1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 *             http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/buffer_head.h>
11#include <linux/sched/mm.h>
12#include <linux/mpage.h>
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
15#include <linux/blkdev.h>
16#include <linux/bio.h>
17#include <linux/blk-crypto.h>
18#include <linux/swap.h>
19#include <linux/prefetch.h>
20#include <linux/uio.h>
21#include <linux/sched/signal.h>
22#include <linux/fiemap.h>
23#include <linux/iomap.h>
24
25#include "f2fs.h"
26#include "node.h"
27#include "segment.h"
28#include "iostat.h"
29#include <trace/events/f2fs.h>
30
31#define NUM_PREALLOC_POST_READ_CTXS	128
32
33static struct kmem_cache *bio_post_read_ctx_cache;
34static struct kmem_cache *bio_entry_slab;
35static mempool_t *bio_post_read_ctx_pool;
36static struct bio_set f2fs_bioset;
37
38#define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
39
40int __init f2fs_init_bioset(void)
41{
42	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43					0, BIOSET_NEED_BVECS);
44}
45
46void f2fs_destroy_bioset(void)
47{
48	bioset_exit(&f2fs_bioset);
49}
50
51bool f2fs_is_cp_guaranteed(struct page *page)
52{
53	struct address_space *mapping = page->mapping;
54	struct inode *inode;
55	struct f2fs_sb_info *sbi;
56
57	if (!mapping)
58		return false;
59
60	inode = mapping->host;
61	sbi = F2FS_I_SB(inode);
62
63	if (inode->i_ino == F2FS_META_INO(sbi) ||
64			inode->i_ino == F2FS_NODE_INO(sbi) ||
65			S_ISDIR(inode->i_mode))
66		return true;
67
68	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
69			page_private_gcing(page))
70		return true;
71	return false;
72}
73
74static enum count_type __read_io_type(struct page *page)
75{
76	struct address_space *mapping = page_file_mapping(page);
77
78	if (mapping) {
79		struct inode *inode = mapping->host;
80		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
81
82		if (inode->i_ino == F2FS_META_INO(sbi))
83			return F2FS_RD_META;
84
85		if (inode->i_ino == F2FS_NODE_INO(sbi))
86			return F2FS_RD_NODE;
87	}
88	return F2FS_RD_DATA;
89}
90
91/* postprocessing steps for read bios */
92enum bio_post_read_step {
93#ifdef CONFIG_FS_ENCRYPTION
94	STEP_DECRYPT	= BIT(0),
95#else
96	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
97#endif
98#ifdef CONFIG_F2FS_FS_COMPRESSION
99	STEP_DECOMPRESS	= BIT(1),
100#else
101	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
102#endif
103#ifdef CONFIG_FS_VERITY
104	STEP_VERITY	= BIT(2),
105#else
106	STEP_VERITY	= 0,	/* compile out the verity-related code */
107#endif
108};
109
110struct bio_post_read_ctx {
111	struct bio *bio;
112	struct f2fs_sb_info *sbi;
113	struct work_struct work;
114	unsigned int enabled_steps;
115	/*
116	 * decompression_attempted keeps track of whether
117	 * f2fs_end_read_compressed_page() has been called on the pages in the
118	 * bio that belong to a compressed cluster yet.
119	 */
120	bool decompression_attempted;
121	block_t fs_blkaddr;
122};
123
124/*
125 * Update and unlock a bio's pages, and free the bio.
126 *
127 * This marks pages up-to-date only if there was no error in the bio (I/O error,
128 * decryption error, or verity error), as indicated by bio->bi_status.
129 *
130 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
131 * aren't marked up-to-date here, as decompression is done on a per-compression-
132 * cluster basis rather than a per-bio basis.  Instead, we only must do two
133 * things for each compressed page here: call f2fs_end_read_compressed_page()
134 * with failed=true if an error occurred before it would have normally gotten
135 * called (i.e., I/O error or decryption error, but *not* verity error), and
136 * release the bio's reference to the decompress_io_ctx of the page's cluster.
137 */
138static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
139{
140	struct bio_vec *bv;
141	struct bvec_iter_all iter_all;
142	struct bio_post_read_ctx *ctx = bio->bi_private;
143
144	bio_for_each_segment_all(bv, bio, iter_all) {
145		struct page *page = bv->bv_page;
146
147		if (f2fs_is_compressed_page(page)) {
148			if (ctx && !ctx->decompression_attempted)
149				f2fs_end_read_compressed_page(page, true, 0,
150							in_task);
151			f2fs_put_page_dic(page, in_task);
152			continue;
153		}
154
155		if (bio->bi_status)
156			ClearPageUptodate(page);
157		else
158			SetPageUptodate(page);
159		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
160		unlock_page(page);
161	}
162
163	if (ctx)
164		mempool_free(ctx, bio_post_read_ctx_pool);
165	bio_put(bio);
166}
167
168static void f2fs_verify_bio(struct work_struct *work)
169{
170	struct bio_post_read_ctx *ctx =
171		container_of(work, struct bio_post_read_ctx, work);
172	struct bio *bio = ctx->bio;
173	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
174
175	/*
176	 * fsverity_verify_bio() may call readahead() again, and while verity
177	 * will be disabled for this, decryption and/or decompression may still
178	 * be needed, resulting in another bio_post_read_ctx being allocated.
179	 * So to prevent deadlocks we need to release the current ctx to the
180	 * mempool first.  This assumes that verity is the last post-read step.
181	 */
182	mempool_free(ctx, bio_post_read_ctx_pool);
183	bio->bi_private = NULL;
184
185	/*
186	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
187	 * as those were handled separately by f2fs_end_read_compressed_page().
188	 */
189	if (may_have_compressed_pages) {
190		struct bio_vec *bv;
191		struct bvec_iter_all iter_all;
192
193		bio_for_each_segment_all(bv, bio, iter_all) {
194			struct page *page = bv->bv_page;
195
196			if (!f2fs_is_compressed_page(page) &&
197			    !fsverity_verify_page(page)) {
198				bio->bi_status = BLK_STS_IOERR;
199				break;
200			}
201		}
202	} else {
203		fsverity_verify_bio(bio);
204	}
205
206	f2fs_finish_read_bio(bio, true);
207}
208
209/*
210 * If the bio's data needs to be verified with fs-verity, then enqueue the
211 * verity work for the bio.  Otherwise finish the bio now.
212 *
213 * Note that to avoid deadlocks, the verity work can't be done on the
214 * decryption/decompression workqueue.  This is because verifying the data pages
215 * can involve reading verity metadata pages from the file, and these verity
216 * metadata pages may be encrypted and/or compressed.
217 */
218static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
219{
220	struct bio_post_read_ctx *ctx = bio->bi_private;
221
222	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
223		INIT_WORK(&ctx->work, f2fs_verify_bio);
224		fsverity_enqueue_verify_work(&ctx->work);
225	} else {
226		f2fs_finish_read_bio(bio, in_task);
227	}
228}
229
230/*
231 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
232 * remaining page was read by @ctx->bio.
233 *
234 * Note that a bio may span clusters (even a mix of compressed and uncompressed
235 * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
236 * that the bio includes at least one compressed page.  The actual decompression
237 * is done on a per-cluster basis, not a per-bio basis.
238 */
239static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
240		bool in_task)
241{
242	struct bio_vec *bv;
243	struct bvec_iter_all iter_all;
244	bool all_compressed = true;
245	block_t blkaddr = ctx->fs_blkaddr;
246
247	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
248		struct page *page = bv->bv_page;
249
250		if (f2fs_is_compressed_page(page))
251			f2fs_end_read_compressed_page(page, false, blkaddr,
252						      in_task);
253		else
254			all_compressed = false;
255
256		blkaddr++;
257	}
258
259	ctx->decompression_attempted = true;
260
261	/*
262	 * Optimization: if all the bio's pages are compressed, then scheduling
263	 * the per-bio verity work is unnecessary, as verity will be fully
264	 * handled at the compression cluster level.
265	 */
266	if (all_compressed)
267		ctx->enabled_steps &= ~STEP_VERITY;
268}
269
270static void f2fs_post_read_work(struct work_struct *work)
271{
272	struct bio_post_read_ctx *ctx =
273		container_of(work, struct bio_post_read_ctx, work);
274	struct bio *bio = ctx->bio;
275
276	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
277		f2fs_finish_read_bio(bio, true);
278		return;
279	}
280
281	if (ctx->enabled_steps & STEP_DECOMPRESS)
282		f2fs_handle_step_decompress(ctx, true);
283
284	f2fs_verify_and_finish_bio(bio, true);
285}
286
287static void f2fs_read_end_io(struct bio *bio)
288{
289	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
290	struct bio_post_read_ctx *ctx;
291	bool intask = in_task();
292
293	iostat_update_and_unbind_ctx(bio);
294	ctx = bio->bi_private;
295
296	if (time_to_inject(sbi, FAULT_READ_IO))
297		bio->bi_status = BLK_STS_IOERR;
298
299	if (bio->bi_status) {
300		f2fs_finish_read_bio(bio, intask);
301		return;
302	}
303
304	if (ctx) {
305		unsigned int enabled_steps = ctx->enabled_steps &
306					(STEP_DECRYPT | STEP_DECOMPRESS);
307
308		/*
309		 * If we have only decompression step between decompression and
310		 * decrypt, we don't need post processing for this.
311		 */
312		if (enabled_steps == STEP_DECOMPRESS &&
313				!f2fs_low_mem_mode(sbi)) {
314			f2fs_handle_step_decompress(ctx, intask);
315		} else if (enabled_steps) {
316			INIT_WORK(&ctx->work, f2fs_post_read_work);
317			queue_work(ctx->sbi->post_read_wq, &ctx->work);
318			return;
319		}
320	}
321
322	f2fs_verify_and_finish_bio(bio, intask);
323}
324
325static void f2fs_write_end_io(struct bio *bio)
326{
327	struct f2fs_sb_info *sbi;
328	struct bio_vec *bvec;
329	struct bvec_iter_all iter_all;
330
331	iostat_update_and_unbind_ctx(bio);
332	sbi = bio->bi_private;
333
334	if (time_to_inject(sbi, FAULT_WRITE_IO))
335		bio->bi_status = BLK_STS_IOERR;
336
337	bio_for_each_segment_all(bvec, bio, iter_all) {
338		struct page *page = bvec->bv_page;
339		enum count_type type = WB_DATA_TYPE(page, false);
340
341		fscrypt_finalize_bounce_page(&page);
342
343#ifdef CONFIG_F2FS_FS_COMPRESSION
344		if (f2fs_is_compressed_page(page)) {
345			f2fs_compress_write_end_io(bio, page);
346			continue;
347		}
348#endif
349
350		if (unlikely(bio->bi_status)) {
351			mapping_set_error(page->mapping, -EIO);
352			if (type == F2FS_WB_CP_DATA)
353				f2fs_stop_checkpoint(sbi, true,
354						STOP_CP_REASON_WRITE_FAIL);
355		}
356
357		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
358					page->index != nid_of_node(page));
359
360		dec_page_count(sbi, type);
361		if (f2fs_in_warm_node_list(sbi, page))
362			f2fs_del_fsync_node_entry(sbi, page);
363		clear_page_private_gcing(page);
364		end_page_writeback(page);
365	}
366	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
367				wq_has_sleeper(&sbi->cp_wait))
368		wake_up(&sbi->cp_wait);
369
370	bio_put(bio);
371}
372
373#ifdef CONFIG_BLK_DEV_ZONED
374static void f2fs_zone_write_end_io(struct bio *bio)
375{
376	struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
377
378	bio->bi_private = io->bi_private;
379	complete(&io->zone_wait);
380	f2fs_write_end_io(bio);
381}
382#endif
383
384struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
385		block_t blk_addr, sector_t *sector)
386{
387	struct block_device *bdev = sbi->sb->s_bdev;
388	int i;
389
390	if (f2fs_is_multi_device(sbi)) {
391		for (i = 0; i < sbi->s_ndevs; i++) {
392			if (FDEV(i).start_blk <= blk_addr &&
393			    FDEV(i).end_blk >= blk_addr) {
394				blk_addr -= FDEV(i).start_blk;
395				bdev = FDEV(i).bdev;
396				break;
397			}
398		}
399	}
400
401	if (sector)
402		*sector = SECTOR_FROM_BLOCK(blk_addr);
403	return bdev;
404}
405
406int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
407{
408	int i;
409
410	if (!f2fs_is_multi_device(sbi))
411		return 0;
412
413	for (i = 0; i < sbi->s_ndevs; i++)
414		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
415			return i;
416	return 0;
417}
418
419static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
420{
421	unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
422	unsigned int fua_flag, meta_flag, io_flag;
423	blk_opf_t op_flags = 0;
424
425	if (fio->op != REQ_OP_WRITE)
426		return 0;
427	if (fio->type == DATA)
428		io_flag = fio->sbi->data_io_flag;
429	else if (fio->type == NODE)
430		io_flag = fio->sbi->node_io_flag;
431	else
432		return 0;
433
434	fua_flag = io_flag & temp_mask;
435	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
436
437	/*
438	 * data/node io flag bits per temp:
439	 *      REQ_META     |      REQ_FUA      |
440	 *    5 |    4 |   3 |    2 |    1 |   0 |
441	 * Cold | Warm | Hot | Cold | Warm | Hot |
442	 */
443	if (BIT(fio->temp) & meta_flag)
444		op_flags |= REQ_META;
445	if (BIT(fio->temp) & fua_flag)
446		op_flags |= REQ_FUA;
447	return op_flags;
448}
449
450static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
451{
452	struct f2fs_sb_info *sbi = fio->sbi;
453	struct block_device *bdev;
454	sector_t sector;
455	struct bio *bio;
456
457	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
458	bio = bio_alloc_bioset(bdev, npages,
459				fio->op | fio->op_flags | f2fs_io_flags(fio),
460				GFP_NOIO, &f2fs_bioset);
461	bio->bi_iter.bi_sector = sector;
462	if (is_read_io(fio->op)) {
463		bio->bi_end_io = f2fs_read_end_io;
464		bio->bi_private = NULL;
465	} else {
466		bio->bi_end_io = f2fs_write_end_io;
467		bio->bi_private = sbi;
468		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
469						fio->type, fio->temp);
470	}
471	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
472
473	if (fio->io_wbc)
474		wbc_init_bio(fio->io_wbc, bio);
475
476	return bio;
477}
478
479static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
480				  pgoff_t first_idx,
481				  const struct f2fs_io_info *fio,
482				  gfp_t gfp_mask)
483{
484	/*
485	 * The f2fs garbage collector sets ->encrypted_page when it wants to
486	 * read/write raw data without encryption.
487	 */
488	if (!fio || !fio->encrypted_page)
489		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
490}
491
492static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
493				     pgoff_t next_idx,
494				     const struct f2fs_io_info *fio)
495{
496	/*
497	 * The f2fs garbage collector sets ->encrypted_page when it wants to
498	 * read/write raw data without encryption.
499	 */
500	if (fio && fio->encrypted_page)
501		return !bio_has_crypt_ctx(bio);
502
503	return fscrypt_mergeable_bio(bio, inode, next_idx);
504}
505
506void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
507				 enum page_type type)
508{
509	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
510	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
511
512	iostat_update_submit_ctx(bio, type);
513	submit_bio(bio);
514}
515
516static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
517				  enum page_type type)
518{
519	WARN_ON_ONCE(is_read_io(bio_op(bio)));
520
521	if (f2fs_lfs_mode(sbi) && current->plug && PAGE_TYPE_ON_MAIN(type))
522		blk_finish_plug(current->plug);
523
524	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
525	iostat_update_submit_ctx(bio, type);
526	submit_bio(bio);
527}
528
529static void __submit_merged_bio(struct f2fs_bio_info *io)
530{
531	struct f2fs_io_info *fio = &io->fio;
532
533	if (!io->bio)
534		return;
535
536	if (is_read_io(fio->op)) {
537		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
538		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
539	} else {
540		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
541		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
542	}
543	io->bio = NULL;
544}
545
546static bool __has_merged_page(struct bio *bio, struct inode *inode,
547						struct page *page, nid_t ino)
548{
549	struct bio_vec *bvec;
550	struct bvec_iter_all iter_all;
551
552	if (!bio)
553		return false;
554
555	if (!inode && !page && !ino)
556		return true;
557
558	bio_for_each_segment_all(bvec, bio, iter_all) {
559		struct page *target = bvec->bv_page;
560
561		if (fscrypt_is_bounce_page(target)) {
562			target = fscrypt_pagecache_page(target);
563			if (IS_ERR(target))
564				continue;
565		}
566		if (f2fs_is_compressed_page(target)) {
567			target = f2fs_compress_control_page(target);
568			if (IS_ERR(target))
569				continue;
570		}
571
572		if (inode && inode == target->mapping->host)
573			return true;
574		if (page && page == target)
575			return true;
576		if (ino && ino == ino_of_node(target))
577			return true;
578	}
579
580	return false;
581}
582
583int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
584{
585	int i;
586
587	for (i = 0; i < NR_PAGE_TYPE; i++) {
588		int n = (i == META) ? 1 : NR_TEMP_TYPE;
589		int j;
590
591		sbi->write_io[i] = f2fs_kmalloc(sbi,
592				array_size(n, sizeof(struct f2fs_bio_info)),
593				GFP_KERNEL);
594		if (!sbi->write_io[i])
595			return -ENOMEM;
596
597		for (j = HOT; j < n; j++) {
598			struct f2fs_bio_info *io = &sbi->write_io[i][j];
599
600			init_f2fs_rwsem(&io->io_rwsem);
601			io->sbi = sbi;
602			io->bio = NULL;
603			io->last_block_in_bio = 0;
604			spin_lock_init(&io->io_lock);
605			INIT_LIST_HEAD(&io->io_list);
606			INIT_LIST_HEAD(&io->bio_list);
607			init_f2fs_rwsem(&io->bio_list_lock);
608#ifdef CONFIG_BLK_DEV_ZONED
609			init_completion(&io->zone_wait);
610			io->zone_pending_bio = NULL;
611			io->bi_private = NULL;
612#endif
613		}
614	}
615
616	return 0;
617}
618
619static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
620				enum page_type type, enum temp_type temp)
621{
622	enum page_type btype = PAGE_TYPE_OF_BIO(type);
623	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
624
625	f2fs_down_write(&io->io_rwsem);
626
627	if (!io->bio)
628		goto unlock_out;
629
630	/* change META to META_FLUSH in the checkpoint procedure */
631	if (type >= META_FLUSH) {
632		io->fio.type = META_FLUSH;
633		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
634		if (!test_opt(sbi, NOBARRIER))
635			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
636	}
637	__submit_merged_bio(io);
638unlock_out:
639	f2fs_up_write(&io->io_rwsem);
640}
641
642static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
643				struct inode *inode, struct page *page,
644				nid_t ino, enum page_type type, bool force)
645{
646	enum temp_type temp;
647	bool ret = true;
648
649	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
650		if (!force)	{
651			enum page_type btype = PAGE_TYPE_OF_BIO(type);
652			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
653
654			f2fs_down_read(&io->io_rwsem);
655			ret = __has_merged_page(io->bio, inode, page, ino);
656			f2fs_up_read(&io->io_rwsem);
657		}
658		if (ret)
659			__f2fs_submit_merged_write(sbi, type, temp);
660
661		/* TODO: use HOT temp only for meta pages now. */
662		if (type >= META)
663			break;
664	}
665}
666
667void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
668{
669	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
670}
671
672void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
673				struct inode *inode, struct page *page,
674				nid_t ino, enum page_type type)
675{
676	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
677}
678
679void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
680{
681	f2fs_submit_merged_write(sbi, DATA);
682	f2fs_submit_merged_write(sbi, NODE);
683	f2fs_submit_merged_write(sbi, META);
684}
685
686/*
687 * Fill the locked page with data located in the block address.
688 * A caller needs to unlock the page on failure.
689 */
690int f2fs_submit_page_bio(struct f2fs_io_info *fio)
691{
692	struct bio *bio;
693	struct page *page = fio->encrypted_page ?
694			fio->encrypted_page : fio->page;
695
696	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
697			fio->is_por ? META_POR : (__is_meta_io(fio) ?
698			META_GENERIC : DATA_GENERIC_ENHANCE)))
699		return -EFSCORRUPTED;
700
701	trace_f2fs_submit_page_bio(page, fio);
702
703	/* Allocate a new bio */
704	bio = __bio_alloc(fio, 1);
705
706	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
707			       fio->page->index, fio, GFP_NOIO);
708
709	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
710		bio_put(bio);
711		return -EFAULT;
712	}
713
714	if (fio->io_wbc && !is_read_io(fio->op))
715		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
716
717	inc_page_count(fio->sbi, is_read_io(fio->op) ?
718			__read_io_type(page) : WB_DATA_TYPE(fio->page, false));
719
720	if (is_read_io(bio_op(bio)))
721		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
722	else
723		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
724	return 0;
725}
726
727static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
728				block_t last_blkaddr, block_t cur_blkaddr)
729{
730	if (unlikely(sbi->max_io_bytes &&
731			bio->bi_iter.bi_size >= sbi->max_io_bytes))
732		return false;
733	if (last_blkaddr + 1 != cur_blkaddr)
734		return false;
735	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
736}
737
738static bool io_type_is_mergeable(struct f2fs_bio_info *io,
739						struct f2fs_io_info *fio)
740{
741	if (io->fio.op != fio->op)
742		return false;
743	return io->fio.op_flags == fio->op_flags;
744}
745
746static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
747					struct f2fs_bio_info *io,
748					struct f2fs_io_info *fio,
749					block_t last_blkaddr,
750					block_t cur_blkaddr)
751{
752	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
753		return false;
754	return io_type_is_mergeable(io, fio);
755}
756
757static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
758				struct page *page, enum temp_type temp)
759{
760	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
761	struct bio_entry *be;
762
763	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
764	be->bio = bio;
765	bio_get(bio);
766
767	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
768		f2fs_bug_on(sbi, 1);
769
770	f2fs_down_write(&io->bio_list_lock);
771	list_add_tail(&be->list, &io->bio_list);
772	f2fs_up_write(&io->bio_list_lock);
773}
774
775static void del_bio_entry(struct bio_entry *be)
776{
777	list_del(&be->list);
778	kmem_cache_free(bio_entry_slab, be);
779}
780
781static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
782							struct page *page)
783{
784	struct f2fs_sb_info *sbi = fio->sbi;
785	enum temp_type temp;
786	bool found = false;
787	int ret = -EAGAIN;
788
789	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
790		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
791		struct list_head *head = &io->bio_list;
792		struct bio_entry *be;
793
794		f2fs_down_write(&io->bio_list_lock);
795		list_for_each_entry(be, head, list) {
796			if (be->bio != *bio)
797				continue;
798
799			found = true;
800
801			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
802							    *fio->last_block,
803							    fio->new_blkaddr));
804			if (f2fs_crypt_mergeable_bio(*bio,
805					fio->page->mapping->host,
806					fio->page->index, fio) &&
807			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
808					PAGE_SIZE) {
809				ret = 0;
810				break;
811			}
812
813			/* page can't be merged into bio; submit the bio */
814			del_bio_entry(be);
815			f2fs_submit_write_bio(sbi, *bio, DATA);
816			break;
817		}
818		f2fs_up_write(&io->bio_list_lock);
819	}
820
821	if (ret) {
822		bio_put(*bio);
823		*bio = NULL;
824	}
825
826	return ret;
827}
828
829void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
830					struct bio **bio, struct page *page)
831{
832	enum temp_type temp;
833	bool found = false;
834	struct bio *target = bio ? *bio : NULL;
835
836	f2fs_bug_on(sbi, !target && !page);
837
838	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
839		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
840		struct list_head *head = &io->bio_list;
841		struct bio_entry *be;
842
843		if (list_empty(head))
844			continue;
845
846		f2fs_down_read(&io->bio_list_lock);
847		list_for_each_entry(be, head, list) {
848			if (target)
849				found = (target == be->bio);
850			else
851				found = __has_merged_page(be->bio, NULL,
852								page, 0);
853			if (found)
854				break;
855		}
856		f2fs_up_read(&io->bio_list_lock);
857
858		if (!found)
859			continue;
860
861		found = false;
862
863		f2fs_down_write(&io->bio_list_lock);
864		list_for_each_entry(be, head, list) {
865			if (target)
866				found = (target == be->bio);
867			else
868				found = __has_merged_page(be->bio, NULL,
869								page, 0);
870			if (found) {
871				target = be->bio;
872				del_bio_entry(be);
873				break;
874			}
875		}
876		f2fs_up_write(&io->bio_list_lock);
877	}
878
879	if (found)
880		f2fs_submit_write_bio(sbi, target, DATA);
881	if (bio && *bio) {
882		bio_put(*bio);
883		*bio = NULL;
884	}
885}
886
887int f2fs_merge_page_bio(struct f2fs_io_info *fio)
888{
889	struct bio *bio = *fio->bio;
890	struct page *page = fio->encrypted_page ?
891			fio->encrypted_page : fio->page;
892
893	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
894			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
895		return -EFSCORRUPTED;
896
897	trace_f2fs_submit_page_bio(page, fio);
898
899	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
900						fio->new_blkaddr))
901		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
902alloc_new:
903	if (!bio) {
904		bio = __bio_alloc(fio, BIO_MAX_VECS);
905		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
906				       fio->page->index, fio, GFP_NOIO);
907
908		add_bio_entry(fio->sbi, bio, page, fio->temp);
909	} else {
910		if (add_ipu_page(fio, &bio, page))
911			goto alloc_new;
912	}
913
914	if (fio->io_wbc)
915		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
916
917	inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
918
919	*fio->last_block = fio->new_blkaddr;
920	*fio->bio = bio;
921
922	return 0;
923}
924
925#ifdef CONFIG_BLK_DEV_ZONED
926static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
927{
928	int devi = 0;
929
930	if (f2fs_is_multi_device(sbi)) {
931		devi = f2fs_target_device_index(sbi, blkaddr);
932		if (blkaddr < FDEV(devi).start_blk ||
933		    blkaddr > FDEV(devi).end_blk) {
934			f2fs_err(sbi, "Invalid block %x", blkaddr);
935			return false;
936		}
937		blkaddr -= FDEV(devi).start_blk;
938	}
939	return bdev_is_zoned(FDEV(devi).bdev) &&
940		f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
941		(blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
942}
943#endif
944
945void f2fs_submit_page_write(struct f2fs_io_info *fio)
946{
947	struct f2fs_sb_info *sbi = fio->sbi;
948	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
949	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
950	struct page *bio_page;
951	enum count_type type;
952
953	f2fs_bug_on(sbi, is_read_io(fio->op));
954
955	f2fs_down_write(&io->io_rwsem);
956next:
957#ifdef CONFIG_BLK_DEV_ZONED
958	if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
959		wait_for_completion_io(&io->zone_wait);
960		bio_put(io->zone_pending_bio);
961		io->zone_pending_bio = NULL;
962		io->bi_private = NULL;
963	}
964#endif
965
966	if (fio->in_list) {
967		spin_lock(&io->io_lock);
968		if (list_empty(&io->io_list)) {
969			spin_unlock(&io->io_lock);
970			goto out;
971		}
972		fio = list_first_entry(&io->io_list,
973						struct f2fs_io_info, list);
974		list_del(&fio->list);
975		spin_unlock(&io->io_lock);
976	}
977
978	verify_fio_blkaddr(fio);
979
980	if (fio->encrypted_page)
981		bio_page = fio->encrypted_page;
982	else if (fio->compressed_page)
983		bio_page = fio->compressed_page;
984	else
985		bio_page = fio->page;
986
987	/* set submitted = true as a return value */
988	fio->submitted = 1;
989
990	type = WB_DATA_TYPE(bio_page, fio->compressed_page);
991	inc_page_count(sbi, type);
992
993	if (io->bio &&
994	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
995			      fio->new_blkaddr) ||
996	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
997				       bio_page->index, fio)))
998		__submit_merged_bio(io);
999alloc_new:
1000	if (io->bio == NULL) {
1001		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1002		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1003				       bio_page->index, fio, GFP_NOIO);
1004		io->fio = *fio;
1005	}
1006
1007	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1008		__submit_merged_bio(io);
1009		goto alloc_new;
1010	}
1011
1012	if (fio->io_wbc)
1013		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1014
1015	io->last_block_in_bio = fio->new_blkaddr;
1016
1017	trace_f2fs_submit_page_write(fio->page, fio);
1018#ifdef CONFIG_BLK_DEV_ZONED
1019	if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1020			is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1021		bio_get(io->bio);
1022		reinit_completion(&io->zone_wait);
1023		io->bi_private = io->bio->bi_private;
1024		io->bio->bi_private = io;
1025		io->bio->bi_end_io = f2fs_zone_write_end_io;
1026		io->zone_pending_bio = io->bio;
1027		__submit_merged_bio(io);
1028	}
1029#endif
1030	if (fio->in_list)
1031		goto next;
1032out:
1033	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1034				!f2fs_is_checkpoint_ready(sbi))
1035		__submit_merged_bio(io);
1036	f2fs_up_write(&io->io_rwsem);
1037}
1038
1039static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1040				      unsigned nr_pages, blk_opf_t op_flag,
1041				      pgoff_t first_idx, bool for_write)
1042{
1043	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1044	struct bio *bio;
1045	struct bio_post_read_ctx *ctx = NULL;
1046	unsigned int post_read_steps = 0;
1047	sector_t sector;
1048	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1049
1050	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1051			       REQ_OP_READ | op_flag,
1052			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1053	if (!bio)
1054		return ERR_PTR(-ENOMEM);
1055	bio->bi_iter.bi_sector = sector;
1056	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1057	bio->bi_end_io = f2fs_read_end_io;
1058
1059	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1060		post_read_steps |= STEP_DECRYPT;
1061
1062	if (f2fs_need_verity(inode, first_idx))
1063		post_read_steps |= STEP_VERITY;
1064
1065	/*
1066	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1067	 * contain both compressed and uncompressed clusters.  We'll allocate a
1068	 * bio_post_read_ctx if the file is compressed, but the caller is
1069	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1070	 */
1071
1072	if (post_read_steps || f2fs_compressed_file(inode)) {
1073		/* Due to the mempool, this never fails. */
1074		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1075		ctx->bio = bio;
1076		ctx->sbi = sbi;
1077		ctx->enabled_steps = post_read_steps;
1078		ctx->fs_blkaddr = blkaddr;
1079		ctx->decompression_attempted = false;
1080		bio->bi_private = ctx;
1081	}
1082	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1083
1084	return bio;
1085}
1086
1087/* This can handle encryption stuffs */
1088static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1089				 block_t blkaddr, blk_opf_t op_flags,
1090				 bool for_write)
1091{
1092	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1093	struct bio *bio;
1094
1095	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1096					page->index, for_write);
1097	if (IS_ERR(bio))
1098		return PTR_ERR(bio);
1099
1100	/* wait for GCed page writeback via META_MAPPING */
1101	f2fs_wait_on_block_writeback(inode, blkaddr);
1102
1103	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1104		iostat_update_and_unbind_ctx(bio);
1105		if (bio->bi_private)
1106			mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1107		bio_put(bio);
1108		return -EFAULT;
1109	}
1110	inc_page_count(sbi, F2FS_RD_DATA);
1111	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1112	f2fs_submit_read_bio(sbi, bio, DATA);
1113	return 0;
1114}
1115
1116static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1117{
1118	__le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1119
1120	dn->data_blkaddr = blkaddr;
1121	addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1122}
1123
1124/*
1125 * Lock ordering for the change of data block address:
1126 * ->data_page
1127 *  ->node_page
1128 *    update block addresses in the node page
1129 */
1130void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1131{
1132	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1133	__set_data_blkaddr(dn, blkaddr);
1134	if (set_page_dirty(dn->node_page))
1135		dn->node_changed = true;
1136}
1137
1138void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1139{
1140	f2fs_set_data_blkaddr(dn, blkaddr);
1141	f2fs_update_read_extent_cache(dn);
1142}
1143
1144/* dn->ofs_in_node will be returned with up-to-date last block pointer */
1145int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1146{
1147	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1148	int err;
1149
1150	if (!count)
1151		return 0;
1152
1153	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1154		return -EPERM;
1155	err = inc_valid_block_count(sbi, dn->inode, &count, true);
1156	if (unlikely(err))
1157		return err;
1158
1159	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1160						dn->ofs_in_node, count);
1161
1162	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1163
1164	for (; count > 0; dn->ofs_in_node++) {
1165		block_t blkaddr = f2fs_data_blkaddr(dn);
1166
1167		if (blkaddr == NULL_ADDR) {
1168			__set_data_blkaddr(dn, NEW_ADDR);
1169			count--;
1170		}
1171	}
1172
1173	if (set_page_dirty(dn->node_page))
1174		dn->node_changed = true;
1175	return 0;
1176}
1177
1178/* Should keep dn->ofs_in_node unchanged */
1179int f2fs_reserve_new_block(struct dnode_of_data *dn)
1180{
1181	unsigned int ofs_in_node = dn->ofs_in_node;
1182	int ret;
1183
1184	ret = f2fs_reserve_new_blocks(dn, 1);
1185	dn->ofs_in_node = ofs_in_node;
1186	return ret;
1187}
1188
1189int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1190{
1191	bool need_put = dn->inode_page ? false : true;
1192	int err;
1193
1194	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1195	if (err)
1196		return err;
1197
1198	if (dn->data_blkaddr == NULL_ADDR)
1199		err = f2fs_reserve_new_block(dn);
1200	if (err || need_put)
1201		f2fs_put_dnode(dn);
1202	return err;
1203}
1204
1205struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1206				     blk_opf_t op_flags, bool for_write,
1207				     pgoff_t *next_pgofs)
1208{
1209	struct address_space *mapping = inode->i_mapping;
1210	struct dnode_of_data dn;
1211	struct page *page;
1212	int err;
1213
1214	page = f2fs_grab_cache_page(mapping, index, for_write);
1215	if (!page)
1216		return ERR_PTR(-ENOMEM);
1217
1218	if (f2fs_lookup_read_extent_cache_block(inode, index,
1219						&dn.data_blkaddr)) {
1220		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1221						DATA_GENERIC_ENHANCE_READ)) {
1222			err = -EFSCORRUPTED;
1223			goto put_err;
1224		}
1225		goto got_it;
1226	}
1227
1228	set_new_dnode(&dn, inode, NULL, NULL, 0);
1229	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1230	if (err) {
1231		if (err == -ENOENT && next_pgofs)
1232			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1233		goto put_err;
1234	}
1235	f2fs_put_dnode(&dn);
1236
1237	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1238		err = -ENOENT;
1239		if (next_pgofs)
1240			*next_pgofs = index + 1;
1241		goto put_err;
1242	}
1243	if (dn.data_blkaddr != NEW_ADDR &&
1244			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1245						dn.data_blkaddr,
1246						DATA_GENERIC_ENHANCE)) {
1247		err = -EFSCORRUPTED;
1248		goto put_err;
1249	}
1250got_it:
1251	if (PageUptodate(page)) {
1252		unlock_page(page);
1253		return page;
1254	}
1255
1256	/*
1257	 * A new dentry page is allocated but not able to be written, since its
1258	 * new inode page couldn't be allocated due to -ENOSPC.
1259	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1260	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1261	 * f2fs_init_inode_metadata.
1262	 */
1263	if (dn.data_blkaddr == NEW_ADDR) {
1264		zero_user_segment(page, 0, PAGE_SIZE);
1265		if (!PageUptodate(page))
1266			SetPageUptodate(page);
1267		unlock_page(page);
1268		return page;
1269	}
1270
1271	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1272						op_flags, for_write);
1273	if (err)
1274		goto put_err;
1275	return page;
1276
1277put_err:
1278	f2fs_put_page(page, 1);
1279	return ERR_PTR(err);
1280}
1281
1282struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1283					pgoff_t *next_pgofs)
1284{
1285	struct address_space *mapping = inode->i_mapping;
1286	struct page *page;
1287
1288	page = find_get_page(mapping, index);
1289	if (page && PageUptodate(page))
1290		return page;
1291	f2fs_put_page(page, 0);
1292
1293	page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1294	if (IS_ERR(page))
1295		return page;
1296
1297	if (PageUptodate(page))
1298		return page;
1299
1300	wait_on_page_locked(page);
1301	if (unlikely(!PageUptodate(page))) {
1302		f2fs_put_page(page, 0);
1303		return ERR_PTR(-EIO);
1304	}
1305	return page;
1306}
1307
1308/*
1309 * If it tries to access a hole, return an error.
1310 * Because, the callers, functions in dir.c and GC, should be able to know
1311 * whether this page exists or not.
1312 */
1313struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1314							bool for_write)
1315{
1316	struct address_space *mapping = inode->i_mapping;
1317	struct page *page;
1318
1319	page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1320	if (IS_ERR(page))
1321		return page;
1322
1323	/* wait for read completion */
1324	lock_page(page);
1325	if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1326		f2fs_put_page(page, 1);
1327		return ERR_PTR(-EIO);
1328	}
1329	return page;
1330}
1331
1332/*
1333 * Caller ensures that this data page is never allocated.
1334 * A new zero-filled data page is allocated in the page cache.
1335 *
1336 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1337 * f2fs_unlock_op().
1338 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1339 * ipage should be released by this function.
1340 */
1341struct page *f2fs_get_new_data_page(struct inode *inode,
1342		struct page *ipage, pgoff_t index, bool new_i_size)
1343{
1344	struct address_space *mapping = inode->i_mapping;
1345	struct page *page;
1346	struct dnode_of_data dn;
1347	int err;
1348
1349	page = f2fs_grab_cache_page(mapping, index, true);
1350	if (!page) {
1351		/*
1352		 * before exiting, we should make sure ipage will be released
1353		 * if any error occur.
1354		 */
1355		f2fs_put_page(ipage, 1);
1356		return ERR_PTR(-ENOMEM);
1357	}
1358
1359	set_new_dnode(&dn, inode, ipage, NULL, 0);
1360	err = f2fs_reserve_block(&dn, index);
1361	if (err) {
1362		f2fs_put_page(page, 1);
1363		return ERR_PTR(err);
1364	}
1365	if (!ipage)
1366		f2fs_put_dnode(&dn);
1367
1368	if (PageUptodate(page))
1369		goto got_it;
1370
1371	if (dn.data_blkaddr == NEW_ADDR) {
1372		zero_user_segment(page, 0, PAGE_SIZE);
1373		if (!PageUptodate(page))
1374			SetPageUptodate(page);
1375	} else {
1376		f2fs_put_page(page, 1);
1377
1378		/* if ipage exists, blkaddr should be NEW_ADDR */
1379		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1380		page = f2fs_get_lock_data_page(inode, index, true);
1381		if (IS_ERR(page))
1382			return page;
1383	}
1384got_it:
1385	if (new_i_size && i_size_read(inode) <
1386				((loff_t)(index + 1) << PAGE_SHIFT))
1387		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1388	return page;
1389}
1390
1391static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1392{
1393	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1394	struct f2fs_summary sum;
1395	struct node_info ni;
1396	block_t old_blkaddr;
1397	blkcnt_t count = 1;
1398	int err;
1399
1400	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1401		return -EPERM;
1402
1403	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1404	if (err)
1405		return err;
1406
1407	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1408	if (dn->data_blkaddr == NULL_ADDR) {
1409		err = inc_valid_block_count(sbi, dn->inode, &count, true);
1410		if (unlikely(err))
1411			return err;
1412	}
1413
1414	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1415	old_blkaddr = dn->data_blkaddr;
1416	err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr,
1417				&dn->data_blkaddr, &sum, seg_type, NULL);
1418	if (err)
1419		return err;
1420
1421	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1422		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
1423
1424	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1425	return 0;
1426}
1427
1428static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1429{
1430	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1431		f2fs_down_read(&sbi->node_change);
1432	else
1433		f2fs_lock_op(sbi);
1434}
1435
1436static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1437{
1438	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1439		f2fs_up_read(&sbi->node_change);
1440	else
1441		f2fs_unlock_op(sbi);
1442}
1443
1444int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1445{
1446	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1447	int err = 0;
1448
1449	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1450	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1451						&dn->data_blkaddr))
1452		err = f2fs_reserve_block(dn, index);
1453	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1454
1455	return err;
1456}
1457
1458static int f2fs_map_no_dnode(struct inode *inode,
1459		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1460		pgoff_t pgoff)
1461{
1462	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1463
1464	/*
1465	 * There is one exceptional case that read_node_page() may return
1466	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1467	 * -EIO in that case.
1468	 */
1469	if (map->m_may_create &&
1470	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1471		return -EIO;
1472
1473	if (map->m_next_pgofs)
1474		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1475	if (map->m_next_extent)
1476		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1477	return 0;
1478}
1479
1480static bool f2fs_map_blocks_cached(struct inode *inode,
1481		struct f2fs_map_blocks *map, int flag)
1482{
1483	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1484	unsigned int maxblocks = map->m_len;
1485	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1486	struct extent_info ei = {};
1487
1488	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1489		return false;
1490
1491	map->m_pblk = ei.blk + pgoff - ei.fofs;
1492	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1493	map->m_flags = F2FS_MAP_MAPPED;
1494	if (map->m_next_extent)
1495		*map->m_next_extent = pgoff + map->m_len;
1496
1497	/* for hardware encryption, but to avoid potential issue in future */
1498	if (flag == F2FS_GET_BLOCK_DIO)
1499		f2fs_wait_on_block_writeback_range(inode,
1500					map->m_pblk, map->m_len);
1501
1502	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1503		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1504		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1505
1506		map->m_bdev = dev->bdev;
1507		map->m_pblk -= dev->start_blk;
1508		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1509	} else {
1510		map->m_bdev = inode->i_sb->s_bdev;
1511	}
1512	return true;
1513}
1514
1515static bool map_is_mergeable(struct f2fs_sb_info *sbi,
1516				struct f2fs_map_blocks *map,
1517				block_t blkaddr, int flag, int bidx,
1518				int ofs)
1519{
1520	if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1521		return false;
1522	if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs))
1523		return true;
1524	if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR)
1525		return true;
1526	if (flag == F2FS_GET_BLOCK_PRE_DIO)
1527		return true;
1528	if (flag == F2FS_GET_BLOCK_DIO &&
1529		map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR)
1530		return true;
1531	return false;
1532}
1533
1534/*
1535 * f2fs_map_blocks() tries to find or build mapping relationship which
1536 * maps continuous logical blocks to physical blocks, and return such
1537 * info via f2fs_map_blocks structure.
1538 */
1539int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1540{
1541	unsigned int maxblocks = map->m_len;
1542	struct dnode_of_data dn;
1543	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1544	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1545	pgoff_t pgofs, end_offset, end;
1546	int err = 0, ofs = 1;
1547	unsigned int ofs_in_node, last_ofs_in_node;
1548	blkcnt_t prealloc;
1549	block_t blkaddr;
1550	unsigned int start_pgofs;
1551	int bidx = 0;
1552	bool is_hole;
1553
1554	if (!maxblocks)
1555		return 0;
1556
1557	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1558		goto out;
1559
1560	map->m_bdev = inode->i_sb->s_bdev;
1561	map->m_multidev_dio =
1562		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1563
1564	map->m_len = 0;
1565	map->m_flags = 0;
1566
1567	/* it only supports block size == page size */
1568	pgofs =	(pgoff_t)map->m_lblk;
1569	end = pgofs + maxblocks;
1570
1571next_dnode:
1572	if (map->m_may_create)
1573		f2fs_map_lock(sbi, flag);
1574
1575	/* When reading holes, we need its node page */
1576	set_new_dnode(&dn, inode, NULL, NULL, 0);
1577	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1578	if (err) {
1579		if (flag == F2FS_GET_BLOCK_BMAP)
1580			map->m_pblk = 0;
1581		if (err == -ENOENT)
1582			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1583		goto unlock_out;
1584	}
1585
1586	start_pgofs = pgofs;
1587	prealloc = 0;
1588	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1589	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1590
1591next_block:
1592	blkaddr = f2fs_data_blkaddr(&dn);
1593	is_hole = !__is_valid_data_blkaddr(blkaddr);
1594	if (!is_hole &&
1595	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1596		err = -EFSCORRUPTED;
1597		goto sync_out;
1598	}
1599
1600	/* use out-place-update for direct IO under LFS mode */
1601	if (map->m_may_create && (is_hole ||
1602		(flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1603		!f2fs_is_pinned_file(inode)))) {
1604		if (unlikely(f2fs_cp_error(sbi))) {
1605			err = -EIO;
1606			goto sync_out;
1607		}
1608
1609		switch (flag) {
1610		case F2FS_GET_BLOCK_PRE_AIO:
1611			if (blkaddr == NULL_ADDR) {
1612				prealloc++;
1613				last_ofs_in_node = dn.ofs_in_node;
1614			}
1615			break;
1616		case F2FS_GET_BLOCK_PRE_DIO:
1617		case F2FS_GET_BLOCK_DIO:
1618			err = __allocate_data_block(&dn, map->m_seg_type);
1619			if (err)
1620				goto sync_out;
1621			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1622				file_need_truncate(inode);
1623			set_inode_flag(inode, FI_APPEND_WRITE);
1624			break;
1625		default:
1626			WARN_ON_ONCE(1);
1627			err = -EIO;
1628			goto sync_out;
1629		}
1630
1631		blkaddr = dn.data_blkaddr;
1632		if (is_hole)
1633			map->m_flags |= F2FS_MAP_NEW;
1634	} else if (is_hole) {
1635		if (f2fs_compressed_file(inode) &&
1636		    f2fs_sanity_check_cluster(&dn)) {
1637			err = -EFSCORRUPTED;
1638			f2fs_handle_error(sbi,
1639					ERROR_CORRUPTED_CLUSTER);
1640			goto sync_out;
1641		}
1642
1643		switch (flag) {
1644		case F2FS_GET_BLOCK_PRECACHE:
1645			goto sync_out;
1646		case F2FS_GET_BLOCK_BMAP:
1647			map->m_pblk = 0;
1648			goto sync_out;
1649		case F2FS_GET_BLOCK_FIEMAP:
1650			if (blkaddr == NULL_ADDR) {
1651				if (map->m_next_pgofs)
1652					*map->m_next_pgofs = pgofs + 1;
1653				goto sync_out;
1654			}
1655			break;
1656		case F2FS_GET_BLOCK_DIO:
1657			if (map->m_next_pgofs)
1658				*map->m_next_pgofs = pgofs + 1;
1659			break;
1660		default:
1661			/* for defragment case */
1662			if (map->m_next_pgofs)
1663				*map->m_next_pgofs = pgofs + 1;
1664			goto sync_out;
1665		}
1666	}
1667
1668	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1669		goto skip;
1670
1671	if (map->m_multidev_dio)
1672		bidx = f2fs_target_device_index(sbi, blkaddr);
1673
1674	if (map->m_len == 0) {
1675		/* reserved delalloc block should be mapped for fiemap. */
1676		if (blkaddr == NEW_ADDR)
1677			map->m_flags |= F2FS_MAP_DELALLOC;
1678		if (flag != F2FS_GET_BLOCK_DIO || !is_hole)
1679			map->m_flags |= F2FS_MAP_MAPPED;
1680
1681		map->m_pblk = blkaddr;
1682		map->m_len = 1;
1683
1684		if (map->m_multidev_dio)
1685			map->m_bdev = FDEV(bidx).bdev;
1686	} else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) {
1687		ofs++;
1688		map->m_len++;
1689	} else {
1690		goto sync_out;
1691	}
1692
1693skip:
1694	dn.ofs_in_node++;
1695	pgofs++;
1696
1697	/* preallocate blocks in batch for one dnode page */
1698	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1699			(pgofs == end || dn.ofs_in_node == end_offset)) {
1700
1701		dn.ofs_in_node = ofs_in_node;
1702		err = f2fs_reserve_new_blocks(&dn, prealloc);
1703		if (err)
1704			goto sync_out;
1705
1706		map->m_len += dn.ofs_in_node - ofs_in_node;
1707		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1708			err = -ENOSPC;
1709			goto sync_out;
1710		}
1711		dn.ofs_in_node = end_offset;
1712	}
1713
1714	if (pgofs >= end)
1715		goto sync_out;
1716	else if (dn.ofs_in_node < end_offset)
1717		goto next_block;
1718
1719	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1720		if (map->m_flags & F2FS_MAP_MAPPED) {
1721			unsigned int ofs = start_pgofs - map->m_lblk;
1722
1723			f2fs_update_read_extent_cache_range(&dn,
1724				start_pgofs, map->m_pblk + ofs,
1725				map->m_len - ofs);
1726		}
1727	}
1728
1729	f2fs_put_dnode(&dn);
1730
1731	if (map->m_may_create) {
1732		f2fs_map_unlock(sbi, flag);
1733		f2fs_balance_fs(sbi, dn.node_changed);
1734	}
1735	goto next_dnode;
1736
1737sync_out:
1738
1739	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1740		/*
1741		 * for hardware encryption, but to avoid potential issue
1742		 * in future
1743		 */
1744		f2fs_wait_on_block_writeback_range(inode,
1745						map->m_pblk, map->m_len);
1746
1747		if (map->m_multidev_dio) {
1748			block_t blk_addr = map->m_pblk;
1749
1750			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1751
1752			map->m_bdev = FDEV(bidx).bdev;
1753			map->m_pblk -= FDEV(bidx).start_blk;
1754
1755			if (map->m_may_create)
1756				f2fs_update_device_state(sbi, inode->i_ino,
1757							blk_addr, map->m_len);
1758
1759			f2fs_bug_on(sbi, blk_addr + map->m_len >
1760						FDEV(bidx).end_blk + 1);
1761		}
1762	}
1763
1764	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1765		if (map->m_flags & F2FS_MAP_MAPPED) {
1766			unsigned int ofs = start_pgofs - map->m_lblk;
1767
1768			f2fs_update_read_extent_cache_range(&dn,
1769				start_pgofs, map->m_pblk + ofs,
1770				map->m_len - ofs);
1771		}
1772		if (map->m_next_extent)
1773			*map->m_next_extent = pgofs + 1;
1774	}
1775	f2fs_put_dnode(&dn);
1776unlock_out:
1777	if (map->m_may_create) {
1778		f2fs_map_unlock(sbi, flag);
1779		f2fs_balance_fs(sbi, dn.node_changed);
1780	}
1781out:
1782	trace_f2fs_map_blocks(inode, map, flag, err);
1783	return err;
1784}
1785
1786bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1787{
1788	struct f2fs_map_blocks map;
1789	block_t last_lblk;
1790	int err;
1791
1792	if (pos + len > i_size_read(inode))
1793		return false;
1794
1795	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1796	map.m_next_pgofs = NULL;
1797	map.m_next_extent = NULL;
1798	map.m_seg_type = NO_CHECK_TYPE;
1799	map.m_may_create = false;
1800	last_lblk = F2FS_BLK_ALIGN(pos + len);
1801
1802	while (map.m_lblk < last_lblk) {
1803		map.m_len = last_lblk - map.m_lblk;
1804		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1805		if (err || map.m_len == 0)
1806			return false;
1807		map.m_lblk += map.m_len;
1808	}
1809	return true;
1810}
1811
1812static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1813{
1814	return (bytes >> inode->i_blkbits);
1815}
1816
1817static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1818{
1819	return (blks << inode->i_blkbits);
1820}
1821
1822static int f2fs_xattr_fiemap(struct inode *inode,
1823				struct fiemap_extent_info *fieinfo)
1824{
1825	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1826	struct page *page;
1827	struct node_info ni;
1828	__u64 phys = 0, len;
1829	__u32 flags;
1830	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1831	int err = 0;
1832
1833	if (f2fs_has_inline_xattr(inode)) {
1834		int offset;
1835
1836		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1837						inode->i_ino, false);
1838		if (!page)
1839			return -ENOMEM;
1840
1841		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1842		if (err) {
1843			f2fs_put_page(page, 1);
1844			return err;
1845		}
1846
1847		phys = blks_to_bytes(inode, ni.blk_addr);
1848		offset = offsetof(struct f2fs_inode, i_addr) +
1849					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1850					get_inline_xattr_addrs(inode));
1851
1852		phys += offset;
1853		len = inline_xattr_size(inode);
1854
1855		f2fs_put_page(page, 1);
1856
1857		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1858
1859		if (!xnid)
1860			flags |= FIEMAP_EXTENT_LAST;
1861
1862		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1863		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1864		if (err)
1865			return err;
1866	}
1867
1868	if (xnid) {
1869		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1870		if (!page)
1871			return -ENOMEM;
1872
1873		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1874		if (err) {
1875			f2fs_put_page(page, 1);
1876			return err;
1877		}
1878
1879		phys = blks_to_bytes(inode, ni.blk_addr);
1880		len = inode->i_sb->s_blocksize;
1881
1882		f2fs_put_page(page, 1);
1883
1884		flags = FIEMAP_EXTENT_LAST;
1885	}
1886
1887	if (phys) {
1888		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1889		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1890	}
1891
1892	return (err < 0 ? err : 0);
1893}
1894
1895static loff_t max_inode_blocks(struct inode *inode)
1896{
1897	loff_t result = ADDRS_PER_INODE(inode);
1898	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1899
1900	/* two direct node blocks */
1901	result += (leaf_count * 2);
1902
1903	/* two indirect node blocks */
1904	leaf_count *= NIDS_PER_BLOCK;
1905	result += (leaf_count * 2);
1906
1907	/* one double indirect node block */
1908	leaf_count *= NIDS_PER_BLOCK;
1909	result += leaf_count;
1910
1911	return result;
1912}
1913
1914int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1915		u64 start, u64 len)
1916{
1917	struct f2fs_map_blocks map;
1918	sector_t start_blk, last_blk;
1919	pgoff_t next_pgofs;
1920	u64 logical = 0, phys = 0, size = 0;
1921	u32 flags = 0;
1922	int ret = 0;
1923	bool compr_cluster = false, compr_appended;
1924	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1925	unsigned int count_in_cluster = 0;
1926	loff_t maxbytes;
1927
1928	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1929		ret = f2fs_precache_extents(inode);
1930		if (ret)
1931			return ret;
1932	}
1933
1934	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1935	if (ret)
1936		return ret;
1937
1938	inode_lock_shared(inode);
1939
1940	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1941	if (start > maxbytes) {
1942		ret = -EFBIG;
1943		goto out;
1944	}
1945
1946	if (len > maxbytes || (maxbytes - len) < start)
1947		len = maxbytes - start;
1948
1949	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1950		ret = f2fs_xattr_fiemap(inode, fieinfo);
1951		goto out;
1952	}
1953
1954	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1955		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1956		if (ret != -EAGAIN)
1957			goto out;
1958	}
1959
1960	if (bytes_to_blks(inode, len) == 0)
1961		len = blks_to_bytes(inode, 1);
1962
1963	start_blk = bytes_to_blks(inode, start);
1964	last_blk = bytes_to_blks(inode, start + len - 1);
1965
1966next:
1967	memset(&map, 0, sizeof(map));
1968	map.m_lblk = start_blk;
1969	map.m_len = bytes_to_blks(inode, len);
1970	map.m_next_pgofs = &next_pgofs;
1971	map.m_seg_type = NO_CHECK_TYPE;
1972
1973	if (compr_cluster) {
1974		map.m_lblk += 1;
1975		map.m_len = cluster_size - count_in_cluster;
1976	}
1977
1978	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1979	if (ret)
1980		goto out;
1981
1982	/* HOLE */
1983	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1984		start_blk = next_pgofs;
1985
1986		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1987						max_inode_blocks(inode)))
1988			goto prep_next;
1989
1990		flags |= FIEMAP_EXTENT_LAST;
1991	}
1992
1993	compr_appended = false;
1994	/* In a case of compressed cluster, append this to the last extent */
1995	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1996			!(map.m_flags & F2FS_MAP_FLAGS))) {
1997		compr_appended = true;
1998		goto skip_fill;
1999	}
2000
2001	if (size) {
2002		flags |= FIEMAP_EXTENT_MERGED;
2003		if (IS_ENCRYPTED(inode))
2004			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2005
2006		ret = fiemap_fill_next_extent(fieinfo, logical,
2007				phys, size, flags);
2008		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2009		if (ret)
2010			goto out;
2011		size = 0;
2012	}
2013
2014	if (start_blk > last_blk)
2015		goto out;
2016
2017skip_fill:
2018	if (map.m_pblk == COMPRESS_ADDR) {
2019		compr_cluster = true;
2020		count_in_cluster = 1;
2021	} else if (compr_appended) {
2022		unsigned int appended_blks = cluster_size -
2023						count_in_cluster + 1;
2024		size += blks_to_bytes(inode, appended_blks);
2025		start_blk += appended_blks;
2026		compr_cluster = false;
2027	} else {
2028		logical = blks_to_bytes(inode, start_blk);
2029		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2030			blks_to_bytes(inode, map.m_pblk) : 0;
2031		size = blks_to_bytes(inode, map.m_len);
2032		flags = 0;
2033
2034		if (compr_cluster) {
2035			flags = FIEMAP_EXTENT_ENCODED;
2036			count_in_cluster += map.m_len;
2037			if (count_in_cluster == cluster_size) {
2038				compr_cluster = false;
2039				size += blks_to_bytes(inode, 1);
2040			}
2041		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2042			flags = FIEMAP_EXTENT_UNWRITTEN;
2043		}
2044
2045		start_blk += bytes_to_blks(inode, size);
2046	}
2047
2048prep_next:
2049	cond_resched();
2050	if (fatal_signal_pending(current))
2051		ret = -EINTR;
2052	else
2053		goto next;
2054out:
2055	if (ret == 1)
2056		ret = 0;
2057
2058	inode_unlock_shared(inode);
2059	return ret;
2060}
2061
2062static inline loff_t f2fs_readpage_limit(struct inode *inode)
2063{
2064	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2065		return inode->i_sb->s_maxbytes;
2066
2067	return i_size_read(inode);
2068}
2069
2070static int f2fs_read_single_page(struct inode *inode, struct folio *folio,
2071					unsigned nr_pages,
2072					struct f2fs_map_blocks *map,
2073					struct bio **bio_ret,
2074					sector_t *last_block_in_bio,
2075					bool is_readahead)
2076{
2077	struct bio *bio = *bio_ret;
2078	const unsigned blocksize = blks_to_bytes(inode, 1);
2079	sector_t block_in_file;
2080	sector_t last_block;
2081	sector_t last_block_in_file;
2082	sector_t block_nr;
2083	pgoff_t index = folio_index(folio);
2084	int ret = 0;
2085
2086	block_in_file = (sector_t)index;
2087	last_block = block_in_file + nr_pages;
2088	last_block_in_file = bytes_to_blks(inode,
2089			f2fs_readpage_limit(inode) + blocksize - 1);
2090	if (last_block > last_block_in_file)
2091		last_block = last_block_in_file;
2092
2093	/* just zeroing out page which is beyond EOF */
2094	if (block_in_file >= last_block)
2095		goto zero_out;
2096	/*
2097	 * Map blocks using the previous result first.
2098	 */
2099	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2100			block_in_file > map->m_lblk &&
2101			block_in_file < (map->m_lblk + map->m_len))
2102		goto got_it;
2103
2104	/*
2105	 * Then do more f2fs_map_blocks() calls until we are
2106	 * done with this page.
2107	 */
2108	map->m_lblk = block_in_file;
2109	map->m_len = last_block - block_in_file;
2110
2111	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2112	if (ret)
2113		goto out;
2114got_it:
2115	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2116		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2117		folio_set_mappedtodisk(folio);
2118
2119		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2120						DATA_GENERIC_ENHANCE_READ)) {
2121			ret = -EFSCORRUPTED;
2122			goto out;
2123		}
2124	} else {
2125zero_out:
2126		folio_zero_segment(folio, 0, folio_size(folio));
2127		if (f2fs_need_verity(inode, index) &&
2128		    !fsverity_verify_folio(folio)) {
2129			ret = -EIO;
2130			goto out;
2131		}
2132		if (!folio_test_uptodate(folio))
2133			folio_mark_uptodate(folio);
2134		folio_unlock(folio);
2135		goto out;
2136	}
2137
2138	/*
2139	 * This page will go to BIO.  Do we need to send this
2140	 * BIO off first?
2141	 */
2142	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2143				       *last_block_in_bio, block_nr) ||
2144		    !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) {
2145submit_and_realloc:
2146		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2147		bio = NULL;
2148	}
2149	if (bio == NULL) {
2150		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2151				is_readahead ? REQ_RAHEAD : 0, index,
2152				false);
2153		if (IS_ERR(bio)) {
2154			ret = PTR_ERR(bio);
2155			bio = NULL;
2156			goto out;
2157		}
2158	}
2159
2160	/*
2161	 * If the page is under writeback, we need to wait for
2162	 * its completion to see the correct decrypted data.
2163	 */
2164	f2fs_wait_on_block_writeback(inode, block_nr);
2165
2166	if (!bio_add_folio(bio, folio, blocksize, 0))
2167		goto submit_and_realloc;
2168
2169	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2170	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2171							F2FS_BLKSIZE);
2172	*last_block_in_bio = block_nr;
2173out:
2174	*bio_ret = bio;
2175	return ret;
2176}
2177
2178#ifdef CONFIG_F2FS_FS_COMPRESSION
2179int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2180				unsigned nr_pages, sector_t *last_block_in_bio,
2181				bool is_readahead, bool for_write)
2182{
2183	struct dnode_of_data dn;
2184	struct inode *inode = cc->inode;
2185	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2186	struct bio *bio = *bio_ret;
2187	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2188	sector_t last_block_in_file;
2189	const unsigned blocksize = blks_to_bytes(inode, 1);
2190	struct decompress_io_ctx *dic = NULL;
2191	struct extent_info ei = {};
2192	bool from_dnode = true;
2193	int i;
2194	int ret = 0;
2195
2196	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2197
2198	last_block_in_file = bytes_to_blks(inode,
2199			f2fs_readpage_limit(inode) + blocksize - 1);
2200
2201	/* get rid of pages beyond EOF */
2202	for (i = 0; i < cc->cluster_size; i++) {
2203		struct page *page = cc->rpages[i];
2204
2205		if (!page)
2206			continue;
2207		if ((sector_t)page->index >= last_block_in_file) {
2208			zero_user_segment(page, 0, PAGE_SIZE);
2209			if (!PageUptodate(page))
2210				SetPageUptodate(page);
2211		} else if (!PageUptodate(page)) {
2212			continue;
2213		}
2214		unlock_page(page);
2215		if (for_write)
2216			put_page(page);
2217		cc->rpages[i] = NULL;
2218		cc->nr_rpages--;
2219	}
2220
2221	/* we are done since all pages are beyond EOF */
2222	if (f2fs_cluster_is_empty(cc))
2223		goto out;
2224
2225	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2226		from_dnode = false;
2227
2228	if (!from_dnode)
2229		goto skip_reading_dnode;
2230
2231	set_new_dnode(&dn, inode, NULL, NULL, 0);
2232	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2233	if (ret)
2234		goto out;
2235
2236	if (unlikely(f2fs_cp_error(sbi))) {
2237		ret = -EIO;
2238		goto out_put_dnode;
2239	}
2240	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2241
2242skip_reading_dnode:
2243	for (i = 1; i < cc->cluster_size; i++) {
2244		block_t blkaddr;
2245
2246		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2247					dn.ofs_in_node + i) :
2248					ei.blk + i - 1;
2249
2250		if (!__is_valid_data_blkaddr(blkaddr))
2251			break;
2252
2253		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2254			ret = -EFAULT;
2255			goto out_put_dnode;
2256		}
2257		cc->nr_cpages++;
2258
2259		if (!from_dnode && i >= ei.c_len)
2260			break;
2261	}
2262
2263	/* nothing to decompress */
2264	if (cc->nr_cpages == 0) {
2265		ret = 0;
2266		goto out_put_dnode;
2267	}
2268
2269	dic = f2fs_alloc_dic(cc);
2270	if (IS_ERR(dic)) {
2271		ret = PTR_ERR(dic);
2272		goto out_put_dnode;
2273	}
2274
2275	for (i = 0; i < cc->nr_cpages; i++) {
2276		struct page *page = dic->cpages[i];
2277		block_t blkaddr;
2278		struct bio_post_read_ctx *ctx;
2279
2280		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2281					dn.ofs_in_node + i + 1) :
2282					ei.blk + i;
2283
2284		f2fs_wait_on_block_writeback(inode, blkaddr);
2285
2286		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2287			if (atomic_dec_and_test(&dic->remaining_pages)) {
2288				f2fs_decompress_cluster(dic, true);
2289				break;
2290			}
2291			continue;
2292		}
2293
2294		if (bio && (!page_is_mergeable(sbi, bio,
2295					*last_block_in_bio, blkaddr) ||
2296		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2297submit_and_realloc:
2298			f2fs_submit_read_bio(sbi, bio, DATA);
2299			bio = NULL;
2300		}
2301
2302		if (!bio) {
2303			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2304					is_readahead ? REQ_RAHEAD : 0,
2305					page->index, for_write);
2306			if (IS_ERR(bio)) {
2307				ret = PTR_ERR(bio);
2308				f2fs_decompress_end_io(dic, ret, true);
2309				f2fs_put_dnode(&dn);
2310				*bio_ret = NULL;
2311				return ret;
2312			}
2313		}
2314
2315		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2316			goto submit_and_realloc;
2317
2318		ctx = get_post_read_ctx(bio);
2319		ctx->enabled_steps |= STEP_DECOMPRESS;
2320		refcount_inc(&dic->refcnt);
2321
2322		inc_page_count(sbi, F2FS_RD_DATA);
2323		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2324		*last_block_in_bio = blkaddr;
2325	}
2326
2327	if (from_dnode)
2328		f2fs_put_dnode(&dn);
2329
2330	*bio_ret = bio;
2331	return 0;
2332
2333out_put_dnode:
2334	if (from_dnode)
2335		f2fs_put_dnode(&dn);
2336out:
2337	for (i = 0; i < cc->cluster_size; i++) {
2338		if (cc->rpages[i]) {
2339			ClearPageUptodate(cc->rpages[i]);
2340			unlock_page(cc->rpages[i]);
2341		}
2342	}
2343	*bio_ret = bio;
2344	return ret;
2345}
2346#endif
2347
2348/*
2349 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2350 * Major change was from block_size == page_size in f2fs by default.
2351 */
2352static int f2fs_mpage_readpages(struct inode *inode,
2353		struct readahead_control *rac, struct folio *folio)
2354{
2355	struct bio *bio = NULL;
2356	sector_t last_block_in_bio = 0;
2357	struct f2fs_map_blocks map;
2358#ifdef CONFIG_F2FS_FS_COMPRESSION
2359	struct compress_ctx cc = {
2360		.inode = inode,
2361		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2362		.cluster_size = F2FS_I(inode)->i_cluster_size,
2363		.cluster_idx = NULL_CLUSTER,
2364		.rpages = NULL,
2365		.cpages = NULL,
2366		.nr_rpages = 0,
2367		.nr_cpages = 0,
2368	};
2369	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2370#endif
2371	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2372	unsigned max_nr_pages = nr_pages;
2373	pgoff_t index;
2374	int ret = 0;
2375
2376	map.m_pblk = 0;
2377	map.m_lblk = 0;
2378	map.m_len = 0;
2379	map.m_flags = 0;
2380	map.m_next_pgofs = NULL;
2381	map.m_next_extent = NULL;
2382	map.m_seg_type = NO_CHECK_TYPE;
2383	map.m_may_create = false;
2384
2385	for (; nr_pages; nr_pages--) {
2386		if (rac) {
2387			folio = readahead_folio(rac);
2388			prefetchw(&folio->flags);
2389		}
2390
2391		index = folio_index(folio);
2392
2393#ifdef CONFIG_F2FS_FS_COMPRESSION
2394		if (!f2fs_compressed_file(inode))
2395			goto read_single_page;
2396
2397		/* there are remained compressed pages, submit them */
2398		if (!f2fs_cluster_can_merge_page(&cc, index)) {
2399			ret = f2fs_read_multi_pages(&cc, &bio,
2400						max_nr_pages,
2401						&last_block_in_bio,
2402						rac != NULL, false);
2403			f2fs_destroy_compress_ctx(&cc, false);
2404			if (ret)
2405				goto set_error_page;
2406		}
2407		if (cc.cluster_idx == NULL_CLUSTER) {
2408			if (nc_cluster_idx == index >> cc.log_cluster_size)
2409				goto read_single_page;
2410
2411			ret = f2fs_is_compressed_cluster(inode, index);
2412			if (ret < 0)
2413				goto set_error_page;
2414			else if (!ret) {
2415				nc_cluster_idx =
2416					index >> cc.log_cluster_size;
2417				goto read_single_page;
2418			}
2419
2420			nc_cluster_idx = NULL_CLUSTER;
2421		}
2422		ret = f2fs_init_compress_ctx(&cc);
2423		if (ret)
2424			goto set_error_page;
2425
2426		f2fs_compress_ctx_add_page(&cc, &folio->page);
2427
2428		goto next_page;
2429read_single_page:
2430#endif
2431
2432		ret = f2fs_read_single_page(inode, folio, max_nr_pages, &map,
2433					&bio, &last_block_in_bio, rac);
2434		if (ret) {
2435#ifdef CONFIG_F2FS_FS_COMPRESSION
2436set_error_page:
2437#endif
2438			folio_zero_segment(folio, 0, folio_size(folio));
2439			folio_unlock(folio);
2440		}
2441#ifdef CONFIG_F2FS_FS_COMPRESSION
2442next_page:
2443#endif
2444
2445#ifdef CONFIG_F2FS_FS_COMPRESSION
2446		if (f2fs_compressed_file(inode)) {
2447			/* last page */
2448			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2449				ret = f2fs_read_multi_pages(&cc, &bio,
2450							max_nr_pages,
2451							&last_block_in_bio,
2452							rac != NULL, false);
2453				f2fs_destroy_compress_ctx(&cc, false);
2454			}
2455		}
2456#endif
2457	}
2458	if (bio)
2459		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2460	return ret;
2461}
2462
2463static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2464{
2465	struct inode *inode = folio_file_mapping(folio)->host;
2466	int ret = -EAGAIN;
2467
2468	trace_f2fs_readpage(folio, DATA);
2469
2470	if (!f2fs_is_compress_backend_ready(inode)) {
2471		folio_unlock(folio);
2472		return -EOPNOTSUPP;
2473	}
2474
2475	/* If the file has inline data, try to read it directly */
2476	if (f2fs_has_inline_data(inode))
2477		ret = f2fs_read_inline_data(inode, folio);
2478	if (ret == -EAGAIN)
2479		ret = f2fs_mpage_readpages(inode, NULL, folio);
2480	return ret;
2481}
2482
2483static void f2fs_readahead(struct readahead_control *rac)
2484{
2485	struct inode *inode = rac->mapping->host;
2486
2487	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2488
2489	if (!f2fs_is_compress_backend_ready(inode))
2490		return;
2491
2492	/* If the file has inline data, skip readahead */
2493	if (f2fs_has_inline_data(inode))
2494		return;
2495
2496	f2fs_mpage_readpages(inode, rac, NULL);
2497}
2498
2499int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2500{
2501	struct inode *inode = fio->page->mapping->host;
2502	struct page *mpage, *page;
2503	gfp_t gfp_flags = GFP_NOFS;
2504
2505	if (!f2fs_encrypted_file(inode))
2506		return 0;
2507
2508	page = fio->compressed_page ? fio->compressed_page : fio->page;
2509
2510	if (fscrypt_inode_uses_inline_crypto(inode))
2511		return 0;
2512
2513retry_encrypt:
2514	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2515					PAGE_SIZE, 0, gfp_flags);
2516	if (IS_ERR(fio->encrypted_page)) {
2517		/* flush pending IOs and wait for a while in the ENOMEM case */
2518		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2519			f2fs_flush_merged_writes(fio->sbi);
2520			memalloc_retry_wait(GFP_NOFS);
2521			gfp_flags |= __GFP_NOFAIL;
2522			goto retry_encrypt;
2523		}
2524		return PTR_ERR(fio->encrypted_page);
2525	}
2526
2527	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2528	if (mpage) {
2529		if (PageUptodate(mpage))
2530			memcpy(page_address(mpage),
2531				page_address(fio->encrypted_page), PAGE_SIZE);
2532		f2fs_put_page(mpage, 1);
2533	}
2534	return 0;
2535}
2536
2537static inline bool check_inplace_update_policy(struct inode *inode,
2538				struct f2fs_io_info *fio)
2539{
2540	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2541
2542	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2543	    is_inode_flag_set(inode, FI_OPU_WRITE))
2544		return false;
2545	if (IS_F2FS_IPU_FORCE(sbi))
2546		return true;
2547	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2548		return true;
2549	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2550		return true;
2551	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2552	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2553		return true;
2554
2555	/*
2556	 * IPU for rewrite async pages
2557	 */
2558	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2559	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2560		return true;
2561
2562	/* this is only set during fdatasync */
2563	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2564		return true;
2565
2566	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2567			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2568		return true;
2569
2570	return false;
2571}
2572
2573bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2574{
2575	/* swap file is migrating in aligned write mode */
2576	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2577		return false;
2578
2579	if (f2fs_is_pinned_file(inode))
2580		return true;
2581
2582	/* if this is cold file, we should overwrite to avoid fragmentation */
2583	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2584		return true;
2585
2586	return check_inplace_update_policy(inode, fio);
2587}
2588
2589bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2590{
2591	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2592
2593	/* The below cases were checked when setting it. */
2594	if (f2fs_is_pinned_file(inode))
2595		return false;
2596	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2597		return true;
2598	if (f2fs_lfs_mode(sbi))
2599		return true;
2600	if (S_ISDIR(inode->i_mode))
2601		return true;
2602	if (IS_NOQUOTA(inode))
2603		return true;
2604	if (f2fs_is_atomic_file(inode))
2605		return true;
2606	/* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2607	if (f2fs_compressed_file(inode) &&
2608		F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2609		is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2610		return true;
2611
2612	/* swap file is migrating in aligned write mode */
2613	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2614		return true;
2615
2616	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2617		return true;
2618
2619	if (fio) {
2620		if (page_private_gcing(fio->page))
2621			return true;
2622		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2623			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2624			return true;
2625	}
2626	return false;
2627}
2628
2629static inline bool need_inplace_update(struct f2fs_io_info *fio)
2630{
2631	struct inode *inode = fio->page->mapping->host;
2632
2633	if (f2fs_should_update_outplace(inode, fio))
2634		return false;
2635
2636	return f2fs_should_update_inplace(inode, fio);
2637}
2638
2639int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2640{
2641	struct page *page = fio->page;
2642	struct inode *inode = page->mapping->host;
2643	struct dnode_of_data dn;
2644	struct node_info ni;
2645	bool ipu_force = false;
2646	int err = 0;
2647
2648	/* Use COW inode to make dnode_of_data for atomic write */
2649	if (f2fs_is_atomic_file(inode))
2650		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2651	else
2652		set_new_dnode(&dn, inode, NULL, NULL, 0);
2653
2654	if (need_inplace_update(fio) &&
2655	    f2fs_lookup_read_extent_cache_block(inode, page->index,
2656						&fio->old_blkaddr)) {
2657		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2658						DATA_GENERIC_ENHANCE))
2659			return -EFSCORRUPTED;
2660
2661		ipu_force = true;
2662		fio->need_lock = LOCK_DONE;
2663		goto got_it;
2664	}
2665
2666	/* Deadlock due to between page->lock and f2fs_lock_op */
2667	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2668		return -EAGAIN;
2669
2670	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2671	if (err)
2672		goto out;
2673
2674	fio->old_blkaddr = dn.data_blkaddr;
2675
2676	/* This page is already truncated */
2677	if (fio->old_blkaddr == NULL_ADDR) {
2678		ClearPageUptodate(page);
2679		clear_page_private_gcing(page);
2680		goto out_writepage;
2681	}
2682got_it:
2683	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2684		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2685						DATA_GENERIC_ENHANCE)) {
2686		err = -EFSCORRUPTED;
2687		goto out_writepage;
2688	}
2689
2690	/* wait for GCed page writeback via META_MAPPING */
2691	if (fio->post_read)
2692		f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2693
2694	/*
2695	 * If current allocation needs SSR,
2696	 * it had better in-place writes for updated data.
2697	 */
2698	if (ipu_force ||
2699		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2700					need_inplace_update(fio))) {
2701		err = f2fs_encrypt_one_page(fio);
2702		if (err)
2703			goto out_writepage;
2704
2705		set_page_writeback(page);
2706		f2fs_put_dnode(&dn);
2707		if (fio->need_lock == LOCK_REQ)
2708			f2fs_unlock_op(fio->sbi);
2709		err = f2fs_inplace_write_data(fio);
2710		if (err) {
2711			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2712				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2713			end_page_writeback(page);
2714		} else {
2715			set_inode_flag(inode, FI_UPDATE_WRITE);
2716		}
2717		trace_f2fs_do_write_data_page(page_folio(page), IPU);
2718		return err;
2719	}
2720
2721	if (fio->need_lock == LOCK_RETRY) {
2722		if (!f2fs_trylock_op(fio->sbi)) {
2723			err = -EAGAIN;
2724			goto out_writepage;
2725		}
2726		fio->need_lock = LOCK_REQ;
2727	}
2728
2729	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2730	if (err)
2731		goto out_writepage;
2732
2733	fio->version = ni.version;
2734
2735	err = f2fs_encrypt_one_page(fio);
2736	if (err)
2737		goto out_writepage;
2738
2739	set_page_writeback(page);
2740
2741	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2742		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2743
2744	/* LFS mode write path */
2745	f2fs_outplace_write_data(&dn, fio);
2746	trace_f2fs_do_write_data_page(page_folio(page), OPU);
2747	set_inode_flag(inode, FI_APPEND_WRITE);
2748out_writepage:
2749	f2fs_put_dnode(&dn);
2750out:
2751	if (fio->need_lock == LOCK_REQ)
2752		f2fs_unlock_op(fio->sbi);
2753	return err;
2754}
2755
2756int f2fs_write_single_data_page(struct page *page, int *submitted,
2757				struct bio **bio,
2758				sector_t *last_block,
2759				struct writeback_control *wbc,
2760				enum iostat_type io_type,
2761				int compr_blocks,
2762				bool allow_balance)
2763{
2764	struct inode *inode = page->mapping->host;
2765	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2766	loff_t i_size = i_size_read(inode);
2767	const pgoff_t end_index = ((unsigned long long)i_size)
2768							>> PAGE_SHIFT;
2769	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2770	unsigned offset = 0;
2771	bool need_balance_fs = false;
2772	bool quota_inode = IS_NOQUOTA(inode);
2773	int err = 0;
2774	struct f2fs_io_info fio = {
2775		.sbi = sbi,
2776		.ino = inode->i_ino,
2777		.type = DATA,
2778		.op = REQ_OP_WRITE,
2779		.op_flags = wbc_to_write_flags(wbc),
2780		.old_blkaddr = NULL_ADDR,
2781		.page = page,
2782		.encrypted_page = NULL,
2783		.submitted = 0,
2784		.compr_blocks = compr_blocks,
2785		.need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2786		.post_read = f2fs_post_read_required(inode) ? 1 : 0,
2787		.io_type = io_type,
2788		.io_wbc = wbc,
2789		.bio = bio,
2790		.last_block = last_block,
2791	};
2792
2793	trace_f2fs_writepage(page_folio(page), DATA);
2794
2795	/* we should bypass data pages to proceed the kworker jobs */
2796	if (unlikely(f2fs_cp_error(sbi))) {
2797		mapping_set_error(page->mapping, -EIO);
2798		/*
2799		 * don't drop any dirty dentry pages for keeping lastest
2800		 * directory structure.
2801		 */
2802		if (S_ISDIR(inode->i_mode) &&
2803				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2804			goto redirty_out;
2805
2806		/* keep data pages in remount-ro mode */
2807		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2808			goto redirty_out;
2809		goto out;
2810	}
2811
2812	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2813		goto redirty_out;
2814
2815	if (page->index < end_index ||
2816			f2fs_verity_in_progress(inode) ||
2817			compr_blocks)
2818		goto write;
2819
2820	/*
2821	 * If the offset is out-of-range of file size,
2822	 * this page does not have to be written to disk.
2823	 */
2824	offset = i_size & (PAGE_SIZE - 1);
2825	if ((page->index >= end_index + 1) || !offset)
2826		goto out;
2827
2828	zero_user_segment(page, offset, PAGE_SIZE);
2829write:
2830	/* Dentry/quota blocks are controlled by checkpoint */
2831	if (S_ISDIR(inode->i_mode) || quota_inode) {
2832		/*
2833		 * We need to wait for node_write to avoid block allocation during
2834		 * checkpoint. This can only happen to quota writes which can cause
2835		 * the below discard race condition.
2836		 */
2837		if (quota_inode)
2838			f2fs_down_read(&sbi->node_write);
2839
2840		fio.need_lock = LOCK_DONE;
2841		err = f2fs_do_write_data_page(&fio);
2842
2843		if (quota_inode)
2844			f2fs_up_read(&sbi->node_write);
2845
2846		goto done;
2847	}
2848
2849	if (!wbc->for_reclaim)
2850		need_balance_fs = true;
2851	else if (has_not_enough_free_secs(sbi, 0, 0))
2852		goto redirty_out;
2853	else
2854		set_inode_flag(inode, FI_HOT_DATA);
2855
2856	err = -EAGAIN;
2857	if (f2fs_has_inline_data(inode)) {
2858		err = f2fs_write_inline_data(inode, page);
2859		if (!err)
2860			goto out;
2861	}
2862
2863	if (err == -EAGAIN) {
2864		err = f2fs_do_write_data_page(&fio);
2865		if (err == -EAGAIN) {
2866			f2fs_bug_on(sbi, compr_blocks);
2867			fio.need_lock = LOCK_REQ;
2868			err = f2fs_do_write_data_page(&fio);
2869		}
2870	}
2871
2872	if (err) {
2873		file_set_keep_isize(inode);
2874	} else {
2875		spin_lock(&F2FS_I(inode)->i_size_lock);
2876		if (F2FS_I(inode)->last_disk_size < psize)
2877			F2FS_I(inode)->last_disk_size = psize;
2878		spin_unlock(&F2FS_I(inode)->i_size_lock);
2879	}
2880
2881done:
2882	if (err && err != -ENOENT)
2883		goto redirty_out;
2884
2885out:
2886	inode_dec_dirty_pages(inode);
2887	if (err) {
2888		ClearPageUptodate(page);
2889		clear_page_private_gcing(page);
2890	}
2891
2892	if (wbc->for_reclaim) {
2893		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2894		clear_inode_flag(inode, FI_HOT_DATA);
2895		f2fs_remove_dirty_inode(inode);
2896		submitted = NULL;
2897	}
2898	unlock_page(page);
2899	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2900			!F2FS_I(inode)->wb_task && allow_balance)
2901		f2fs_balance_fs(sbi, need_balance_fs);
2902
2903	if (unlikely(f2fs_cp_error(sbi))) {
2904		f2fs_submit_merged_write(sbi, DATA);
2905		if (bio && *bio)
2906			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2907		submitted = NULL;
2908	}
2909
2910	if (submitted)
2911		*submitted = fio.submitted;
2912
2913	return 0;
2914
2915redirty_out:
2916	redirty_page_for_writepage(wbc, page);
2917	/*
2918	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2919	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2920	 * file_write_and_wait_range() will see EIO error, which is critical
2921	 * to return value of fsync() followed by atomic_write failure to user.
2922	 */
2923	if (!err || wbc->for_reclaim)
2924		return AOP_WRITEPAGE_ACTIVATE;
2925	unlock_page(page);
2926	return err;
2927}
2928
2929static int f2fs_write_data_page(struct page *page,
2930					struct writeback_control *wbc)
2931{
2932#ifdef CONFIG_F2FS_FS_COMPRESSION
2933	struct inode *inode = page->mapping->host;
2934
2935	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2936		goto out;
2937
2938	if (f2fs_compressed_file(inode)) {
2939		if (f2fs_is_compressed_cluster(inode, page->index)) {
2940			redirty_page_for_writepage(wbc, page);
2941			return AOP_WRITEPAGE_ACTIVATE;
2942		}
2943	}
2944out:
2945#endif
2946
2947	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2948						wbc, FS_DATA_IO, 0, true);
2949}
2950
2951/*
2952 * This function was copied from write_cache_pages from mm/page-writeback.c.
2953 * The major change is making write step of cold data page separately from
2954 * warm/hot data page.
2955 */
2956static int f2fs_write_cache_pages(struct address_space *mapping,
2957					struct writeback_control *wbc,
2958					enum iostat_type io_type)
2959{
2960	int ret = 0;
2961	int done = 0, retry = 0;
2962	struct page *pages_local[F2FS_ONSTACK_PAGES];
2963	struct page **pages = pages_local;
2964	struct folio_batch fbatch;
2965	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2966	struct bio *bio = NULL;
2967	sector_t last_block;
2968#ifdef CONFIG_F2FS_FS_COMPRESSION
2969	struct inode *inode = mapping->host;
2970	struct compress_ctx cc = {
2971		.inode = inode,
2972		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2973		.cluster_size = F2FS_I(inode)->i_cluster_size,
2974		.cluster_idx = NULL_CLUSTER,
2975		.rpages = NULL,
2976		.nr_rpages = 0,
2977		.cpages = NULL,
2978		.valid_nr_cpages = 0,
2979		.rbuf = NULL,
2980		.cbuf = NULL,
2981		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2982		.private = NULL,
2983	};
2984#endif
2985	int nr_folios, p, idx;
2986	int nr_pages;
2987	unsigned int max_pages = F2FS_ONSTACK_PAGES;
2988	pgoff_t index;
2989	pgoff_t end;		/* Inclusive */
2990	pgoff_t done_index;
2991	int range_whole = 0;
2992	xa_mark_t tag;
2993	int nwritten = 0;
2994	int submitted = 0;
2995	int i;
2996
2997#ifdef CONFIG_F2FS_FS_COMPRESSION
2998	if (f2fs_compressed_file(inode) &&
2999		1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
3000		pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
3001				cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
3002		max_pages = 1 << cc.log_cluster_size;
3003	}
3004#endif
3005
3006	folio_batch_init(&fbatch);
3007
3008	if (get_dirty_pages(mapping->host) <=
3009				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3010		set_inode_flag(mapping->host, FI_HOT_DATA);
3011	else
3012		clear_inode_flag(mapping->host, FI_HOT_DATA);
3013
3014	if (wbc->range_cyclic) {
3015		index = mapping->writeback_index; /* prev offset */
3016		end = -1;
3017	} else {
3018		index = wbc->range_start >> PAGE_SHIFT;
3019		end = wbc->range_end >> PAGE_SHIFT;
3020		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3021			range_whole = 1;
3022	}
3023	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3024		tag = PAGECACHE_TAG_TOWRITE;
3025	else
3026		tag = PAGECACHE_TAG_DIRTY;
3027retry:
3028	retry = 0;
3029	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3030		tag_pages_for_writeback(mapping, index, end);
3031	done_index = index;
3032	while (!done && !retry && (index <= end)) {
3033		nr_pages = 0;
3034again:
3035		nr_folios = filemap_get_folios_tag(mapping, &index, end,
3036				tag, &fbatch);
3037		if (nr_folios == 0) {
3038			if (nr_pages)
3039				goto write;
3040			break;
3041		}
3042
3043		for (i = 0; i < nr_folios; i++) {
3044			struct folio *folio = fbatch.folios[i];
3045
3046			idx = 0;
3047			p = folio_nr_pages(folio);
3048add_more:
3049			pages[nr_pages] = folio_page(folio, idx);
3050			folio_get(folio);
3051			if (++nr_pages == max_pages) {
3052				index = folio->index + idx + 1;
3053				folio_batch_release(&fbatch);
3054				goto write;
3055			}
3056			if (++idx < p)
3057				goto add_more;
3058		}
3059		folio_batch_release(&fbatch);
3060		goto again;
3061write:
3062		for (i = 0; i < nr_pages; i++) {
3063			struct page *page = pages[i];
3064			struct folio *folio = page_folio(page);
3065			bool need_readd;
3066readd:
3067			need_readd = false;
3068#ifdef CONFIG_F2FS_FS_COMPRESSION
3069			if (f2fs_compressed_file(inode)) {
3070				void *fsdata = NULL;
3071				struct page *pagep;
3072				int ret2;
3073
3074				ret = f2fs_init_compress_ctx(&cc);
3075				if (ret) {
3076					done = 1;
3077					break;
3078				}
3079
3080				if (!f2fs_cluster_can_merge_page(&cc,
3081								folio->index)) {
3082					ret = f2fs_write_multi_pages(&cc,
3083						&submitted, wbc, io_type);
3084					if (!ret)
3085						need_readd = true;
3086					goto result;
3087				}
3088
3089				if (unlikely(f2fs_cp_error(sbi)))
3090					goto lock_folio;
3091
3092				if (!f2fs_cluster_is_empty(&cc))
3093					goto lock_folio;
3094
3095				if (f2fs_all_cluster_page_ready(&cc,
3096					pages, i, nr_pages, true))
3097					goto lock_folio;
3098
3099				ret2 = f2fs_prepare_compress_overwrite(
3100							inode, &pagep,
3101							folio->index, &fsdata);
3102				if (ret2 < 0) {
3103					ret = ret2;
3104					done = 1;
3105					break;
3106				} else if (ret2 &&
3107					(!f2fs_compress_write_end(inode,
3108						fsdata, folio->index, 1) ||
3109					 !f2fs_all_cluster_page_ready(&cc,
3110						pages, i, nr_pages,
3111						false))) {
3112					retry = 1;
3113					break;
3114				}
3115			}
3116#endif
3117			/* give a priority to WB_SYNC threads */
3118			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3119					wbc->sync_mode == WB_SYNC_NONE) {
3120				done = 1;
3121				break;
3122			}
3123#ifdef CONFIG_F2FS_FS_COMPRESSION
3124lock_folio:
3125#endif
3126			done_index = folio->index;
3127retry_write:
3128			folio_lock(folio);
3129
3130			if (unlikely(folio->mapping != mapping)) {
3131continue_unlock:
3132				folio_unlock(folio);
3133				continue;
3134			}
3135
3136			if (!folio_test_dirty(folio)) {
3137				/* someone wrote it for us */
3138				goto continue_unlock;
3139			}
3140
3141			if (folio_test_writeback(folio)) {
3142				if (wbc->sync_mode == WB_SYNC_NONE)
3143					goto continue_unlock;
3144				f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3145			}
3146
3147			if (!folio_clear_dirty_for_io(folio))
3148				goto continue_unlock;
3149
3150#ifdef CONFIG_F2FS_FS_COMPRESSION
3151			if (f2fs_compressed_file(inode)) {
3152				folio_get(folio);
3153				f2fs_compress_ctx_add_page(&cc, &folio->page);
3154				continue;
3155			}
3156#endif
3157			ret = f2fs_write_single_data_page(&folio->page,
3158					&submitted, &bio, &last_block,
3159					wbc, io_type, 0, true);
3160			if (ret == AOP_WRITEPAGE_ACTIVATE)
3161				folio_unlock(folio);
3162#ifdef CONFIG_F2FS_FS_COMPRESSION
3163result:
3164#endif
3165			nwritten += submitted;
3166			wbc->nr_to_write -= submitted;
3167
3168			if (unlikely(ret)) {
3169				/*
3170				 * keep nr_to_write, since vfs uses this to
3171				 * get # of written pages.
3172				 */
3173				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3174					ret = 0;
3175					goto next;
3176				} else if (ret == -EAGAIN) {
3177					ret = 0;
3178					if (wbc->sync_mode == WB_SYNC_ALL) {
3179						f2fs_io_schedule_timeout(
3180							DEFAULT_IO_TIMEOUT);
3181						goto retry_write;
3182					}
3183					goto next;
3184				}
3185				done_index = folio_next_index(folio);
3186				done = 1;
3187				break;
3188			}
3189
3190			if (wbc->nr_to_write <= 0 &&
3191					wbc->sync_mode == WB_SYNC_NONE) {
3192				done = 1;
3193				break;
3194			}
3195next:
3196			if (need_readd)
3197				goto readd;
3198		}
3199		release_pages(pages, nr_pages);
3200		cond_resched();
3201	}
3202#ifdef CONFIG_F2FS_FS_COMPRESSION
3203	/* flush remained pages in compress cluster */
3204	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3205		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3206		nwritten += submitted;
3207		wbc->nr_to_write -= submitted;
3208		if (ret) {
3209			done = 1;
3210			retry = 0;
3211		}
3212	}
3213	if (f2fs_compressed_file(inode))
3214		f2fs_destroy_compress_ctx(&cc, false);
3215#endif
3216	if (retry) {
3217		index = 0;
3218		end = -1;
3219		goto retry;
3220	}
3221	if (wbc->range_cyclic && !done)
3222		done_index = 0;
3223	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3224		mapping->writeback_index = done_index;
3225
3226	if (nwritten)
3227		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3228								NULL, 0, DATA);
3229	/* submit cached bio of IPU write */
3230	if (bio)
3231		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3232
3233#ifdef CONFIG_F2FS_FS_COMPRESSION
3234	if (pages != pages_local)
3235		kfree(pages);
3236#endif
3237
3238	return ret;
3239}
3240
3241static inline bool __should_serialize_io(struct inode *inode,
3242					struct writeback_control *wbc)
3243{
3244	/* to avoid deadlock in path of data flush */
3245	if (F2FS_I(inode)->wb_task)
3246		return false;
3247
3248	if (!S_ISREG(inode->i_mode))
3249		return false;
3250	if (IS_NOQUOTA(inode))
3251		return false;
3252
3253	if (f2fs_need_compress_data(inode))
3254		return true;
3255	if (wbc->sync_mode != WB_SYNC_ALL)
3256		return true;
3257	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3258		return true;
3259	return false;
3260}
3261
3262static int __f2fs_write_data_pages(struct address_space *mapping,
3263						struct writeback_control *wbc,
3264						enum iostat_type io_type)
3265{
3266	struct inode *inode = mapping->host;
3267	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3268	struct blk_plug plug;
3269	int ret;
3270	bool locked = false;
3271
3272	/* deal with chardevs and other special file */
3273	if (!mapping->a_ops->writepage)
3274		return 0;
3275
3276	/* skip writing if there is no dirty page in this inode */
3277	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3278		return 0;
3279
3280	/* during POR, we don't need to trigger writepage at all. */
3281	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3282		goto skip_write;
3283
3284	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3285			wbc->sync_mode == WB_SYNC_NONE &&
3286			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3287			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3288		goto skip_write;
3289
3290	/* skip writing in file defragment preparing stage */
3291	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3292		goto skip_write;
3293
3294	trace_f2fs_writepages(mapping->host, wbc, DATA);
3295
3296	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3297	if (wbc->sync_mode == WB_SYNC_ALL)
3298		atomic_inc(&sbi->wb_sync_req[DATA]);
3299	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3300		/* to avoid potential deadlock */
3301		if (current->plug)
3302			blk_finish_plug(current->plug);
3303		goto skip_write;
3304	}
3305
3306	if (__should_serialize_io(inode, wbc)) {
3307		mutex_lock(&sbi->writepages);
3308		locked = true;
3309	}
3310
3311	blk_start_plug(&plug);
3312	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3313	blk_finish_plug(&plug);
3314
3315	if (locked)
3316		mutex_unlock(&sbi->writepages);
3317
3318	if (wbc->sync_mode == WB_SYNC_ALL)
3319		atomic_dec(&sbi->wb_sync_req[DATA]);
3320	/*
3321	 * if some pages were truncated, we cannot guarantee its mapping->host
3322	 * to detect pending bios.
3323	 */
3324
3325	f2fs_remove_dirty_inode(inode);
3326	return ret;
3327
3328skip_write:
3329	wbc->pages_skipped += get_dirty_pages(inode);
3330	trace_f2fs_writepages(mapping->host, wbc, DATA);
3331	return 0;
3332}
3333
3334static int f2fs_write_data_pages(struct address_space *mapping,
3335			    struct writeback_control *wbc)
3336{
3337	struct inode *inode = mapping->host;
3338
3339	return __f2fs_write_data_pages(mapping, wbc,
3340			F2FS_I(inode)->cp_task == current ?
3341			FS_CP_DATA_IO : FS_DATA_IO);
3342}
3343
3344void f2fs_write_failed(struct inode *inode, loff_t to)
3345{
3346	loff_t i_size = i_size_read(inode);
3347
3348	if (IS_NOQUOTA(inode))
3349		return;
3350
3351	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3352	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3353		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3354		filemap_invalidate_lock(inode->i_mapping);
3355
3356		truncate_pagecache(inode, i_size);
3357		f2fs_truncate_blocks(inode, i_size, true);
3358
3359		filemap_invalidate_unlock(inode->i_mapping);
3360		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3361	}
3362}
3363
3364static int prepare_write_begin(struct f2fs_sb_info *sbi,
3365			struct page *page, loff_t pos, unsigned len,
3366			block_t *blk_addr, bool *node_changed)
3367{
3368	struct inode *inode = page->mapping->host;
3369	pgoff_t index = page->index;
3370	struct dnode_of_data dn;
3371	struct page *ipage;
3372	bool locked = false;
3373	int flag = F2FS_GET_BLOCK_PRE_AIO;
3374	int err = 0;
3375
3376	/*
3377	 * If a whole page is being written and we already preallocated all the
3378	 * blocks, then there is no need to get a block address now.
3379	 */
3380	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3381		return 0;
3382
3383	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3384	if (f2fs_has_inline_data(inode)) {
3385		if (pos + len > MAX_INLINE_DATA(inode))
3386			flag = F2FS_GET_BLOCK_DEFAULT;
3387		f2fs_map_lock(sbi, flag);
3388		locked = true;
3389	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3390		f2fs_map_lock(sbi, flag);
3391		locked = true;
3392	}
3393
3394restart:
3395	/* check inline_data */
3396	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3397	if (IS_ERR(ipage)) {
3398		err = PTR_ERR(ipage);
3399		goto unlock_out;
3400	}
3401
3402	set_new_dnode(&dn, inode, ipage, ipage, 0);
3403
3404	if (f2fs_has_inline_data(inode)) {
3405		if (pos + len <= MAX_INLINE_DATA(inode)) {
3406			f2fs_do_read_inline_data(page_folio(page), ipage);
3407			set_inode_flag(inode, FI_DATA_EXIST);
3408			if (inode->i_nlink)
3409				set_page_private_inline(ipage);
3410			goto out;
3411		}
3412		err = f2fs_convert_inline_page(&dn, page);
3413		if (err || dn.data_blkaddr != NULL_ADDR)
3414			goto out;
3415	}
3416
3417	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3418						 &dn.data_blkaddr)) {
3419		if (locked) {
3420			err = f2fs_reserve_block(&dn, index);
3421			goto out;
3422		}
3423
3424		/* hole case */
3425		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3426		if (!err && dn.data_blkaddr != NULL_ADDR)
3427			goto out;
3428		f2fs_put_dnode(&dn);
3429		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3430		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3431		locked = true;
3432		goto restart;
3433	}
3434out:
3435	if (!err) {
3436		/* convert_inline_page can make node_changed */
3437		*blk_addr = dn.data_blkaddr;
3438		*node_changed = dn.node_changed;
3439	}
3440	f2fs_put_dnode(&dn);
3441unlock_out:
3442	if (locked)
3443		f2fs_map_unlock(sbi, flag);
3444	return err;
3445}
3446
3447static int __find_data_block(struct inode *inode, pgoff_t index,
3448				block_t *blk_addr)
3449{
3450	struct dnode_of_data dn;
3451	struct page *ipage;
3452	int err = 0;
3453
3454	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3455	if (IS_ERR(ipage))
3456		return PTR_ERR(ipage);
3457
3458	set_new_dnode(&dn, inode, ipage, ipage, 0);
3459
3460	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3461						 &dn.data_blkaddr)) {
3462		/* hole case */
3463		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3464		if (err) {
3465			dn.data_blkaddr = NULL_ADDR;
3466			err = 0;
3467		}
3468	}
3469	*blk_addr = dn.data_blkaddr;
3470	f2fs_put_dnode(&dn);
3471	return err;
3472}
3473
3474static int __reserve_data_block(struct inode *inode, pgoff_t index,
3475				block_t *blk_addr, bool *node_changed)
3476{
3477	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3478	struct dnode_of_data dn;
3479	struct page *ipage;
3480	int err = 0;
3481
3482	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3483
3484	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3485	if (IS_ERR(ipage)) {
3486		err = PTR_ERR(ipage);
3487		goto unlock_out;
3488	}
3489	set_new_dnode(&dn, inode, ipage, ipage, 0);
3490
3491	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3492						&dn.data_blkaddr))
3493		err = f2fs_reserve_block(&dn, index);
3494
3495	*blk_addr = dn.data_blkaddr;
3496	*node_changed = dn.node_changed;
3497	f2fs_put_dnode(&dn);
3498
3499unlock_out:
3500	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3501	return err;
3502}
3503
3504static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3505			struct page *page, loff_t pos, unsigned int len,
3506			block_t *blk_addr, bool *node_changed, bool *use_cow)
3507{
3508	struct inode *inode = page->mapping->host;
3509	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3510	pgoff_t index = page->index;
3511	int err = 0;
3512	block_t ori_blk_addr = NULL_ADDR;
3513
3514	/* If pos is beyond the end of file, reserve a new block in COW inode */
3515	if ((pos & PAGE_MASK) >= i_size_read(inode))
3516		goto reserve_block;
3517
3518	/* Look for the block in COW inode first */
3519	err = __find_data_block(cow_inode, index, blk_addr);
3520	if (err) {
3521		return err;
3522	} else if (*blk_addr != NULL_ADDR) {
3523		*use_cow = true;
3524		return 0;
3525	}
3526
3527	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3528		goto reserve_block;
3529
3530	/* Look for the block in the original inode */
3531	err = __find_data_block(inode, index, &ori_blk_addr);
3532	if (err)
3533		return err;
3534
3535reserve_block:
3536	/* Finally, we should reserve a new block in COW inode for the update */
3537	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3538	if (err)
3539		return err;
3540	inc_atomic_write_cnt(inode);
3541
3542	if (ori_blk_addr != NULL_ADDR)
3543		*blk_addr = ori_blk_addr;
3544	return 0;
3545}
3546
3547static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3548		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3549{
3550	struct inode *inode = mapping->host;
3551	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3552	struct page *page = NULL;
3553	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3554	bool need_balance = false;
3555	bool use_cow = false;
3556	block_t blkaddr = NULL_ADDR;
3557	int err = 0;
3558
3559	trace_f2fs_write_begin(inode, pos, len);
3560
3561	if (!f2fs_is_checkpoint_ready(sbi)) {
3562		err = -ENOSPC;
3563		goto fail;
3564	}
3565
3566	/*
3567	 * We should check this at this moment to avoid deadlock on inode page
3568	 * and #0 page. The locking rule for inline_data conversion should be:
3569	 * lock_page(page #0) -> lock_page(inode_page)
3570	 */
3571	if (index != 0) {
3572		err = f2fs_convert_inline_inode(inode);
3573		if (err)
3574			goto fail;
3575	}
3576
3577#ifdef CONFIG_F2FS_FS_COMPRESSION
3578	if (f2fs_compressed_file(inode)) {
3579		int ret;
3580
3581		*fsdata = NULL;
3582
3583		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3584			goto repeat;
3585
3586		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3587							index, fsdata);
3588		if (ret < 0) {
3589			err = ret;
3590			goto fail;
3591		} else if (ret) {
3592			return 0;
3593		}
3594	}
3595#endif
3596
3597repeat:
3598	/*
3599	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3600	 * wait_for_stable_page. Will wait that below with our IO control.
3601	 */
3602	page = f2fs_pagecache_get_page(mapping, index,
3603				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3604	if (!page) {
3605		err = -ENOMEM;
3606		goto fail;
3607	}
3608
3609	/* TODO: cluster can be compressed due to race with .writepage */
3610
3611	*pagep = page;
3612
3613	if (f2fs_is_atomic_file(inode))
3614		err = prepare_atomic_write_begin(sbi, page, pos, len,
3615					&blkaddr, &need_balance, &use_cow);
3616	else
3617		err = prepare_write_begin(sbi, page, pos, len,
3618					&blkaddr, &need_balance);
3619	if (err)
3620		goto fail;
3621
3622	if (need_balance && !IS_NOQUOTA(inode) &&
3623			has_not_enough_free_secs(sbi, 0, 0)) {
3624		unlock_page(page);
3625		f2fs_balance_fs(sbi, true);
3626		lock_page(page);
3627		if (page->mapping != mapping) {
3628			/* The page got truncated from under us */
3629			f2fs_put_page(page, 1);
3630			goto repeat;
3631		}
3632	}
3633
3634	f2fs_wait_on_page_writeback(page, DATA, false, true);
3635
3636	if (len == PAGE_SIZE || PageUptodate(page))
3637		return 0;
3638
3639	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3640	    !f2fs_verity_in_progress(inode)) {
3641		zero_user_segment(page, len, PAGE_SIZE);
3642		return 0;
3643	}
3644
3645	if (blkaddr == NEW_ADDR) {
3646		zero_user_segment(page, 0, PAGE_SIZE);
3647		SetPageUptodate(page);
3648	} else {
3649		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3650				DATA_GENERIC_ENHANCE_READ)) {
3651			err = -EFSCORRUPTED;
3652			goto fail;
3653		}
3654		err = f2fs_submit_page_read(use_cow ?
3655				F2FS_I(inode)->cow_inode : inode, page,
3656				blkaddr, 0, true);
3657		if (err)
3658			goto fail;
3659
3660		lock_page(page);
3661		if (unlikely(page->mapping != mapping)) {
3662			f2fs_put_page(page, 1);
3663			goto repeat;
3664		}
3665		if (unlikely(!PageUptodate(page))) {
3666			err = -EIO;
3667			goto fail;
3668		}
3669	}
3670	return 0;
3671
3672fail:
3673	f2fs_put_page(page, 1);
3674	f2fs_write_failed(inode, pos + len);
3675	return err;
3676}
3677
3678static int f2fs_write_end(struct file *file,
3679			struct address_space *mapping,
3680			loff_t pos, unsigned len, unsigned copied,
3681			struct page *page, void *fsdata)
3682{
3683	struct inode *inode = page->mapping->host;
3684
3685	trace_f2fs_write_end(inode, pos, len, copied);
3686
3687	/*
3688	 * This should be come from len == PAGE_SIZE, and we expect copied
3689	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3690	 * let generic_perform_write() try to copy data again through copied=0.
3691	 */
3692	if (!PageUptodate(page)) {
3693		if (unlikely(copied != len))
3694			copied = 0;
3695		else
3696			SetPageUptodate(page);
3697	}
3698
3699#ifdef CONFIG_F2FS_FS_COMPRESSION
3700	/* overwrite compressed file */
3701	if (f2fs_compressed_file(inode) && fsdata) {
3702		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3703		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3704
3705		if (pos + copied > i_size_read(inode) &&
3706				!f2fs_verity_in_progress(inode))
3707			f2fs_i_size_write(inode, pos + copied);
3708		return copied;
3709	}
3710#endif
3711
3712	if (!copied)
3713		goto unlock_out;
3714
3715	set_page_dirty(page);
3716
3717	if (pos + copied > i_size_read(inode) &&
3718	    !f2fs_verity_in_progress(inode)) {
3719		f2fs_i_size_write(inode, pos + copied);
3720		if (f2fs_is_atomic_file(inode))
3721			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3722					pos + copied);
3723	}
3724unlock_out:
3725	f2fs_put_page(page, 1);
3726	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3727	return copied;
3728}
3729
3730void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3731{
3732	struct inode *inode = folio->mapping->host;
3733	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3734
3735	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3736				(offset || length != folio_size(folio)))
3737		return;
3738
3739	if (folio_test_dirty(folio)) {
3740		if (inode->i_ino == F2FS_META_INO(sbi)) {
3741			dec_page_count(sbi, F2FS_DIRTY_META);
3742		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3743			dec_page_count(sbi, F2FS_DIRTY_NODES);
3744		} else {
3745			inode_dec_dirty_pages(inode);
3746			f2fs_remove_dirty_inode(inode);
3747		}
3748	}
3749	clear_page_private_all(&folio->page);
3750}
3751
3752bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3753{
3754	/* If this is dirty folio, keep private data */
3755	if (folio_test_dirty(folio))
3756		return false;
3757
3758	clear_page_private_all(&folio->page);
3759	return true;
3760}
3761
3762static bool f2fs_dirty_data_folio(struct address_space *mapping,
3763		struct folio *folio)
3764{
3765	struct inode *inode = mapping->host;
3766
3767	trace_f2fs_set_page_dirty(folio, DATA);
3768
3769	if (!folio_test_uptodate(folio))
3770		folio_mark_uptodate(folio);
3771	BUG_ON(folio_test_swapcache(folio));
3772
3773	if (filemap_dirty_folio(mapping, folio)) {
3774		f2fs_update_dirty_folio(inode, folio);
3775		return true;
3776	}
3777	return false;
3778}
3779
3780
3781static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3782{
3783#ifdef CONFIG_F2FS_FS_COMPRESSION
3784	struct dnode_of_data dn;
3785	sector_t start_idx, blknr = 0;
3786	int ret;
3787
3788	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3789
3790	set_new_dnode(&dn, inode, NULL, NULL, 0);
3791	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3792	if (ret)
3793		return 0;
3794
3795	if (dn.data_blkaddr != COMPRESS_ADDR) {
3796		dn.ofs_in_node += block - start_idx;
3797		blknr = f2fs_data_blkaddr(&dn);
3798		if (!__is_valid_data_blkaddr(blknr))
3799			blknr = 0;
3800	}
3801
3802	f2fs_put_dnode(&dn);
3803	return blknr;
3804#else
3805	return 0;
3806#endif
3807}
3808
3809
3810static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3811{
3812	struct inode *inode = mapping->host;
3813	sector_t blknr = 0;
3814
3815	if (f2fs_has_inline_data(inode))
3816		goto out;
3817
3818	/* make sure allocating whole blocks */
3819	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3820		filemap_write_and_wait(mapping);
3821
3822	/* Block number less than F2FS MAX BLOCKS */
3823	if (unlikely(block >= max_file_blocks(inode)))
3824		goto out;
3825
3826	if (f2fs_compressed_file(inode)) {
3827		blknr = f2fs_bmap_compress(inode, block);
3828	} else {
3829		struct f2fs_map_blocks map;
3830
3831		memset(&map, 0, sizeof(map));
3832		map.m_lblk = block;
3833		map.m_len = 1;
3834		map.m_next_pgofs = NULL;
3835		map.m_seg_type = NO_CHECK_TYPE;
3836
3837		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3838			blknr = map.m_pblk;
3839	}
3840out:
3841	trace_f2fs_bmap(inode, block, blknr);
3842	return blknr;
3843}
3844
3845#ifdef CONFIG_SWAP
3846static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3847							unsigned int blkcnt)
3848{
3849	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3850	unsigned int blkofs;
3851	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3852	unsigned int end_blk = start_blk + blkcnt - 1;
3853	unsigned int secidx = start_blk / blk_per_sec;
3854	unsigned int end_sec;
3855	int ret = 0;
3856
3857	if (!blkcnt)
3858		return 0;
3859	end_sec = end_blk / blk_per_sec;
3860
3861	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3862	filemap_invalidate_lock(inode->i_mapping);
3863
3864	set_inode_flag(inode, FI_ALIGNED_WRITE);
3865	set_inode_flag(inode, FI_OPU_WRITE);
3866
3867	for (; secidx <= end_sec; secidx++) {
3868		unsigned int blkofs_end = secidx == end_sec ?
3869				end_blk % blk_per_sec : blk_per_sec - 1;
3870
3871		f2fs_down_write(&sbi->pin_sem);
3872
3873		ret = f2fs_allocate_pinning_section(sbi);
3874		if (ret) {
3875			f2fs_up_write(&sbi->pin_sem);
3876			break;
3877		}
3878
3879		set_inode_flag(inode, FI_SKIP_WRITES);
3880
3881		for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3882			struct page *page;
3883			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3884
3885			page = f2fs_get_lock_data_page(inode, blkidx, true);
3886			if (IS_ERR(page)) {
3887				f2fs_up_write(&sbi->pin_sem);
3888				ret = PTR_ERR(page);
3889				goto done;
3890			}
3891
3892			set_page_dirty(page);
3893			f2fs_put_page(page, 1);
3894		}
3895
3896		clear_inode_flag(inode, FI_SKIP_WRITES);
3897
3898		ret = filemap_fdatawrite(inode->i_mapping);
3899
3900		f2fs_up_write(&sbi->pin_sem);
3901
3902		if (ret)
3903			break;
3904	}
3905
3906done:
3907	clear_inode_flag(inode, FI_SKIP_WRITES);
3908	clear_inode_flag(inode, FI_OPU_WRITE);
3909	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3910
3911	filemap_invalidate_unlock(inode->i_mapping);
3912	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3913
3914	return ret;
3915}
3916
3917static int check_swap_activate(struct swap_info_struct *sis,
3918				struct file *swap_file, sector_t *span)
3919{
3920	struct address_space *mapping = swap_file->f_mapping;
3921	struct inode *inode = mapping->host;
3922	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3923	block_t cur_lblock;
3924	block_t last_lblock;
3925	block_t pblock;
3926	block_t lowest_pblock = -1;
3927	block_t highest_pblock = 0;
3928	int nr_extents = 0;
3929	unsigned int nr_pblocks;
3930	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3931	unsigned int not_aligned = 0;
3932	int ret = 0;
3933
3934	/*
3935	 * Map all the blocks into the extent list.  This code doesn't try
3936	 * to be very smart.
3937	 */
3938	cur_lblock = 0;
3939	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3940
3941	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3942		struct f2fs_map_blocks map;
3943retry:
3944		cond_resched();
3945
3946		memset(&map, 0, sizeof(map));
3947		map.m_lblk = cur_lblock;
3948		map.m_len = last_lblock - cur_lblock;
3949		map.m_next_pgofs = NULL;
3950		map.m_next_extent = NULL;
3951		map.m_seg_type = NO_CHECK_TYPE;
3952		map.m_may_create = false;
3953
3954		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3955		if (ret)
3956			goto out;
3957
3958		/* hole */
3959		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3960			f2fs_err(sbi, "Swapfile has holes");
3961			ret = -EINVAL;
3962			goto out;
3963		}
3964
3965		pblock = map.m_pblk;
3966		nr_pblocks = map.m_len;
3967
3968		if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec ||
3969				nr_pblocks % blks_per_sec ||
3970				!f2fs_valid_pinned_area(sbi, pblock)) {
3971			bool last_extent = false;
3972
3973			not_aligned++;
3974
3975			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3976			if (cur_lblock + nr_pblocks > sis->max)
3977				nr_pblocks -= blks_per_sec;
3978
3979			/* this extent is last one */
3980			if (!nr_pblocks) {
3981				nr_pblocks = last_lblock - cur_lblock;
3982				last_extent = true;
3983			}
3984
3985			ret = f2fs_migrate_blocks(inode, cur_lblock,
3986							nr_pblocks);
3987			if (ret) {
3988				if (ret == -ENOENT)
3989					ret = -EINVAL;
3990				goto out;
3991			}
3992
3993			if (!last_extent)
3994				goto retry;
3995		}
3996
3997		if (cur_lblock + nr_pblocks >= sis->max)
3998			nr_pblocks = sis->max - cur_lblock;
3999
4000		if (cur_lblock) {	/* exclude the header page */
4001			if (pblock < lowest_pblock)
4002				lowest_pblock = pblock;
4003			if (pblock + nr_pblocks - 1 > highest_pblock)
4004				highest_pblock = pblock + nr_pblocks - 1;
4005		}
4006
4007		/*
4008		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4009		 */
4010		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4011		if (ret < 0)
4012			goto out;
4013		nr_extents += ret;
4014		cur_lblock += nr_pblocks;
4015	}
4016	ret = nr_extents;
4017	*span = 1 + highest_pblock - lowest_pblock;
4018	if (cur_lblock == 0)
4019		cur_lblock = 1;	/* force Empty message */
4020	sis->max = cur_lblock;
4021	sis->pages = cur_lblock - 1;
4022	sis->highest_bit = cur_lblock - 1;
4023out:
4024	if (not_aligned)
4025		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4026			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4027	return ret;
4028}
4029
4030static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4031				sector_t *span)
4032{
4033	struct inode *inode = file_inode(file);
4034	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4035	int ret;
4036
4037	if (!S_ISREG(inode->i_mode))
4038		return -EINVAL;
4039
4040	if (f2fs_readonly(sbi->sb))
4041		return -EROFS;
4042
4043	if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4044		f2fs_err(sbi, "Swapfile not supported in LFS mode");
4045		return -EINVAL;
4046	}
4047
4048	ret = f2fs_convert_inline_inode(inode);
4049	if (ret)
4050		return ret;
4051
4052	if (!f2fs_disable_compressed_file(inode))
4053		return -EINVAL;
4054
4055	ret = filemap_fdatawrite(inode->i_mapping);
4056	if (ret < 0)
4057		return ret;
4058
4059	f2fs_precache_extents(inode);
4060
4061	ret = check_swap_activate(sis, file, span);
4062	if (ret < 0)
4063		return ret;
4064
4065	stat_inc_swapfile_inode(inode);
4066	set_inode_flag(inode, FI_PIN_FILE);
4067	f2fs_update_time(sbi, REQ_TIME);
4068	return ret;
4069}
4070
4071static void f2fs_swap_deactivate(struct file *file)
4072{
4073	struct inode *inode = file_inode(file);
4074
4075	stat_dec_swapfile_inode(inode);
4076	clear_inode_flag(inode, FI_PIN_FILE);
4077}
4078#else
4079static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4080				sector_t *span)
4081{
4082	return -EOPNOTSUPP;
4083}
4084
4085static void f2fs_swap_deactivate(struct file *file)
4086{
4087}
4088#endif
4089
4090const struct address_space_operations f2fs_dblock_aops = {
4091	.read_folio	= f2fs_read_data_folio,
4092	.readahead	= f2fs_readahead,
4093	.writepage	= f2fs_write_data_page,
4094	.writepages	= f2fs_write_data_pages,
4095	.write_begin	= f2fs_write_begin,
4096	.write_end	= f2fs_write_end,
4097	.dirty_folio	= f2fs_dirty_data_folio,
4098	.migrate_folio	= filemap_migrate_folio,
4099	.invalidate_folio = f2fs_invalidate_folio,
4100	.release_folio	= f2fs_release_folio,
4101	.bmap		= f2fs_bmap,
4102	.swap_activate  = f2fs_swap_activate,
4103	.swap_deactivate = f2fs_swap_deactivate,
4104};
4105
4106void f2fs_clear_page_cache_dirty_tag(struct page *page)
4107{
4108	struct folio *folio = page_folio(page);
4109	struct address_space *mapping = folio->mapping;
4110	unsigned long flags;
4111
4112	xa_lock_irqsave(&mapping->i_pages, flags);
4113	__xa_clear_mark(&mapping->i_pages, folio->index,
4114						PAGECACHE_TAG_DIRTY);
4115	xa_unlock_irqrestore(&mapping->i_pages, flags);
4116}
4117
4118int __init f2fs_init_post_read_processing(void)
4119{
4120	bio_post_read_ctx_cache =
4121		kmem_cache_create("f2fs_bio_post_read_ctx",
4122				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4123	if (!bio_post_read_ctx_cache)
4124		goto fail;
4125	bio_post_read_ctx_pool =
4126		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4127					 bio_post_read_ctx_cache);
4128	if (!bio_post_read_ctx_pool)
4129		goto fail_free_cache;
4130	return 0;
4131
4132fail_free_cache:
4133	kmem_cache_destroy(bio_post_read_ctx_cache);
4134fail:
4135	return -ENOMEM;
4136}
4137
4138void f2fs_destroy_post_read_processing(void)
4139{
4140	mempool_destroy(bio_post_read_ctx_pool);
4141	kmem_cache_destroy(bio_post_read_ctx_cache);
4142}
4143
4144int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4145{
4146	if (!f2fs_sb_has_encrypt(sbi) &&
4147		!f2fs_sb_has_verity(sbi) &&
4148		!f2fs_sb_has_compression(sbi))
4149		return 0;
4150
4151	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4152						 WQ_UNBOUND | WQ_HIGHPRI,
4153						 num_online_cpus());
4154	return sbi->post_read_wq ? 0 : -ENOMEM;
4155}
4156
4157void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4158{
4159	if (sbi->post_read_wq)
4160		destroy_workqueue(sbi->post_read_wq);
4161}
4162
4163int __init f2fs_init_bio_entry_cache(void)
4164{
4165	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4166			sizeof(struct bio_entry));
4167	return bio_entry_slab ? 0 : -ENOMEM;
4168}
4169
4170void f2fs_destroy_bio_entry_cache(void)
4171{
4172	kmem_cache_destroy(bio_entry_slab);
4173}
4174
4175static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4176			    unsigned int flags, struct iomap *iomap,
4177			    struct iomap *srcmap)
4178{
4179	struct f2fs_map_blocks map = {};
4180	pgoff_t next_pgofs = 0;
4181	int err;
4182
4183	map.m_lblk = bytes_to_blks(inode, offset);
4184	map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4185	map.m_next_pgofs = &next_pgofs;
4186	map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
4187						inode->i_write_hint);
4188	if (flags & IOMAP_WRITE)
4189		map.m_may_create = true;
4190
4191	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4192	if (err)
4193		return err;
4194
4195	iomap->offset = blks_to_bytes(inode, map.m_lblk);
4196
4197	/*
4198	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4199	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4200	 * limiting the length of the mapping returned.
4201	 */
4202	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4203
4204	/*
4205	 * We should never see delalloc or compressed extents here based on
4206	 * prior flushing and checks.
4207	 */
4208	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4209		return -EINVAL;
4210
4211	if (map.m_flags & F2FS_MAP_MAPPED) {
4212		if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4213			return -EINVAL;
4214
4215		iomap->length = blks_to_bytes(inode, map.m_len);
4216		iomap->type = IOMAP_MAPPED;
4217		iomap->flags |= IOMAP_F_MERGED;
4218		iomap->bdev = map.m_bdev;
4219		iomap->addr = blks_to_bytes(inode, map.m_pblk);
4220	} else {
4221		if (flags & IOMAP_WRITE)
4222			return -ENOTBLK;
4223
4224		if (map.m_pblk == NULL_ADDR) {
4225			iomap->length = blks_to_bytes(inode, next_pgofs) -
4226								iomap->offset;
4227			iomap->type = IOMAP_HOLE;
4228		} else if (map.m_pblk == NEW_ADDR) {
4229			iomap->length = blks_to_bytes(inode, map.m_len);
4230			iomap->type = IOMAP_UNWRITTEN;
4231		} else {
4232			f2fs_bug_on(F2FS_I_SB(inode), 1);
4233		}
4234		iomap->addr = IOMAP_NULL_ADDR;
4235	}
4236
4237	if (map.m_flags & F2FS_MAP_NEW)
4238		iomap->flags |= IOMAP_F_NEW;
4239	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4240	    offset + length > i_size_read(inode))
4241		iomap->flags |= IOMAP_F_DIRTY;
4242
4243	return 0;
4244}
4245
4246const struct iomap_ops f2fs_iomap_ops = {
4247	.iomap_begin	= f2fs_iomap_begin,
4248};
4249