1707	atomic_t swapfile_inode;		/* # of swapfile inodes */
1708	atomic_t atomic_files;			/* # of opened atomic file */
1709	atomic_t max_aw_cnt;			/* max # of atomic writes */
1710	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1711	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1712	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1713	atomic_t cp_call_count[MAX_CALL_TYPE];	/* # of cp call */
1714#endif
1715	spinlock_t stat_lock;			/* lock for stat operations */
1716
1717	/* to attach REQ_META|REQ_FUA flags */
1718	unsigned int data_io_flag;
1719	unsigned int node_io_flag;
1720
1721	/* For sysfs support */
1722	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1723	struct completion s_kobj_unregister;
1724
1725	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1726	struct completion s_stat_kobj_unregister;
1727
1728	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1729	struct completion s_feature_list_kobj_unregister;
1730
1731	/* For shrinker support */
1732	struct list_head s_list;
1733	struct mutex umount_mutex;
1734	unsigned int shrinker_run_no;
1735
1736	/* For multi devices */
1737	int s_ndevs;				/* number of devices */
1738	struct f2fs_dev_info *devs;		/* for device list */
1739	unsigned int dirty_device;		/* for checkpoint data flush */
1740	spinlock_t dev_lock;			/* protect dirty_device */
1741	bool aligned_blksize;			/* all devices has the same logical blksize */
1742
1743	/* For write statistics */
1744	u64 sectors_written_start;
1745	u64 kbytes_written;
1746
1747	/* Reference to checksum algorithm driver via cryptoapi */
1748	struct crypto_shash *s_chksum_driver;
1749
1750	/* Precomputed FS UUID checksum for seeding other checksums */
1751	__u32 s_chksum_seed;
1752
1753	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1754
1755	/*
1756	 * If we are in irq context, let's update error information into
1757	 * on-disk superblock in the work.
1758	 */
1759	struct work_struct s_error_work;
1760	unsigned char errors[MAX_F2FS_ERRORS];		/* error flags */
1761	unsigned char stop_reason[MAX_STOP_REASON];	/* stop reason */
1762	spinlock_t error_lock;			/* protect errors/stop_reason array */
1763	bool error_dirty;			/* errors of sb is dirty */
1764
1765	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1766	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1767
1768	/* For reclaimed segs statistics per each GC mode */
1769	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1770	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1771
1772	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1773
1774	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1775	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1776
1777	/* For atomic write statistics */
1778	atomic64_t current_atomic_write;
1779	s64 peak_atomic_write;
1780	u64 committed_atomic_block;
1781	u64 revoked_atomic_block;
1782
1783#ifdef CONFIG_F2FS_FS_COMPRESSION
1784	struct kmem_cache *page_array_slab;	/* page array entry */
1785	unsigned int page_array_slab_size;	/* default page array slab size */
1786
1787	/* For runtime compression statistics */
1788	u64 compr_written_block;
1789	u64 compr_saved_block;
1790	u32 compr_new_inode;
1791
1792	/* For compressed block cache */
1793	struct inode *compress_inode;		/* cache compressed blocks */
1794	unsigned int compress_percent;		/* cache page percentage */
1795	unsigned int compress_watermark;	/* cache page watermark */
1796	atomic_t compress_page_hit;		/* cache hit count */
1797#endif
1798
1799#ifdef CONFIG_F2FS_IOSTAT
1800	/* For app/fs IO statistics */
1801	spinlock_t iostat_lock;
1802	unsigned long long iostat_count[NR_IO_TYPE];
1803	unsigned long long iostat_bytes[NR_IO_TYPE];
1804	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1805	bool iostat_enable;
1806	unsigned long iostat_next_period;
1807	unsigned int iostat_period_ms;
1808
1809	/* For io latency related statistics info in one iostat period */
1810	spinlock_t iostat_lat_lock;
1811	struct iostat_lat_info *iostat_io_lat;
1812#endif
1813};
1814
1815/* Definitions to access f2fs_sb_info */
1816#define SEGS_TO_BLKS(sbi, segs)					\
1817		((segs) << (sbi)->log_blocks_per_seg)
1818#define BLKS_TO_SEGS(sbi, blks)					\
1819		((blks) >> (sbi)->log_blocks_per_seg)
1820
1821#define BLKS_PER_SEG(sbi)	((sbi)->blocks_per_seg)
1822#define BLKS_PER_SEC(sbi)	(SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1823#define SEGS_PER_SEC(sbi)	((sbi)->segs_per_sec)
1824
1825__printf(3, 4)
1826void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1827
1828#define f2fs_err(sbi, fmt, ...)						\
1829	f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1830#define f2fs_warn(sbi, fmt, ...)					\
1831	f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1832#define f2fs_notice(sbi, fmt, ...)					\
1833	f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1834#define f2fs_info(sbi, fmt, ...)					\
1835	f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1836#define f2fs_debug(sbi, fmt, ...)					\
1837	f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1838
1839#define f2fs_err_ratelimited(sbi, fmt, ...)				\
1840	f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1841#define f2fs_warn_ratelimited(sbi, fmt, ...)				\
1842	f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1843#define f2fs_info_ratelimited(sbi, fmt, ...)				\
1844	f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1845
1846#ifdef CONFIG_F2FS_FAULT_INJECTION
1847#define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
1848									__builtin_return_address(0))
1849static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1850				const char *func, const char *parent_func)
1851{
1852	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1853
1854	if (!ffi->inject_rate)
1855		return false;
1856
1857	if (!IS_FAULT_SET(ffi, type))
1858		return false;
1859
1860	atomic_inc(&ffi->inject_ops);
1861	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1862		atomic_set(&ffi->inject_ops, 0);
1863		f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1864				f2fs_fault_name[type], func, parent_func);
1865		return true;
1866	}
1867	return false;
1868}
1869#else
1870static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1871{
1872	return false;
1873}
1874#endif
1875
1876/*
1877 * Test if the mounted volume is a multi-device volume.
1878 *   - For a single regular disk volume, sbi->s_ndevs is 0.
1879 *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1880 *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1881 */
1882static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1883{
1884	return sbi->s_ndevs > 1;
1885}
1886
1887static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1888{
1889	unsigned long now = jiffies;
1890
1891	sbi->last_time[type] = now;
1892
1893	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1894	if (type == REQ_TIME) {
1895		sbi->last_time[DISCARD_TIME] = now;
1896		sbi->last_time[GC_TIME] = now;
1897	}
1898}
1899
1900static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1901{
1902	unsigned long interval = sbi->interval_time[type] * HZ;
1903
1904	return time_after(jiffies, sbi->last_time[type] + interval);
1905}
1906
1907static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1908						int type)
1909{
1910	unsigned long interval = sbi->interval_time[type] * HZ;
1911	unsigned int wait_ms = 0;
1912	long delta;
1913
1914	delta = (sbi->last_time[type] + interval) - jiffies;
1915	if (delta > 0)
1916		wait_ms = jiffies_to_msecs(delta);
1917
1918	return wait_ms;
1919}
1920
1921/*
1922 * Inline functions
1923 */
1924static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1925			      const void *address, unsigned int length)
1926{
1927	struct {
1928		struct shash_desc shash;
1929		char ctx[4];
1930	} desc;
1931	int err;
1932
1933	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1934
1935	desc.shash.tfm = sbi->s_chksum_driver;
1936	*(u32 *)desc.ctx = crc;
1937
1938	err = crypto_shash_update(&desc.shash, address, length);
1939	BUG_ON(err);
1940
1941	return *(u32 *)desc.ctx;
1942}
1943
1944static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1945			   unsigned int length)
1946{
1947	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1948}
1949
1950static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1951				  void *buf, size_t buf_size)
1952{
1953	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1954}
1955
1956static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1957			      const void *address, unsigned int length)
1958{
1959	return __f2fs_crc32(sbi, crc, address, length);
1960}
1961
1962static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1963{
1964	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1965}
1966
1967static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1968{
1969	return sb->s_fs_info;
1970}
1971
1972static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1973{
1974	return F2FS_SB(inode->i_sb);
1975}
1976
1977static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1978{
1979	return F2FS_I_SB(mapping->host);
1980}
1981
1982static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1983{
1984	return F2FS_M_SB(page_file_mapping(page));
1985}
1986
1987static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1988{
1989	return (struct f2fs_super_block *)(sbi->raw_super);
1990}
1991
1992static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1993{
1994	return (struct f2fs_checkpoint *)(sbi->ckpt);
1995}
1996
1997static inline struct f2fs_node *F2FS_NODE(struct page *page)
1998{
1999	return (struct f2fs_node *)page_address(page);
2000}
2001
2002static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2003{
2004	return &((struct f2fs_node *)page_address(page))->i;
2005}
2006
2007static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2008{
2009	return (struct f2fs_nm_info *)(sbi->nm_info);
2010}
2011
2012static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2013{
2014	return (struct f2fs_sm_info *)(sbi->sm_info);
2015}
2016
2017static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2018{
2019	return (struct sit_info *)(SM_I(sbi)->sit_info);
2020}
2021
2022static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2023{
2024	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2025}
2026
2027static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2028{
2029	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2030}
2031
2032static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2033{
2034	return sbi->meta_inode->i_mapping;
2035}
2036
2037static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2038{
2039	return sbi->node_inode->i_mapping;
2040}
2041
2042static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2043{
2044	return test_bit(type, &sbi->s_flag);
2045}
2046
2047static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2048{
2049	set_bit(type, &sbi->s_flag);
2050}
2051
2052static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2053{
2054	clear_bit(type, &sbi->s_flag);
2055}
2056
2057static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2058{
2059	return le64_to_cpu(cp->checkpoint_ver);
2060}
2061
2062static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2063{
2064	if (type < F2FS_MAX_QUOTAS)
2065		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2066	return 0;
2067}
2068
2069static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2070{
2071	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2072	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2073}
2074
2075static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2076{
2077	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2078
2079	return ckpt_flags & f;
2080}
2081
2082static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2083{
2084	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2085}
2086
2087static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2088{
2089	unsigned int ckpt_flags;
2090
2091	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2092	ckpt_flags |= f;
2093	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2094}
2095
2096static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2097{
2098	unsigned long flags;
2099
2100	spin_lock_irqsave(&sbi->cp_lock, flags);
2101	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2102	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2103}
2104
2105static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2106{
2107	unsigned int ckpt_flags;
2108
2109	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2110	ckpt_flags &= (~f);
2111	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2112}
2113
2114static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2115{
2116	unsigned long flags;
2117
2118	spin_lock_irqsave(&sbi->cp_lock, flags);
2119	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2120	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2121}
2122
2123#define init_f2fs_rwsem(sem)					\
2124do {								\
2125	static struct lock_class_key __key;			\
2126								\
2127	__init_f2fs_rwsem((sem), #sem, &__key);			\
2128} while (0)
2129
2130static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2131		const char *sem_name, struct lock_class_key *key)
2132{
2133	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2134#ifdef CONFIG_F2FS_UNFAIR_RWSEM
2135	init_waitqueue_head(&sem->read_waiters);
2136#endif
2137}
2138
2139static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2140{
2141	return rwsem_is_locked(&sem->internal_rwsem);
2142}
2143
2144static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2145{
2146	return rwsem_is_contended(&sem->internal_rwsem);
2147}
2148
2149static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2150{
2151#ifdef CONFIG_F2FS_UNFAIR_RWSEM
2152	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2153#else
2154	down_read(&sem->internal_rwsem);
2155#endif
2156}
2157
2158static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2159{
2160	return down_read_trylock(&sem->internal_rwsem);
2161}
2162
2163static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2164{
2165	up_read(&sem->internal_rwsem);
2166}
2167
2168static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2169{
2170	down_write(&sem->internal_rwsem);
2171}
2172
2173#ifdef CONFIG_DEBUG_LOCK_ALLOC
2174static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2175{
2176	down_read_nested(&sem->internal_rwsem, subclass);
2177}
2178
2179static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2180{
2181	down_write_nested(&sem->internal_rwsem, subclass);
2182}
2183#else
2184#define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2185#define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2186#endif
2187
2188static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2189{
2190	return down_write_trylock(&sem->internal_rwsem);
2191}
2192
2193static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2194{
2195	up_write(&sem->internal_rwsem);
2196#ifdef CONFIG_F2FS_UNFAIR_RWSEM
2197	wake_up_all(&sem->read_waiters);
2198#endif
2199}
2200
2201static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2202{
2203	f2fs_down_read(&sbi->cp_rwsem);
2204}
2205
2206static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2207{
2208	if (time_to_inject(sbi, FAULT_LOCK_OP))
2209		return 0;
2210	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2211}
2212
2213static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2214{
2215	f2fs_up_read(&sbi->cp_rwsem);
2216}
2217
2218static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2219{
2220	f2fs_down_write(&sbi->cp_rwsem);
2221}
2222
2223static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2224{
2225	f2fs_up_write(&sbi->cp_rwsem);
2226}
2227
2228static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2229{
2230	int reason = CP_SYNC;
2231
2232	if (test_opt(sbi, FASTBOOT))
2233		reason = CP_FASTBOOT;
2234	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2235		reason = CP_UMOUNT;
2236	return reason;
2237}
2238
2239static inline bool __remain_node_summaries(int reason)
2240{
2241	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2242}
2243
2244static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2245{
2246	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2247			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2248}
2249
2250/*
2251 * Check whether the inode has blocks or not
2252 */
2253static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2254{
2255	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2256
2257	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2258}
2259
2260static inline bool f2fs_has_xattr_block(unsigned int ofs)
2261{
2262	return ofs == XATTR_NODE_OFFSET;
2263}
2264
2265static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2266					struct inode *inode, bool cap)
2267{
2268	if (!inode)
2269		return true;
2270	if (!test_opt(sbi, RESERVE_ROOT))
2271		return false;
2272	if (IS_NOQUOTA(inode))
2273		return true;
2274	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2275		return true;
2276	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2277					in_group_p(F2FS_OPTION(sbi).s_resgid))
2278		return true;
2279	if (cap && capable(CAP_SYS_RESOURCE))
2280		return true;
2281	return false;
2282}
2283
2284static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2285						struct inode *inode, bool cap)
2286{
2287	block_t avail_user_block_count;
2288
2289	avail_user_block_count = sbi->user_block_count -
2290					sbi->current_reserved_blocks;
2291
2292	if (!__allow_reserved_blocks(sbi, inode, cap))
2293		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2294
2295	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2296		if (avail_user_block_count > sbi->unusable_block_count)
2297			avail_user_block_count -= sbi->unusable_block_count;
2298		else
2299			avail_user_block_count = 0;
2300	}
2301
2302	return avail_user_block_count;
2303}
2304
2305static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2306static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2307				 struct inode *inode, blkcnt_t *count, bool partial)
2308{
2309	long long diff = 0, release = 0;
2310	block_t avail_user_block_count;
2311	int ret;
2312
2313	ret = dquot_reserve_block(inode, *count);
2314	if (ret)
2315		return ret;
2316
2317	if (time_to_inject(sbi, FAULT_BLOCK)) {
2318		release = *count;
2319		goto release_quota;
2320	}
2321
2322	/*
2323	 * let's increase this in prior to actual block count change in order
2324	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2325	 */
2326	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2327
2328	spin_lock(&sbi->stat_lock);
2329
2330	avail_user_block_count = get_available_block_count(sbi, inode, true);
2331	diff = (long long)sbi->total_valid_block_count + *count -
2332						avail_user_block_count;
2333	if (unlikely(diff > 0)) {
2334		if (!partial) {
2335			spin_unlock(&sbi->stat_lock);
2336			release = *count;
2337			goto enospc;
2338		}
2339		if (diff > *count)
2340			diff = *count;
2341		*count -= diff;
2342		release = diff;
2343		if (!*count) {
2344			spin_unlock(&sbi->stat_lock);
2345			goto enospc;
2346		}
2347	}
2348	sbi->total_valid_block_count += (block_t)(*count);
2349
2350	spin_unlock(&sbi->stat_lock);
2351
2352	if (unlikely(release)) {
2353		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2354		dquot_release_reservation_block(inode, release);
2355	}
2356	f2fs_i_blocks_write(inode, *count, true, true);
2357	return 0;
2358
2359enospc:
2360	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2361release_quota:
2362	dquot_release_reservation_block(inode, release);
2363	return -ENOSPC;
2364}
2365
2366#define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2367static inline bool page_private_##name(struct page *page) \
2368{ \
2369	return PagePrivate(page) && \
2370		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2371		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2372}
2373
2374#define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2375static inline void set_page_private_##name(struct page *page) \
2376{ \
2377	if (!PagePrivate(page)) \
2378		attach_page_private(page, (void *)0); \
2379	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2380	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2381}
2382
2383#define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2384static inline void clear_page_private_##name(struct page *page) \
2385{ \
2386	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2387	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2388		detach_page_private(page); \
2389}
2390
2391PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2392PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2393PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2394
2395PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2396PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2397PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2398
2399PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2400PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2401PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2402
2403static inline unsigned long get_page_private_data(struct page *page)
2404{
2405	unsigned long data = page_private(page);
2406
2407	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2408		return 0;
2409	return data >> PAGE_PRIVATE_MAX;
2410}
2411
2412static inline void set_page_private_data(struct page *page, unsigned long data)
2413{
2414	if (!PagePrivate(page))
2415		attach_page_private(page, (void *)0);
2416	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2417	page_private(page) |= data << PAGE_PRIVATE_MAX;
2418}
2419
2420static inline void clear_page_private_data(struct page *page)
2421{
2422	page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2423	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2424		detach_page_private(page);
2425}
2426
2427static inline void clear_page_private_all(struct page *page)
2428{
2429	clear_page_private_data(page);
2430	clear_page_private_reference(page);
2431	clear_page_private_gcing(page);
2432	clear_page_private_inline(page);
2433
2434	f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2435}
2436
2437static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2438						struct inode *inode,
2439						block_t count)
2440{
2441	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2442
2443	spin_lock(&sbi->stat_lock);
2444	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2445	sbi->total_valid_block_count -= (block_t)count;
2446	if (sbi->reserved_blocks &&
2447		sbi->current_reserved_blocks < sbi->reserved_blocks)
2448		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2449					sbi->current_reserved_blocks + count);
2450	spin_unlock(&sbi->stat_lock);
2451	if (unlikely(inode->i_blocks < sectors)) {
2452		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2453			  inode->i_ino,
2454			  (unsigned long long)inode->i_blocks,
2455			  (unsigned long long)sectors);
2456		set_sbi_flag(sbi, SBI_NEED_FSCK);
2457		return;
2458	}
2459	f2fs_i_blocks_write(inode, count, false, true);
2460}
2461
2462static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2463{
2464	atomic_inc(&sbi->nr_pages[count_type]);
2465
2466	if (count_type == F2FS_DIRTY_DENTS ||
2467			count_type == F2FS_DIRTY_NODES ||
2468			count_type == F2FS_DIRTY_META ||
2469			count_type == F2FS_DIRTY_QDATA ||
2470			count_type == F2FS_DIRTY_IMETA)
2471		set_sbi_flag(sbi, SBI_IS_DIRTY);
2472}
2473
2474static inline void inode_inc_dirty_pages(struct inode *inode)
2475{
2476	atomic_inc(&F2FS_I(inode)->dirty_pages);
2477	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2478				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2479	if (IS_NOQUOTA(inode))
2480		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2481}
2482
2483static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2484{
2485	atomic_dec(&sbi->nr_pages[count_type]);
2486}
2487
2488static inline void inode_dec_dirty_pages(struct inode *inode)
2489{
2490	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2491			!S_ISLNK(inode->i_mode))
2492		return;
2493
2494	atomic_dec(&F2FS_I(inode)->dirty_pages);
2495	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2496				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2497	if (IS_NOQUOTA(inode))
2498		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2499}
2500
2501static inline void inc_atomic_write_cnt(struct inode *inode)
2502{
2503	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2504	struct f2fs_inode_info *fi = F2FS_I(inode);
2505	u64 current_write;
2506
2507	fi->atomic_write_cnt++;
2508	atomic64_inc(&sbi->current_atomic_write);
2509	current_write = atomic64_read(&sbi->current_atomic_write);
2510	if (current_write > sbi->peak_atomic_write)
2511		sbi->peak_atomic_write = current_write;
2512}
2513
2514static inline void release_atomic_write_cnt(struct inode *inode)
2515{
2516	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2517	struct f2fs_inode_info *fi = F2FS_I(inode);
2518
2519	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2520	fi->atomic_write_cnt = 0;
2521}
2522
2523static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2524{
2525	return atomic_read(&sbi->nr_pages[count_type]);
2526}
2527
2528static inline int get_dirty_pages(struct inode *inode)
2529{
2530	return atomic_read(&F2FS_I(inode)->dirty_pages);
2531}
2532
2533static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2534{
2535	return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2536							BLKS_PER_SEC(sbi));
2537}
2538
2539static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2540{
2541	return sbi->total_valid_block_count;
2542}
2543
2544static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2545{
2546	return sbi->discard_blks;
2547}
2548
2549static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2550{
2551	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2552
2553	/* return NAT or SIT bitmap */
2554	if (flag == NAT_BITMAP)
2555		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2556	else if (flag == SIT_BITMAP)
2557		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2558
2559	return 0;
2560}
2561
2562static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2563{
2564	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2565}
2566
2567static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2568{
2569	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2570	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2571	int offset;
2572
2573	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2574		offset = (flag == SIT_BITMAP) ?
2575			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2576		/*
2577		 * if large_nat_bitmap feature is enabled, leave checksum
2578		 * protection for all nat/sit bitmaps.
2579		 */
2580		return tmp_ptr + offset + sizeof(__le32);
2581	}
2582
2583	if (__cp_payload(sbi) > 0) {
2584		if (flag == NAT_BITMAP)
2585			return tmp_ptr;
2586		else
2587			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2588	} else {
2589		offset = (flag == NAT_BITMAP) ?
2590			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2591		return tmp_ptr + offset;
2592	}
2593}
2594
2595static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2596{
2597	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2598
2599	if (sbi->cur_cp_pack == 2)
2600		start_addr += BLKS_PER_SEG(sbi);
2601	return start_addr;
2602}
2603
2604static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2605{
2606	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2607
2608	if (sbi->cur_cp_pack == 1)
2609		start_addr += BLKS_PER_SEG(sbi);
2610	return start_addr;
2611}
2612
2613static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2614{
2615	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2616}
2617
2618static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2619{
2620	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2621}
2622
2623extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
2624static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2625					struct inode *inode, bool is_inode)
2626{
2627	block_t	valid_block_count;
2628	unsigned int valid_node_count;
2629	unsigned int avail_user_block_count;
2630	int err;
2631
2632	if (is_inode) {
2633		if (inode) {
2634			err = dquot_alloc_inode(inode);
2635			if (err)
2636				return err;
2637		}
2638	} else {
2639		err = dquot_reserve_block(inode, 1);
2640		if (err)
2641			return err;
2642	}
2643
2644	if (time_to_inject(sbi, FAULT_BLOCK))
2645		goto enospc;
2646
2647	spin_lock(&sbi->stat_lock);
2648
2649	valid_block_count = sbi->total_valid_block_count + 1;
2650	avail_user_block_count = get_available_block_count(sbi, inode, false);
2651
2652	if (unlikely(valid_block_count > avail_user_block_count)) {
2653		spin_unlock(&sbi->stat_lock);
2654		goto enospc;
2655	}
2656
2657	valid_node_count = sbi->total_valid_node_count + 1;
2658	if (unlikely(valid_node_count > sbi->total_node_count)) {
2659		spin_unlock(&sbi->stat_lock);
2660		goto enospc;
2661	}
2662
2663	sbi->total_valid_node_count++;
2664	sbi->total_valid_block_count++;
2665	spin_unlock(&sbi->stat_lock);
2666
2667	if (inode) {
2668		if (is_inode)
2669			f2fs_mark_inode_dirty_sync(inode, true);
2670		else
2671			f2fs_i_blocks_write(inode, 1, true, true);
2672	}
2673
2674	percpu_counter_inc(&sbi->alloc_valid_block_count);
2675	return 0;
2676
2677enospc:
2678	if (is_inode) {
2679		if (inode)
2680			dquot_free_inode(inode);
2681	} else {
2682		dquot_release_reservation_block(inode, 1);
2683	}
2684	return -ENOSPC;
2685}
2686
2687static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2688					struct inode *inode, bool is_inode)
2689{
2690	spin_lock(&sbi->stat_lock);
2691
2692	if (unlikely(!sbi->total_valid_block_count ||
2693			!sbi->total_valid_node_count)) {
2694		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2695			  sbi->total_valid_block_count,
2696			  sbi->total_valid_node_count);
2697		set_sbi_flag(sbi, SBI_NEED_FSCK);
2698	} else {
2699		sbi->total_valid_block_count--;
2700		sbi->total_valid_node_count--;
2701	}
2702
2703	if (sbi->reserved_blocks &&
2704		sbi->current_reserved_blocks < sbi->reserved_blocks)
2705		sbi->current_reserved_blocks++;
2706
2707	spin_unlock(&sbi->stat_lock);
2708
2709	if (is_inode) {
2710		dquot_free_inode(inode);
2711	} else {
2712		if (unlikely(inode->i_blocks == 0)) {
2713			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2714				  inode->i_ino,
2715				  (unsigned long long)inode->i_blocks);
2716			set_sbi_flag(sbi, SBI_NEED_FSCK);
2717			return;
2718		}
2719		f2fs_i_blocks_write(inode, 1, false, true);
2720	}
2721}
2722
2723static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2724{
2725	return sbi->total_valid_node_count;
2726}
2727
2728static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2729{
2730	percpu_counter_inc(&sbi->total_valid_inode_count);
2731}
2732
2733static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2734{
2735	percpu_counter_dec(&sbi->total_valid_inode_count);
2736}
2737
2738static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2739{
2740	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2741}
2742
2743static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2744						pgoff_t index, bool for_write)
2745{
2746	struct page *page;
2747	unsigned int flags;
2748
2749	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2750		if (!for_write)
2751			page = find_get_page_flags(mapping, index,
2752							FGP_LOCK | FGP_ACCESSED);
2753		else
2754			page = find_lock_page(mapping, index);
2755		if (page)
2756			return page;
2757
2758		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2759			return NULL;
2760	}
2761
2762	if (!for_write)
2763		return grab_cache_page(mapping, index);
2764
2765	flags = memalloc_nofs_save();
2766	page = grab_cache_page_write_begin(mapping, index);
2767	memalloc_nofs_restore(flags);
2768
2769	return page;
2770}
2771
2772static inline struct page *f2fs_pagecache_get_page(
2773				struct address_space *mapping, pgoff_t index,
2774				fgf_t fgp_flags, gfp_t gfp_mask)
2775{
2776	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2777		return NULL;
2778
2779	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2780}
2781
2782static inline void f2fs_put_page(struct page *page, int unlock)
2783{
2784	if (!page)
2785		return;
2786
2787	if (unlock) {
2788		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2789		unlock_page(page);
2790	}
2791	put_page(page);
2792}
2793
2794static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2795{
2796	if (dn->node_page)
2797		f2fs_put_page(dn->node_page, 1);
2798	if (dn->inode_page && dn->node_page != dn->inode_page)
2799		f2fs_put_page(dn->inode_page, 0);
2800	dn->node_page = NULL;
2801	dn->inode_page = NULL;
2802}
2803
2804static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2805					size_t size)
2806{
2807	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2808}
2809
2810static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2811						gfp_t flags)
2812{
2813	void *entry;
2814
2815	entry = kmem_cache_alloc(cachep, flags);
2816	if (!entry)
2817		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2818	return entry;
2819}
2820
2821static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2822			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2823{
2824	if (nofail)
2825		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2826
2827	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2828		return NULL;
2829
2830	return kmem_cache_alloc(cachep, flags);
2831}
2832
2833static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2834{
2835	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2836		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2837		get_pages(sbi, F2FS_WB_CP_DATA) ||
2838		get_pages(sbi, F2FS_DIO_READ) ||
2839		get_pages(sbi, F2FS_DIO_WRITE))
2840		return true;
2841
2842	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2843			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2844		return true;
2845
2846	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2847			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2848		return true;
2849	return false;
2850}
2851
2852static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2853{
2854	if (sbi->gc_mode == GC_URGENT_HIGH)
2855		return true;
2856
2857	if (is_inflight_io(sbi, type))
2858		return false;
2859
2860	if (sbi->gc_mode == GC_URGENT_MID)
2861		return true;
2862
2863	if (sbi->gc_mode == GC_URGENT_LOW &&
2864			(type == DISCARD_TIME || type == GC_TIME))
2865		return true;
2866
2867	return f2fs_time_over(sbi, type);
2868}
2869
2870static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2871				unsigned long index, void *item)
2872{
2873	while (radix_tree_insert(root, index, item))
2874		cond_resched();
2875}
2876
2877#define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2878
2879static inline bool IS_INODE(struct page *page)
2880{
2881	struct f2fs_node *p = F2FS_NODE(page);
2882
2883	return RAW_IS_INODE(p);
2884}
2885
2886static inline int offset_in_addr(struct f2fs_inode *i)
2887{
2888	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2889			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2890}
2891
2892static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2893{
2894	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2895}
2896
2897static inline int f2fs_has_extra_attr(struct inode *inode);
2898static inline block_t data_blkaddr(struct inode *inode,
2899			struct page *node_page, unsigned int offset)
2900{
2901	struct f2fs_node *raw_node;
2902	__le32 *addr_array;
2903	int base = 0;
2904	bool is_inode = IS_INODE(node_page);
2905
2906	raw_node = F2FS_NODE(node_page);
2907
2908	if (is_inode) {
2909		if (!inode)
2910			/* from GC path only */
2911			base = offset_in_addr(&raw_node->i);
2912		else if (f2fs_has_extra_attr(inode))
2913			base = get_extra_isize(inode);
2914	}
2915
2916	addr_array = blkaddr_in_node(raw_node);
2917	return le32_to_cpu(addr_array[base + offset]);
2918}
2919
2920static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2921{
2922	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2923}
2924
2925static inline int f2fs_test_bit(unsigned int nr, char *addr)
2926{
2927	int mask;
2928
2929	addr += (nr >> 3);
2930	mask = BIT(7 - (nr & 0x07));
2931	return mask & *addr;
2932}
2933
2934static inline void f2fs_set_bit(unsigned int nr, char *addr)
2935{
2936	int mask;
2937
2938	addr += (nr >> 3);
2939	mask = BIT(7 - (nr & 0x07));
2940	*addr |= mask;
2941}
2942
2943static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2944{
2945	int mask;
2946
2947	addr += (nr >> 3);
2948	mask = BIT(7 - (nr & 0x07));
2949	*addr &= ~mask;
2950}
2951
2952static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2953{
2954	int mask;
2955	int ret;
2956
2957	addr += (nr >> 3);
2958	mask = BIT(7 - (nr & 0x07));
2959	ret = mask & *addr;
2960	*addr |= mask;
2961	return ret;
2962}
2963
2964static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2965{
2966	int mask;
2967	int ret;
2968
2969	addr += (nr >> 3);
2970	mask = BIT(7 - (nr & 0x07));
2971	ret = mask & *addr;
2972	*addr &= ~mask;
2973	return ret;
2974}
2975
2976static inline void f2fs_change_bit(unsigned int nr, char *addr)
2977{
2978	int mask;
2979
2980	addr += (nr >> 3);
2981	mask = BIT(7 - (nr & 0x07));
2982	*addr ^= mask;
2983}
2984
2985/*
2986 * On-disk inode flags (f2fs_inode::i_flags)
2987 */
2988#define F2FS_COMPR_FL			0x00000004 /* Compress file */
2989#define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2990#define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2991#define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2992#define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2993#define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2994#define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2995#define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2996#define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2997#define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2998#define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2999
3000#define F2FS_QUOTA_DEFAULT_FL		(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3001
3002/* Flags that should be inherited by new inodes from their parent. */
3003#define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3004			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3005			   F2FS_CASEFOLD_FL)
3006
3007/* Flags that are appropriate for regular files (all but dir-specific ones). */
3008#define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3009				F2FS_CASEFOLD_FL))
3010
3011/* Flags that are appropriate for non-directories/regular files. */
3012#define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3013
3014static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3015{
3016	if (S_ISDIR(mode))
3017		return flags;
3018	else if (S_ISREG(mode))
3019		return flags & F2FS_REG_FLMASK;
3020	else
3021		return flags & F2FS_OTHER_FLMASK;
3022}
3023
3024static inline void __mark_inode_dirty_flag(struct inode *inode,
3025						int flag, bool set)
3026{
3027	switch (flag) {
3028	case FI_INLINE_XATTR:
3029	case FI_INLINE_DATA:
3030	case FI_INLINE_DENTRY:
3031	case FI_NEW_INODE:
3032		if (set)
3033			return;
3034		fallthrough;
3035	case FI_DATA_EXIST:
3036	case FI_INLINE_DOTS:
3037	case FI_PIN_FILE:
3038	case FI_COMPRESS_RELEASED:
3039	case FI_ATOMIC_COMMITTED:
3040		f2fs_mark_inode_dirty_sync(inode, true);
3041	}
3042}
3043
3044static inline void set_inode_flag(struct inode *inode, int flag)
3045{
3046	set_bit(flag, F2FS_I(inode)->flags);
3047	__mark_inode_dirty_flag(inode, flag, true);
3048}
3049
3050static inline int is_inode_flag_set(struct inode *inode, int flag)
3051{
3052	return test_bit(flag, F2FS_I(inode)->flags);
3053}
3054
3055static inline void clear_inode_flag(struct inode *inode, int flag)
3056{
3057	clear_bit(flag, F2FS_I(inode)->flags);
3058	__mark_inode_dirty_flag(inode, flag, false);
3059}
3060
3061static inline bool f2fs_verity_in_progress(struct inode *inode)
3062{
3063	return IS_ENABLED(CONFIG_FS_VERITY) &&
3064	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3065}
3066
3067static inline void set_acl_inode(struct inode *inode, umode_t mode)
3068{
3069	F2FS_I(inode)->i_acl_mode = mode;
3070	set_inode_flag(inode, FI_ACL_MODE);
3071	f2fs_mark_inode_dirty_sync(inode, false);
3072}
3073
3074static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3075{
3076	if (inc)
3077		inc_nlink(inode);
3078	else
3079		drop_nlink(inode);
3080	f2fs_mark_inode_dirty_sync(inode, true);
3081}
3082
3083static inline void f2fs_i_blocks_write(struct inode *inode,
3084					block_t diff, bool add, bool claim)
3085{
3086	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3087	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3088
3089	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3090	if (add) {
3091		if (claim)
3092			dquot_claim_block(inode, diff);
3093		else
3094			dquot_alloc_block_nofail(inode, diff);
3095	} else {
3096		dquot_free_block(inode, diff);
3097	}
3098
3099	f2fs_mark_inode_dirty_sync(inode, true);
3100	if (clean || recover)
3101		set_inode_flag(inode, FI_AUTO_RECOVER);
3102}
3103
3104static inline bool f2fs_is_atomic_file(struct inode *inode);
3105
3106static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3107{
3108	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3109	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3110
3111	if (i_size_read(inode) == i_size)
3112		return;
3113
3114	i_size_write(inode, i_size);
3115
3116	if (f2fs_is_atomic_file(inode))
3117		return;
3118
3119	f2fs_mark_inode_dirty_sync(inode, true);
3120	if (clean || recover)
3121		set_inode_flag(inode, FI_AUTO_RECOVER);
3122}
3123
3124static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3125{
3126	F2FS_I(inode)->i_current_depth = depth;
3127	f2fs_mark_inode_dirty_sync(inode, true);
3128}
3129
3130static inline void f2fs_i_gc_failures_write(struct inode *inode,
3131					unsigned int count)
3132{
3133	F2FS_I(inode)->i_gc_failures = count;
3134	f2fs_mark_inode_dirty_sync(inode, true);
3135}
3136
3137static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3138{
3139	F2FS_I(inode)->i_xattr_nid = xnid;
3140	f2fs_mark_inode_dirty_sync(inode, true);
3141}
3142
3143static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3144{
3145	F2FS_I(inode)->i_pino = pino;
3146	f2fs_mark_inode_dirty_sync(inode, true);
3147}
3148
3149static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3150{
3151	struct f2fs_inode_info *fi = F2FS_I(inode);
3152
3153	if (ri->i_inline & F2FS_INLINE_XATTR)
3154		set_bit(FI_INLINE_XATTR, fi->flags);
3155	if (ri->i_inline & F2FS_INLINE_DATA)
3156		set_bit(FI_INLINE_DATA, fi->flags);
3157	if (ri->i_inline & F2FS_INLINE_DENTRY)
3158		set_bit(FI_INLINE_DENTRY, fi->flags);
3159	if (ri->i_inline & F2FS_DATA_EXIST)
3160		set_bit(FI_DATA_EXIST, fi->flags);
3161	if (ri->i_inline & F2FS_INLINE_DOTS)
3162		set_bit(FI_INLINE_DOTS, fi->flags);
3163	if (ri->i_inline & F2FS_EXTRA_ATTR)
3164		set_bit(FI_EXTRA_ATTR, fi->flags);
3165	if (ri->i_inline & F2FS_PIN_FILE)
3166		set_bit(FI_PIN_FILE, fi->flags);
3167	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3168		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3169}
3170
3171static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3172{
3173	ri->i_inline = 0;
3174
3175	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3176		ri->i_inline |= F2FS_INLINE_XATTR;
3177	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3178		ri->i_inline |= F2FS_INLINE_DATA;
3179	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3180		ri->i_inline |= F2FS_INLINE_DENTRY;
3181	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3182		ri->i_inline |= F2FS_DATA_EXIST;
3183	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3184		ri->i_inline |= F2FS_INLINE_DOTS;
3185	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3186		ri->i_inline |= F2FS_EXTRA_ATTR;
3187	if (is_inode_flag_set(inode, FI_PIN_FILE))
3188		ri->i_inline |= F2FS_PIN_FILE;
3189	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3190		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3191}
3192
3193static inline int f2fs_has_extra_attr(struct inode *inode)
3194{
3195	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3196}
3197
3198static inline int f2fs_has_inline_xattr(struct inode *inode)
3199{
3200	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3201}
3202
3203static inline int f2fs_compressed_file(struct inode *inode)
3204{
3205	return S_ISREG(inode->i_mode) &&
3206		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3207}
3208
3209static inline bool f2fs_need_compress_data(struct inode *inode)
3210{
3211	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3212
3213	if (!f2fs_compressed_file(inode))
3214		return false;
3215
3216	if (compress_mode == COMPR_MODE_FS)
3217		return true;
3218	else if (compress_mode == COMPR_MODE_USER &&
3219			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3220		return true;
3221
3222	return false;
3223}
3224
3225static inline unsigned int addrs_per_inode(struct inode *inode)
3226{
3227	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3228				get_inline_xattr_addrs(inode);
3229
3230	if (!f2fs_compressed_file(inode))
3231		return addrs;
3232	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3233}
3234
3235static inline unsigned int addrs_per_block(struct inode *inode)
3236{
3237	if (!f2fs_compressed_file(inode))
3238		return DEF_ADDRS_PER_BLOCK;
3239	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3240}
3241
3242static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3243{
3244	struct f2fs_inode *ri = F2FS_INODE(page);
3245
3246	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3247					get_inline_xattr_addrs(inode)]);
3248}
3249
3250static inline int inline_xattr_size(struct inode *inode)
3251{
3252	if (f2fs_has_inline_xattr(inode))
3253		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3254	return 0;
3255}
3256
3257/*
3258 * Notice: check inline_data flag without inode page lock is unsafe.
3259 * It could change at any time by f2fs_convert_inline_page().
3260 */
3261static inline int f2fs_has_inline_data(struct inode *inode)
3262{
3263	return is_inode_flag_set(inode, FI_INLINE_DATA);
3264}
3265
3266static inline int f2fs_exist_data(struct inode *inode)
3267{
3268	return is_inode_flag_set(inode, FI_DATA_EXIST);
3269}
3270
3271static inline int f2fs_has_inline_dots(struct inode *inode)
3272{
3273	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3274}
3275
3276static inline int f2fs_is_mmap_file(struct inode *inode)
3277{
3278	return is_inode_flag_set(inode, FI_MMAP_FILE);
3279}
3280
3281static inline bool f2fs_is_pinned_file(struct inode *inode)
3282{
3283	return is_inode_flag_set(inode, FI_PIN_FILE);
3284}
3285
3286static inline bool f2fs_is_atomic_file(struct inode *inode)
3287{
3288	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3289}
3290
3291static inline bool f2fs_is_cow_file(struct inode *inode)
3292{
3293	return is_inode_flag_set(inode, FI_COW_FILE);
3294}
3295
3296static inline __le32 *get_dnode_addr(struct inode *inode,
3297					struct page *node_page);
3298static inline void *inline_data_addr(struct inode *inode, struct page *page)
3299{
3300	__le32 *addr = get_dnode_addr(inode, page);
3301
3302	return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3303}
3304
3305static inline int f2fs_has_inline_dentry(struct inode *inode)
3306{
3307	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3308}
3309
3310static inline int is_file(struct inode *inode, int type)
3311{
3312	return F2FS_I(inode)->i_advise & type;
3313}
3314
3315static inline void set_file(struct inode *inode, int type)
3316{
3317	if (is_file(inode, type))
3318		return;
3319	F2FS_I(inode)->i_advise |= type;
3320	f2fs_mark_inode_dirty_sync(inode, true);
3321}
3322
3323static inline void clear_file(struct inode *inode, int type)
3324{
3325	if (!is_file(inode, type))
3326		return;
3327	F2FS_I(inode)->i_advise &= ~type;
3328	f2fs_mark_inode_dirty_sync(inode, true);
3329}
3330
3331static inline bool f2fs_is_time_consistent(struct inode *inode)
3332{
3333	struct timespec64 ts = inode_get_atime(inode);
3334
3335	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3336		return false;
3337	ts = inode_get_ctime(inode);
3338	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3339		return false;
3340	ts = inode_get_mtime(inode);
3341	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3342		return false;
3343	return true;
3344}
3345
3346static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3347{
3348	bool ret;
3349
3350	if (dsync) {
3351		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3352
3353		spin_lock(&sbi->inode_lock[DIRTY_META]);
3354		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3355		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3356		return ret;
3357	}
3358	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3359			file_keep_isize(inode) ||
3360			i_size_read(inode) & ~PAGE_MASK)
3361		return false;
3362
3363	if (!f2fs_is_time_consistent(inode))
3364		return false;
3365
3366	spin_lock(&F2FS_I(inode)->i_size_lock);
3367	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3368	spin_unlock(&F2FS_I(inode)->i_size_lock);
3369
3370	return ret;
3371}
3372
3373static inline bool f2fs_readonly(struct super_block *sb)
3374{
3375	return sb_rdonly(sb);
3376}
3377
3378static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3379{
3380	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3381}
3382
3383static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3384					size_t size, gfp_t flags)
3385{
3386	if (time_to_inject(sbi, FAULT_KMALLOC))
3387		return NULL;
3388
3389	return kmalloc(size, flags);
3390}
3391
3392static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3393{
3394	if (time_to_inject(sbi, FAULT_KMALLOC))
3395		return NULL;
3396
3397	return __getname();
3398}
3399
3400static inline void f2fs_putname(char *buf)
3401{
3402	__putname(buf);
3403}
3404
3405static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3406					size_t size, gfp_t flags)
3407{
3408	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3409}
3410
3411static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3412					size_t size, gfp_t flags)
3413{
3414	if (time_to_inject(sbi, FAULT_KVMALLOC))
3415		return NULL;
3416
3417	return kvmalloc(size, flags);
3418}
3419
3420static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3421					size_t size, gfp_t flags)
3422{
3423	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3424}
3425
3426static inline int get_extra_isize(struct inode *inode)
3427{
3428	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3429}
3430
3431static inline int get_inline_xattr_addrs(struct inode *inode)
3432{
3433	return F2FS_I(inode)->i_inline_xattr_size;
3434}
3435
3436static inline __le32 *get_dnode_addr(struct inode *inode,
3437					struct page *node_page)
3438{
3439	int base = 0;
3440
3441	if (IS_INODE(node_page) && f2fs_has_extra_attr(inode))
3442		base = get_extra_isize(inode);
3443
3444	return blkaddr_in_node(F2FS_NODE(node_page)) + base;
3445}
3446
3447#define f2fs_get_inode_mode(i) \
3448	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3449	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3450
3451#define F2FS_MIN_EXTRA_ATTR_SIZE		(sizeof(__le32))
3452
3453#define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3454	(offsetof(struct f2fs_inode, i_extra_end) -	\
3455	offsetof(struct f2fs_inode, i_extra_isize))	\
3456
3457#define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3458#define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3459		((offsetof(typeof(*(f2fs_inode)), field) +	\
3460		sizeof((f2fs_inode)->field))			\
3461		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3462
3463#define __is_large_section(sbi)		(SEGS_PER_SEC(sbi) > 1)
3464
3465#define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3466
3467bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3468					block_t blkaddr, int type);
3469static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3470					block_t blkaddr, int type)
3471{
3472	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3473		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3474			 blkaddr, type);
3475}
3476
3477static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3478{
3479	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3480			blkaddr == COMPRESS_ADDR)
3481		return false;
3482	return true;
3483}
3484
3485/*
3486 * file.c
3487 */
3488int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3489int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3490int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3491int f2fs_truncate(struct inode *inode);
3492int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3493		 struct kstat *stat, u32 request_mask, unsigned int flags);
3494int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3495		 struct iattr *attr);
3496int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3497void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3498int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3499							bool readonly);
3500int f2fs_precache_extents(struct inode *inode);
3501int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3502int f2fs_fileattr_set(struct mnt_idmap *idmap,
3503		      struct dentry *dentry, struct fileattr *fa);
3504long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3505long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3506int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3507int f2fs_pin_file_control(struct inode *inode, bool inc);
3508
3509/*
3510 * inode.c
3511 */
3512void f2fs_set_inode_flags(struct inode *inode);
3513bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3514void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3515struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3516struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3517int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3518void f2fs_update_inode(struct inode *inode, struct page *node_page);
3519void f2fs_update_inode_page(struct inode *inode);
3520int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3521void f2fs_evict_inode(struct inode *inode);
3522void f2fs_handle_failed_inode(struct inode *inode);
3523
3524/*
3525 * namei.c
3526 */
3527int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3528							bool hot, bool set);
3529struct dentry *f2fs_get_parent(struct dentry *child);
3530int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3531		     struct inode **new_inode);
3532
3533/*
3534 * dir.c
3535 */
3536int f2fs_init_casefolded_name(const struct inode *dir,
3537			      struct f2fs_filename *fname);
3538int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3539			int lookup, struct f2fs_filename *fname);
3540int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3541			struct f2fs_filename *fname);
3542void f2fs_free_filename(struct f2fs_filename *fname);
3543struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3544			const struct f2fs_filename *fname, int *max_slots);
3545int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3546			unsigned int start_pos, struct fscrypt_str *fstr);
3547void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3548			struct f2fs_dentry_ptr *d);
3549struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3550			const struct f2fs_filename *fname, struct page *dpage);
3551void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3552			unsigned int current_depth);
3553int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3554void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3555struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3556					 const struct f2fs_filename *fname,
3557					 struct page **res_page);
3558struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3559			const struct qstr *child, struct page **res_page);
3560struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3561ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3562			struct page **page);
3563void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3564			struct page *page, struct inode *inode);
3565bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3566			  const struct f2fs_filename *fname);
3567void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3568			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3569			unsigned int bit_pos);
3570int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3571			struct inode *inode, nid_t ino, umode_t mode);
3572int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3573			struct inode *inode, nid_t ino, umode_t mode);
3574int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3575			struct inode *inode, nid_t ino, umode_t mode);
3576void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3577			struct inode *dir, struct inode *inode);
3578int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3579					struct f2fs_filename *fname);
3580bool f2fs_empty_dir(struct inode *dir);
3581
3582static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3583{
3584	if (fscrypt_is_nokey_name(dentry))
3585		return -ENOKEY;
3586	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3587				inode, inode->i_ino, inode->i_mode);
3588}
3589
3590/*
3591 * super.c
3592 */
3593int f2fs_inode_dirtied(struct inode *inode, bool sync);
3594void f2fs_inode_synced(struct inode *inode);
3595int f2fs_dquot_initialize(struct inode *inode);
3596int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3597int f2fs_quota_sync(struct super_block *sb, int type);
3598loff_t max_file_blocks(struct inode *inode);
3599void f2fs_quota_off_umount(struct super_block *sb);
3600void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3601void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason,
3602							bool irq_context);
3603void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3604void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3605int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3606int f2fs_sync_fs(struct super_block *sb, int sync);
3607int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3608
3609/*
3610 * hash.c
3611 */
3612void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3613
3614/*
3615 * node.c
3616 */
3617struct node_info;
3618
3619int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3620bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3621bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3622void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3623void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3624void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3625int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3626bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3627bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3628int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3629				struct node_info *ni, bool checkpoint_context);
3630pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3631int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3632int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3633int f2fs_truncate_xattr_node(struct inode *inode);
3634int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3635					unsigned int seq_id);
3636bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3637int f2fs_remove_inode_page(struct inode *inode);
3638struct page *f2fs_new_inode_page(struct inode *inode);
3639struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3640void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3641struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3642struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3643int f2fs_move_node_page(struct page *node_page, int gc_type);
3644void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3645int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3646			struct writeback_control *wbc, bool atomic,
3647			unsigned int *seq_id);
3648int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3649			struct writeback_control *wbc,
3650			bool do_balance, enum iostat_type io_type);
3651int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3652bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3653void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3654void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3655int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3656int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3657int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3658int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3659int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3660			unsigned int segno, struct f2fs_summary_block *sum);
3661void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3662int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3663int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3664void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3665int __init f2fs_create_node_manager_caches(void);
3666void f2fs_destroy_node_manager_caches(void);
3667
3668/*
3669 * segment.c
3670 */
3671bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3672int f2fs_commit_atomic_write(struct inode *inode);
3673void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3674void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3675void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3676int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3677int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3678int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3679void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3680void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3681bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3682int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3683void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3684void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3685bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3686void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3687					struct cp_control *cpc);
3688void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3689block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3690int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3691void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3692int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3693bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3694int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3695void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3696void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3697int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3698					unsigned int start, unsigned int end);
3699int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3700int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3701int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3702int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3703bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3704					struct cp_control *cpc);
3705struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3706void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3707					block_t blk_addr);
3708void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3709						enum iostat_type io_type);
3710void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3711void f2fs_outplace_write_data(struct dnode_of_data *dn,
3712			struct f2fs_io_info *fio);
3713int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3714void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3715			block_t old_blkaddr, block_t new_blkaddr,
3716			bool recover_curseg, bool recover_newaddr,
3717			bool from_gc);
3718void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3719			block_t old_addr, block_t new_addr,
3720			unsigned char version, bool recover_curseg,
3721			bool recover_newaddr);
3722int f2fs_get_segment_temp(int seg_type);
3723int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3724			block_t old_blkaddr, block_t *new_blkaddr,
3725			struct f2fs_summary *sum, int type,
3726			struct f2fs_io_info *fio);
3727void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3728					block_t blkaddr, unsigned int blkcnt);
3729void f2fs_wait_on_page_writeback(struct page *page,
3730			enum page_type type, bool ordered, bool locked);
3731void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3732void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3733								block_t len);
3734void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3735void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3736int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3737			unsigned int val, int alloc);
3738void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3739int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3740int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3741int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3742void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3743int __init f2fs_create_segment_manager_caches(void);
3744void f2fs_destroy_segment_manager_caches(void);
3745int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint);
3746enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3747			enum page_type type, enum temp_type temp);
3748unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3749			unsigned int segno);
3750unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3751			unsigned int segno);
3752
3753#define DEF_FRAGMENT_SIZE	4
3754#define MIN_FRAGMENT_SIZE	1
3755#define MAX_FRAGMENT_SIZE	512
3756
3757static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3758{
3759	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3760		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3761}
3762
3763/*
3764 * checkpoint.c
3765 */
3766void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3767							unsigned char reason);
3768void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3769struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3770struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3771struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3772struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3773bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3774					block_t blkaddr, int type);
3775bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3776					block_t blkaddr, int type);
3777int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3778			int type, bool sync);
3779void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3780							unsigned int ra_blocks);
3781long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3782			long nr_to_write, enum iostat_type io_type);
3783void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3784void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3785void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3786bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3787void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3788					unsigned int devidx, int type);
3789bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3790					unsigned int devidx, int type);
3791int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3792void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3793void f2fs_add_orphan_inode(struct inode *inode);
3794void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3795int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3796int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3797void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3798void f2fs_remove_dirty_inode(struct inode *inode);
3799int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3800								bool from_cp);
3801void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3802u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3803int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3804void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3805int __init f2fs_create_checkpoint_caches(void);
3806void f2fs_destroy_checkpoint_caches(void);
3807int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3808int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3809void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3810void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3811
3812/*
3813 * data.c
3814 */
3815int __init f2fs_init_bioset(void);
3816void f2fs_destroy_bioset(void);
3817bool f2fs_is_cp_guaranteed(struct page *page);
3818int f2fs_init_bio_entry_cache(void);
3819void f2fs_destroy_bio_entry_cache(void);
3820void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3821			  enum page_type type);
3822int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3823void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3824void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3825				struct inode *inode, struct page *page,
3826				nid_t ino, enum page_type type);
3827void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3828					struct bio **bio, struct page *page);
3829void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3830int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3831int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3832void f2fs_submit_page_write(struct f2fs_io_info *fio);
3833struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3834		block_t blk_addr, sector_t *sector);
3835int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3836void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3837void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3838int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3839int f2fs_reserve_new_block(struct dnode_of_data *dn);
3840int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3841int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3842struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3843			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3844struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3845							pgoff_t *next_pgofs);
3846struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3847			bool for_write);
3848struct page *f2fs_get_new_data_page(struct inode *inode,
3849			struct page *ipage, pgoff_t index, bool new_i_size);
3850int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3851int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3852int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3853			u64 start, u64 len);
3854int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3855bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3856bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3857int f2fs_write_single_data_page(struct page *page, int *submitted,
3858				struct bio **bio, sector_t *last_block,
3859				struct writeback_control *wbc,
3860				enum iostat_type io_type,
3861				int compr_blocks, bool allow_balance);
3862void f2fs_write_failed(struct inode *inode, loff_t to);
3863void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3864bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3865bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3866void f2fs_clear_page_cache_dirty_tag(struct page *page);
3867int f2fs_init_post_read_processing(void);
3868void f2fs_destroy_post_read_processing(void);
3869int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3870void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3871extern const struct iomap_ops f2fs_iomap_ops;
3872
3873/*
3874 * gc.c
3875 */
3876int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3877void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3878block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3879int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3880void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3881int f2fs_gc_range(struct f2fs_sb_info *sbi,
3882		unsigned int start_seg, unsigned int end_seg,
3883		bool dry_run, unsigned int dry_run_sections);
3884int f2fs_resize_fs(struct file *filp, __u64 block_count);
3885int __init f2fs_create_garbage_collection_cache(void);
3886void f2fs_destroy_garbage_collection_cache(void);
3887/* victim selection function for cleaning and SSR */
3888int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3889			int gc_type, int type, char alloc_mode,
3890			unsigned long long age);
3891
3892/*
3893 * recovery.c
3894 */
3895int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3896bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3897int __init f2fs_create_recovery_cache(void);
3898void f2fs_destroy_recovery_cache(void);
3899
3900/*
3901 * debug.c
3902 */
3903#ifdef CONFIG_F2FS_STAT_FS
3904struct f2fs_stat_info {
3905	struct list_head stat_list;
3906	struct f2fs_sb_info *sbi;
3907	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3908	int main_area_segs, main_area_sections, main_area_zones;
3909	unsigned long long hit_cached[NR_EXTENT_CACHES];
3910	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3911	unsigned long long total_ext[NR_EXTENT_CACHES];
3912	unsigned long long hit_total[NR_EXTENT_CACHES];
3913	int ext_tree[NR_EXTENT_CACHES];
3914	int zombie_tree[NR_EXTENT_CACHES];
3915	int ext_node[NR_EXTENT_CACHES];
3916	/* to count memory footprint */
3917	unsigned long long ext_mem[NR_EXTENT_CACHES];
3918	/* for read extent cache */
3919	unsigned long long hit_largest;
3920	/* for block age extent cache */
3921	unsigned long long allocated_data_blocks;
3922	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3923	int ndirty_data, ndirty_qdata;
3924	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3925	int nats, dirty_nats, sits, dirty_sits;
3926	int free_nids, avail_nids, alloc_nids;
3927	int total_count, utilization;
3928	int nr_wb_cp_data, nr_wb_data;
3929	int nr_rd_data, nr_rd_node, nr_rd_meta;
3930	int nr_dio_read, nr_dio_write;
3931	unsigned int io_skip_bggc, other_skip_bggc;
3932	int nr_flushing, nr_flushed, flush_list_empty;
3933	int nr_discarding, nr_discarded;
3934	int nr_discard_cmd;
3935	unsigned int undiscard_blks;
3936	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3937	unsigned int cur_ckpt_time, peak_ckpt_time;
3938	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3939	int compr_inode, swapfile_inode;
3940	unsigned long long compr_blocks;
3941	int aw_cnt, max_aw_cnt;
3942	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3943	unsigned int bimodal, avg_vblocks;
3944	int util_free, util_valid, util_invalid;
3945	int rsvd_segs, overp_segs;
3946	int dirty_count, node_pages, meta_pages, compress_pages;
3947	int compress_page_hit;
3948	int prefree_count, free_segs, free_secs;
3949	int cp_call_count[MAX_CALL_TYPE], cp_count;
3950	int gc_call_count[MAX_CALL_TYPE];
3951	int gc_segs[2][2];
3952	int gc_secs[2][2];
3953	int tot_blks, data_blks, node_blks;
3954	int bg_data_blks, bg_node_blks;
3955	int curseg[NR_CURSEG_TYPE];
3956	int cursec[NR_CURSEG_TYPE];
3957	int curzone[NR_CURSEG_TYPE];
3958	unsigned int dirty_seg[NR_CURSEG_TYPE];
3959	unsigned int full_seg[NR_CURSEG_TYPE];
3960	unsigned int valid_blks[NR_CURSEG_TYPE];
3961
3962	unsigned int meta_count[META_MAX];
3963	unsigned int segment_count[2];
3964	unsigned int block_count[2];
3965	unsigned int inplace_count;
3966	unsigned long long base_mem, cache_mem, page_mem;
3967};
3968
3969static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3970{
3971	return (struct f2fs_stat_info *)sbi->stat_info;
3972}
3973
3974#define stat_inc_cp_call_count(sbi, foreground)				\
3975		atomic_inc(&sbi->cp_call_count[(foreground)])
3976#define stat_inc_cp_count(si)		(F2FS_STAT(sbi)->cp_count++)
3977#define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3978#define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3979#define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3980#define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3981#define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
3982#define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3983#define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3984#define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
3985#define stat_inc_inline_xattr(inode)					\
3986	do {								\
3987		if (f2fs_has_inline_xattr(inode))			\
3988			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3989	} while (0)
3990#define stat_dec_inline_xattr(inode)					\
3991	do {								\
3992		if (f2fs_has_inline_xattr(inode))			\
3993			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3994	} while (0)
3995#define stat_inc_inline_inode(inode)					\
3996	do {								\
3997		if (f2fs_has_inline_data(inode))			\
3998			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3999	} while (0)
4000#define stat_dec_inline_inode(inode)					\
4001	do {								\
4002		if (f2fs_has_inline_data(inode))			\
4003			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
4004	} while (0)
4005#define stat_inc_inline_dir(inode)					\
4006	do {								\
4007		if (f2fs_has_inline_dentry(inode))			\
4008			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
4009	} while (0)
4010#define stat_dec_inline_dir(inode)					\
4011	do {								\
4012		if (f2fs_has_inline_dentry(inode))			\
4013			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
4014	} while (0)
4015#define stat_inc_compr_inode(inode)					\
4016	do {								\
4017		if (f2fs_compressed_file(inode))			\
4018			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
4019	} while (0)
4020#define stat_dec_compr_inode(inode)					\
4021	do {								\
4022		if (f2fs_compressed_file(inode))			\
4023			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
4024	} while (0)
4025#define stat_add_compr_blocks(inode, blocks)				\
4026		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4027#define stat_sub_compr_blocks(inode, blocks)				\
4028		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4029#define stat_inc_swapfile_inode(inode)					\
4030		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4031#define stat_dec_swapfile_inode(inode)					\
4032		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4033#define stat_inc_atomic_inode(inode)					\
4034			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4035#define stat_dec_atomic_inode(inode)					\
4036			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4037#define stat_inc_meta_count(sbi, blkaddr)				\
4038	do {								\
4039		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
4040			atomic_inc(&(sbi)->meta_count[META_CP]);	\
4041		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
4042			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
4043		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
4044			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
4045		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
4046			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
4047	} while (0)
4048#define stat_inc_seg_type(sbi, curseg)					\
4049		((sbi)->segment_count[(curseg)->alloc_type]++)
4050#define stat_inc_block_count(sbi, curseg)				\
4051		((sbi)->block_count[(curseg)->alloc_type]++)
4052#define stat_inc_inplace_blocks(sbi)					\
4053		(atomic_inc(&(sbi)->inplace_count))
4054#define stat_update_max_atomic_write(inode)				\
4055	do {								\
4056		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
4057		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
4058		if (cur > max)						\
4059			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4060	} while (0)
4061#define stat_inc_gc_call_count(sbi, foreground)				\
4062		(F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4063#define stat_inc_gc_sec_count(sbi, type, gc_type)			\
4064		(F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4065#define stat_inc_gc_seg_count(sbi, type, gc_type)			\
4066		(F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4067
4068#define stat_inc_tot_blk_count(si, blks)				\
4069	((si)->tot_blks += (blks))
4070
4071#define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4072	do {								\
4073		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4074		stat_inc_tot_blk_count(si, blks);			\
4075		si->data_blks += (blks);				\
4076		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4077	} while (0)
4078
4079#define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4080	do {								\
4081		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4082		stat_inc_tot_blk_count(si, blks);			\
4083		si->node_blks += (blks);				\
4084		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4085	} while (0)
4086
4087int f2fs_build_stats(struct f2fs_sb_info *sbi);
4088void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4089void __init f2fs_create_root_stats(void);
4090void f2fs_destroy_root_stats(void);
4091void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4092#else
4093#define stat_inc_cp_call_count(sbi, foreground)		do { } while (0)
4094#define stat_inc_cp_count(sbi)				do { } while (0)
4095#define stat_io_skip_bggc_count(sbi)			do { } while (0)
4096#define stat_other_skip_bggc_count(sbi)			do { } while (0)
4097#define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4098#define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4099#define stat_inc_total_hit(sbi, type)			do { } while (0)
4100#define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4101#define stat_inc_largest_node_hit(sbi)			do { } while (0)
4102#define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4103#define stat_inc_inline_xattr(inode)			do { } while (0)
4104#define stat_dec_inline_xattr(inode)			do { } while (0)
4105#define stat_inc_inline_inode(inode)			do { } while (0)
4106#define stat_dec_inline_inode(inode)			do { } while (0)
4107#define stat_inc_inline_dir(inode)			do { } while (0)
4108#define stat_dec_inline_dir(inode)			do { } while (0)
4109#define stat_inc_compr_inode(inode)			do { } while (0)
4110#define stat_dec_compr_inode(inode)			do { } while (0)
4111#define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4112#define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4113#define stat_inc_swapfile_inode(inode)			do { } while (0)
4114#define stat_dec_swapfile_inode(inode)			do { } while (0)
4115#define stat_inc_atomic_inode(inode)			do { } while (0)
4116#define stat_dec_atomic_inode(inode)			do { } while (0)
4117#define stat_update_max_atomic_write(inode)		do { } while (0)
4118#define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4119#define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4120#define stat_inc_block_count(sbi, curseg)		do { } while (0)
4121#define stat_inc_inplace_blocks(sbi)			do { } while (0)
4122#define stat_inc_gc_call_count(sbi, foreground)		do { } while (0)
4123#define stat_inc_gc_sec_count(sbi, type, gc_type)	do { } while (0)
4124#define stat_inc_gc_seg_count(sbi, type, gc_type)	do { } while (0)
4125#define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4126#define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4127#define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4128
4129static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4130static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4131static inline void __init f2fs_create_root_stats(void) { }
4132static inline void f2fs_destroy_root_stats(void) { }
4133static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4134#endif
4135
4136extern const struct file_operations f2fs_dir_operations;
4137extern const struct file_operations f2fs_file_operations;
4138extern const struct inode_operations f2fs_file_inode_operations;
4139extern const struct address_space_operations f2fs_dblock_aops;
4140extern const struct address_space_operations f2fs_node_aops;
4141extern const struct address_space_operations f2fs_meta_aops;
4142extern const struct inode_operations f2fs_dir_inode_operations;
4143extern const struct inode_operations f2fs_symlink_inode_operations;
4144extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4145extern const struct inode_operations f2fs_special_inode_operations;
4146extern struct kmem_cache *f2fs_inode_entry_slab;
4147
4148/*
4149 * inline.c
4150 */
4151bool f2fs_may_inline_data(struct inode *inode);
4152bool f2fs_sanity_check_inline_data(struct inode *inode);
4153bool f2fs_may_inline_dentry(struct inode *inode);
4154void f2fs_do_read_inline_data(struct folio *folio, struct page *ipage);
4155void f2fs_truncate_inline_inode(struct inode *inode,
4156						struct page *ipage, u64 from);
4157int f2fs_read_inline_data(struct inode *inode, struct folio *folio);
4158int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4159int f2fs_convert_inline_inode(struct inode *inode);
4160int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4161int f2fs_write_inline_data(struct inode *inode, struct page *page);
4162int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4163struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4164					const struct f2fs_filename *fname,
4165					struct page **res_page);
4166int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4167			struct page *ipage);
4168int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4169			struct inode *inode, nid_t ino, umode_t mode);
4170void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4171				struct page *page, struct inode *dir,
4172				struct inode *inode);
4173bool f2fs_empty_inline_dir(struct inode *dir);
4174int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4175			struct fscrypt_str *fstr);
4176int f2fs_inline_data_fiemap(struct inode *inode,
4177			struct fiemap_extent_info *fieinfo,
4178			__u64 start, __u64 len);
4179
4180/*
4181 * shrinker.c
4182 */
4183unsigned long f2fs_shrink_count(struct shrinker *shrink,
4184			struct shrink_control *sc);
4185unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4186			struct shrink_control *sc);
4187void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4188void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4189
4190/*
4191 * extent_cache.c
4192 */
4193bool sanity_check_extent_cache(struct inode *inode);
4194void f2fs_init_extent_tree(struct inode *inode);
4195void f2fs_drop_extent_tree(struct inode *inode);
4196void f2fs_destroy_extent_node(struct inode *inode);
4197void f2fs_destroy_extent_tree(struct inode *inode);
4198void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4199int __init f2fs_create_extent_cache(void);
4200void f2fs_destroy_extent_cache(void);
4201
4202/* read extent cache ops */
4203void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4204bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4205			struct extent_info *ei);
4206bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4207			block_t *blkaddr);
4208void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4209void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4210			pgoff_t fofs, block_t blkaddr, unsigned int len);
4211unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4212			int nr_shrink);
4213
4214/* block age extent cache ops */
4215void f2fs_init_age_extent_tree(struct inode *inode);
4216bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4217			struct extent_info *ei);
4218void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4219void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4220			pgoff_t fofs, unsigned int len);
4221unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4222			int nr_shrink);
4223
4224/*
4225 * sysfs.c
4226 */
4227#define MIN_RA_MUL	2
4228#define MAX_RA_MUL	256
4229
4230int __init f2fs_init_sysfs(void);
4231void f2fs_exit_sysfs(void);
4232int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4233void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4234
4235/* verity.c */
4236extern const struct fsverity_operations f2fs_verityops;
4237
4238/*
4239 * crypto support
4240 */
4241static inline bool f2fs_encrypted_file(struct inode *inode)
4242{
4243	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4244}
4245
4246static inline void f2fs_set_encrypted_inode(struct inode *inode)
4247{
4248#ifdef CONFIG_FS_ENCRYPTION
4249	file_set_encrypt(inode);
4250	f2fs_set_inode_flags(inode);
4251#endif
4252}
4253
4254/*
4255 * Returns true if the reads of the inode's data need to undergo some
4256 * postprocessing step, like decryption or authenticity verification.
4257 */
4258static inline bool f2fs_post_read_required(struct inode *inode)
4259{
4260	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4261		f2fs_compressed_file(inode);
4262}
4263
4264/*
4265 * compress.c
4266 */
4267#ifdef CONFIG_F2FS_FS_COMPRESSION
4268bool f2fs_is_compressed_page(struct page *page);
4269struct page *f2fs_compress_control_page(struct page *page);
4270int f2fs_prepare_compress_overwrite(struct inode *inode,
4271			struct page **pagep, pgoff_t index, void **fsdata);
4272bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4273					pgoff_t index, unsigned copied);
4274int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4275void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4276bool f2fs_is_compress_backend_ready(struct inode *inode);
4277bool f2fs_is_compress_level_valid(int alg, int lvl);
4278int __init f2fs_init_compress_mempool(void);
4279void f2fs_destroy_compress_mempool(void);
4280void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4281void f2fs_end_read_compressed_page(struct page *page, bool failed,
4282				block_t blkaddr, bool in_task);
4283bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4284bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4285bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4286				int index, int nr_pages, bool uptodate);
4287bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4288void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4289int f2fs_write_multi_pages(struct compress_ctx *cc,
4290						int *submitted,
4291						struct writeback_control *wbc,
4292						enum iostat_type io_type);
4293int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4294void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4295				pgoff_t fofs, block_t blkaddr,
4296				unsigned int llen, unsigned int c_len);
4297int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4298				unsigned nr_pages, sector_t *last_block_in_bio,
4299				bool is_readahead, bool for_write);
4300struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4301void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4302				bool in_task);
4303void f2fs_put_page_dic(struct page *page, bool in_task);
4304unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4305						unsigned int ofs_in_node);
4306int f2fs_init_compress_ctx(struct compress_ctx *cc);
4307void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4308void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4309int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4310void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4311int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4312void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4313int __init f2fs_init_compress_cache(void);
4314void f2fs_destroy_compress_cache(void);
4315struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4316void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4317void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4318						nid_t ino, block_t blkaddr);
4319bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4320								block_t blkaddr);
4321void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4322#define inc_compr_inode_stat(inode)					\
4323	do {								\
4324		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4325		sbi->compr_new_inode++;					\
4326	} while (0)
4327#define add_compr_block_stat(inode, blocks)				\
4328	do {								\
4329		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4330		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4331		sbi->compr_written_block += blocks;			\
4332		sbi->compr_saved_block += diff;				\
4333	} while (0)
4334#else
4335static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4336static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4337{
4338	if (!f2fs_compressed_file(inode))
4339		return true;
4340	/* not support compression */
4341	return false;
4342}
4343static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
4344static inline struct page *f2fs_compress_control_page(struct page *page)
4345{
4346	WARN_ON_ONCE(1);
4347	return ERR_PTR(-EINVAL);
4348}
4349static inline int __init f2fs_init_compress_mempool(void) { return 0; }
4350static inline void f2fs_destroy_compress_mempool(void) { }
4351static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4352				bool in_task) { }
4353static inline void f2fs_end_read_compressed_page(struct page *page,
4354				bool failed, block_t blkaddr, bool in_task)
4355{
4356	WARN_ON_ONCE(1);
4357}
4358static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4359{
4360	WARN_ON_ONCE(1);
4361}
4362static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4363			struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
4364static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4365static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4366static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4367static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4368static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4369static inline int __init f2fs_init_compress_cache(void) { return 0; }
4370static inline void f2fs_destroy_compress_cache(void) { }
4371static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4372				block_t blkaddr) { }
4373static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4374				struct page *page, nid_t ino, block_t blkaddr) { }
4375static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4376				struct page *page, block_t blkaddr) { return false; }
4377static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4378							nid_t ino) { }
4379#define inc_compr_inode_stat(inode)		do { } while (0)
4380static inline void f2fs_update_read_extent_tree_range_compressed(
4381				struct inode *inode,
4382				pgoff_t fofs, block_t blkaddr,
4383				unsigned int llen, unsigned int c_len) { }
4384#endif
4385
4386static inline int set_compress_context(struct inode *inode)
4387{
4388#ifdef CONFIG_F2FS_FS_COMPRESSION
4389	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4390
4391	F2FS_I(inode)->i_compress_algorithm =
4392			F2FS_OPTION(sbi).compress_algorithm;
4393	F2FS_I(inode)->i_log_cluster_size =
4394			F2FS_OPTION(sbi).compress_log_size;
4395	F2FS_I(inode)->i_compress_flag =
4396			F2FS_OPTION(sbi).compress_chksum ?
4397				BIT(COMPRESS_CHKSUM) : 0;
4398	F2FS_I(inode)->i_cluster_size =
4399			BIT(F2FS_I(inode)->i_log_cluster_size);
4400	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4401		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4402			F2FS_OPTION(sbi).compress_level)
4403		F2FS_I(inode)->i_compress_level =
4404				F2FS_OPTION(sbi).compress_level;
4405	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4406	set_inode_flag(inode, FI_COMPRESSED_FILE);
4407	stat_inc_compr_inode(inode);
4408	inc_compr_inode_stat(inode);
4409	f2fs_mark_inode_dirty_sync(inode, true);
4410	return 0;
4411#else
4412	return -EOPNOTSUPP;
4413#endif
4414}
4415
4416static inline bool f2fs_disable_compressed_file(struct inode *inode)
4417{
4418	struct f2fs_inode_info *fi = F2FS_I(inode);
4419
4420	f2fs_down_write(&F2FS_I(inode)->i_sem);
4421
4422	if (!f2fs_compressed_file(inode)) {
4423		f2fs_up_write(&F2FS_I(inode)->i_sem);
4424		return true;
4425	}
4426	if (f2fs_is_mmap_file(inode) ||
4427		(S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4428		f2fs_up_write(&F2FS_I(inode)->i_sem);
4429		return false;
4430	}
4431
4432	fi->i_flags &= ~F2FS_COMPR_FL;
4433	stat_dec_compr_inode(inode);
4434	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4435	f2fs_mark_inode_dirty_sync(inode, true);
4436
4437	f2fs_up_write(&F2FS_I(inode)->i_sem);
4438	return true;
4439}
4440
4441#define F2FS_FEATURE_FUNCS(name, flagname) \
4442static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4443{ \
4444	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4445}
4446
4447F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4448F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4449F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4450F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4451F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4452F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4453F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4454F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4455F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4456F2FS_FEATURE_FUNCS(verity, VERITY);
4457F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4458F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4459F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4460F2FS_FEATURE_FUNCS(readonly, RO);
4461
4462#ifdef CONFIG_BLK_DEV_ZONED
4463static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4464				    block_t blkaddr)
4465{
4466	unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4467
4468	return test_bit(zno, FDEV(devi).blkz_seq);
4469}
4470#endif
4471
4472static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4473				  struct block_device *bdev)
4474{
4475	int i;
4476
4477	if (!f2fs_is_multi_device(sbi))
4478		return 0;
4479
4480	for (i = 0; i < sbi->s_ndevs; i++)
4481		if (FDEV(i).bdev == bdev)
4482			return i;
4483
4484	WARN_ON(1);
4485	return -1;
4486}
4487
4488static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4489{
4490	return f2fs_sb_has_blkzoned(sbi);
4491}
4492
4493static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4494{
4495	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4496}
4497
4498static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4499{
4500	int i;
4501
4502	if (!f2fs_is_multi_device(sbi))
4503		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4504
4505	for (i = 0; i < sbi->s_ndevs; i++)
4506		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4507			return true;
4508	return false;
4509}
4510
4511static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4512{
4513	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4514					f2fs_hw_should_discard(sbi);
4515}
4516
4517static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4518{
4519	int i;
4520
4521	if (!f2fs_is_multi_device(sbi))
4522		return bdev_read_only(sbi->sb->s_bdev);
4523
4524	for (i = 0; i < sbi->s_ndevs; i++)
4525		if (bdev_read_only(FDEV(i).bdev))
4526			return true;
4527	return false;
4528}
4529
4530static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4531{
4532	return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4533}
4534
4535static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4536{
4537	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4538}
4539
4540static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4541					  block_t blkaddr)
4542{
4543	if (f2fs_sb_has_blkzoned(sbi)) {
4544		int devi = f2fs_target_device_index(sbi, blkaddr);
4545
4546		return !bdev_is_zoned(FDEV(devi).bdev);
4547	}
4548	return true;
4549}
4550
4551static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4552{
4553	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4554}
4555
4556static inline bool f2fs_may_compress(struct inode *inode)
4557{
4558	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4559		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4560		f2fs_is_mmap_file(inode))
4561		return false;
4562	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4563}
4564
4565static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4566						u64 blocks, bool add)
4567{
4568	struct f2fs_inode_info *fi = F2FS_I(inode);
4569	int diff = fi->i_cluster_size - blocks;
4570
4571	/* don't update i_compr_blocks if saved blocks were released */
4572	if (!add && !atomic_read(&fi->i_compr_blocks))
4573		return;
4574
4575	if (add) {
4576		atomic_add(diff, &fi->i_compr_blocks);
4577		stat_add_compr_blocks(inode, diff);
4578	} else {
4579		atomic_sub(diff, &fi->i_compr_blocks);
4580		stat_sub_compr_blocks(inode, diff);
4581	}
4582	f2fs_mark_inode_dirty_sync(inode, true);
4583}
4584
4585static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4586								int flag)
4587{
4588	if (!f2fs_is_multi_device(sbi))
4589		return false;
4590	if (flag != F2FS_GET_BLOCK_DIO)
4591		return false;
4592	return sbi->aligned_blksize;
4593}
4594
4595static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4596{
4597	return fsverity_active(inode) &&
4598	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4599}
4600
4601#ifdef CONFIG_F2FS_FAULT_INJECTION
4602extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4603							unsigned long type);
4604#else
4605static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4606					unsigned long rate, unsigned long type)
4607{
4608	return 0;
4609}
4610#endif
4611
4612static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4613{
4614#ifdef CONFIG_QUOTA
4615	if (f2fs_sb_has_quota_ino(sbi))
4616		return true;
4617	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4618		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4619		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4620		return true;
4621#endif
4622	return false;
4623}
4624
4625static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4626{
4627	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4628}
4629
4630static inline void f2fs_io_schedule_timeout(long timeout)
4631{
4632	set_current_state(TASK_UNINTERRUPTIBLE);
4633	io_schedule_timeout(timeout);
4634}
4635
4636static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4637					enum page_type type)
4638{
4639	if (unlikely(f2fs_cp_error(sbi)))
4640		return;
4641
4642	if (ofs == sbi->page_eio_ofs[type]) {
4643		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4644			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4645	} else {
4646		sbi->page_eio_ofs[type] = ofs;
4647		sbi->page_eio_cnt[type] = 0;
4648	}
4649}
4650
4651static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4652{
4653	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4654}
4655
4656static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4657					block_t blkaddr, unsigned int cnt)
4658{
4659	bool need_submit = false;
4660	int i = 0;
4661
4662	do {
4663		struct page *page;
4664
4665		page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4666		if (page) {
4667			if (folio_test_writeback(page_folio(page)))
4668				need_submit = true;
4669			f2fs_put_page(page, 0);
4670		}
4671	} while (++i < cnt && !need_submit);
4672
4673	if (need_submit)
4674		f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4675							NULL, 0, DATA);
4676
4677	truncate_inode_pages_range(META_MAPPING(sbi),
4678			F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4679			F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4680}
4681
4682static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4683								block_t blkaddr)
4684{
4685	f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1);
4686	f2fs_invalidate_compress_page(sbi, blkaddr);
4687}
4688
4689#define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4690#define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4691
4692#endif /* _LINUX_F2FS_H */
4693