1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 *  from
11 *
12 *  linux/fs/minix/inode.c
13 *
14 *  Copyright (C) 1991, 1992  Linus Torvalds
15 *
16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
17 *	(jj@sunsite.ms.mff.cuni.cz)
18 *
19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22#include <linux/fs.h>
23#include <linux/mount.h>
24#include <linux/time.h>
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
27#include <linux/dax.h>
28#include <linux/quotaops.h>
29#include <linux/string.h>
30#include <linux/buffer_head.h>
31#include <linux/writeback.h>
32#include <linux/pagevec.h>
33#include <linux/mpage.h>
34#include <linux/namei.h>
35#include <linux/uio.h>
36#include <linux/bio.h>
37#include <linux/workqueue.h>
38#include <linux/kernel.h>
39#include <linux/printk.h>
40#include <linux/slab.h>
41#include <linux/bitops.h>
42#include <linux/iomap.h>
43#include <linux/iversion.h>
44
45#include "ext4_jbd2.h"
46#include "xattr.h"
47#include "acl.h"
48#include "truncate.h"
49
50#include <trace/events/ext4.h>
51
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53			      struct ext4_inode_info *ei)
54{
55	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56	__u32 csum;
57	__u16 dummy_csum = 0;
58	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59	unsigned int csum_size = sizeof(dummy_csum);
60
61	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63	offset += csum_size;
64	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68		offset = offsetof(struct ext4_inode, i_checksum_hi);
69		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70				   EXT4_GOOD_OLD_INODE_SIZE,
71				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74					   csum_size);
75			offset += csum_size;
76		}
77		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79	}
80
81	return csum;
82}
83
84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85				  struct ext4_inode_info *ei)
86{
87	__u32 provided, calculated;
88
89	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90	    cpu_to_le32(EXT4_OS_LINUX) ||
91	    !ext4_has_metadata_csum(inode->i_sb))
92		return 1;
93
94	provided = le16_to_cpu(raw->i_checksum_lo);
95	calculated = ext4_inode_csum(inode, raw, ei);
96	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99	else
100		calculated &= 0xFFFF;
101
102	return provided == calculated;
103}
104
105void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106			 struct ext4_inode_info *ei)
107{
108	__u32 csum;
109
110	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111	    cpu_to_le32(EXT4_OS_LINUX) ||
112	    !ext4_has_metadata_csum(inode->i_sb))
113		return;
114
115	csum = ext4_inode_csum(inode, raw, ei);
116	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120}
121
122static inline int ext4_begin_ordered_truncate(struct inode *inode,
123					      loff_t new_size)
124{
125	trace_ext4_begin_ordered_truncate(inode, new_size);
126	/*
127	 * If jinode is zero, then we never opened the file for
128	 * writing, so there's no need to call
129	 * jbd2_journal_begin_ordered_truncate() since there's no
130	 * outstanding writes we need to flush.
131	 */
132	if (!EXT4_I(inode)->jinode)
133		return 0;
134	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135						   EXT4_I(inode)->jinode,
136						   new_size);
137}
138
139static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140				  int pextents);
141
142/*
143 * Test whether an inode is a fast symlink.
144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
145 */
146int ext4_inode_is_fast_symlink(struct inode *inode)
147{
148	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
149		int ea_blocks = EXT4_I(inode)->i_file_acl ?
150				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151
152		if (ext4_has_inline_data(inode))
153			return 0;
154
155		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
156	}
157	return S_ISLNK(inode->i_mode) && inode->i_size &&
158	       (inode->i_size < EXT4_N_BLOCKS * 4);
159}
160
161/*
162 * Called at the last iput() if i_nlink is zero.
163 */
164void ext4_evict_inode(struct inode *inode)
165{
166	handle_t *handle;
167	int err;
168	/*
169	 * Credits for final inode cleanup and freeing:
170	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
171	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
172	 */
173	int extra_credits = 6;
174	struct ext4_xattr_inode_array *ea_inode_array = NULL;
175	bool freeze_protected = false;
176
177	trace_ext4_evict_inode(inode);
178
179	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
180		ext4_evict_ea_inode(inode);
181	if (inode->i_nlink) {
182		truncate_inode_pages_final(&inode->i_data);
183
184		goto no_delete;
185	}
186
187	if (is_bad_inode(inode))
188		goto no_delete;
189	dquot_initialize(inode);
190
191	if (ext4_should_order_data(inode))
192		ext4_begin_ordered_truncate(inode, 0);
193	truncate_inode_pages_final(&inode->i_data);
194
195	/*
196	 * For inodes with journalled data, transaction commit could have
197	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
198	 * extents converting worker could merge extents and also have dirtied
199	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
200	 * we still need to remove the inode from the writeback lists.
201	 */
202	if (!list_empty_careful(&inode->i_io_list))
203		inode_io_list_del(inode);
204
205	/*
206	 * Protect us against freezing - iput() caller didn't have to have any
207	 * protection against it. When we are in a running transaction though,
208	 * we are already protected against freezing and we cannot grab further
209	 * protection due to lock ordering constraints.
210	 */
211	if (!ext4_journal_current_handle()) {
212		sb_start_intwrite(inode->i_sb);
213		freeze_protected = true;
214	}
215
216	if (!IS_NOQUOTA(inode))
217		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
218
219	/*
220	 * Block bitmap, group descriptor, and inode are accounted in both
221	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
222	 */
223	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
224			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
225	if (IS_ERR(handle)) {
226		ext4_std_error(inode->i_sb, PTR_ERR(handle));
227		/*
228		 * If we're going to skip the normal cleanup, we still need to
229		 * make sure that the in-core orphan linked list is properly
230		 * cleaned up.
231		 */
232		ext4_orphan_del(NULL, inode);
233		if (freeze_protected)
234			sb_end_intwrite(inode->i_sb);
235		goto no_delete;
236	}
237
238	if (IS_SYNC(inode))
239		ext4_handle_sync(handle);
240
241	/*
242	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
243	 * special handling of symlinks here because i_size is used to
244	 * determine whether ext4_inode_info->i_data contains symlink data or
245	 * block mappings. Setting i_size to 0 will remove its fast symlink
246	 * status. Erase i_data so that it becomes a valid empty block map.
247	 */
248	if (ext4_inode_is_fast_symlink(inode))
249		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
250	inode->i_size = 0;
251	err = ext4_mark_inode_dirty(handle, inode);
252	if (err) {
253		ext4_warning(inode->i_sb,
254			     "couldn't mark inode dirty (err %d)", err);
255		goto stop_handle;
256	}
257	if (inode->i_blocks) {
258		err = ext4_truncate(inode);
259		if (err) {
260			ext4_error_err(inode->i_sb, -err,
261				       "couldn't truncate inode %lu (err %d)",
262				       inode->i_ino, err);
263			goto stop_handle;
264		}
265	}
266
267	/* Remove xattr references. */
268	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
269				      extra_credits);
270	if (err) {
271		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
272stop_handle:
273		ext4_journal_stop(handle);
274		ext4_orphan_del(NULL, inode);
275		if (freeze_protected)
276			sb_end_intwrite(inode->i_sb);
277		ext4_xattr_inode_array_free(ea_inode_array);
278		goto no_delete;
279	}
280
281	/*
282	 * Kill off the orphan record which ext4_truncate created.
283	 * AKPM: I think this can be inside the above `if'.
284	 * Note that ext4_orphan_del() has to be able to cope with the
285	 * deletion of a non-existent orphan - this is because we don't
286	 * know if ext4_truncate() actually created an orphan record.
287	 * (Well, we could do this if we need to, but heck - it works)
288	 */
289	ext4_orphan_del(handle, inode);
290	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
291
292	/*
293	 * One subtle ordering requirement: if anything has gone wrong
294	 * (transaction abort, IO errors, whatever), then we can still
295	 * do these next steps (the fs will already have been marked as
296	 * having errors), but we can't free the inode if the mark_dirty
297	 * fails.
298	 */
299	if (ext4_mark_inode_dirty(handle, inode))
300		/* If that failed, just do the required in-core inode clear. */
301		ext4_clear_inode(inode);
302	else
303		ext4_free_inode(handle, inode);
304	ext4_journal_stop(handle);
305	if (freeze_protected)
306		sb_end_intwrite(inode->i_sb);
307	ext4_xattr_inode_array_free(ea_inode_array);
308	return;
309no_delete:
310	/*
311	 * Check out some where else accidentally dirty the evicting inode,
312	 * which may probably cause inode use-after-free issues later.
313	 */
314	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
315
316	if (!list_empty(&EXT4_I(inode)->i_fc_list))
317		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
318	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
319}
320
321#ifdef CONFIG_QUOTA
322qsize_t *ext4_get_reserved_space(struct inode *inode)
323{
324	return &EXT4_I(inode)->i_reserved_quota;
325}
326#endif
327
328/*
329 * Called with i_data_sem down, which is important since we can call
330 * ext4_discard_preallocations() from here.
331 */
332void ext4_da_update_reserve_space(struct inode *inode,
333					int used, int quota_claim)
334{
335	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336	struct ext4_inode_info *ei = EXT4_I(inode);
337
338	spin_lock(&ei->i_block_reservation_lock);
339	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340	if (unlikely(used > ei->i_reserved_data_blocks)) {
341		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
342			 "with only %d reserved data blocks",
343			 __func__, inode->i_ino, used,
344			 ei->i_reserved_data_blocks);
345		WARN_ON(1);
346		used = ei->i_reserved_data_blocks;
347	}
348
349	/* Update per-inode reservations */
350	ei->i_reserved_data_blocks -= used;
351	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352
353	spin_unlock(&ei->i_block_reservation_lock);
354
355	/* Update quota subsystem for data blocks */
356	if (quota_claim)
357		dquot_claim_block(inode, EXT4_C2B(sbi, used));
358	else {
359		/*
360		 * We did fallocate with an offset that is already delayed
361		 * allocated. So on delayed allocated writeback we should
362		 * not re-claim the quota for fallocated blocks.
363		 */
364		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
365	}
366
367	/*
368	 * If we have done all the pending block allocations and if
369	 * there aren't any writers on the inode, we can discard the
370	 * inode's preallocations.
371	 */
372	if ((ei->i_reserved_data_blocks == 0) &&
373	    !inode_is_open_for_write(inode))
374		ext4_discard_preallocations(inode);
375}
376
377static int __check_block_validity(struct inode *inode, const char *func,
378				unsigned int line,
379				struct ext4_map_blocks *map)
380{
381	if (ext4_has_feature_journal(inode->i_sb) &&
382	    (inode->i_ino ==
383	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
384		return 0;
385	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
386		ext4_error_inode(inode, func, line, map->m_pblk,
387				 "lblock %lu mapped to illegal pblock %llu "
388				 "(length %d)", (unsigned long) map->m_lblk,
389				 map->m_pblk, map->m_len);
390		return -EFSCORRUPTED;
391	}
392	return 0;
393}
394
395int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
396		       ext4_lblk_t len)
397{
398	int ret;
399
400	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
401		return fscrypt_zeroout_range(inode, lblk, pblk, len);
402
403	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
404	if (ret > 0)
405		ret = 0;
406
407	return ret;
408}
409
410#define check_block_validity(inode, map)	\
411	__check_block_validity((inode), __func__, __LINE__, (map))
412
413#ifdef ES_AGGRESSIVE_TEST
414static void ext4_map_blocks_es_recheck(handle_t *handle,
415				       struct inode *inode,
416				       struct ext4_map_blocks *es_map,
417				       struct ext4_map_blocks *map,
418				       int flags)
419{
420	int retval;
421
422	map->m_flags = 0;
423	/*
424	 * There is a race window that the result is not the same.
425	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
426	 * is that we lookup a block mapping in extent status tree with
427	 * out taking i_data_sem.  So at the time the unwritten extent
428	 * could be converted.
429	 */
430	down_read(&EXT4_I(inode)->i_data_sem);
431	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
432		retval = ext4_ext_map_blocks(handle, inode, map, 0);
433	} else {
434		retval = ext4_ind_map_blocks(handle, inode, map, 0);
435	}
436	up_read((&EXT4_I(inode)->i_data_sem));
437
438	/*
439	 * We don't check m_len because extent will be collpased in status
440	 * tree.  So the m_len might not equal.
441	 */
442	if (es_map->m_lblk != map->m_lblk ||
443	    es_map->m_flags != map->m_flags ||
444	    es_map->m_pblk != map->m_pblk) {
445		printk("ES cache assertion failed for inode: %lu "
446		       "es_cached ex [%d/%d/%llu/%x] != "
447		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
448		       inode->i_ino, es_map->m_lblk, es_map->m_len,
449		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
450		       map->m_len, map->m_pblk, map->m_flags,
451		       retval, flags);
452	}
453}
454#endif /* ES_AGGRESSIVE_TEST */
455
456/*
457 * The ext4_map_blocks() function tries to look up the requested blocks,
458 * and returns if the blocks are already mapped.
459 *
460 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
461 * and store the allocated blocks in the result buffer head and mark it
462 * mapped.
463 *
464 * If file type is extents based, it will call ext4_ext_map_blocks(),
465 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
466 * based files
467 *
468 * On success, it returns the number of blocks being mapped or allocated.
469 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
470 * pre-allocated and unwritten, the resulting @map is marked as unwritten.
471 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
472 *
473 * It returns 0 if plain look up failed (blocks have not been allocated), in
474 * that case, @map is returned as unmapped but we still do fill map->m_len to
475 * indicate the length of a hole starting at map->m_lblk.
476 *
477 * It returns the error in case of allocation failure.
478 */
479int ext4_map_blocks(handle_t *handle, struct inode *inode,
480		    struct ext4_map_blocks *map, int flags)
481{
482	struct extent_status es;
483	int retval;
484	int ret = 0;
485#ifdef ES_AGGRESSIVE_TEST
486	struct ext4_map_blocks orig_map;
487
488	memcpy(&orig_map, map, sizeof(*map));
489#endif
490
491	map->m_flags = 0;
492	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
493		  flags, map->m_len, (unsigned long) map->m_lblk);
494
495	/*
496	 * ext4_map_blocks returns an int, and m_len is an unsigned int
497	 */
498	if (unlikely(map->m_len > INT_MAX))
499		map->m_len = INT_MAX;
500
501	/* We can handle the block number less than EXT_MAX_BLOCKS */
502	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
503		return -EFSCORRUPTED;
504
505	/* Lookup extent status tree firstly */
506	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
507	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
508		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
509			map->m_pblk = ext4_es_pblock(&es) +
510					map->m_lblk - es.es_lblk;
511			map->m_flags |= ext4_es_is_written(&es) ?
512					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
513			retval = es.es_len - (map->m_lblk - es.es_lblk);
514			if (retval > map->m_len)
515				retval = map->m_len;
516			map->m_len = retval;
517		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
518			map->m_pblk = 0;
519			map->m_flags |= ext4_es_is_delayed(&es) ?
520					EXT4_MAP_DELAYED : 0;
521			retval = es.es_len - (map->m_lblk - es.es_lblk);
522			if (retval > map->m_len)
523				retval = map->m_len;
524			map->m_len = retval;
525			retval = 0;
526		} else {
527			BUG();
528		}
529
530		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
531			return retval;
532#ifdef ES_AGGRESSIVE_TEST
533		ext4_map_blocks_es_recheck(handle, inode, map,
534					   &orig_map, flags);
535#endif
536		goto found;
537	}
538	/*
539	 * In the query cache no-wait mode, nothing we can do more if we
540	 * cannot find extent in the cache.
541	 */
542	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
543		return 0;
544
545	/*
546	 * Try to see if we can get the block without requesting a new
547	 * file system block.
548	 */
549	down_read(&EXT4_I(inode)->i_data_sem);
550	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
551		retval = ext4_ext_map_blocks(handle, inode, map, 0);
552	} else {
553		retval = ext4_ind_map_blocks(handle, inode, map, 0);
554	}
555	if (retval > 0) {
556		unsigned int status;
557
558		if (unlikely(retval != map->m_len)) {
559			ext4_warning(inode->i_sb,
560				     "ES len assertion failed for inode "
561				     "%lu: retval %d != map->m_len %d",
562				     inode->i_ino, retval, map->m_len);
563			WARN_ON(1);
564		}
565
566		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569		    !(status & EXTENT_STATUS_WRITTEN) &&
570		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
571				       map->m_lblk + map->m_len - 1))
572			status |= EXTENT_STATUS_DELAYED;
573		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
574				      map->m_pblk, status);
575	}
576	up_read((&EXT4_I(inode)->i_data_sem));
577
578found:
579	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
580		ret = check_block_validity(inode, map);
581		if (ret != 0)
582			return ret;
583	}
584
585	/* If it is only a block(s) look up */
586	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
587		return retval;
588
589	/*
590	 * Returns if the blocks have already allocated
591	 *
592	 * Note that if blocks have been preallocated
593	 * ext4_ext_map_blocks() returns with buffer head unmapped
594	 */
595	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
596		/*
597		 * If we need to convert extent to unwritten
598		 * we continue and do the actual work in
599		 * ext4_ext_map_blocks()
600		 */
601		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
602			return retval;
603
604	/*
605	 * Here we clear m_flags because after allocating an new extent,
606	 * it will be set again.
607	 */
608	map->m_flags &= ~EXT4_MAP_FLAGS;
609
610	/*
611	 * New blocks allocate and/or writing to unwritten extent
612	 * will possibly result in updating i_data, so we take
613	 * the write lock of i_data_sem, and call get_block()
614	 * with create == 1 flag.
615	 */
616	down_write(&EXT4_I(inode)->i_data_sem);
617
618	/*
619	 * We need to check for EXT4 here because migrate
620	 * could have changed the inode type in between
621	 */
622	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
623		retval = ext4_ext_map_blocks(handle, inode, map, flags);
624	} else {
625		retval = ext4_ind_map_blocks(handle, inode, map, flags);
626
627		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
628			/*
629			 * We allocated new blocks which will result in
630			 * i_data's format changing.  Force the migrate
631			 * to fail by clearing migrate flags
632			 */
633			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
634		}
635	}
636
637	if (retval > 0) {
638		unsigned int status;
639
640		if (unlikely(retval != map->m_len)) {
641			ext4_warning(inode->i_sb,
642				     "ES len assertion failed for inode "
643				     "%lu: retval %d != map->m_len %d",
644				     inode->i_ino, retval, map->m_len);
645			WARN_ON(1);
646		}
647
648		/*
649		 * We have to zeroout blocks before inserting them into extent
650		 * status tree. Otherwise someone could look them up there and
651		 * use them before they are really zeroed. We also have to
652		 * unmap metadata before zeroing as otherwise writeback can
653		 * overwrite zeros with stale data from block device.
654		 */
655		if (flags & EXT4_GET_BLOCKS_ZERO &&
656		    map->m_flags & EXT4_MAP_MAPPED &&
657		    map->m_flags & EXT4_MAP_NEW) {
658			ret = ext4_issue_zeroout(inode, map->m_lblk,
659						 map->m_pblk, map->m_len);
660			if (ret) {
661				retval = ret;
662				goto out_sem;
663			}
664		}
665
666		/*
667		 * If the extent has been zeroed out, we don't need to update
668		 * extent status tree.
669		 */
670		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
672			if (ext4_es_is_written(&es))
673				goto out_sem;
674		}
675		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678		    !(status & EXTENT_STATUS_WRITTEN) &&
679		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
680				       map->m_lblk + map->m_len - 1))
681			status |= EXTENT_STATUS_DELAYED;
682		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
683				      map->m_pblk, status);
684	}
685
686out_sem:
687	up_write((&EXT4_I(inode)->i_data_sem));
688	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
689		ret = check_block_validity(inode, map);
690		if (ret != 0)
691			return ret;
692
693		/*
694		 * Inodes with freshly allocated blocks where contents will be
695		 * visible after transaction commit must be on transaction's
696		 * ordered data list.
697		 */
698		if (map->m_flags & EXT4_MAP_NEW &&
699		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
700		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
701		    !ext4_is_quota_file(inode) &&
702		    ext4_should_order_data(inode)) {
703			loff_t start_byte =
704				(loff_t)map->m_lblk << inode->i_blkbits;
705			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
706
707			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
708				ret = ext4_jbd2_inode_add_wait(handle, inode,
709						start_byte, length);
710			else
711				ret = ext4_jbd2_inode_add_write(handle, inode,
712						start_byte, length);
713			if (ret)
714				return ret;
715		}
716	}
717	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
718				map->m_flags & EXT4_MAP_MAPPED))
719		ext4_fc_track_range(handle, inode, map->m_lblk,
720					map->m_lblk + map->m_len - 1);
721	if (retval < 0)
722		ext_debug(inode, "failed with err %d\n", retval);
723	return retval;
724}
725
726/*
727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728 * we have to be careful as someone else may be manipulating b_state as well.
729 */
730static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731{
732	unsigned long old_state;
733	unsigned long new_state;
734
735	flags &= EXT4_MAP_FLAGS;
736
737	/* Dummy buffer_head? Set non-atomically. */
738	if (!bh->b_page) {
739		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740		return;
741	}
742	/*
743	 * Someone else may be modifying b_state. Be careful! This is ugly but
744	 * once we get rid of using bh as a container for mapping information
745	 * to pass to / from get_block functions, this can go away.
746	 */
747	old_state = READ_ONCE(bh->b_state);
748	do {
749		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
751}
752
753static int _ext4_get_block(struct inode *inode, sector_t iblock,
754			   struct buffer_head *bh, int flags)
755{
756	struct ext4_map_blocks map;
757	int ret = 0;
758
759	if (ext4_has_inline_data(inode))
760		return -ERANGE;
761
762	map.m_lblk = iblock;
763	map.m_len = bh->b_size >> inode->i_blkbits;
764
765	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
766			      flags);
767	if (ret > 0) {
768		map_bh(bh, inode->i_sb, map.m_pblk);
769		ext4_update_bh_state(bh, map.m_flags);
770		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
771		ret = 0;
772	} else if (ret == 0) {
773		/* hole case, need to fill in bh->b_size */
774		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
775	}
776	return ret;
777}
778
779int ext4_get_block(struct inode *inode, sector_t iblock,
780		   struct buffer_head *bh, int create)
781{
782	return _ext4_get_block(inode, iblock, bh,
783			       create ? EXT4_GET_BLOCKS_CREATE : 0);
784}
785
786/*
787 * Get block function used when preparing for buffered write if we require
788 * creating an unwritten extent if blocks haven't been allocated.  The extent
789 * will be converted to written after the IO is complete.
790 */
791int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
792			     struct buffer_head *bh_result, int create)
793{
794	int ret = 0;
795
796	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
797		   inode->i_ino, create);
798	ret = _ext4_get_block(inode, iblock, bh_result,
799			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
800
801	/*
802	 * If the buffer is marked unwritten, mark it as new to make sure it is
803	 * zeroed out correctly in case of partial writes. Otherwise, there is
804	 * a chance of stale data getting exposed.
805	 */
806	if (ret == 0 && buffer_unwritten(bh_result))
807		set_buffer_new(bh_result);
808
809	return ret;
810}
811
812/* Maximum number of blocks we map for direct IO at once. */
813#define DIO_MAX_BLOCKS 4096
814
815/*
816 * `handle' can be NULL if create is zero
817 */
818struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
819				ext4_lblk_t block, int map_flags)
820{
821	struct ext4_map_blocks map;
822	struct buffer_head *bh;
823	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
824	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
825	int err;
826
827	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
828		    || handle != NULL || create == 0);
829	ASSERT(create == 0 || !nowait);
830
831	map.m_lblk = block;
832	map.m_len = 1;
833	err = ext4_map_blocks(handle, inode, &map, map_flags);
834
835	if (err == 0)
836		return create ? ERR_PTR(-ENOSPC) : NULL;
837	if (err < 0)
838		return ERR_PTR(err);
839
840	if (nowait)
841		return sb_find_get_block(inode->i_sb, map.m_pblk);
842
843	bh = sb_getblk(inode->i_sb, map.m_pblk);
844	if (unlikely(!bh))
845		return ERR_PTR(-ENOMEM);
846	if (map.m_flags & EXT4_MAP_NEW) {
847		ASSERT(create != 0);
848		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
849			    || (handle != NULL));
850
851		/*
852		 * Now that we do not always journal data, we should
853		 * keep in mind whether this should always journal the
854		 * new buffer as metadata.  For now, regular file
855		 * writes use ext4_get_block instead, so it's not a
856		 * problem.
857		 */
858		lock_buffer(bh);
859		BUFFER_TRACE(bh, "call get_create_access");
860		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
861						     EXT4_JTR_NONE);
862		if (unlikely(err)) {
863			unlock_buffer(bh);
864			goto errout;
865		}
866		if (!buffer_uptodate(bh)) {
867			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
868			set_buffer_uptodate(bh);
869		}
870		unlock_buffer(bh);
871		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
872		err = ext4_handle_dirty_metadata(handle, inode, bh);
873		if (unlikely(err))
874			goto errout;
875	} else
876		BUFFER_TRACE(bh, "not a new buffer");
877	return bh;
878errout:
879	brelse(bh);
880	return ERR_PTR(err);
881}
882
883struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
884			       ext4_lblk_t block, int map_flags)
885{
886	struct buffer_head *bh;
887	int ret;
888
889	bh = ext4_getblk(handle, inode, block, map_flags);
890	if (IS_ERR(bh))
891		return bh;
892	if (!bh || ext4_buffer_uptodate(bh))
893		return bh;
894
895	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
896	if (ret) {
897		put_bh(bh);
898		return ERR_PTR(ret);
899	}
900	return bh;
901}
902
903/* Read a contiguous batch of blocks. */
904int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
905		     bool wait, struct buffer_head **bhs)
906{
907	int i, err;
908
909	for (i = 0; i < bh_count; i++) {
910		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
911		if (IS_ERR(bhs[i])) {
912			err = PTR_ERR(bhs[i]);
913			bh_count = i;
914			goto out_brelse;
915		}
916	}
917
918	for (i = 0; i < bh_count; i++)
919		/* Note that NULL bhs[i] is valid because of holes. */
920		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
921			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
922
923	if (!wait)
924		return 0;
925
926	for (i = 0; i < bh_count; i++)
927		if (bhs[i])
928			wait_on_buffer(bhs[i]);
929
930	for (i = 0; i < bh_count; i++) {
931		if (bhs[i] && !buffer_uptodate(bhs[i])) {
932			err = -EIO;
933			goto out_brelse;
934		}
935	}
936	return 0;
937
938out_brelse:
939	for (i = 0; i < bh_count; i++) {
940		brelse(bhs[i]);
941		bhs[i] = NULL;
942	}
943	return err;
944}
945
946int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
947			   struct buffer_head *head,
948			   unsigned from,
949			   unsigned to,
950			   int *partial,
951			   int (*fn)(handle_t *handle, struct inode *inode,
952				     struct buffer_head *bh))
953{
954	struct buffer_head *bh;
955	unsigned block_start, block_end;
956	unsigned blocksize = head->b_size;
957	int err, ret = 0;
958	struct buffer_head *next;
959
960	for (bh = head, block_start = 0;
961	     ret == 0 && (bh != head || !block_start);
962	     block_start = block_end, bh = next) {
963		next = bh->b_this_page;
964		block_end = block_start + blocksize;
965		if (block_end <= from || block_start >= to) {
966			if (partial && !buffer_uptodate(bh))
967				*partial = 1;
968			continue;
969		}
970		err = (*fn)(handle, inode, bh);
971		if (!ret)
972			ret = err;
973	}
974	return ret;
975}
976
977/*
978 * Helper for handling dirtying of journalled data. We also mark the folio as
979 * dirty so that writeback code knows about this page (and inode) contains
980 * dirty data. ext4_writepages() then commits appropriate transaction to
981 * make data stable.
982 */
983static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
984{
985	folio_mark_dirty(bh->b_folio);
986	return ext4_handle_dirty_metadata(handle, NULL, bh);
987}
988
989int do_journal_get_write_access(handle_t *handle, struct inode *inode,
990				struct buffer_head *bh)
991{
992	int dirty = buffer_dirty(bh);
993	int ret;
994
995	if (!buffer_mapped(bh) || buffer_freed(bh))
996		return 0;
997	/*
998	 * __block_write_begin() could have dirtied some buffers. Clean
999	 * the dirty bit as jbd2_journal_get_write_access() could complain
1000	 * otherwise about fs integrity issues. Setting of the dirty bit
1001	 * by __block_write_begin() isn't a real problem here as we clear
1002	 * the bit before releasing a page lock and thus writeback cannot
1003	 * ever write the buffer.
1004	 */
1005	if (dirty)
1006		clear_buffer_dirty(bh);
1007	BUFFER_TRACE(bh, "get write access");
1008	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1009					    EXT4_JTR_NONE);
1010	if (!ret && dirty)
1011		ret = ext4_dirty_journalled_data(handle, bh);
1012	return ret;
1013}
1014
1015#ifdef CONFIG_FS_ENCRYPTION
1016static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1017				  get_block_t *get_block)
1018{
1019	unsigned from = pos & (PAGE_SIZE - 1);
1020	unsigned to = from + len;
1021	struct inode *inode = folio->mapping->host;
1022	unsigned block_start, block_end;
1023	sector_t block;
1024	int err = 0;
1025	unsigned blocksize = inode->i_sb->s_blocksize;
1026	unsigned bbits;
1027	struct buffer_head *bh, *head, *wait[2];
1028	int nr_wait = 0;
1029	int i;
1030
1031	BUG_ON(!folio_test_locked(folio));
1032	BUG_ON(from > PAGE_SIZE);
1033	BUG_ON(to > PAGE_SIZE);
1034	BUG_ON(from > to);
1035
1036	head = folio_buffers(folio);
1037	if (!head)
1038		head = create_empty_buffers(folio, blocksize, 0);
1039	bbits = ilog2(blocksize);
1040	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1041
1042	for (bh = head, block_start = 0; bh != head || !block_start;
1043	    block++, block_start = block_end, bh = bh->b_this_page) {
1044		block_end = block_start + blocksize;
1045		if (block_end <= from || block_start >= to) {
1046			if (folio_test_uptodate(folio)) {
1047				set_buffer_uptodate(bh);
1048			}
1049			continue;
1050		}
1051		if (buffer_new(bh))
1052			clear_buffer_new(bh);
1053		if (!buffer_mapped(bh)) {
1054			WARN_ON(bh->b_size != blocksize);
1055			err = get_block(inode, block, bh, 1);
1056			if (err)
1057				break;
1058			if (buffer_new(bh)) {
1059				if (folio_test_uptodate(folio)) {
1060					clear_buffer_new(bh);
1061					set_buffer_uptodate(bh);
1062					mark_buffer_dirty(bh);
1063					continue;
1064				}
1065				if (block_end > to || block_start < from)
1066					folio_zero_segments(folio, to,
1067							    block_end,
1068							    block_start, from);
1069				continue;
1070			}
1071		}
1072		if (folio_test_uptodate(folio)) {
1073			set_buffer_uptodate(bh);
1074			continue;
1075		}
1076		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1077		    !buffer_unwritten(bh) &&
1078		    (block_start < from || block_end > to)) {
1079			ext4_read_bh_lock(bh, 0, false);
1080			wait[nr_wait++] = bh;
1081		}
1082	}
1083	/*
1084	 * If we issued read requests, let them complete.
1085	 */
1086	for (i = 0; i < nr_wait; i++) {
1087		wait_on_buffer(wait[i]);
1088		if (!buffer_uptodate(wait[i]))
1089			err = -EIO;
1090	}
1091	if (unlikely(err)) {
1092		folio_zero_new_buffers(folio, from, to);
1093	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1094		for (i = 0; i < nr_wait; i++) {
1095			int err2;
1096
1097			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1098						blocksize, bh_offset(wait[i]));
1099			if (err2) {
1100				clear_buffer_uptodate(wait[i]);
1101				err = err2;
1102			}
1103		}
1104	}
1105
1106	return err;
1107}
1108#endif
1109
1110/*
1111 * To preserve ordering, it is essential that the hole instantiation and
1112 * the data write be encapsulated in a single transaction.  We cannot
1113 * close off a transaction and start a new one between the ext4_get_block()
1114 * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1115 * ext4_write_begin() is the right place.
1116 */
1117static int ext4_write_begin(struct file *file, struct address_space *mapping,
1118			    loff_t pos, unsigned len,
1119			    struct page **pagep, void **fsdata)
1120{
1121	struct inode *inode = mapping->host;
1122	int ret, needed_blocks;
1123	handle_t *handle;
1124	int retries = 0;
1125	struct folio *folio;
1126	pgoff_t index;
1127	unsigned from, to;
1128
1129	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1130		return -EIO;
1131
1132	trace_ext4_write_begin(inode, pos, len);
1133	/*
1134	 * Reserve one block more for addition to orphan list in case
1135	 * we allocate blocks but write fails for some reason
1136	 */
1137	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1138	index = pos >> PAGE_SHIFT;
1139	from = pos & (PAGE_SIZE - 1);
1140	to = from + len;
1141
1142	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1143		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1144						    pagep);
1145		if (ret < 0)
1146			return ret;
1147		if (ret == 1)
1148			return 0;
1149	}
1150
1151	/*
1152	 * __filemap_get_folio() can take a long time if the
1153	 * system is thrashing due to memory pressure, or if the folio
1154	 * is being written back.  So grab it first before we start
1155	 * the transaction handle.  This also allows us to allocate
1156	 * the folio (if needed) without using GFP_NOFS.
1157	 */
1158retry_grab:
1159	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1160					mapping_gfp_mask(mapping));
1161	if (IS_ERR(folio))
1162		return PTR_ERR(folio);
1163	/*
1164	 * The same as page allocation, we prealloc buffer heads before
1165	 * starting the handle.
1166	 */
1167	if (!folio_buffers(folio))
1168		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1169
1170	folio_unlock(folio);
1171
1172retry_journal:
1173	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1174	if (IS_ERR(handle)) {
1175		folio_put(folio);
1176		return PTR_ERR(handle);
1177	}
1178
1179	folio_lock(folio);
1180	if (folio->mapping != mapping) {
1181		/* The folio got truncated from under us */
1182		folio_unlock(folio);
1183		folio_put(folio);
1184		ext4_journal_stop(handle);
1185		goto retry_grab;
1186	}
1187	/* In case writeback began while the folio was unlocked */
1188	folio_wait_stable(folio);
1189
1190#ifdef CONFIG_FS_ENCRYPTION
1191	if (ext4_should_dioread_nolock(inode))
1192		ret = ext4_block_write_begin(folio, pos, len,
1193					     ext4_get_block_unwritten);
1194	else
1195		ret = ext4_block_write_begin(folio, pos, len, ext4_get_block);
1196#else
1197	if (ext4_should_dioread_nolock(inode))
1198		ret = __block_write_begin(&folio->page, pos, len,
1199					  ext4_get_block_unwritten);
1200	else
1201		ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1202#endif
1203	if (!ret && ext4_should_journal_data(inode)) {
1204		ret = ext4_walk_page_buffers(handle, inode,
1205					     folio_buffers(folio), from, to,
1206					     NULL, do_journal_get_write_access);
1207	}
1208
1209	if (ret) {
1210		bool extended = (pos + len > inode->i_size) &&
1211				!ext4_verity_in_progress(inode);
1212
1213		folio_unlock(folio);
1214		/*
1215		 * __block_write_begin may have instantiated a few blocks
1216		 * outside i_size.  Trim these off again. Don't need
1217		 * i_size_read because we hold i_rwsem.
1218		 *
1219		 * Add inode to orphan list in case we crash before
1220		 * truncate finishes
1221		 */
1222		if (extended && ext4_can_truncate(inode))
1223			ext4_orphan_add(handle, inode);
1224
1225		ext4_journal_stop(handle);
1226		if (extended) {
1227			ext4_truncate_failed_write(inode);
1228			/*
1229			 * If truncate failed early the inode might
1230			 * still be on the orphan list; we need to
1231			 * make sure the inode is removed from the
1232			 * orphan list in that case.
1233			 */
1234			if (inode->i_nlink)
1235				ext4_orphan_del(NULL, inode);
1236		}
1237
1238		if (ret == -ENOSPC &&
1239		    ext4_should_retry_alloc(inode->i_sb, &retries))
1240			goto retry_journal;
1241		folio_put(folio);
1242		return ret;
1243	}
1244	*pagep = &folio->page;
1245	return ret;
1246}
1247
1248/* For write_end() in data=journal mode */
1249static int write_end_fn(handle_t *handle, struct inode *inode,
1250			struct buffer_head *bh)
1251{
1252	int ret;
1253	if (!buffer_mapped(bh) || buffer_freed(bh))
1254		return 0;
1255	set_buffer_uptodate(bh);
1256	ret = ext4_dirty_journalled_data(handle, bh);
1257	clear_buffer_meta(bh);
1258	clear_buffer_prio(bh);
1259	return ret;
1260}
1261
1262/*
1263 * We need to pick up the new inode size which generic_commit_write gave us
1264 * `file' can be NULL - eg, when called from page_symlink().
1265 *
1266 * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1267 * buffers are managed internally.
1268 */
1269static int ext4_write_end(struct file *file,
1270			  struct address_space *mapping,
1271			  loff_t pos, unsigned len, unsigned copied,
1272			  struct page *page, void *fsdata)
1273{
1274	struct folio *folio = page_folio(page);
1275	handle_t *handle = ext4_journal_current_handle();
1276	struct inode *inode = mapping->host;
1277	loff_t old_size = inode->i_size;
1278	int ret = 0, ret2;
1279	int i_size_changed = 0;
1280	bool verity = ext4_verity_in_progress(inode);
1281
1282	trace_ext4_write_end(inode, pos, len, copied);
1283
1284	if (ext4_has_inline_data(inode) &&
1285	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1286		return ext4_write_inline_data_end(inode, pos, len, copied,
1287						  folio);
1288
1289	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1290	/*
1291	 * it's important to update i_size while still holding folio lock:
1292	 * page writeout could otherwise come in and zero beyond i_size.
1293	 *
1294	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1295	 * blocks are being written past EOF, so skip the i_size update.
1296	 */
1297	if (!verity)
1298		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1299	folio_unlock(folio);
1300	folio_put(folio);
1301
1302	if (old_size < pos && !verity)
1303		pagecache_isize_extended(inode, old_size, pos);
1304	/*
1305	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1306	 * makes the holding time of folio lock longer. Second, it forces lock
1307	 * ordering of folio lock and transaction start for journaling
1308	 * filesystems.
1309	 */
1310	if (i_size_changed)
1311		ret = ext4_mark_inode_dirty(handle, inode);
1312
1313	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1314		/* if we have allocated more blocks and copied
1315		 * less. We will have blocks allocated outside
1316		 * inode->i_size. So truncate them
1317		 */
1318		ext4_orphan_add(handle, inode);
1319
1320	ret2 = ext4_journal_stop(handle);
1321	if (!ret)
1322		ret = ret2;
1323
1324	if (pos + len > inode->i_size && !verity) {
1325		ext4_truncate_failed_write(inode);
1326		/*
1327		 * If truncate failed early the inode might still be
1328		 * on the orphan list; we need to make sure the inode
1329		 * is removed from the orphan list in that case.
1330		 */
1331		if (inode->i_nlink)
1332			ext4_orphan_del(NULL, inode);
1333	}
1334
1335	return ret ? ret : copied;
1336}
1337
1338/*
1339 * This is a private version of folio_zero_new_buffers() which doesn't
1340 * set the buffer to be dirty, since in data=journalled mode we need
1341 * to call ext4_dirty_journalled_data() instead.
1342 */
1343static void ext4_journalled_zero_new_buffers(handle_t *handle,
1344					    struct inode *inode,
1345					    struct folio *folio,
1346					    unsigned from, unsigned to)
1347{
1348	unsigned int block_start = 0, block_end;
1349	struct buffer_head *head, *bh;
1350
1351	bh = head = folio_buffers(folio);
1352	do {
1353		block_end = block_start + bh->b_size;
1354		if (buffer_new(bh)) {
1355			if (block_end > from && block_start < to) {
1356				if (!folio_test_uptodate(folio)) {
1357					unsigned start, size;
1358
1359					start = max(from, block_start);
1360					size = min(to, block_end) - start;
1361
1362					folio_zero_range(folio, start, size);
1363					write_end_fn(handle, inode, bh);
1364				}
1365				clear_buffer_new(bh);
1366			}
1367		}
1368		block_start = block_end;
1369		bh = bh->b_this_page;
1370	} while (bh != head);
1371}
1372
1373static int ext4_journalled_write_end(struct file *file,
1374				     struct address_space *mapping,
1375				     loff_t pos, unsigned len, unsigned copied,
1376				     struct page *page, void *fsdata)
1377{
1378	struct folio *folio = page_folio(page);
1379	handle_t *handle = ext4_journal_current_handle();
1380	struct inode *inode = mapping->host;
1381	loff_t old_size = inode->i_size;
1382	int ret = 0, ret2;
1383	int partial = 0;
1384	unsigned from, to;
1385	int size_changed = 0;
1386	bool verity = ext4_verity_in_progress(inode);
1387
1388	trace_ext4_journalled_write_end(inode, pos, len, copied);
1389	from = pos & (PAGE_SIZE - 1);
1390	to = from + len;
1391
1392	BUG_ON(!ext4_handle_valid(handle));
1393
1394	if (ext4_has_inline_data(inode))
1395		return ext4_write_inline_data_end(inode, pos, len, copied,
1396						  folio);
1397
1398	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1399		copied = 0;
1400		ext4_journalled_zero_new_buffers(handle, inode, folio,
1401						 from, to);
1402	} else {
1403		if (unlikely(copied < len))
1404			ext4_journalled_zero_new_buffers(handle, inode, folio,
1405							 from + copied, to);
1406		ret = ext4_walk_page_buffers(handle, inode,
1407					     folio_buffers(folio),
1408					     from, from + copied, &partial,
1409					     write_end_fn);
1410		if (!partial)
1411			folio_mark_uptodate(folio);
1412	}
1413	if (!verity)
1414		size_changed = ext4_update_inode_size(inode, pos + copied);
1415	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1416	folio_unlock(folio);
1417	folio_put(folio);
1418
1419	if (old_size < pos && !verity)
1420		pagecache_isize_extended(inode, old_size, pos);
1421
1422	if (size_changed) {
1423		ret2 = ext4_mark_inode_dirty(handle, inode);
1424		if (!ret)
1425			ret = ret2;
1426	}
1427
1428	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1429		/* if we have allocated more blocks and copied
1430		 * less. We will have blocks allocated outside
1431		 * inode->i_size. So truncate them
1432		 */
1433		ext4_orphan_add(handle, inode);
1434
1435	ret2 = ext4_journal_stop(handle);
1436	if (!ret)
1437		ret = ret2;
1438	if (pos + len > inode->i_size && !verity) {
1439		ext4_truncate_failed_write(inode);
1440		/*
1441		 * If truncate failed early the inode might still be
1442		 * on the orphan list; we need to make sure the inode
1443		 * is removed from the orphan list in that case.
1444		 */
1445		if (inode->i_nlink)
1446			ext4_orphan_del(NULL, inode);
1447	}
1448
1449	return ret ? ret : copied;
1450}
1451
1452/*
1453 * Reserve space for a single cluster
1454 */
1455static int ext4_da_reserve_space(struct inode *inode)
1456{
1457	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1458	struct ext4_inode_info *ei = EXT4_I(inode);
1459	int ret;
1460
1461	/*
1462	 * We will charge metadata quota at writeout time; this saves
1463	 * us from metadata over-estimation, though we may go over by
1464	 * a small amount in the end.  Here we just reserve for data.
1465	 */
1466	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1467	if (ret)
1468		return ret;
1469
1470	spin_lock(&ei->i_block_reservation_lock);
1471	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1472		spin_unlock(&ei->i_block_reservation_lock);
1473		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1474		return -ENOSPC;
1475	}
1476	ei->i_reserved_data_blocks++;
1477	trace_ext4_da_reserve_space(inode);
1478	spin_unlock(&ei->i_block_reservation_lock);
1479
1480	return 0;       /* success */
1481}
1482
1483void ext4_da_release_space(struct inode *inode, int to_free)
1484{
1485	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1486	struct ext4_inode_info *ei = EXT4_I(inode);
1487
1488	if (!to_free)
1489		return;		/* Nothing to release, exit */
1490
1491	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1492
1493	trace_ext4_da_release_space(inode, to_free);
1494	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1495		/*
1496		 * if there aren't enough reserved blocks, then the
1497		 * counter is messed up somewhere.  Since this
1498		 * function is called from invalidate page, it's
1499		 * harmless to return without any action.
1500		 */
1501		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1502			 "ino %lu, to_free %d with only %d reserved "
1503			 "data blocks", inode->i_ino, to_free,
1504			 ei->i_reserved_data_blocks);
1505		WARN_ON(1);
1506		to_free = ei->i_reserved_data_blocks;
1507	}
1508	ei->i_reserved_data_blocks -= to_free;
1509
1510	/* update fs dirty data blocks counter */
1511	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1512
1513	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1514
1515	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1516}
1517
1518/*
1519 * Delayed allocation stuff
1520 */
1521
1522struct mpage_da_data {
1523	/* These are input fields for ext4_do_writepages() */
1524	struct inode *inode;
1525	struct writeback_control *wbc;
1526	unsigned int can_map:1;	/* Can writepages call map blocks? */
1527
1528	/* These are internal state of ext4_do_writepages() */
1529	pgoff_t first_page;	/* The first page to write */
1530	pgoff_t next_page;	/* Current page to examine */
1531	pgoff_t last_page;	/* Last page to examine */
1532	/*
1533	 * Extent to map - this can be after first_page because that can be
1534	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1535	 * is delalloc or unwritten.
1536	 */
1537	struct ext4_map_blocks map;
1538	struct ext4_io_submit io_submit;	/* IO submission data */
1539	unsigned int do_map:1;
1540	unsigned int scanned_until_end:1;
1541	unsigned int journalled_more_data:1;
1542};
1543
1544static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1545				       bool invalidate)
1546{
1547	unsigned nr, i;
1548	pgoff_t index, end;
1549	struct folio_batch fbatch;
1550	struct inode *inode = mpd->inode;
1551	struct address_space *mapping = inode->i_mapping;
1552
1553	/* This is necessary when next_page == 0. */
1554	if (mpd->first_page >= mpd->next_page)
1555		return;
1556
1557	mpd->scanned_until_end = 0;
1558	index = mpd->first_page;
1559	end   = mpd->next_page - 1;
1560	if (invalidate) {
1561		ext4_lblk_t start, last;
1562		start = index << (PAGE_SHIFT - inode->i_blkbits);
1563		last = end << (PAGE_SHIFT - inode->i_blkbits);
1564
1565		/*
1566		 * avoid racing with extent status tree scans made by
1567		 * ext4_insert_delayed_block()
1568		 */
1569		down_write(&EXT4_I(inode)->i_data_sem);
1570		ext4_es_remove_extent(inode, start, last - start + 1);
1571		up_write(&EXT4_I(inode)->i_data_sem);
1572	}
1573
1574	folio_batch_init(&fbatch);
1575	while (index <= end) {
1576		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1577		if (nr == 0)
1578			break;
1579		for (i = 0; i < nr; i++) {
1580			struct folio *folio = fbatch.folios[i];
1581
1582			if (folio->index < mpd->first_page)
1583				continue;
1584			if (folio_next_index(folio) - 1 > end)
1585				continue;
1586			BUG_ON(!folio_test_locked(folio));
1587			BUG_ON(folio_test_writeback(folio));
1588			if (invalidate) {
1589				if (folio_mapped(folio))
1590					folio_clear_dirty_for_io(folio);
1591				block_invalidate_folio(folio, 0,
1592						folio_size(folio));
1593				folio_clear_uptodate(folio);
1594			}
1595			folio_unlock(folio);
1596		}
1597		folio_batch_release(&fbatch);
1598	}
1599}
1600
1601static void ext4_print_free_blocks(struct inode *inode)
1602{
1603	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1604	struct super_block *sb = inode->i_sb;
1605	struct ext4_inode_info *ei = EXT4_I(inode);
1606
1607	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1608	       EXT4_C2B(EXT4_SB(inode->i_sb),
1609			ext4_count_free_clusters(sb)));
1610	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1611	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1612	       (long long) EXT4_C2B(EXT4_SB(sb),
1613		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1614	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1615	       (long long) EXT4_C2B(EXT4_SB(sb),
1616		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1617	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1618	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1619		 ei->i_reserved_data_blocks);
1620	return;
1621}
1622
1623/*
1624 * ext4_insert_delayed_block - adds a delayed block to the extents status
1625 *                             tree, incrementing the reserved cluster/block
1626 *                             count or making a pending reservation
1627 *                             where needed
1628 *
1629 * @inode - file containing the newly added block
1630 * @lblk - logical block to be added
1631 *
1632 * Returns 0 on success, negative error code on failure.
1633 */
1634static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1635{
1636	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1637	int ret;
1638	bool allocated = false;
1639
1640	/*
1641	 * If the cluster containing lblk is shared with a delayed,
1642	 * written, or unwritten extent in a bigalloc file system, it's
1643	 * already been accounted for and does not need to be reserved.
1644	 * A pending reservation must be made for the cluster if it's
1645	 * shared with a written or unwritten extent and doesn't already
1646	 * have one.  Written and unwritten extents can be purged from the
1647	 * extents status tree if the system is under memory pressure, so
1648	 * it's necessary to examine the extent tree if a search of the
1649	 * extents status tree doesn't get a match.
1650	 */
1651	if (sbi->s_cluster_ratio == 1) {
1652		ret = ext4_da_reserve_space(inode);
1653		if (ret != 0)   /* ENOSPC */
1654			return ret;
1655	} else {   /* bigalloc */
1656		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1657			if (!ext4_es_scan_clu(inode,
1658					      &ext4_es_is_mapped, lblk)) {
1659				ret = ext4_clu_mapped(inode,
1660						      EXT4_B2C(sbi, lblk));
1661				if (ret < 0)
1662					return ret;
1663				if (ret == 0) {
1664					ret = ext4_da_reserve_space(inode);
1665					if (ret != 0)   /* ENOSPC */
1666						return ret;
1667				} else {
1668					allocated = true;
1669				}
1670			} else {
1671				allocated = true;
1672			}
1673		}
1674	}
1675
1676	ext4_es_insert_delayed_block(inode, lblk, allocated);
1677	return 0;
1678}
1679
1680/*
1681 * This function is grabs code from the very beginning of
1682 * ext4_map_blocks, but assumes that the caller is from delayed write
1683 * time. This function looks up the requested blocks and sets the
1684 * buffer delay bit under the protection of i_data_sem.
1685 */
1686static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1687			      struct ext4_map_blocks *map,
1688			      struct buffer_head *bh)
1689{
1690	struct extent_status es;
1691	int retval;
1692	sector_t invalid_block = ~((sector_t) 0xffff);
1693#ifdef ES_AGGRESSIVE_TEST
1694	struct ext4_map_blocks orig_map;
1695
1696	memcpy(&orig_map, map, sizeof(*map));
1697#endif
1698
1699	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1700		invalid_block = ~0;
1701
1702	map->m_flags = 0;
1703	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1704		  (unsigned long) map->m_lblk);
1705
1706	/* Lookup extent status tree firstly */
1707	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1708		if (ext4_es_is_hole(&es))
1709			goto add_delayed;
1710
1711		/*
1712		 * Delayed extent could be allocated by fallocate.
1713		 * So we need to check it.
1714		 */
1715		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1716			map_bh(bh, inode->i_sb, invalid_block);
1717			set_buffer_new(bh);
1718			set_buffer_delay(bh);
1719			return 0;
1720		}
1721
1722		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1723		retval = es.es_len - (iblock - es.es_lblk);
1724		if (retval > map->m_len)
1725			retval = map->m_len;
1726		map->m_len = retval;
1727		if (ext4_es_is_written(&es))
1728			map->m_flags |= EXT4_MAP_MAPPED;
1729		else if (ext4_es_is_unwritten(&es))
1730			map->m_flags |= EXT4_MAP_UNWRITTEN;
1731		else
1732			BUG();
1733
1734#ifdef ES_AGGRESSIVE_TEST
1735		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1736#endif
1737		return retval;
1738	}
1739
1740	/*
1741	 * Try to see if we can get the block without requesting a new
1742	 * file system block.
1743	 */
1744	down_read(&EXT4_I(inode)->i_data_sem);
1745	if (ext4_has_inline_data(inode))
1746		retval = 0;
1747	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1748		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1749	else
1750		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1751	if (retval < 0) {
1752		up_read(&EXT4_I(inode)->i_data_sem);
1753		return retval;
1754	}
1755	if (retval > 0) {
1756		unsigned int status;
1757
1758		if (unlikely(retval != map->m_len)) {
1759			ext4_warning(inode->i_sb,
1760				     "ES len assertion failed for inode "
1761				     "%lu: retval %d != map->m_len %d",
1762				     inode->i_ino, retval, map->m_len);
1763			WARN_ON(1);
1764		}
1765
1766		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1767				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1768		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1769				      map->m_pblk, status);
1770		up_read(&EXT4_I(inode)->i_data_sem);
1771		return retval;
1772	}
1773	up_read(&EXT4_I(inode)->i_data_sem);
1774
1775add_delayed:
1776	down_write(&EXT4_I(inode)->i_data_sem);
1777	retval = ext4_insert_delayed_block(inode, map->m_lblk);
1778	up_write(&EXT4_I(inode)->i_data_sem);
1779	if (retval)
1780		return retval;
1781
1782	map_bh(bh, inode->i_sb, invalid_block);
1783	set_buffer_new(bh);
1784	set_buffer_delay(bh);
1785	return retval;
1786}
1787
1788/*
1789 * This is a special get_block_t callback which is used by
1790 * ext4_da_write_begin().  It will either return mapped block or
1791 * reserve space for a single block.
1792 *
1793 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1794 * We also have b_blocknr = -1 and b_bdev initialized properly
1795 *
1796 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1797 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1798 * initialized properly.
1799 */
1800int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1801			   struct buffer_head *bh, int create)
1802{
1803	struct ext4_map_blocks map;
1804	int ret = 0;
1805
1806	BUG_ON(create == 0);
1807	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1808
1809	map.m_lblk = iblock;
1810	map.m_len = 1;
1811
1812	/*
1813	 * first, we need to know whether the block is allocated already
1814	 * preallocated blocks are unmapped but should treated
1815	 * the same as allocated blocks.
1816	 */
1817	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1818	if (ret <= 0)
1819		return ret;
1820
1821	map_bh(bh, inode->i_sb, map.m_pblk);
1822	ext4_update_bh_state(bh, map.m_flags);
1823
1824	if (buffer_unwritten(bh)) {
1825		/* A delayed write to unwritten bh should be marked
1826		 * new and mapped.  Mapped ensures that we don't do
1827		 * get_block multiple times when we write to the same
1828		 * offset and new ensures that we do proper zero out
1829		 * for partial write.
1830		 */
1831		set_buffer_new(bh);
1832		set_buffer_mapped(bh);
1833	}
1834	return 0;
1835}
1836
1837static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1838{
1839	mpd->first_page += folio_nr_pages(folio);
1840	folio_unlock(folio);
1841}
1842
1843static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1844{
1845	size_t len;
1846	loff_t size;
1847	int err;
1848
1849	BUG_ON(folio->index != mpd->first_page);
1850	folio_clear_dirty_for_io(folio);
1851	/*
1852	 * We have to be very careful here!  Nothing protects writeback path
1853	 * against i_size changes and the page can be writeably mapped into
1854	 * page tables. So an application can be growing i_size and writing
1855	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1856	 * write-protects our page in page tables and the page cannot get
1857	 * written to again until we release folio lock. So only after
1858	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1859	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1860	 * on the barrier provided by folio_test_clear_dirty() in
1861	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1862	 * after page tables are updated.
1863	 */
1864	size = i_size_read(mpd->inode);
1865	len = folio_size(folio);
1866	if (folio_pos(folio) + len > size &&
1867	    !ext4_verity_in_progress(mpd->inode))
1868		len = size & (len - 1);
1869	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1870	if (!err)
1871		mpd->wbc->nr_to_write--;
1872
1873	return err;
1874}
1875
1876#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1877
1878/*
1879 * mballoc gives us at most this number of blocks...
1880 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1881 * The rest of mballoc seems to handle chunks up to full group size.
1882 */
1883#define MAX_WRITEPAGES_EXTENT_LEN 2048
1884
1885/*
1886 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1887 *
1888 * @mpd - extent of blocks
1889 * @lblk - logical number of the block in the file
1890 * @bh - buffer head we want to add to the extent
1891 *
1892 * The function is used to collect contig. blocks in the same state. If the
1893 * buffer doesn't require mapping for writeback and we haven't started the
1894 * extent of buffers to map yet, the function returns 'true' immediately - the
1895 * caller can write the buffer right away. Otherwise the function returns true
1896 * if the block has been added to the extent, false if the block couldn't be
1897 * added.
1898 */
1899static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1900				   struct buffer_head *bh)
1901{
1902	struct ext4_map_blocks *map = &mpd->map;
1903
1904	/* Buffer that doesn't need mapping for writeback? */
1905	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1906	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1907		/* So far no extent to map => we write the buffer right away */
1908		if (map->m_len == 0)
1909			return true;
1910		return false;
1911	}
1912
1913	/* First block in the extent? */
1914	if (map->m_len == 0) {
1915		/* We cannot map unless handle is started... */
1916		if (!mpd->do_map)
1917			return false;
1918		map->m_lblk = lblk;
1919		map->m_len = 1;
1920		map->m_flags = bh->b_state & BH_FLAGS;
1921		return true;
1922	}
1923
1924	/* Don't go larger than mballoc is willing to allocate */
1925	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1926		return false;
1927
1928	/* Can we merge the block to our big extent? */
1929	if (lblk == map->m_lblk + map->m_len &&
1930	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1931		map->m_len++;
1932		return true;
1933	}
1934	return false;
1935}
1936
1937/*
1938 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1939 *
1940 * @mpd - extent of blocks for mapping
1941 * @head - the first buffer in the page
1942 * @bh - buffer we should start processing from
1943 * @lblk - logical number of the block in the file corresponding to @bh
1944 *
1945 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1946 * the page for IO if all buffers in this page were mapped and there's no
1947 * accumulated extent of buffers to map or add buffers in the page to the
1948 * extent of buffers to map. The function returns 1 if the caller can continue
1949 * by processing the next page, 0 if it should stop adding buffers to the
1950 * extent to map because we cannot extend it anymore. It can also return value
1951 * < 0 in case of error during IO submission.
1952 */
1953static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1954				   struct buffer_head *head,
1955				   struct buffer_head *bh,
1956				   ext4_lblk_t lblk)
1957{
1958	struct inode *inode = mpd->inode;
1959	int err;
1960	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
1961							>> inode->i_blkbits;
1962
1963	if (ext4_verity_in_progress(inode))
1964		blocks = EXT_MAX_BLOCKS;
1965
1966	do {
1967		BUG_ON(buffer_locked(bh));
1968
1969		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1970			/* Found extent to map? */
1971			if (mpd->map.m_len)
1972				return 0;
1973			/* Buffer needs mapping and handle is not started? */
1974			if (!mpd->do_map)
1975				return 0;
1976			/* Everything mapped so far and we hit EOF */
1977			break;
1978		}
1979	} while (lblk++, (bh = bh->b_this_page) != head);
1980	/* So far everything mapped? Submit the page for IO. */
1981	if (mpd->map.m_len == 0) {
1982		err = mpage_submit_folio(mpd, head->b_folio);
1983		if (err < 0)
1984			return err;
1985		mpage_folio_done(mpd, head->b_folio);
1986	}
1987	if (lblk >= blocks) {
1988		mpd->scanned_until_end = 1;
1989		return 0;
1990	}
1991	return 1;
1992}
1993
1994/*
1995 * mpage_process_folio - update folio buffers corresponding to changed extent
1996 *			 and may submit fully mapped page for IO
1997 * @mpd: description of extent to map, on return next extent to map
1998 * @folio: Contains these buffers.
1999 * @m_lblk: logical block mapping.
2000 * @m_pblk: corresponding physical mapping.
2001 * @map_bh: determines on return whether this page requires any further
2002 *		  mapping or not.
2003 *
2004 * Scan given folio buffers corresponding to changed extent and update buffer
2005 * state according to new extent state.
2006 * We map delalloc buffers to their physical location, clear unwritten bits.
2007 * If the given folio is not fully mapped, we update @mpd to the next extent in
2008 * the given folio that needs mapping & return @map_bh as true.
2009 */
2010static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2011			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2012			      bool *map_bh)
2013{
2014	struct buffer_head *head, *bh;
2015	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2016	ext4_lblk_t lblk = *m_lblk;
2017	ext4_fsblk_t pblock = *m_pblk;
2018	int err = 0;
2019	int blkbits = mpd->inode->i_blkbits;
2020	ssize_t io_end_size = 0;
2021	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2022
2023	bh = head = folio_buffers(folio);
2024	do {
2025		if (lblk < mpd->map.m_lblk)
2026			continue;
2027		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2028			/*
2029			 * Buffer after end of mapped extent.
2030			 * Find next buffer in the folio to map.
2031			 */
2032			mpd->map.m_len = 0;
2033			mpd->map.m_flags = 0;
2034			io_end_vec->size += io_end_size;
2035
2036			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2037			if (err > 0)
2038				err = 0;
2039			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2040				io_end_vec = ext4_alloc_io_end_vec(io_end);
2041				if (IS_ERR(io_end_vec)) {
2042					err = PTR_ERR(io_end_vec);
2043					goto out;
2044				}
2045				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2046			}
2047			*map_bh = true;
2048			goto out;
2049		}
2050		if (buffer_delay(bh)) {
2051			clear_buffer_delay(bh);
2052			bh->b_blocknr = pblock++;
2053		}
2054		clear_buffer_unwritten(bh);
2055		io_end_size += (1 << blkbits);
2056	} while (lblk++, (bh = bh->b_this_page) != head);
2057
2058	io_end_vec->size += io_end_size;
2059	*map_bh = false;
2060out:
2061	*m_lblk = lblk;
2062	*m_pblk = pblock;
2063	return err;
2064}
2065
2066/*
2067 * mpage_map_buffers - update buffers corresponding to changed extent and
2068 *		       submit fully mapped pages for IO
2069 *
2070 * @mpd - description of extent to map, on return next extent to map
2071 *
2072 * Scan buffers corresponding to changed extent (we expect corresponding pages
2073 * to be already locked) and update buffer state according to new extent state.
2074 * We map delalloc buffers to their physical location, clear unwritten bits,
2075 * and mark buffers as uninit when we perform writes to unwritten extents
2076 * and do extent conversion after IO is finished. If the last page is not fully
2077 * mapped, we update @map to the next extent in the last page that needs
2078 * mapping. Otherwise we submit the page for IO.
2079 */
2080static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2081{
2082	struct folio_batch fbatch;
2083	unsigned nr, i;
2084	struct inode *inode = mpd->inode;
2085	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2086	pgoff_t start, end;
2087	ext4_lblk_t lblk;
2088	ext4_fsblk_t pblock;
2089	int err;
2090	bool map_bh = false;
2091
2092	start = mpd->map.m_lblk >> bpp_bits;
2093	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2094	lblk = start << bpp_bits;
2095	pblock = mpd->map.m_pblk;
2096
2097	folio_batch_init(&fbatch);
2098	while (start <= end) {
2099		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2100		if (nr == 0)
2101			break;
2102		for (i = 0; i < nr; i++) {
2103			struct folio *folio = fbatch.folios[i];
2104
2105			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2106						 &map_bh);
2107			/*
2108			 * If map_bh is true, means page may require further bh
2109			 * mapping, or maybe the page was submitted for IO.
2110			 * So we return to call further extent mapping.
2111			 */
2112			if (err < 0 || map_bh)
2113				goto out;
2114			/* Page fully mapped - let IO run! */
2115			err = mpage_submit_folio(mpd, folio);
2116			if (err < 0)
2117				goto out;
2118			mpage_folio_done(mpd, folio);
2119		}
2120		folio_batch_release(&fbatch);
2121	}
2122	/* Extent fully mapped and matches with page boundary. We are done. */
2123	mpd->map.m_len = 0;
2124	mpd->map.m_flags = 0;
2125	return 0;
2126out:
2127	folio_batch_release(&fbatch);
2128	return err;
2129}
2130
2131static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2132{
2133	struct inode *inode = mpd->inode;
2134	struct ext4_map_blocks *map = &mpd->map;
2135	int get_blocks_flags;
2136	int err, dioread_nolock;
2137
2138	trace_ext4_da_write_pages_extent(inode, map);
2139	/*
2140	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2141	 * to convert an unwritten extent to be initialized (in the case
2142	 * where we have written into one or more preallocated blocks).  It is
2143	 * possible that we're going to need more metadata blocks than
2144	 * previously reserved. However we must not fail because we're in
2145	 * writeback and there is nothing we can do about it so it might result
2146	 * in data loss.  So use reserved blocks to allocate metadata if
2147	 * possible.
2148	 *
2149	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2150	 * the blocks in question are delalloc blocks.  This indicates
2151	 * that the blocks and quotas has already been checked when
2152	 * the data was copied into the page cache.
2153	 */
2154	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2155			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2156			   EXT4_GET_BLOCKS_IO_SUBMIT;
2157	dioread_nolock = ext4_should_dioread_nolock(inode);
2158	if (dioread_nolock)
2159		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2160	if (map->m_flags & BIT(BH_Delay))
2161		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2162
2163	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2164	if (err < 0)
2165		return err;
2166	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2167		if (!mpd->io_submit.io_end->handle &&
2168		    ext4_handle_valid(handle)) {
2169			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2170			handle->h_rsv_handle = NULL;
2171		}
2172		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2173	}
2174
2175	BUG_ON(map->m_len == 0);
2176	return 0;
2177}
2178
2179/*
2180 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2181 *				 mpd->len and submit pages underlying it for IO
2182 *
2183 * @handle - handle for journal operations
2184 * @mpd - extent to map
2185 * @give_up_on_write - we set this to true iff there is a fatal error and there
2186 *                     is no hope of writing the data. The caller should discard
2187 *                     dirty pages to avoid infinite loops.
2188 *
2189 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2190 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2191 * them to initialized or split the described range from larger unwritten
2192 * extent. Note that we need not map all the described range since allocation
2193 * can return less blocks or the range is covered by more unwritten extents. We
2194 * cannot map more because we are limited by reserved transaction credits. On
2195 * the other hand we always make sure that the last touched page is fully
2196 * mapped so that it can be written out (and thus forward progress is
2197 * guaranteed). After mapping we submit all mapped pages for IO.
2198 */
2199static int mpage_map_and_submit_extent(handle_t *handle,
2200				       struct mpage_da_data *mpd,
2201				       bool *give_up_on_write)
2202{
2203	struct inode *inode = mpd->inode;
2204	struct ext4_map_blocks *map = &mpd->map;
2205	int err;
2206	loff_t disksize;
2207	int progress = 0;
2208	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2209	struct ext4_io_end_vec *io_end_vec;
2210
2211	io_end_vec = ext4_alloc_io_end_vec(io_end);
2212	if (IS_ERR(io_end_vec))
2213		return PTR_ERR(io_end_vec);
2214	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2215	do {
2216		err = mpage_map_one_extent(handle, mpd);
2217		if (err < 0) {
2218			struct super_block *sb = inode->i_sb;
2219
2220			if (ext4_forced_shutdown(sb))
2221				goto invalidate_dirty_pages;
2222			/*
2223			 * Let the uper layers retry transient errors.
2224			 * In the case of ENOSPC, if ext4_count_free_blocks()
2225			 * is non-zero, a commit should free up blocks.
2226			 */
2227			if ((err == -ENOMEM) ||
2228			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2229				if (progress)
2230					goto update_disksize;
2231				return err;
2232			}
2233			ext4_msg(sb, KERN_CRIT,
2234				 "Delayed block allocation failed for "
2235				 "inode %lu at logical offset %llu with"
2236				 " max blocks %u with error %d",
2237				 inode->i_ino,
2238				 (unsigned long long)map->m_lblk,
2239				 (unsigned)map->m_len, -err);
2240			ext4_msg(sb, KERN_CRIT,
2241				 "This should not happen!! Data will "
2242				 "be lost\n");
2243			if (err == -ENOSPC)
2244				ext4_print_free_blocks(inode);
2245		invalidate_dirty_pages:
2246			*give_up_on_write = true;
2247			return err;
2248		}
2249		progress = 1;
2250		/*
2251		 * Update buffer state, submit mapped pages, and get us new
2252		 * extent to map
2253		 */
2254		err = mpage_map_and_submit_buffers(mpd);
2255		if (err < 0)
2256			goto update_disksize;
2257	} while (map->m_len);
2258
2259update_disksize:
2260	/*
2261	 * Update on-disk size after IO is submitted.  Races with
2262	 * truncate are avoided by checking i_size under i_data_sem.
2263	 */
2264	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2265	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2266		int err2;
2267		loff_t i_size;
2268
2269		down_write(&EXT4_I(inode)->i_data_sem);
2270		i_size = i_size_read(inode);
2271		if (disksize > i_size)
2272			disksize = i_size;
2273		if (disksize > EXT4_I(inode)->i_disksize)
2274			EXT4_I(inode)->i_disksize = disksize;
2275		up_write(&EXT4_I(inode)->i_data_sem);
2276		err2 = ext4_mark_inode_dirty(handle, inode);
2277		if (err2) {
2278			ext4_error_err(inode->i_sb, -err2,
2279				       "Failed to mark inode %lu dirty",
2280				       inode->i_ino);
2281		}
2282		if (!err)
2283			err = err2;
2284	}
2285	return err;
2286}
2287
2288/*
2289 * Calculate the total number of credits to reserve for one writepages
2290 * iteration. This is called from ext4_writepages(). We map an extent of
2291 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2292 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2293 * bpp - 1 blocks in bpp different extents.
2294 */
2295static int ext4_da_writepages_trans_blocks(struct inode *inode)
2296{
2297	int bpp = ext4_journal_blocks_per_page(inode);
2298
2299	return ext4_meta_trans_blocks(inode,
2300				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2301}
2302
2303static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2304				     size_t len)
2305{
2306	struct buffer_head *page_bufs = folio_buffers(folio);
2307	struct inode *inode = folio->mapping->host;
2308	int ret, err;
2309
2310	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2311				     NULL, do_journal_get_write_access);
2312	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2313				     NULL, write_end_fn);
2314	if (ret == 0)
2315		ret = err;
2316	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2317	if (ret == 0)
2318		ret = err;
2319	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2320
2321	return ret;
2322}
2323
2324static int mpage_journal_page_buffers(handle_t *handle,
2325				      struct mpage_da_data *mpd,
2326				      struct folio *folio)
2327{
2328	struct inode *inode = mpd->inode;
2329	loff_t size = i_size_read(inode);
2330	size_t len = folio_size(folio);
2331
2332	folio_clear_checked(folio);
2333	mpd->wbc->nr_to_write--;
2334
2335	if (folio_pos(folio) + len > size &&
2336	    !ext4_verity_in_progress(inode))
2337		len = size & (len - 1);
2338
2339	return ext4_journal_folio_buffers(handle, folio, len);
2340}
2341
2342/*
2343 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2344 * 				 needing mapping, submit mapped pages
2345 *
2346 * @mpd - where to look for pages
2347 *
2348 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2349 * IO immediately. If we cannot map blocks, we submit just already mapped
2350 * buffers in the page for IO and keep page dirty. When we can map blocks and
2351 * we find a page which isn't mapped we start accumulating extent of buffers
2352 * underlying these pages that needs mapping (formed by either delayed or
2353 * unwritten buffers). We also lock the pages containing these buffers. The
2354 * extent found is returned in @mpd structure (starting at mpd->lblk with
2355 * length mpd->len blocks).
2356 *
2357 * Note that this function can attach bios to one io_end structure which are
2358 * neither logically nor physically contiguous. Although it may seem as an
2359 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2360 * case as we need to track IO to all buffers underlying a page in one io_end.
2361 */
2362static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2363{
2364	struct address_space *mapping = mpd->inode->i_mapping;
2365	struct folio_batch fbatch;
2366	unsigned int nr_folios;
2367	pgoff_t index = mpd->first_page;
2368	pgoff_t end = mpd->last_page;
2369	xa_mark_t tag;
2370	int i, err = 0;
2371	int blkbits = mpd->inode->i_blkbits;
2372	ext4_lblk_t lblk;
2373	struct buffer_head *head;
2374	handle_t *handle = NULL;
2375	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2376
2377	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2378		tag = PAGECACHE_TAG_TOWRITE;
2379	else
2380		tag = PAGECACHE_TAG_DIRTY;
2381
2382	mpd->map.m_len = 0;
2383	mpd->next_page = index;
2384	if (ext4_should_journal_data(mpd->inode)) {
2385		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2386					    bpp);
2387		if (IS_ERR(handle))
2388			return PTR_ERR(handle);
2389	}
2390	folio_batch_init(&fbatch);
2391	while (index <= end) {
2392		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2393				tag, &fbatch);
2394		if (nr_folios == 0)
2395			break;
2396
2397		for (i = 0; i < nr_folios; i++) {
2398			struct folio *folio = fbatch.folios[i];
2399
2400			/*
2401			 * Accumulated enough dirty pages? This doesn't apply
2402			 * to WB_SYNC_ALL mode. For integrity sync we have to
2403			 * keep going because someone may be concurrently
2404			 * dirtying pages, and we might have synced a lot of
2405			 * newly appeared dirty pages, but have not synced all
2406			 * of the old dirty pages.
2407			 */
2408			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2409			    mpd->wbc->nr_to_write <=
2410			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2411				goto out;
2412
2413			/* If we can't merge this page, we are done. */
2414			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2415				goto out;
2416
2417			if (handle) {
2418				err = ext4_journal_ensure_credits(handle, bpp,
2419								  0);
2420				if (err < 0)
2421					goto out;
2422			}
2423
2424			folio_lock(folio);
2425			/*
2426			 * If the page is no longer dirty, or its mapping no
2427			 * longer corresponds to inode we are writing (which
2428			 * means it has been truncated or invalidated), or the
2429			 * page is already under writeback and we are not doing
2430			 * a data integrity writeback, skip the page
2431			 */
2432			if (!folio_test_dirty(folio) ||
2433			    (folio_test_writeback(folio) &&
2434			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2435			    unlikely(folio->mapping != mapping)) {
2436				folio_unlock(folio);
2437				continue;
2438			}
2439
2440			folio_wait_writeback(folio);
2441			BUG_ON(folio_test_writeback(folio));
2442
2443			/*
2444			 * Should never happen but for buggy code in
2445			 * other subsystems that call
2446			 * set_page_dirty() without properly warning
2447			 * the file system first.  See [1] for more
2448			 * information.
2449			 *
2450			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2451			 */
2452			if (!folio_buffers(folio)) {
2453				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2454				folio_clear_dirty(folio);
2455				folio_unlock(folio);
2456				continue;
2457			}
2458
2459			if (mpd->map.m_len == 0)
2460				mpd->first_page = folio->index;
2461			mpd->next_page = folio_next_index(folio);
2462			/*
2463			 * Writeout when we cannot modify metadata is simple.
2464			 * Just submit the page. For data=journal mode we
2465			 * first handle writeout of the page for checkpoint and
2466			 * only after that handle delayed page dirtying. This
2467			 * makes sure current data is checkpointed to the final
2468			 * location before possibly journalling it again which
2469			 * is desirable when the page is frequently dirtied
2470			 * through a pin.
2471			 */
2472			if (!mpd->can_map) {
2473				err = mpage_submit_folio(mpd, folio);
2474				if (err < 0)
2475					goto out;
2476				/* Pending dirtying of journalled data? */
2477				if (folio_test_checked(folio)) {
2478					err = mpage_journal_page_buffers(handle,
2479						mpd, folio);
2480					if (err < 0)
2481						goto out;
2482					mpd->journalled_more_data = 1;
2483				}
2484				mpage_folio_done(mpd, folio);
2485			} else {
2486				/* Add all dirty buffers to mpd */
2487				lblk = ((ext4_lblk_t)folio->index) <<
2488					(PAGE_SHIFT - blkbits);
2489				head = folio_buffers(folio);
2490				err = mpage_process_page_bufs(mpd, head, head,
2491						lblk);
2492				if (err <= 0)
2493					goto out;
2494				err = 0;
2495			}
2496		}
2497		folio_batch_release(&fbatch);
2498		cond_resched();
2499	}
2500	mpd->scanned_until_end = 1;
2501	if (handle)
2502		ext4_journal_stop(handle);
2503	return 0;
2504out:
2505	folio_batch_release(&fbatch);
2506	if (handle)
2507		ext4_journal_stop(handle);
2508	return err;
2509}
2510
2511static int ext4_do_writepages(struct mpage_da_data *mpd)
2512{
2513	struct writeback_control *wbc = mpd->wbc;
2514	pgoff_t	writeback_index = 0;
2515	long nr_to_write = wbc->nr_to_write;
2516	int range_whole = 0;
2517	int cycled = 1;
2518	handle_t *handle = NULL;
2519	struct inode *inode = mpd->inode;
2520	struct address_space *mapping = inode->i_mapping;
2521	int needed_blocks, rsv_blocks = 0, ret = 0;
2522	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2523	struct blk_plug plug;
2524	bool give_up_on_write = false;
2525
2526	trace_ext4_writepages(inode, wbc);
2527
2528	/*
2529	 * No pages to write? This is mainly a kludge to avoid starting
2530	 * a transaction for special inodes like journal inode on last iput()
2531	 * because that could violate lock ordering on umount
2532	 */
2533	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2534		goto out_writepages;
2535
2536	/*
2537	 * If the filesystem has aborted, it is read-only, so return
2538	 * right away instead of dumping stack traces later on that
2539	 * will obscure the real source of the problem.  We test
2540	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2541	 * the latter could be true if the filesystem is mounted
2542	 * read-only, and in that case, ext4_writepages should
2543	 * *never* be called, so if that ever happens, we would want
2544	 * the stack trace.
2545	 */
2546	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2547		ret = -EROFS;
2548		goto out_writepages;
2549	}
2550
2551	/*
2552	 * If we have inline data and arrive here, it means that
2553	 * we will soon create the block for the 1st page, so
2554	 * we'd better clear the inline data here.
2555	 */
2556	if (ext4_has_inline_data(inode)) {
2557		/* Just inode will be modified... */
2558		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2559		if (IS_ERR(handle)) {
2560			ret = PTR_ERR(handle);
2561			goto out_writepages;
2562		}
2563		BUG_ON(ext4_test_inode_state(inode,
2564				EXT4_STATE_MAY_INLINE_DATA));
2565		ext4_destroy_inline_data(handle, inode);
2566		ext4_journal_stop(handle);
2567	}
2568
2569	/*
2570	 * data=journal mode does not do delalloc so we just need to writeout /
2571	 * journal already mapped buffers. On the other hand we need to commit
2572	 * transaction to make data stable. We expect all the data to be
2573	 * already in the journal (the only exception are DMA pinned pages
2574	 * dirtied behind our back) so we commit transaction here and run the
2575	 * writeback loop to checkpoint them. The checkpointing is not actually
2576	 * necessary to make data persistent *but* quite a few places (extent
2577	 * shifting operations, fsverity, ...) depend on being able to drop
2578	 * pagecache pages after calling filemap_write_and_wait() and for that
2579	 * checkpointing needs to happen.
2580	 */
2581	if (ext4_should_journal_data(inode)) {
2582		mpd->can_map = 0;
2583		if (wbc->sync_mode == WB_SYNC_ALL)
2584			ext4_fc_commit(sbi->s_journal,
2585				       EXT4_I(inode)->i_datasync_tid);
2586	}
2587	mpd->journalled_more_data = 0;
2588
2589	if (ext4_should_dioread_nolock(inode)) {
2590		/*
2591		 * We may need to convert up to one extent per block in
2592		 * the page and we may dirty the inode.
2593		 */
2594		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2595						PAGE_SIZE >> inode->i_blkbits);
2596	}
2597
2598	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2599		range_whole = 1;
2600
2601	if (wbc->range_cyclic) {
2602		writeback_index = mapping->writeback_index;
2603		if (writeback_index)
2604			cycled = 0;
2605		mpd->first_page = writeback_index;
2606		mpd->last_page = -1;
2607	} else {
2608		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2609		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2610	}
2611
2612	ext4_io_submit_init(&mpd->io_submit, wbc);
2613retry:
2614	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2615		tag_pages_for_writeback(mapping, mpd->first_page,
2616					mpd->last_page);
2617	blk_start_plug(&plug);
2618
2619	/*
2620	 * First writeback pages that don't need mapping - we can avoid
2621	 * starting a transaction unnecessarily and also avoid being blocked
2622	 * in the block layer on device congestion while having transaction
2623	 * started.
2624	 */
2625	mpd->do_map = 0;
2626	mpd->scanned_until_end = 0;
2627	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2628	if (!mpd->io_submit.io_end) {
2629		ret = -ENOMEM;
2630		goto unplug;
2631	}
2632	ret = mpage_prepare_extent_to_map(mpd);
2633	/* Unlock pages we didn't use */
2634	mpage_release_unused_pages(mpd, false);
2635	/* Submit prepared bio */
2636	ext4_io_submit(&mpd->io_submit);
2637	ext4_put_io_end_defer(mpd->io_submit.io_end);
2638	mpd->io_submit.io_end = NULL;
2639	if (ret < 0)
2640		goto unplug;
2641
2642	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2643		/* For each extent of pages we use new io_end */
2644		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2645		if (!mpd->io_submit.io_end) {
2646			ret = -ENOMEM;
2647			break;
2648		}
2649
2650		WARN_ON_ONCE(!mpd->can_map);
2651		/*
2652		 * We have two constraints: We find one extent to map and we
2653		 * must always write out whole page (makes a difference when
2654		 * blocksize < pagesize) so that we don't block on IO when we
2655		 * try to write out the rest of the page. Journalled mode is
2656		 * not supported by delalloc.
2657		 */
2658		BUG_ON(ext4_should_journal_data(inode));
2659		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2660
2661		/* start a new transaction */
2662		handle = ext4_journal_start_with_reserve(inode,
2663				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2664		if (IS_ERR(handle)) {
2665			ret = PTR_ERR(handle);
2666			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2667			       "%ld pages, ino %lu; err %d", __func__,
2668				wbc->nr_to_write, inode->i_ino, ret);
2669			/* Release allocated io_end */
2670			ext4_put_io_end(mpd->io_submit.io_end);
2671			mpd->io_submit.io_end = NULL;
2672			break;
2673		}
2674		mpd->do_map = 1;
2675
2676		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2677		ret = mpage_prepare_extent_to_map(mpd);
2678		if (!ret && mpd->map.m_len)
2679			ret = mpage_map_and_submit_extent(handle, mpd,
2680					&give_up_on_write);
2681		/*
2682		 * Caution: If the handle is synchronous,
2683		 * ext4_journal_stop() can wait for transaction commit
2684		 * to finish which may depend on writeback of pages to
2685		 * complete or on page lock to be released.  In that
2686		 * case, we have to wait until after we have
2687		 * submitted all the IO, released page locks we hold,
2688		 * and dropped io_end reference (for extent conversion
2689		 * to be able to complete) before stopping the handle.
2690		 */
2691		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2692			ext4_journal_stop(handle);
2693			handle = NULL;
2694			mpd->do_map = 0;
2695		}
2696		/* Unlock pages we didn't use */
2697		mpage_release_unused_pages(mpd, give_up_on_write);
2698		/* Submit prepared bio */
2699		ext4_io_submit(&mpd->io_submit);
2700
2701		/*
2702		 * Drop our io_end reference we got from init. We have
2703		 * to be careful and use deferred io_end finishing if
2704		 * we are still holding the transaction as we can
2705		 * release the last reference to io_end which may end
2706		 * up doing unwritten extent conversion.
2707		 */
2708		if (handle) {
2709			ext4_put_io_end_defer(mpd->io_submit.io_end);
2710			ext4_journal_stop(handle);
2711		} else
2712			ext4_put_io_end(mpd->io_submit.io_end);
2713		mpd->io_submit.io_end = NULL;
2714
2715		if (ret == -ENOSPC && sbi->s_journal) {
2716			/*
2717			 * Commit the transaction which would
2718			 * free blocks released in the transaction
2719			 * and try again
2720			 */
2721			jbd2_journal_force_commit_nested(sbi->s_journal);
2722			ret = 0;
2723			continue;
2724		}
2725		/* Fatal error - ENOMEM, EIO... */
2726		if (ret)
2727			break;
2728	}
2729unplug:
2730	blk_finish_plug(&plug);
2731	if (!ret && !cycled && wbc->nr_to_write > 0) {
2732		cycled = 1;
2733		mpd->last_page = writeback_index - 1;
2734		mpd->first_page = 0;
2735		goto retry;
2736	}
2737
2738	/* Update index */
2739	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2740		/*
2741		 * Set the writeback_index so that range_cyclic
2742		 * mode will write it back later
2743		 */
2744		mapping->writeback_index = mpd->first_page;
2745
2746out_writepages:
2747	trace_ext4_writepages_result(inode, wbc, ret,
2748				     nr_to_write - wbc->nr_to_write);
2749	return ret;
2750}
2751
2752static int ext4_writepages(struct address_space *mapping,
2753			   struct writeback_control *wbc)
2754{
2755	struct super_block *sb = mapping->host->i_sb;
2756	struct mpage_da_data mpd = {
2757		.inode = mapping->host,
2758		.wbc = wbc,
2759		.can_map = 1,
2760	};
2761	int ret;
2762	int alloc_ctx;
2763
2764	if (unlikely(ext4_forced_shutdown(sb)))
2765		return -EIO;
2766
2767	alloc_ctx = ext4_writepages_down_read(sb);
2768	ret = ext4_do_writepages(&mpd);
2769	/*
2770	 * For data=journal writeback we could have come across pages marked
2771	 * for delayed dirtying (PageChecked) which were just added to the
2772	 * running transaction. Try once more to get them to stable storage.
2773	 */
2774	if (!ret && mpd.journalled_more_data)
2775		ret = ext4_do_writepages(&mpd);
2776	ext4_writepages_up_read(sb, alloc_ctx);
2777
2778	return ret;
2779}
2780
2781int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2782{
2783	struct writeback_control wbc = {
2784		.sync_mode = WB_SYNC_ALL,
2785		.nr_to_write = LONG_MAX,
2786		.range_start = jinode->i_dirty_start,
2787		.range_end = jinode->i_dirty_end,
2788	};
2789	struct mpage_da_data mpd = {
2790		.inode = jinode->i_vfs_inode,
2791		.wbc = &wbc,
2792		.can_map = 0,
2793	};
2794	return ext4_do_writepages(&mpd);
2795}
2796
2797static int ext4_dax_writepages(struct address_space *mapping,
2798			       struct writeback_control *wbc)
2799{
2800	int ret;
2801	long nr_to_write = wbc->nr_to_write;
2802	struct inode *inode = mapping->host;
2803	int alloc_ctx;
2804
2805	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2806		return -EIO;
2807
2808	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2809	trace_ext4_writepages(inode, wbc);
2810
2811	ret = dax_writeback_mapping_range(mapping,
2812					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2813	trace_ext4_writepages_result(inode, wbc, ret,
2814				     nr_to_write - wbc->nr_to_write);
2815	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2816	return ret;
2817}
2818
2819static int ext4_nonda_switch(struct super_block *sb)
2820{
2821	s64 free_clusters, dirty_clusters;
2822	struct ext4_sb_info *sbi = EXT4_SB(sb);
2823
2824	/*
2825	 * switch to non delalloc mode if we are running low
2826	 * on free block. The free block accounting via percpu
2827	 * counters can get slightly wrong with percpu_counter_batch getting
2828	 * accumulated on each CPU without updating global counters
2829	 * Delalloc need an accurate free block accounting. So switch
2830	 * to non delalloc when we are near to error range.
2831	 */
2832	free_clusters =
2833		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2834	dirty_clusters =
2835		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2836	/*
2837	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2838	 */
2839	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2840		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2841
2842	if (2 * free_clusters < 3 * dirty_clusters ||
2843	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2844		/*
2845		 * free block count is less than 150% of dirty blocks
2846		 * or free blocks is less than watermark
2847		 */
2848		return 1;
2849	}
2850	return 0;
2851}
2852
2853static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2854			       loff_t pos, unsigned len,
2855			       struct page **pagep, void **fsdata)
2856{
2857	int ret, retries = 0;
2858	struct folio *folio;
2859	pgoff_t index;
2860	struct inode *inode = mapping->host;
2861
2862	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2863		return -EIO;
2864
2865	index = pos >> PAGE_SHIFT;
2866
2867	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2868		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2869		return ext4_write_begin(file, mapping, pos,
2870					len, pagep, fsdata);
2871	}
2872	*fsdata = (void *)0;
2873	trace_ext4_da_write_begin(inode, pos, len);
2874
2875	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2876		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2877						      pagep, fsdata);
2878		if (ret < 0)
2879			return ret;
2880		if (ret == 1)
2881			return 0;
2882	}
2883
2884retry:
2885	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2886			mapping_gfp_mask(mapping));
2887	if (IS_ERR(folio))
2888		return PTR_ERR(folio);
2889
2890#ifdef CONFIG_FS_ENCRYPTION
2891	ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep);
2892#else
2893	ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2894#endif
2895	if (ret < 0) {
2896		folio_unlock(folio);
2897		folio_put(folio);
2898		/*
2899		 * block_write_begin may have instantiated a few blocks
2900		 * outside i_size.  Trim these off again. Don't need
2901		 * i_size_read because we hold inode lock.
2902		 */
2903		if (pos + len > inode->i_size)
2904			ext4_truncate_failed_write(inode);
2905
2906		if (ret == -ENOSPC &&
2907		    ext4_should_retry_alloc(inode->i_sb, &retries))
2908			goto retry;
2909		return ret;
2910	}
2911
2912	*pagep = &folio->page;
2913	return ret;
2914}
2915
2916/*
2917 * Check if we should update i_disksize
2918 * when write to the end of file but not require block allocation
2919 */
2920static int ext4_da_should_update_i_disksize(struct folio *folio,
2921					    unsigned long offset)
2922{
2923	struct buffer_head *bh;
2924	struct inode *inode = folio->mapping->host;
2925	unsigned int idx;
2926	int i;
2927
2928	bh = folio_buffers(folio);
2929	idx = offset >> inode->i_blkbits;
2930
2931	for (i = 0; i < idx; i++)
2932		bh = bh->b_this_page;
2933
2934	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2935		return 0;
2936	return 1;
2937}
2938
2939static int ext4_da_do_write_end(struct address_space *mapping,
2940			loff_t pos, unsigned len, unsigned copied,
2941			struct folio *folio)
2942{
2943	struct inode *inode = mapping->host;
2944	loff_t old_size = inode->i_size;
2945	bool disksize_changed = false;
2946	loff_t new_i_size;
2947
2948	/*
2949	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2950	 * flag, which all that's needed to trigger page writeback.
2951	 */
2952	copied = block_write_end(NULL, mapping, pos, len, copied,
2953			&folio->page, NULL);
2954	new_i_size = pos + copied;
2955
2956	/*
2957	 * It's important to update i_size while still holding folio lock,
2958	 * because folio writeout could otherwise come in and zero beyond
2959	 * i_size.
2960	 *
2961	 * Since we are holding inode lock, we are sure i_disksize <=
2962	 * i_size. We also know that if i_disksize < i_size, there are
2963	 * delalloc writes pending in the range up to i_size. If the end of
2964	 * the current write is <= i_size, there's no need to touch
2965	 * i_disksize since writeback will push i_disksize up to i_size
2966	 * eventually. If the end of the current write is > i_size and
2967	 * inside an allocated block which ext4_da_should_update_i_disksize()
2968	 * checked, we need to update i_disksize here as certain
2969	 * ext4_writepages() paths not allocating blocks and update i_disksize.
2970	 */
2971	if (new_i_size > inode->i_size) {
2972		unsigned long end;
2973
2974		i_size_write(inode, new_i_size);
2975		end = (new_i_size - 1) & (PAGE_SIZE - 1);
2976		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
2977			ext4_update_i_disksize(inode, new_i_size);
2978			disksize_changed = true;
2979		}
2980	}
2981
2982	folio_unlock(folio);
2983	folio_put(folio);
2984
2985	if (old_size < pos)
2986		pagecache_isize_extended(inode, old_size, pos);
2987
2988	if (disksize_changed) {
2989		handle_t *handle;
2990
2991		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
2992		if (IS_ERR(handle))
2993			return PTR_ERR(handle);
2994		ext4_mark_inode_dirty(handle, inode);
2995		ext4_journal_stop(handle);
2996	}
2997
2998	return copied;
2999}
3000
3001static int ext4_da_write_end(struct file *file,
3002			     struct address_space *mapping,
3003			     loff_t pos, unsigned len, unsigned copied,
3004			     struct page *page, void *fsdata)
3005{
3006	struct inode *inode = mapping->host;
3007	int write_mode = (int)(unsigned long)fsdata;
3008	struct folio *folio = page_folio(page);
3009
3010	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3011		return ext4_write_end(file, mapping, pos,
3012				      len, copied, &folio->page, fsdata);
3013
3014	trace_ext4_da_write_end(inode, pos, len, copied);
3015
3016	if (write_mode != CONVERT_INLINE_DATA &&
3017	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3018	    ext4_has_inline_data(inode))
3019		return ext4_write_inline_data_end(inode, pos, len, copied,
3020						  folio);
3021
3022	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3023		copied = 0;
3024
3025	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3026}
3027
3028/*
3029 * Force all delayed allocation blocks to be allocated for a given inode.
3030 */
3031int ext4_alloc_da_blocks(struct inode *inode)
3032{
3033	trace_ext4_alloc_da_blocks(inode);
3034
3035	if (!EXT4_I(inode)->i_reserved_data_blocks)
3036		return 0;
3037
3038	/*
3039	 * We do something simple for now.  The filemap_flush() will
3040	 * also start triggering a write of the data blocks, which is
3041	 * not strictly speaking necessary (and for users of
3042	 * laptop_mode, not even desirable).  However, to do otherwise
3043	 * would require replicating code paths in:
3044	 *
3045	 * ext4_writepages() ->
3046	 *    write_cache_pages() ---> (via passed in callback function)
3047	 *        __mpage_da_writepage() -->
3048	 *           mpage_add_bh_to_extent()
3049	 *           mpage_da_map_blocks()
3050	 *
3051	 * The problem is that write_cache_pages(), located in
3052	 * mm/page-writeback.c, marks pages clean in preparation for
3053	 * doing I/O, which is not desirable if we're not planning on
3054	 * doing I/O at all.
3055	 *
3056	 * We could call write_cache_pages(), and then redirty all of
3057	 * the pages by calling redirty_page_for_writepage() but that
3058	 * would be ugly in the extreme.  So instead we would need to
3059	 * replicate parts of the code in the above functions,
3060	 * simplifying them because we wouldn't actually intend to
3061	 * write out the pages, but rather only collect contiguous
3062	 * logical block extents, call the multi-block allocator, and
3063	 * then update the buffer heads with the block allocations.
3064	 *
3065	 * For now, though, we'll cheat by calling filemap_flush(),
3066	 * which will map the blocks, and start the I/O, but not
3067	 * actually wait for the I/O to complete.
3068	 */
3069	return filemap_flush(inode->i_mapping);
3070}
3071
3072/*
3073 * bmap() is special.  It gets used by applications such as lilo and by
3074 * the swapper to find the on-disk block of a specific piece of data.
3075 *
3076 * Naturally, this is dangerous if the block concerned is still in the
3077 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3078 * filesystem and enables swap, then they may get a nasty shock when the
3079 * data getting swapped to that swapfile suddenly gets overwritten by
3080 * the original zero's written out previously to the journal and
3081 * awaiting writeback in the kernel's buffer cache.
3082 *
3083 * So, if we see any bmap calls here on a modified, data-journaled file,
3084 * take extra steps to flush any blocks which might be in the cache.
3085 */
3086static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3087{
3088	struct inode *inode = mapping->host;
3089	sector_t ret = 0;
3090
3091	inode_lock_shared(inode);
3092	/*
3093	 * We can get here for an inline file via the FIBMAP ioctl
3094	 */
3095	if (ext4_has_inline_data(inode))
3096		goto out;
3097
3098	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3099	    (test_opt(inode->i_sb, DELALLOC) ||
3100	     ext4_should_journal_data(inode))) {
3101		/*
3102		 * With delalloc or journalled data we want to sync the file so
3103		 * that we can make sure we allocate blocks for file and data
3104		 * is in place for the user to see it
3105		 */
3106		filemap_write_and_wait(mapping);
3107	}
3108
3109	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3110
3111out:
3112	inode_unlock_shared(inode);
3113	return ret;
3114}
3115
3116static int ext4_read_folio(struct file *file, struct folio *folio)
3117{
3118	int ret = -EAGAIN;
3119	struct inode *inode = folio->mapping->host;
3120
3121	trace_ext4_read_folio(inode, folio);
3122
3123	if (ext4_has_inline_data(inode))
3124		ret = ext4_readpage_inline(inode, folio);
3125
3126	if (ret == -EAGAIN)
3127		return ext4_mpage_readpages(inode, NULL, folio);
3128
3129	return ret;
3130}
3131
3132static void ext4_readahead(struct readahead_control *rac)
3133{
3134	struct inode *inode = rac->mapping->host;
3135
3136	/* If the file has inline data, no need to do readahead. */
3137	if (ext4_has_inline_data(inode))
3138		return;
3139
3140	ext4_mpage_readpages(inode, rac, NULL);
3141}
3142
3143static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3144				size_t length)
3145{
3146	trace_ext4_invalidate_folio(folio, offset, length);
3147
3148	/* No journalling happens on data buffers when this function is used */
3149	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3150
3151	block_invalidate_folio(folio, offset, length);
3152}
3153
3154static int __ext4_journalled_invalidate_folio(struct folio *folio,
3155					    size_t offset, size_t length)
3156{
3157	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3158
3159	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3160
3161	/*
3162	 * If it's a full truncate we just forget about the pending dirtying
3163	 */
3164	if (offset == 0 && length == folio_size(folio))
3165		folio_clear_checked(folio);
3166
3167	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3168}
3169
3170/* Wrapper for aops... */
3171static void ext4_journalled_invalidate_folio(struct folio *folio,
3172					   size_t offset,
3173					   size_t length)
3174{
3175	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3176}
3177
3178static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3179{
3180	struct inode *inode = folio->mapping->host;
3181	journal_t *journal = EXT4_JOURNAL(inode);
3182
3183	trace_ext4_release_folio(inode, folio);
3184
3185	/* Page has dirty journalled data -> cannot release */
3186	if (folio_test_checked(folio))
3187		return false;
3188	if (journal)
3189		return jbd2_journal_try_to_free_buffers(journal, folio);
3190	else
3191		return try_to_free_buffers(folio);
3192}
3193
3194static bool ext4_inode_datasync_dirty(struct inode *inode)
3195{
3196	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3197
3198	if (journal) {
3199		if (jbd2_transaction_committed(journal,
3200			EXT4_I(inode)->i_datasync_tid))
3201			return false;
3202		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3203			return !list_empty(&EXT4_I(inode)->i_fc_list);
3204		return true;
3205	}
3206
3207	/* Any metadata buffers to write? */
3208	if (!list_empty(&inode->i_mapping->i_private_list))
3209		return true;
3210	return inode->i_state & I_DIRTY_DATASYNC;
3211}
3212
3213static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3214			   struct ext4_map_blocks *map, loff_t offset,
3215			   loff_t length, unsigned int flags)
3216{
3217	u8 blkbits = inode->i_blkbits;
3218
3219	/*
3220	 * Writes that span EOF might trigger an I/O size update on completion,
3221	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3222	 * there is no other metadata changes being made or are pending.
3223	 */
3224	iomap->flags = 0;
3225	if (ext4_inode_datasync_dirty(inode) ||
3226	    offset + length > i_size_read(inode))
3227		iomap->flags |= IOMAP_F_DIRTY;
3228
3229	if (map->m_flags & EXT4_MAP_NEW)
3230		iomap->flags |= IOMAP_F_NEW;
3231
3232	if (flags & IOMAP_DAX)
3233		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3234	else
3235		iomap->bdev = inode->i_sb->s_bdev;
3236	iomap->offset = (u64) map->m_lblk << blkbits;
3237	iomap->length = (u64) map->m_len << blkbits;
3238
3239	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3240	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3241		iomap->flags |= IOMAP_F_MERGED;
3242
3243	/*
3244	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3245	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3246	 * set. In order for any allocated unwritten extents to be converted
3247	 * into written extents correctly within the ->end_io() handler, we
3248	 * need to ensure that the iomap->type is set appropriately. Hence, the
3249	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3250	 * been set first.
3251	 */
3252	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3253		iomap->type = IOMAP_UNWRITTEN;
3254		iomap->addr = (u64) map->m_pblk << blkbits;
3255		if (flags & IOMAP_DAX)
3256			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3257	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3258		iomap->type = IOMAP_MAPPED;
3259		iomap->addr = (u64) map->m_pblk << blkbits;
3260		if (flags & IOMAP_DAX)
3261			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3262	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3263		iomap->type = IOMAP_DELALLOC;
3264		iomap->addr = IOMAP_NULL_ADDR;
3265	} else {
3266		iomap->type = IOMAP_HOLE;
3267		iomap->addr = IOMAP_NULL_ADDR;
3268	}
3269}
3270
3271static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3272			    unsigned int flags)
3273{
3274	handle_t *handle;
3275	u8 blkbits = inode->i_blkbits;
3276	int ret, dio_credits, m_flags = 0, retries = 0;
3277
3278	/*
3279	 * Trim the mapping request to the maximum value that we can map at
3280	 * once for direct I/O.
3281	 */
3282	if (map->m_len > DIO_MAX_BLOCKS)
3283		map->m_len = DIO_MAX_BLOCKS;
3284	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3285
3286retry:
3287	/*
3288	 * Either we allocate blocks and then don't get an unwritten extent, so
3289	 * in that case we have reserved enough credits. Or, the blocks are
3290	 * already allocated and unwritten. In that case, the extent conversion
3291	 * fits into the credits as well.
3292	 */
3293	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3294	if (IS_ERR(handle))
3295		return PTR_ERR(handle);
3296
3297	/*
3298	 * DAX and direct I/O are the only two operations that are currently
3299	 * supported with IOMAP_WRITE.
3300	 */
3301	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3302	if (flags & IOMAP_DAX)
3303		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3304	/*
3305	 * We use i_size instead of i_disksize here because delalloc writeback
3306	 * can complete at any point during the I/O and subsequently push the
3307	 * i_disksize out to i_size. This could be beyond where direct I/O is
3308	 * happening and thus expose allocated blocks to direct I/O reads.
3309	 */
3310	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3311		m_flags = EXT4_GET_BLOCKS_CREATE;
3312	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3313		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3314
3315	ret = ext4_map_blocks(handle, inode, map, m_flags);
3316
3317	/*
3318	 * We cannot fill holes in indirect tree based inodes as that could
3319	 * expose stale data in the case of a crash. Use the magic error code
3320	 * to fallback to buffered I/O.
3321	 */
3322	if (!m_flags && !ret)
3323		ret = -ENOTBLK;
3324
3325	ext4_journal_stop(handle);
3326	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3327		goto retry;
3328
3329	return ret;
3330}
3331
3332
3333static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3334		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3335{
3336	int ret;
3337	struct ext4_map_blocks map;
3338	u8 blkbits = inode->i_blkbits;
3339
3340	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3341		return -EINVAL;
3342
3343	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3344		return -ERANGE;
3345
3346	/*
3347	 * Calculate the first and last logical blocks respectively.
3348	 */
3349	map.m_lblk = offset >> blkbits;
3350	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3351			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3352
3353	if (flags & IOMAP_WRITE) {
3354		/*
3355		 * We check here if the blocks are already allocated, then we
3356		 * don't need to start a journal txn and we can directly return
3357		 * the mapping information. This could boost performance
3358		 * especially in multi-threaded overwrite requests.
3359		 */
3360		if (offset + length <= i_size_read(inode)) {
3361			ret = ext4_map_blocks(NULL, inode, &map, 0);
3362			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3363				goto out;
3364		}
3365		ret = ext4_iomap_alloc(inode, &map, flags);
3366	} else {
3367		ret = ext4_map_blocks(NULL, inode, &map, 0);
3368	}
3369
3370	if (ret < 0)
3371		return ret;
3372out:
3373	/*
3374	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3375	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3376	 * limiting the length of the mapping returned.
3377	 */
3378	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3379
3380	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3381
3382	return 0;
3383}
3384
3385static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3386		loff_t length, unsigned flags, struct iomap *iomap,
3387		struct iomap *srcmap)
3388{
3389	int ret;
3390
3391	/*
3392	 * Even for writes we don't need to allocate blocks, so just pretend
3393	 * we are reading to save overhead of starting a transaction.
3394	 */
3395	flags &= ~IOMAP_WRITE;
3396	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3397	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3398	return ret;
3399}
3400
3401static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3402			  ssize_t written, unsigned flags, struct iomap *iomap)
3403{
3404	/*
3405	 * Check to see whether an error occurred while writing out the data to
3406	 * the allocated blocks. If so, return the magic error code so that we
3407	 * fallback to buffered I/O and attempt to complete the remainder of
3408	 * the I/O. Any blocks that may have been allocated in preparation for
3409	 * the direct I/O will be reused during buffered I/O.
3410	 */
3411	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3412		return -ENOTBLK;
3413
3414	return 0;
3415}
3416
3417const struct iomap_ops ext4_iomap_ops = {
3418	.iomap_begin		= ext4_iomap_begin,
3419	.iomap_end		= ext4_iomap_end,
3420};
3421
3422const struct iomap_ops ext4_iomap_overwrite_ops = {
3423	.iomap_begin		= ext4_iomap_overwrite_begin,
3424	.iomap_end		= ext4_iomap_end,
3425};
3426
3427static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3428				   loff_t length, unsigned int flags,
3429				   struct iomap *iomap, struct iomap *srcmap)
3430{
3431	int ret;
3432	struct ext4_map_blocks map;
3433	u8 blkbits = inode->i_blkbits;
3434
3435	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3436		return -EINVAL;
3437
3438	if (ext4_has_inline_data(inode)) {
3439		ret = ext4_inline_data_iomap(inode, iomap);
3440		if (ret != -EAGAIN) {
3441			if (ret == 0 && offset >= iomap->length)
3442				ret = -ENOENT;
3443			return ret;
3444		}
3445	}
3446
3447	/*
3448	 * Calculate the first and last logical block respectively.
3449	 */
3450	map.m_lblk = offset >> blkbits;
3451	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3452			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3453
3454	/*
3455	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3456	 * So handle it here itself instead of querying ext4_map_blocks().
3457	 * Since ext4_map_blocks() will warn about it and will return
3458	 * -EIO error.
3459	 */
3460	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3461		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3462
3463		if (offset >= sbi->s_bitmap_maxbytes) {
3464			map.m_flags = 0;
3465			goto set_iomap;
3466		}
3467	}
3468
3469	ret = ext4_map_blocks(NULL, inode, &map, 0);
3470	if (ret < 0)
3471		return ret;
3472set_iomap:
3473	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3474
3475	return 0;
3476}
3477
3478const struct iomap_ops ext4_iomap_report_ops = {
3479	.iomap_begin = ext4_iomap_begin_report,
3480};
3481
3482/*
3483 * For data=journal mode, folio should be marked dirty only when it was
3484 * writeably mapped. When that happens, it was already attached to the
3485 * transaction and marked as jbddirty (we take care of this in
3486 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3487 * so we should have nothing to do here, except for the case when someone
3488 * had the page pinned and dirtied the page through this pin (e.g. by doing
3489 * direct IO to it). In that case we'd need to attach buffers here to the
3490 * transaction but we cannot due to lock ordering.  We cannot just dirty the
3491 * folio and leave attached buffers clean, because the buffers' dirty state is
3492 * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3493 * the journalling code will explode.  So what we do is to mark the folio
3494 * "pending dirty" and next time ext4_writepages() is called, attach buffers
3495 * to the transaction appropriately.
3496 */
3497static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3498		struct folio *folio)
3499{
3500	WARN_ON_ONCE(!folio_buffers(folio));
3501	if (folio_maybe_dma_pinned(folio))
3502		folio_set_checked(folio);
3503	return filemap_dirty_folio(mapping, folio);
3504}
3505
3506static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3507{
3508	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3509	WARN_ON_ONCE(!folio_buffers(folio));
3510	return block_dirty_folio(mapping, folio);
3511}
3512
3513static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3514				    struct file *file, sector_t *span)
3515{
3516	return iomap_swapfile_activate(sis, file, span,
3517				       &ext4_iomap_report_ops);
3518}
3519
3520static const struct address_space_operations ext4_aops = {
3521	.read_folio		= ext4_read_folio,
3522	.readahead		= ext4_readahead,
3523	.writepages		= ext4_writepages,
3524	.write_begin		= ext4_write_begin,
3525	.write_end		= ext4_write_end,
3526	.dirty_folio		= ext4_dirty_folio,
3527	.bmap			= ext4_bmap,
3528	.invalidate_folio	= ext4_invalidate_folio,
3529	.release_folio		= ext4_release_folio,
3530	.migrate_folio		= buffer_migrate_folio,
3531	.is_partially_uptodate  = block_is_partially_uptodate,
3532	.error_remove_folio	= generic_error_remove_folio,
3533	.swap_activate		= ext4_iomap_swap_activate,
3534};
3535
3536static const struct address_space_operations ext4_journalled_aops = {
3537	.read_folio		= ext4_read_folio,
3538	.readahead		= ext4_readahead,
3539	.writepages		= ext4_writepages,
3540	.write_begin		= ext4_write_begin,
3541	.write_end		= ext4_journalled_write_end,
3542	.dirty_folio		= ext4_journalled_dirty_folio,
3543	.bmap			= ext4_bmap,
3544	.invalidate_folio	= ext4_journalled_invalidate_folio,
3545	.release_folio		= ext4_release_folio,
3546	.migrate_folio		= buffer_migrate_folio_norefs,
3547	.is_partially_uptodate  = block_is_partially_uptodate,
3548	.error_remove_folio	= generic_error_remove_folio,
3549	.swap_activate		= ext4_iomap_swap_activate,
3550};
3551
3552static const struct address_space_operations ext4_da_aops = {
3553	.read_folio		= ext4_read_folio,
3554	.readahead		= ext4_readahead,
3555	.writepages		= ext4_writepages,
3556	.write_begin		= ext4_da_write_begin,
3557	.write_end		= ext4_da_write_end,
3558	.dirty_folio		= ext4_dirty_folio,
3559	.bmap			= ext4_bmap,
3560	.invalidate_folio	= ext4_invalidate_folio,
3561	.release_folio		= ext4_release_folio,
3562	.migrate_folio		= buffer_migrate_folio,
3563	.is_partially_uptodate  = block_is_partially_uptodate,
3564	.error_remove_folio	= generic_error_remove_folio,
3565	.swap_activate		= ext4_iomap_swap_activate,
3566};
3567
3568static const struct address_space_operations ext4_dax_aops = {
3569	.writepages		= ext4_dax_writepages,
3570	.dirty_folio		= noop_dirty_folio,
3571	.bmap			= ext4_bmap,
3572	.swap_activate		= ext4_iomap_swap_activate,
3573};
3574
3575void ext4_set_aops(struct inode *inode)
3576{
3577	switch (ext4_inode_journal_mode(inode)) {
3578	case EXT4_INODE_ORDERED_DATA_MODE:
3579	case EXT4_INODE_WRITEBACK_DATA_MODE:
3580		break;
3581	case EXT4_INODE_JOURNAL_DATA_MODE:
3582		inode->i_mapping->a_ops = &ext4_journalled_aops;
3583		return;
3584	default:
3585		BUG();
3586	}
3587	if (IS_DAX(inode))
3588		inode->i_mapping->a_ops = &ext4_dax_aops;
3589	else if (test_opt(inode->i_sb, DELALLOC))
3590		inode->i_mapping->a_ops = &ext4_da_aops;
3591	else
3592		inode->i_mapping->a_ops = &ext4_aops;
3593}
3594
3595/*
3596 * Here we can't skip an unwritten buffer even though it usually reads zero
3597 * because it might have data in pagecache (eg, if called from ext4_zero_range,
3598 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3599 * racing writeback can come later and flush the stale pagecache to disk.
3600 */
3601static int __ext4_block_zero_page_range(handle_t *handle,
3602		struct address_space *mapping, loff_t from, loff_t length)
3603{
3604	ext4_fsblk_t index = from >> PAGE_SHIFT;
3605	unsigned offset = from & (PAGE_SIZE-1);
3606	unsigned blocksize, pos;
3607	ext4_lblk_t iblock;
3608	struct inode *inode = mapping->host;
3609	struct buffer_head *bh;
3610	struct folio *folio;
3611	int err = 0;
3612
3613	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3614				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3615				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3616	if (IS_ERR(folio))
3617		return PTR_ERR(folio);
3618
3619	blocksize = inode->i_sb->s_blocksize;
3620
3621	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3622
3623	bh = folio_buffers(folio);
3624	if (!bh)
3625		bh = create_empty_buffers(folio, blocksize, 0);
3626
3627	/* Find the buffer that contains "offset" */
3628	pos = blocksize;
3629	while (offset >= pos) {
3630		bh = bh->b_this_page;
3631		iblock++;
3632		pos += blocksize;
3633	}
3634	if (buffer_freed(bh)) {
3635		BUFFER_TRACE(bh, "freed: skip");
3636		goto unlock;
3637	}
3638	if (!buffer_mapped(bh)) {
3639		BUFFER_TRACE(bh, "unmapped");
3640		ext4_get_block(inode, iblock, bh, 0);
3641		/* unmapped? It's a hole - nothing to do */
3642		if (!buffer_mapped(bh)) {
3643			BUFFER_TRACE(bh, "still unmapped");
3644			goto unlock;
3645		}
3646	}
3647
3648	/* Ok, it's mapped. Make sure it's up-to-date */
3649	if (folio_test_uptodate(folio))
3650		set_buffer_uptodate(bh);
3651
3652	if (!buffer_uptodate(bh)) {
3653		err = ext4_read_bh_lock(bh, 0, true);
3654		if (err)
3655			goto unlock;
3656		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3657			/* We expect the key to be set. */
3658			BUG_ON(!fscrypt_has_encryption_key(inode));
3659			err = fscrypt_decrypt_pagecache_blocks(folio,
3660							       blocksize,
3661							       bh_offset(bh));
3662			if (err) {
3663				clear_buffer_uptodate(bh);
3664				goto unlock;
3665			}
3666		}
3667	}
3668	if (ext4_should_journal_data(inode)) {
3669		BUFFER_TRACE(bh, "get write access");
3670		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3671						    EXT4_JTR_NONE);
3672		if (err)
3673			goto unlock;
3674	}
3675	folio_zero_range(folio, offset, length);
3676	BUFFER_TRACE(bh, "zeroed end of block");
3677
3678	if (ext4_should_journal_data(inode)) {
3679		err = ext4_dirty_journalled_data(handle, bh);
3680	} else {
3681		err = 0;
3682		mark_buffer_dirty(bh);
3683		if (ext4_should_order_data(inode))
3684			err = ext4_jbd2_inode_add_write(handle, inode, from,
3685					length);
3686	}
3687
3688unlock:
3689	folio_unlock(folio);
3690	folio_put(folio);
3691	return err;
3692}
3693
3694/*
3695 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3696 * starting from file offset 'from'.  The range to be zero'd must
3697 * be contained with in one block.  If the specified range exceeds
3698 * the end of the block it will be shortened to end of the block
3699 * that corresponds to 'from'
3700 */
3701static int ext4_block_zero_page_range(handle_t *handle,
3702		struct address_space *mapping, loff_t from, loff_t length)
3703{
3704	struct inode *inode = mapping->host;
3705	unsigned offset = from & (PAGE_SIZE-1);
3706	unsigned blocksize = inode->i_sb->s_blocksize;
3707	unsigned max = blocksize - (offset & (blocksize - 1));
3708
3709	/*
3710	 * correct length if it does not fall between
3711	 * 'from' and the end of the block
3712	 */
3713	if (length > max || length < 0)
3714		length = max;
3715
3716	if (IS_DAX(inode)) {
3717		return dax_zero_range(inode, from, length, NULL,
3718				      &ext4_iomap_ops);
3719	}
3720	return __ext4_block_zero_page_range(handle, mapping, from, length);
3721}
3722
3723/*
3724 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3725 * up to the end of the block which corresponds to `from'.
3726 * This required during truncate. We need to physically zero the tail end
3727 * of that block so it doesn't yield old data if the file is later grown.
3728 */
3729static int ext4_block_truncate_page(handle_t *handle,
3730		struct address_space *mapping, loff_t from)
3731{
3732	unsigned offset = from & (PAGE_SIZE-1);
3733	unsigned length;
3734	unsigned blocksize;
3735	struct inode *inode = mapping->host;
3736
3737	/* If we are processing an encrypted inode during orphan list handling */
3738	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3739		return 0;
3740
3741	blocksize = inode->i_sb->s_blocksize;
3742	length = blocksize - (offset & (blocksize - 1));
3743
3744	return ext4_block_zero_page_range(handle, mapping, from, length);
3745}
3746
3747int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3748			     loff_t lstart, loff_t length)
3749{
3750	struct super_block *sb = inode->i_sb;
3751	struct address_space *mapping = inode->i_mapping;
3752	unsigned partial_start, partial_end;
3753	ext4_fsblk_t start, end;
3754	loff_t byte_end = (lstart + length - 1);
3755	int err = 0;
3756
3757	partial_start = lstart & (sb->s_blocksize - 1);
3758	partial_end = byte_end & (sb->s_blocksize - 1);
3759
3760	start = lstart >> sb->s_blocksize_bits;
3761	end = byte_end >> sb->s_blocksize_bits;
3762
3763	/* Handle partial zero within the single block */
3764	if (start == end &&
3765	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3766		err = ext4_block_zero_page_range(handle, mapping,
3767						 lstart, length);
3768		return err;
3769	}
3770	/* Handle partial zero out on the start of the range */
3771	if (partial_start) {
3772		err = ext4_block_zero_page_range(handle, mapping,
3773						 lstart, sb->s_blocksize);
3774		if (err)
3775			return err;
3776	}
3777	/* Handle partial zero out on the end of the range */
3778	if (partial_end != sb->s_blocksize - 1)
3779		err = ext4_block_zero_page_range(handle, mapping,
3780						 byte_end - partial_end,
3781						 partial_end + 1);
3782	return err;
3783}
3784
3785int ext4_can_truncate(struct inode *inode)
3786{
3787	if (S_ISREG(inode->i_mode))
3788		return 1;
3789	if (S_ISDIR(inode->i_mode))
3790		return 1;
3791	if (S_ISLNK(inode->i_mode))
3792		return !ext4_inode_is_fast_symlink(inode);
3793	return 0;
3794}
3795
3796/*
3797 * We have to make sure i_disksize gets properly updated before we truncate
3798 * page cache due to hole punching or zero range. Otherwise i_disksize update
3799 * can get lost as it may have been postponed to submission of writeback but
3800 * that will never happen after we truncate page cache.
3801 */
3802int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3803				      loff_t len)
3804{
3805	handle_t *handle;
3806	int ret;
3807
3808	loff_t size = i_size_read(inode);
3809
3810	WARN_ON(!inode_is_locked(inode));
3811	if (offset > size || offset + len < size)
3812		return 0;
3813
3814	if (EXT4_I(inode)->i_disksize >= size)
3815		return 0;
3816
3817	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3818	if (IS_ERR(handle))
3819		return PTR_ERR(handle);
3820	ext4_update_i_disksize(inode, size);
3821	ret = ext4_mark_inode_dirty(handle, inode);
3822	ext4_journal_stop(handle);
3823
3824	return ret;
3825}
3826
3827static void ext4_wait_dax_page(struct inode *inode)
3828{
3829	filemap_invalidate_unlock(inode->i_mapping);
3830	schedule();
3831	filemap_invalidate_lock(inode->i_mapping);
3832}
3833
3834int ext4_break_layouts(struct inode *inode)
3835{
3836	struct page *page;
3837	int error;
3838
3839	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3840		return -EINVAL;
3841
3842	do {
3843		page = dax_layout_busy_page(inode->i_mapping);
3844		if (!page)
3845			return 0;
3846
3847		error = ___wait_var_event(&page->_refcount,
3848				atomic_read(&page->_refcount) == 1,
3849				TASK_INTERRUPTIBLE, 0, 0,
3850				ext4_wait_dax_page(inode));
3851	} while (error == 0);
3852
3853	return error;
3854}
3855
3856/*
3857 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3858 * associated with the given offset and length
3859 *
3860 * @inode:  File inode
3861 * @offset: The offset where the hole will begin
3862 * @len:    The length of the hole
3863 *
3864 * Returns: 0 on success or negative on failure
3865 */
3866
3867int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3868{
3869	struct inode *inode = file_inode(file);
3870	struct super_block *sb = inode->i_sb;
3871	ext4_lblk_t first_block, stop_block;
3872	struct address_space *mapping = inode->i_mapping;
3873	loff_t first_block_offset, last_block_offset, max_length;
3874	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3875	handle_t *handle;
3876	unsigned int credits;
3877	int ret = 0, ret2 = 0;
3878
3879	trace_ext4_punch_hole(inode, offset, length, 0);
3880
3881	/*
3882	 * Write out all dirty pages to avoid race conditions
3883	 * Then release them.
3884	 */
3885	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3886		ret = filemap_write_and_wait_range(mapping, offset,
3887						   offset + length - 1);
3888		if (ret)
3889			return ret;
3890	}
3891
3892	inode_lock(inode);
3893
3894	/* No need to punch hole beyond i_size */
3895	if (offset >= inode->i_size)
3896		goto out_mutex;
3897
3898	/*
3899	 * If the hole extends beyond i_size, set the hole
3900	 * to end after the page that contains i_size
3901	 */
3902	if (offset + length > inode->i_size) {
3903		length = inode->i_size +
3904		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3905		   offset;
3906	}
3907
3908	/*
3909	 * For punch hole the length + offset needs to be within one block
3910	 * before last range. Adjust the length if it goes beyond that limit.
3911	 */
3912	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3913	if (offset + length > max_length)
3914		length = max_length - offset;
3915
3916	if (offset & (sb->s_blocksize - 1) ||
3917	    (offset + length) & (sb->s_blocksize - 1)) {
3918		/*
3919		 * Attach jinode to inode for jbd2 if we do any zeroing of
3920		 * partial block
3921		 */
3922		ret = ext4_inode_attach_jinode(inode);
3923		if (ret < 0)
3924			goto out_mutex;
3925
3926	}
3927
3928	/* Wait all existing dio workers, newcomers will block on i_rwsem */
3929	inode_dio_wait(inode);
3930
3931	ret = file_modified(file);
3932	if (ret)
3933		goto out_mutex;
3934
3935	/*
3936	 * Prevent page faults from reinstantiating pages we have released from
3937	 * page cache.
3938	 */
3939	filemap_invalidate_lock(mapping);
3940
3941	ret = ext4_break_layouts(inode);
3942	if (ret)
3943		goto out_dio;
3944
3945	first_block_offset = round_up(offset, sb->s_blocksize);
3946	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3947
3948	/* Now release the pages and zero block aligned part of pages*/
3949	if (last_block_offset > first_block_offset) {
3950		ret = ext4_update_disksize_before_punch(inode, offset, length);
3951		if (ret)
3952			goto out_dio;
3953		truncate_pagecache_range(inode, first_block_offset,
3954					 last_block_offset);
3955	}
3956
3957	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3958		credits = ext4_writepage_trans_blocks(inode);
3959	else
3960		credits = ext4_blocks_for_truncate(inode);
3961	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3962	if (IS_ERR(handle)) {
3963		ret = PTR_ERR(handle);
3964		ext4_std_error(sb, ret);
3965		goto out_dio;
3966	}
3967
3968	ret = ext4_zero_partial_blocks(handle, inode, offset,
3969				       length);
3970	if (ret)
3971		goto out_stop;
3972
3973	first_block = (offset + sb->s_blocksize - 1) >>
3974		EXT4_BLOCK_SIZE_BITS(sb);
3975	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3976
3977	/* If there are blocks to remove, do it */
3978	if (stop_block > first_block) {
3979		ext4_lblk_t hole_len = stop_block - first_block;
3980
3981		down_write(&EXT4_I(inode)->i_data_sem);
3982		ext4_discard_preallocations(inode);
3983
3984		ext4_es_remove_extent(inode, first_block, hole_len);
3985
3986		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3987			ret = ext4_ext_remove_space(inode, first_block,
3988						    stop_block - 1);
3989		else
3990			ret = ext4_ind_remove_space(handle, inode, first_block,
3991						    stop_block);
3992
3993		ext4_es_insert_extent(inode, first_block, hole_len, ~0,
3994				      EXTENT_STATUS_HOLE);
3995		up_write(&EXT4_I(inode)->i_data_sem);
3996	}
3997	ext4_fc_track_range(handle, inode, first_block, stop_block);
3998	if (IS_SYNC(inode))
3999		ext4_handle_sync(handle);
4000
4001	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4002	ret2 = ext4_mark_inode_dirty(handle, inode);
4003	if (unlikely(ret2))
4004		ret = ret2;
4005	if (ret >= 0)
4006		ext4_update_inode_fsync_trans(handle, inode, 1);
4007out_stop:
4008	ext4_journal_stop(handle);
4009out_dio:
4010	filemap_invalidate_unlock(mapping);
4011out_mutex:
4012	inode_unlock(inode);
4013	return ret;
4014}
4015
4016int ext4_inode_attach_jinode(struct inode *inode)
4017{
4018	struct ext4_inode_info *ei = EXT4_I(inode);
4019	struct jbd2_inode *jinode;
4020
4021	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4022		return 0;
4023
4024	jinode = jbd2_alloc_inode(GFP_KERNEL);
4025	spin_lock(&inode->i_lock);
4026	if (!ei->jinode) {
4027		if (!jinode) {
4028			spin_unlock(&inode->i_lock);
4029			return -ENOMEM;
4030		}
4031		ei->jinode = jinode;
4032		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4033		jinode = NULL;
4034	}
4035	spin_unlock(&inode->i_lock);
4036	if (unlikely(jinode != NULL))
4037		jbd2_free_inode(jinode);
4038	return 0;
4039}
4040
4041/*
4042 * ext4_truncate()
4043 *
4044 * We block out ext4_get_block() block instantiations across the entire
4045 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4046 * simultaneously on behalf of the same inode.
4047 *
4048 * As we work through the truncate and commit bits of it to the journal there
4049 * is one core, guiding principle: the file's tree must always be consistent on
4050 * disk.  We must be able to restart the truncate after a crash.
4051 *
4052 * The file's tree may be transiently inconsistent in memory (although it
4053 * probably isn't), but whenever we close off and commit a journal transaction,
4054 * the contents of (the filesystem + the journal) must be consistent and
4055 * restartable.  It's pretty simple, really: bottom up, right to left (although
4056 * left-to-right works OK too).
4057 *
4058 * Note that at recovery time, journal replay occurs *before* the restart of
4059 * truncate against the orphan inode list.
4060 *
4061 * The committed inode has the new, desired i_size (which is the same as
4062 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4063 * that this inode's truncate did not complete and it will again call
4064 * ext4_truncate() to have another go.  So there will be instantiated blocks
4065 * to the right of the truncation point in a crashed ext4 filesystem.  But
4066 * that's fine - as long as they are linked from the inode, the post-crash
4067 * ext4_truncate() run will find them and release them.
4068 */
4069int ext4_truncate(struct inode *inode)
4070{
4071	struct ext4_inode_info *ei = EXT4_I(inode);
4072	unsigned int credits;
4073	int err = 0, err2;
4074	handle_t *handle;
4075	struct address_space *mapping = inode->i_mapping;
4076
4077	/*
4078	 * There is a possibility that we're either freeing the inode
4079	 * or it's a completely new inode. In those cases we might not
4080	 * have i_rwsem locked because it's not necessary.
4081	 */
4082	if (!(inode->i_state & (I_NEW|I_FREEING)))
4083		WARN_ON(!inode_is_locked(inode));
4084	trace_ext4_truncate_enter(inode);
4085
4086	if (!ext4_can_truncate(inode))
4087		goto out_trace;
4088
4089	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4090		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4091
4092	if (ext4_has_inline_data(inode)) {
4093		int has_inline = 1;
4094
4095		err = ext4_inline_data_truncate(inode, &has_inline);
4096		if (err || has_inline)
4097			goto out_trace;
4098	}
4099
4100	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4101	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4102		err = ext4_inode_attach_jinode(inode);
4103		if (err)
4104			goto out_trace;
4105	}
4106
4107	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4108		credits = ext4_writepage_trans_blocks(inode);
4109	else
4110		credits = ext4_blocks_for_truncate(inode);
4111
4112	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4113	if (IS_ERR(handle)) {
4114		err = PTR_ERR(handle);
4115		goto out_trace;
4116	}
4117
4118	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4119		ext4_block_truncate_page(handle, mapping, inode->i_size);
4120
4121	/*
4122	 * We add the inode to the orphan list, so that if this
4123	 * truncate spans multiple transactions, and we crash, we will
4124	 * resume the truncate when the filesystem recovers.  It also
4125	 * marks the inode dirty, to catch the new size.
4126	 *
4127	 * Implication: the file must always be in a sane, consistent
4128	 * truncatable state while each transaction commits.
4129	 */
4130	err = ext4_orphan_add(handle, inode);
4131	if (err)
4132		goto out_stop;
4133
4134	down_write(&EXT4_I(inode)->i_data_sem);
4135
4136	ext4_discard_preallocations(inode);
4137
4138	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4139		err = ext4_ext_truncate(handle, inode);
4140	else
4141		ext4_ind_truncate(handle, inode);
4142
4143	up_write(&ei->i_data_sem);
4144	if (err)
4145		goto out_stop;
4146
4147	if (IS_SYNC(inode))
4148		ext4_handle_sync(handle);
4149
4150out_stop:
4151	/*
4152	 * If this was a simple ftruncate() and the file will remain alive,
4153	 * then we need to clear up the orphan record which we created above.
4154	 * However, if this was a real unlink then we were called by
4155	 * ext4_evict_inode(), and we allow that function to clean up the
4156	 * orphan info for us.
4157	 */
4158	if (inode->i_nlink)
4159		ext4_orphan_del(handle, inode);
4160
4161	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4162	err2 = ext4_mark_inode_dirty(handle, inode);
4163	if (unlikely(err2 && !err))
4164		err = err2;
4165	ext4_journal_stop(handle);
4166
4167out_trace:
4168	trace_ext4_truncate_exit(inode);
4169	return err;
4170}
4171
4172static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4173{
4174	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4175		return inode_peek_iversion_raw(inode);
4176	else
4177		return inode_peek_iversion(inode);
4178}
4179
4180static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4181				 struct ext4_inode_info *ei)
4182{
4183	struct inode *inode = &(ei->vfs_inode);
4184	u64 i_blocks = READ_ONCE(inode->i_blocks);
4185	struct super_block *sb = inode->i_sb;
4186
4187	if (i_blocks <= ~0U) {
4188		/*
4189		 * i_blocks can be represented in a 32 bit variable
4190		 * as multiple of 512 bytes
4191		 */
4192		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4193		raw_inode->i_blocks_high = 0;
4194		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4195		return 0;
4196	}
4197
4198	/*
4199	 * This should never happen since sb->s_maxbytes should not have
4200	 * allowed this, sb->s_maxbytes was set according to the huge_file
4201	 * feature in ext4_fill_super().
4202	 */
4203	if (!ext4_has_feature_huge_file(sb))
4204		return -EFSCORRUPTED;
4205
4206	if (i_blocks <= 0xffffffffffffULL) {
4207		/*
4208		 * i_blocks can be represented in a 48 bit variable
4209		 * as multiple of 512 bytes
4210		 */
4211		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4212		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4213		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4214	} else {
4215		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4216		/* i_block is stored in file system block size */
4217		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4218		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4219		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4220	}
4221	return 0;
4222}
4223
4224static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4225{
4226	struct ext4_inode_info *ei = EXT4_I(inode);
4227	uid_t i_uid;
4228	gid_t i_gid;
4229	projid_t i_projid;
4230	int block;
4231	int err;
4232
4233	err = ext4_inode_blocks_set(raw_inode, ei);
4234
4235	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4236	i_uid = i_uid_read(inode);
4237	i_gid = i_gid_read(inode);
4238	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4239	if (!(test_opt(inode->i_sb, NO_UID32))) {
4240		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4241		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4242		/*
4243		 * Fix up interoperability with old kernels. Otherwise,
4244		 * old inodes get re-used with the upper 16 bits of the
4245		 * uid/gid intact.
4246		 */
4247		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4248			raw_inode->i_uid_high = 0;
4249			raw_inode->i_gid_high = 0;
4250		} else {
4251			raw_inode->i_uid_high =
4252				cpu_to_le16(high_16_bits(i_uid));
4253			raw_inode->i_gid_high =
4254				cpu_to_le16(high_16_bits(i_gid));
4255		}
4256	} else {
4257		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4258		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4259		raw_inode->i_uid_high = 0;
4260		raw_inode->i_gid_high = 0;
4261	}
4262	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4263
4264	EXT4_INODE_SET_CTIME(inode, raw_inode);
4265	EXT4_INODE_SET_MTIME(inode, raw_inode);
4266	EXT4_INODE_SET_ATIME(inode, raw_inode);
4267	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4268
4269	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4270	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4271	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4272		raw_inode->i_file_acl_high =
4273			cpu_to_le16(ei->i_file_acl >> 32);
4274	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4275	ext4_isize_set(raw_inode, ei->i_disksize);
4276
4277	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4278	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4279		if (old_valid_dev(inode->i_rdev)) {
4280			raw_inode->i_block[0] =
4281				cpu_to_le32(old_encode_dev(inode->i_rdev));
4282			raw_inode->i_block[1] = 0;
4283		} else {
4284			raw_inode->i_block[0] = 0;
4285			raw_inode->i_block[1] =
4286				cpu_to_le32(new_encode_dev(inode->i_rdev));
4287			raw_inode->i_block[2] = 0;
4288		}
4289	} else if (!ext4_has_inline_data(inode)) {
4290		for (block = 0; block < EXT4_N_BLOCKS; block++)
4291			raw_inode->i_block[block] = ei->i_data[block];
4292	}
4293
4294	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4295		u64 ivers = ext4_inode_peek_iversion(inode);
4296
4297		raw_inode->i_disk_version = cpu_to_le32(ivers);
4298		if (ei->i_extra_isize) {
4299			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4300				raw_inode->i_version_hi =
4301					cpu_to_le32(ivers >> 32);
4302			raw_inode->i_extra_isize =
4303				cpu_to_le16(ei->i_extra_isize);
4304		}
4305	}
4306
4307	if (i_projid != EXT4_DEF_PROJID &&
4308	    !ext4_has_feature_project(inode->i_sb))
4309		err = err ?: -EFSCORRUPTED;
4310
4311	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4312	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4313		raw_inode->i_projid = cpu_to_le32(i_projid);
4314
4315	ext4_inode_csum_set(inode, raw_inode, ei);
4316	return err;
4317}
4318
4319/*
4320 * ext4_get_inode_loc returns with an extra refcount against the inode's
4321 * underlying buffer_head on success. If we pass 'inode' and it does not
4322 * have in-inode xattr, we have all inode data in memory that is needed
4323 * to recreate the on-disk version of this inode.
4324 */
4325static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4326				struct inode *inode, struct ext4_iloc *iloc,
4327				ext4_fsblk_t *ret_block)
4328{
4329	struct ext4_group_desc	*gdp;
4330	struct buffer_head	*bh;
4331	ext4_fsblk_t		block;
4332	struct blk_plug		plug;
4333	int			inodes_per_block, inode_offset;
4334
4335	iloc->bh = NULL;
4336	if (ino < EXT4_ROOT_INO ||
4337	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4338		return -EFSCORRUPTED;
4339
4340	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4341	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4342	if (!gdp)
4343		return -EIO;
4344
4345	/*
4346	 * Figure out the offset within the block group inode table
4347	 */
4348	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4349	inode_offset = ((ino - 1) %
4350			EXT4_INODES_PER_GROUP(sb));
4351	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4352
4353	block = ext4_inode_table(sb, gdp);
4354	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4355	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4356		ext4_error(sb, "Invalid inode table block %llu in "
4357			   "block_group %u", block, iloc->block_group);
4358		return -EFSCORRUPTED;
4359	}
4360	block += (inode_offset / inodes_per_block);
4361
4362	bh = sb_getblk(sb, block);
4363	if (unlikely(!bh))
4364		return -ENOMEM;
4365	if (ext4_buffer_uptodate(bh))
4366		goto has_buffer;
4367
4368	lock_buffer(bh);
4369	if (ext4_buffer_uptodate(bh)) {
4370		/* Someone brought it uptodate while we waited */
4371		unlock_buffer(bh);
4372		goto has_buffer;
4373	}
4374
4375	/*
4376	 * If we have all information of the inode in memory and this
4377	 * is the only valid inode in the block, we need not read the
4378	 * block.
4379	 */
4380	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4381		struct buffer_head *bitmap_bh;
4382		int i, start;
4383
4384		start = inode_offset & ~(inodes_per_block - 1);
4385
4386		/* Is the inode bitmap in cache? */
4387		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4388		if (unlikely(!bitmap_bh))
4389			goto make_io;
4390
4391		/*
4392		 * If the inode bitmap isn't in cache then the
4393		 * optimisation may end up performing two reads instead
4394		 * of one, so skip it.
4395		 */
4396		if (!buffer_uptodate(bitmap_bh)) {
4397			brelse(bitmap_bh);
4398			goto make_io;
4399		}
4400		for (i = start; i < start + inodes_per_block; i++) {
4401			if (i == inode_offset)
4402				continue;
4403			if (ext4_test_bit(i, bitmap_bh->b_data))
4404				break;
4405		}
4406		brelse(bitmap_bh);
4407		if (i == start + inodes_per_block) {
4408			struct ext4_inode *raw_inode =
4409				(struct ext4_inode *) (bh->b_data + iloc->offset);
4410
4411			/* all other inodes are free, so skip I/O */
4412			memset(bh->b_data, 0, bh->b_size);
4413			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4414				ext4_fill_raw_inode(inode, raw_inode);
4415			set_buffer_uptodate(bh);
4416			unlock_buffer(bh);
4417			goto has_buffer;
4418		}
4419	}
4420
4421make_io:
4422	/*
4423	 * If we need to do any I/O, try to pre-readahead extra
4424	 * blocks from the inode table.
4425	 */
4426	blk_start_plug(&plug);
4427	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4428		ext4_fsblk_t b, end, table;
4429		unsigned num;
4430		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4431
4432		table = ext4_inode_table(sb, gdp);
4433		/* s_inode_readahead_blks is always a power of 2 */
4434		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4435		if (table > b)
4436			b = table;
4437		end = b + ra_blks;
4438		num = EXT4_INODES_PER_GROUP(sb);
4439		if (ext4_has_group_desc_csum(sb))
4440			num -= ext4_itable_unused_count(sb, gdp);
4441		table += num / inodes_per_block;
4442		if (end > table)
4443			end = table;
4444		while (b <= end)
4445			ext4_sb_breadahead_unmovable(sb, b++);
4446	}
4447
4448	/*
4449	 * There are other valid inodes in the buffer, this inode
4450	 * has in-inode xattrs, or we don't have this inode in memory.
4451	 * Read the block from disk.
4452	 */
4453	trace_ext4_load_inode(sb, ino);
4454	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4455	blk_finish_plug(&plug);
4456	wait_on_buffer(bh);
4457	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4458	if (!buffer_uptodate(bh)) {
4459		if (ret_block)
4460			*ret_block = block;
4461		brelse(bh);
4462		return -EIO;
4463	}
4464has_buffer:
4465	iloc->bh = bh;
4466	return 0;
4467}
4468
4469static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4470					struct ext4_iloc *iloc)
4471{
4472	ext4_fsblk_t err_blk = 0;
4473	int ret;
4474
4475	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4476					&err_blk);
4477
4478	if (ret == -EIO)
4479		ext4_error_inode_block(inode, err_blk, EIO,
4480					"unable to read itable block");
4481
4482	return ret;
4483}
4484
4485int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4486{
4487	ext4_fsblk_t err_blk = 0;
4488	int ret;
4489
4490	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4491					&err_blk);
4492
4493	if (ret == -EIO)
4494		ext4_error_inode_block(inode, err_blk, EIO,
4495					"unable to read itable block");
4496
4497	return ret;
4498}
4499
4500
4501int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4502			  struct ext4_iloc *iloc)
4503{
4504	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4505}
4506
4507static bool ext4_should_enable_dax(struct inode *inode)
4508{
4509	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4510
4511	if (test_opt2(inode->i_sb, DAX_NEVER))
4512		return false;
4513	if (!S_ISREG(inode->i_mode))
4514		return false;
4515	if (ext4_should_journal_data(inode))
4516		return false;
4517	if (ext4_has_inline_data(inode))
4518		return false;
4519	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4520		return false;
4521	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4522		return false;
4523	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4524		return false;
4525	if (test_opt(inode->i_sb, DAX_ALWAYS))
4526		return true;
4527
4528	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4529}
4530
4531void ext4_set_inode_flags(struct inode *inode, bool init)
4532{
4533	unsigned int flags = EXT4_I(inode)->i_flags;
4534	unsigned int new_fl = 0;
4535
4536	WARN_ON_ONCE(IS_DAX(inode) && init);
4537
4538	if (flags & EXT4_SYNC_FL)
4539		new_fl |= S_SYNC;
4540	if (flags & EXT4_APPEND_FL)
4541		new_fl |= S_APPEND;
4542	if (flags & EXT4_IMMUTABLE_FL)
4543		new_fl |= S_IMMUTABLE;
4544	if (flags & EXT4_NOATIME_FL)
4545		new_fl |= S_NOATIME;
4546	if (flags & EXT4_DIRSYNC_FL)
4547		new_fl |= S_DIRSYNC;
4548
4549	/* Because of the way inode_set_flags() works we must preserve S_DAX
4550	 * here if already set. */
4551	new_fl |= (inode->i_flags & S_DAX);
4552	if (init && ext4_should_enable_dax(inode))
4553		new_fl |= S_DAX;
4554
4555	if (flags & EXT4_ENCRYPT_FL)
4556		new_fl |= S_ENCRYPTED;
4557	if (flags & EXT4_CASEFOLD_FL)
4558		new_fl |= S_CASEFOLD;
4559	if (flags & EXT4_VERITY_FL)
4560		new_fl |= S_VERITY;
4561	inode_set_flags(inode, new_fl,
4562			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4563			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4564}
4565
4566static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4567				  struct ext4_inode_info *ei)
4568{
4569	blkcnt_t i_blocks ;
4570	struct inode *inode = &(ei->vfs_inode);
4571	struct super_block *sb = inode->i_sb;
4572
4573	if (ext4_has_feature_huge_file(sb)) {
4574		/* we are using combined 48 bit field */
4575		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4576					le32_to_cpu(raw_inode->i_blocks_lo);
4577		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4578			/* i_blocks represent file system block size */
4579			return i_blocks  << (inode->i_blkbits - 9);
4580		} else {
4581			return i_blocks;
4582		}
4583	} else {
4584		return le32_to_cpu(raw_inode->i_blocks_lo);
4585	}
4586}
4587
4588static inline int ext4_iget_extra_inode(struct inode *inode,
4589					 struct ext4_inode *raw_inode,
4590					 struct ext4_inode_info *ei)
4591{
4592	__le32 *magic = (void *)raw_inode +
4593			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4594
4595	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4596	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4597		int err;
4598
4599		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4600		err = ext4_find_inline_data_nolock(inode);
4601		if (!err && ext4_has_inline_data(inode))
4602			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4603		return err;
4604	} else
4605		EXT4_I(inode)->i_inline_off = 0;
4606	return 0;
4607}
4608
4609int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4610{
4611	if (!ext4_has_feature_project(inode->i_sb))
4612		return -EOPNOTSUPP;
4613	*projid = EXT4_I(inode)->i_projid;
4614	return 0;
4615}
4616
4617/*
4618 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4619 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4620 * set.
4621 */
4622static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4623{
4624	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4625		inode_set_iversion_raw(inode, val);
4626	else
4627		inode_set_iversion_queried(inode, val);
4628}
4629
4630static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4631
4632{
4633	if (flags & EXT4_IGET_EA_INODE) {
4634		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4635			return "missing EA_INODE flag";
4636		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4637		    EXT4_I(inode)->i_file_acl)
4638			return "ea_inode with extended attributes";
4639	} else {
4640		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4641			return "unexpected EA_INODE flag";
4642	}
4643	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4644		return "unexpected bad inode w/o EXT4_IGET_BAD";
4645	return NULL;
4646}
4647
4648struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4649			  ext4_iget_flags flags, const char *function,
4650			  unsigned int line)
4651{
4652	struct ext4_iloc iloc;
4653	struct ext4_inode *raw_inode;
4654	struct ext4_inode_info *ei;
4655	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4656	struct inode *inode;
4657	const char *err_str;
4658	journal_t *journal = EXT4_SB(sb)->s_journal;
4659	long ret;
4660	loff_t size;
4661	int block;
4662	uid_t i_uid;
4663	gid_t i_gid;
4664	projid_t i_projid;
4665
4666	if ((!(flags & EXT4_IGET_SPECIAL) &&
4667	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4668	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4669	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4670	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4671	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4672	    (ino < EXT4_ROOT_INO) ||
4673	    (ino > le32_to_cpu(es->s_inodes_count))) {
4674		if (flags & EXT4_IGET_HANDLE)
4675			return ERR_PTR(-ESTALE);
4676		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4677			     "inode #%lu: comm %s: iget: illegal inode #",
4678			     ino, current->comm);
4679		return ERR_PTR(-EFSCORRUPTED);
4680	}
4681
4682	inode = iget_locked(sb, ino);
4683	if (!inode)
4684		return ERR_PTR(-ENOMEM);
4685	if (!(inode->i_state & I_NEW)) {
4686		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4687			ext4_error_inode(inode, function, line, 0, err_str);
4688			iput(inode);
4689			return ERR_PTR(-EFSCORRUPTED);
4690		}
4691		return inode;
4692	}
4693
4694	ei = EXT4_I(inode);
4695	iloc.bh = NULL;
4696
4697	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4698	if (ret < 0)
4699		goto bad_inode;
4700	raw_inode = ext4_raw_inode(&iloc);
4701
4702	if ((flags & EXT4_IGET_HANDLE) &&
4703	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4704		ret = -ESTALE;
4705		goto bad_inode;
4706	}
4707
4708	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4709		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4710		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4711			EXT4_INODE_SIZE(inode->i_sb) ||
4712		    (ei->i_extra_isize & 3)) {
4713			ext4_error_inode(inode, function, line, 0,
4714					 "iget: bad extra_isize %u "
4715					 "(inode size %u)",
4716					 ei->i_extra_isize,
4717					 EXT4_INODE_SIZE(inode->i_sb));
4718			ret = -EFSCORRUPTED;
4719			goto bad_inode;
4720		}
4721	} else
4722		ei->i_extra_isize = 0;
4723
4724	/* Precompute checksum seed for inode metadata */
4725	if (ext4_has_metadata_csum(sb)) {
4726		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4727		__u32 csum;
4728		__le32 inum = cpu_to_le32(inode->i_ino);
4729		__le32 gen = raw_inode->i_generation;
4730		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4731				   sizeof(inum));
4732		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4733					      sizeof(gen));
4734	}
4735
4736	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4737	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4738	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4739		ext4_error_inode_err(inode, function, line, 0,
4740				EFSBADCRC, "iget: checksum invalid");
4741		ret = -EFSBADCRC;
4742		goto bad_inode;
4743	}
4744
4745	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4746	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4747	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4748	if (ext4_has_feature_project(sb) &&
4749	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4750	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4751		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4752	else
4753		i_projid = EXT4_DEF_PROJID;
4754
4755	if (!(test_opt(inode->i_sb, NO_UID32))) {
4756		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4757		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4758	}
4759	i_uid_write(inode, i_uid);
4760	i_gid_write(inode, i_gid);
4761	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4762	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4763
4764	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4765	ei->i_inline_off = 0;
4766	ei->i_dir_start_lookup = 0;
4767	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4768	/* We now have enough fields to check if the inode was active or not.
4769	 * This is needed because nfsd might try to access dead inodes
4770	 * the test is that same one that e2fsck uses
4771	 * NeilBrown 1999oct15
4772	 */
4773	if (inode->i_nlink == 0) {
4774		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4775		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4776		    ino != EXT4_BOOT_LOADER_INO) {
4777			/* this inode is deleted or unallocated */
4778			if (flags & EXT4_IGET_SPECIAL) {
4779				ext4_error_inode(inode, function, line, 0,
4780						 "iget: special inode unallocated");
4781				ret = -EFSCORRUPTED;
4782			} else
4783				ret = -ESTALE;
4784			goto bad_inode;
4785		}
4786		/* The only unlinked inodes we let through here have
4787		 * valid i_mode and are being read by the orphan
4788		 * recovery code: that's fine, we're about to complete
4789		 * the process of deleting those.
4790		 * OR it is the EXT4_BOOT_LOADER_INO which is
4791		 * not initialized on a new filesystem. */
4792	}
4793	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4794	ext4_set_inode_flags(inode, true);
4795	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4796	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4797	if (ext4_has_feature_64bit(sb))
4798		ei->i_file_acl |=
4799			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4800	inode->i_size = ext4_isize(sb, raw_inode);
4801	if ((size = i_size_read(inode)) < 0) {
4802		ext4_error_inode(inode, function, line, 0,
4803				 "iget: bad i_size value: %lld", size);
4804		ret = -EFSCORRUPTED;
4805		goto bad_inode;
4806	}
4807	/*
4808	 * If dir_index is not enabled but there's dir with INDEX flag set,
4809	 * we'd normally treat htree data as empty space. But with metadata
4810	 * checksumming that corrupts checksums so forbid that.
4811	 */
4812	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4813	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4814		ext4_error_inode(inode, function, line, 0,
4815			 "iget: Dir with htree data on filesystem without dir_index feature.");
4816		ret = -EFSCORRUPTED;
4817		goto bad_inode;
4818	}
4819	ei->i_disksize = inode->i_size;
4820#ifdef CONFIG_QUOTA
4821	ei->i_reserved_quota = 0;
4822#endif
4823	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4824	ei->i_block_group = iloc.block_group;
4825	ei->i_last_alloc_group = ~0;
4826	/*
4827	 * NOTE! The in-memory inode i_data array is in little-endian order
4828	 * even on big-endian machines: we do NOT byteswap the block numbers!
4829	 */
4830	for (block = 0; block < EXT4_N_BLOCKS; block++)
4831		ei->i_data[block] = raw_inode->i_block[block];
4832	INIT_LIST_HEAD(&ei->i_orphan);
4833	ext4_fc_init_inode(&ei->vfs_inode);
4834
4835	/*
4836	 * Set transaction id's of transactions that have to be committed
4837	 * to finish f[data]sync. We set them to currently running transaction
4838	 * as we cannot be sure that the inode or some of its metadata isn't
4839	 * part of the transaction - the inode could have been reclaimed and
4840	 * now it is reread from disk.
4841	 */
4842	if (journal) {
4843		transaction_t *transaction;
4844		tid_t tid;
4845
4846		read_lock(&journal->j_state_lock);
4847		if (journal->j_running_transaction)
4848			transaction = journal->j_running_transaction;
4849		else
4850			transaction = journal->j_committing_transaction;
4851		if (transaction)
4852			tid = transaction->t_tid;
4853		else
4854			tid = journal->j_commit_sequence;
4855		read_unlock(&journal->j_state_lock);
4856		ei->i_sync_tid = tid;
4857		ei->i_datasync_tid = tid;
4858	}
4859
4860	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4861		if (ei->i_extra_isize == 0) {
4862			/* The extra space is currently unused. Use it. */
4863			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4864			ei->i_extra_isize = sizeof(struct ext4_inode) -
4865					    EXT4_GOOD_OLD_INODE_SIZE;
4866		} else {
4867			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4868			if (ret)
4869				goto bad_inode;
4870		}
4871	}
4872
4873	EXT4_INODE_GET_CTIME(inode, raw_inode);
4874	EXT4_INODE_GET_ATIME(inode, raw_inode);
4875	EXT4_INODE_GET_MTIME(inode, raw_inode);
4876	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4877
4878	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4879		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4880
4881		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4882			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4883				ivers |=
4884		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4885		}
4886		ext4_inode_set_iversion_queried(inode, ivers);
4887	}
4888
4889	ret = 0;
4890	if (ei->i_file_acl &&
4891	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4892		ext4_error_inode(inode, function, line, 0,
4893				 "iget: bad extended attribute block %llu",
4894				 ei->i_file_acl);
4895		ret = -EFSCORRUPTED;
4896		goto bad_inode;
4897	} else if (!ext4_has_inline_data(inode)) {
4898		/* validate the block references in the inode */
4899		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4900			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4901			(S_ISLNK(inode->i_mode) &&
4902			!ext4_inode_is_fast_symlink(inode)))) {
4903			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4904				ret = ext4_ext_check_inode(inode);
4905			else
4906				ret = ext4_ind_check_inode(inode);
4907		}
4908	}
4909	if (ret)
4910		goto bad_inode;
4911
4912	if (S_ISREG(inode->i_mode)) {
4913		inode->i_op = &ext4_file_inode_operations;
4914		inode->i_fop = &ext4_file_operations;
4915		ext4_set_aops(inode);
4916	} else if (S_ISDIR(inode->i_mode)) {
4917		inode->i_op = &ext4_dir_inode_operations;
4918		inode->i_fop = &ext4_dir_operations;
4919	} else if (S_ISLNK(inode->i_mode)) {
4920		/* VFS does not allow setting these so must be corruption */
4921		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4922			ext4_error_inode(inode, function, line, 0,
4923					 "iget: immutable or append flags "
4924					 "not allowed on symlinks");
4925			ret = -EFSCORRUPTED;
4926			goto bad_inode;
4927		}
4928		if (IS_ENCRYPTED(inode)) {
4929			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4930		} else if (ext4_inode_is_fast_symlink(inode)) {
4931			inode->i_link = (char *)ei->i_data;
4932			inode->i_op = &ext4_fast_symlink_inode_operations;
4933			nd_terminate_link(ei->i_data, inode->i_size,
4934				sizeof(ei->i_data) - 1);
4935		} else {
4936			inode->i_op = &ext4_symlink_inode_operations;
4937		}
4938	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4939	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4940		inode->i_op = &ext4_special_inode_operations;
4941		if (raw_inode->i_block[0])
4942			init_special_inode(inode, inode->i_mode,
4943			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4944		else
4945			init_special_inode(inode, inode->i_mode,
4946			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4947	} else if (ino == EXT4_BOOT_LOADER_INO) {
4948		make_bad_inode(inode);
4949	} else {
4950		ret = -EFSCORRUPTED;
4951		ext4_error_inode(inode, function, line, 0,
4952				 "iget: bogus i_mode (%o)", inode->i_mode);
4953		goto bad_inode;
4954	}
4955	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
4956		ext4_error_inode(inode, function, line, 0,
4957				 "casefold flag without casefold feature");
4958		ret = -EFSCORRUPTED;
4959		goto bad_inode;
4960	}
4961	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4962		ext4_error_inode(inode, function, line, 0, err_str);
4963		ret = -EFSCORRUPTED;
4964		goto bad_inode;
4965	}
4966
4967	brelse(iloc.bh);
4968	unlock_new_inode(inode);
4969	return inode;
4970
4971bad_inode:
4972	brelse(iloc.bh);
4973	iget_failed(inode);
4974	return ERR_PTR(ret);
4975}
4976
4977static void __ext4_update_other_inode_time(struct super_block *sb,
4978					   unsigned long orig_ino,
4979					   unsigned long ino,
4980					   struct ext4_inode *raw_inode)
4981{
4982	struct inode *inode;
4983
4984	inode = find_inode_by_ino_rcu(sb, ino);
4985	if (!inode)
4986		return;
4987
4988	if (!inode_is_dirtytime_only(inode))
4989		return;
4990
4991	spin_lock(&inode->i_lock);
4992	if (inode_is_dirtytime_only(inode)) {
4993		struct ext4_inode_info	*ei = EXT4_I(inode);
4994
4995		inode->i_state &= ~I_DIRTY_TIME;
4996		spin_unlock(&inode->i_lock);
4997
4998		spin_lock(&ei->i_raw_lock);
4999		EXT4_INODE_SET_CTIME(inode, raw_inode);
5000		EXT4_INODE_SET_MTIME(inode, raw_inode);
5001		EXT4_INODE_SET_ATIME(inode, raw_inode);
5002		ext4_inode_csum_set(inode, raw_inode, ei);
5003		spin_unlock(&ei->i_raw_lock);
5004		trace_ext4_other_inode_update_time(inode, orig_ino);
5005		return;
5006	}
5007	spin_unlock(&inode->i_lock);
5008}
5009
5010/*
5011 * Opportunistically update the other time fields for other inodes in
5012 * the same inode table block.
5013 */
5014static void ext4_update_other_inodes_time(struct super_block *sb,
5015					  unsigned long orig_ino, char *buf)
5016{
5017	unsigned long ino;
5018	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5019	int inode_size = EXT4_INODE_SIZE(sb);
5020
5021	/*
5022	 * Calculate the first inode in the inode table block.  Inode
5023	 * numbers are one-based.  That is, the first inode in a block
5024	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5025	 */
5026	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5027	rcu_read_lock();
5028	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5029		if (ino == orig_ino)
5030			continue;
5031		__ext4_update_other_inode_time(sb, orig_ino, ino,
5032					       (struct ext4_inode *)buf);
5033	}
5034	rcu_read_unlock();
5035}
5036
5037/*
5038 * Post the struct inode info into an on-disk inode location in the
5039 * buffer-cache.  This gobbles the caller's reference to the
5040 * buffer_head in the inode location struct.
5041 *
5042 * The caller must have write access to iloc->bh.
5043 */
5044static int ext4_do_update_inode(handle_t *handle,
5045				struct inode *inode,
5046				struct ext4_iloc *iloc)
5047{
5048	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5049	struct ext4_inode_info *ei = EXT4_I(inode);
5050	struct buffer_head *bh = iloc->bh;
5051	struct super_block *sb = inode->i_sb;
5052	int err;
5053	int need_datasync = 0, set_large_file = 0;
5054
5055	spin_lock(&ei->i_raw_lock);
5056
5057	/*
5058	 * For fields not tracked in the in-memory inode, initialise them
5059	 * to zero for new inodes.
5060	 */
5061	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5062		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5063
5064	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5065		need_datasync = 1;
5066	if (ei->i_disksize > 0x7fffffffULL) {
5067		if (!ext4_has_feature_large_file(sb) ||
5068		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5069			set_large_file = 1;
5070	}
5071
5072	err = ext4_fill_raw_inode(inode, raw_inode);
5073	spin_unlock(&ei->i_raw_lock);
5074	if (err) {
5075		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5076		goto out_brelse;
5077	}
5078
5079	if (inode->i_sb->s_flags & SB_LAZYTIME)
5080		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5081					      bh->b_data);
5082
5083	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5084	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5085	if (err)
5086		goto out_error;
5087	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5088	if (set_large_file) {
5089		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5090		err = ext4_journal_get_write_access(handle, sb,
5091						    EXT4_SB(sb)->s_sbh,
5092						    EXT4_JTR_NONE);
5093		if (err)
5094			goto out_error;
5095		lock_buffer(EXT4_SB(sb)->s_sbh);
5096		ext4_set_feature_large_file(sb);
5097		ext4_superblock_csum_set(sb);
5098		unlock_buffer(EXT4_SB(sb)->s_sbh);
5099		ext4_handle_sync(handle);
5100		err = ext4_handle_dirty_metadata(handle, NULL,
5101						 EXT4_SB(sb)->s_sbh);
5102	}
5103	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5104out_error:
5105	ext4_std_error(inode->i_sb, err);
5106out_brelse:
5107	brelse(bh);
5108	return err;
5109}
5110
5111/*
5112 * ext4_write_inode()
5113 *
5114 * We are called from a few places:
5115 *
5116 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5117 *   Here, there will be no transaction running. We wait for any running
5118 *   transaction to commit.
5119 *
5120 * - Within flush work (sys_sync(), kupdate and such).
5121 *   We wait on commit, if told to.
5122 *
5123 * - Within iput_final() -> write_inode_now()
5124 *   We wait on commit, if told to.
5125 *
5126 * In all cases it is actually safe for us to return without doing anything,
5127 * because the inode has been copied into a raw inode buffer in
5128 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5129 * writeback.
5130 *
5131 * Note that we are absolutely dependent upon all inode dirtiers doing the
5132 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5133 * which we are interested.
5134 *
5135 * It would be a bug for them to not do this.  The code:
5136 *
5137 *	mark_inode_dirty(inode)
5138 *	stuff();
5139 *	inode->i_size = expr;
5140 *
5141 * is in error because write_inode() could occur while `stuff()' is running,
5142 * and the new i_size will be lost.  Plus the inode will no longer be on the
5143 * superblock's dirty inode list.
5144 */
5145int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5146{
5147	int err;
5148
5149	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5150		return 0;
5151
5152	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5153		return -EIO;
5154
5155	if (EXT4_SB(inode->i_sb)->s_journal) {
5156		if (ext4_journal_current_handle()) {
5157			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5158			dump_stack();
5159			return -EIO;
5160		}
5161
5162		/*
5163		 * No need to force transaction in WB_SYNC_NONE mode. Also
5164		 * ext4_sync_fs() will force the commit after everything is
5165		 * written.
5166		 */
5167		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5168			return 0;
5169
5170		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5171						EXT4_I(inode)->i_sync_tid);
5172	} else {
5173		struct ext4_iloc iloc;
5174
5175		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5176		if (err)
5177			return err;
5178		/*
5179		 * sync(2) will flush the whole buffer cache. No need to do
5180		 * it here separately for each inode.
5181		 */
5182		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5183			sync_dirty_buffer(iloc.bh);
5184		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5185			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5186					       "IO error syncing inode");
5187			err = -EIO;
5188		}
5189		brelse(iloc.bh);
5190	}
5191	return err;
5192}
5193
5194/*
5195 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5196 * buffers that are attached to a folio straddling i_size and are undergoing
5197 * commit. In that case we have to wait for commit to finish and try again.
5198 */
5199static void ext4_wait_for_tail_page_commit(struct inode *inode)
5200{
5201	unsigned offset;
5202	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5203	tid_t commit_tid = 0;
5204	int ret;
5205
5206	offset = inode->i_size & (PAGE_SIZE - 1);
5207	/*
5208	 * If the folio is fully truncated, we don't need to wait for any commit
5209	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5210	 * strip all buffers from the folio but keep the folio dirty which can then
5211	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5212	 * buffers). Also we don't need to wait for any commit if all buffers in
5213	 * the folio remain valid. This is most beneficial for the common case of
5214	 * blocksize == PAGESIZE.
5215	 */
5216	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5217		return;
5218	while (1) {
5219		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5220				      inode->i_size >> PAGE_SHIFT);
5221		if (IS_ERR(folio))
5222			return;
5223		ret = __ext4_journalled_invalidate_folio(folio, offset,
5224						folio_size(folio) - offset);
5225		folio_unlock(folio);
5226		folio_put(folio);
5227		if (ret != -EBUSY)
5228			return;
5229		commit_tid = 0;
5230		read_lock(&journal->j_state_lock);
5231		if (journal->j_committing_transaction)
5232			commit_tid = journal->j_committing_transaction->t_tid;
5233		read_unlock(&journal->j_state_lock);
5234		if (commit_tid)
5235			jbd2_log_wait_commit(journal, commit_tid);
5236	}
5237}
5238
5239/*
5240 * ext4_setattr()
5241 *
5242 * Called from notify_change.
5243 *
5244 * We want to trap VFS attempts to truncate the file as soon as
5245 * possible.  In particular, we want to make sure that when the VFS
5246 * shrinks i_size, we put the inode on the orphan list and modify
5247 * i_disksize immediately, so that during the subsequent flushing of
5248 * dirty pages and freeing of disk blocks, we can guarantee that any
5249 * commit will leave the blocks being flushed in an unused state on
5250 * disk.  (On recovery, the inode will get truncated and the blocks will
5251 * be freed, so we have a strong guarantee that no future commit will
5252 * leave these blocks visible to the user.)
5253 *
5254 * Another thing we have to assure is that if we are in ordered mode
5255 * and inode is still attached to the committing transaction, we must
5256 * we start writeout of all the dirty pages which are being truncated.
5257 * This way we are sure that all the data written in the previous
5258 * transaction are already on disk (truncate waits for pages under
5259 * writeback).
5260 *
5261 * Called with inode->i_rwsem down.
5262 */
5263int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5264		 struct iattr *attr)
5265{
5266	struct inode *inode = d_inode(dentry);
5267	int error, rc = 0;
5268	int orphan = 0;
5269	const unsigned int ia_valid = attr->ia_valid;
5270	bool inc_ivers = true;
5271
5272	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5273		return -EIO;
5274
5275	if (unlikely(IS_IMMUTABLE(inode)))
5276		return -EPERM;
5277
5278	if (unlikely(IS_APPEND(inode) &&
5279		     (ia_valid & (ATTR_MODE | ATTR_UID |
5280				  ATTR_GID | ATTR_TIMES_SET))))
5281		return -EPERM;
5282
5283	error = setattr_prepare(idmap, dentry, attr);
5284	if (error)
5285		return error;
5286
5287	error = fscrypt_prepare_setattr(dentry, attr);
5288	if (error)
5289		return error;
5290
5291	error = fsverity_prepare_setattr(dentry, attr);
5292	if (error)
5293		return error;
5294
5295	if (is_quota_modification(idmap, inode, attr)) {
5296		error = dquot_initialize(inode);
5297		if (error)
5298			return error;
5299	}
5300
5301	if (i_uid_needs_update(idmap, attr, inode) ||
5302	    i_gid_needs_update(idmap, attr, inode)) {
5303		handle_t *handle;
5304
5305		/* (user+group)*(old+new) structure, inode write (sb,
5306		 * inode block, ? - but truncate inode update has it) */
5307		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5308			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5309			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5310		if (IS_ERR(handle)) {
5311			error = PTR_ERR(handle);
5312			goto err_out;
5313		}
5314
5315		/* dquot_transfer() calls back ext4_get_inode_usage() which
5316		 * counts xattr inode references.
5317		 */
5318		down_read(&EXT4_I(inode)->xattr_sem);
5319		error = dquot_transfer(idmap, inode, attr);
5320		up_read(&EXT4_I(inode)->xattr_sem);
5321
5322		if (error) {
5323			ext4_journal_stop(handle);
5324			return error;
5325		}
5326		/* Update corresponding info in inode so that everything is in
5327		 * one transaction */
5328		i_uid_update(idmap, attr, inode);
5329		i_gid_update(idmap, attr, inode);
5330		error = ext4_mark_inode_dirty(handle, inode);
5331		ext4_journal_stop(handle);
5332		if (unlikely(error)) {
5333			return error;
5334		}
5335	}
5336
5337	if (attr->ia_valid & ATTR_SIZE) {
5338		handle_t *handle;
5339		loff_t oldsize = inode->i_size;
5340		loff_t old_disksize;
5341		int shrink = (attr->ia_size < inode->i_size);
5342
5343		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5344			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5345
5346			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5347				return -EFBIG;
5348			}
5349		}
5350		if (!S_ISREG(inode->i_mode)) {
5351			return -EINVAL;
5352		}
5353
5354		if (attr->ia_size == inode->i_size)
5355			inc_ivers = false;
5356
5357		if (shrink) {
5358			if (ext4_should_order_data(inode)) {
5359				error = ext4_begin_ordered_truncate(inode,
5360							    attr->ia_size);
5361				if (error)
5362					goto err_out;
5363			}
5364			/*
5365			 * Blocks are going to be removed from the inode. Wait
5366			 * for dio in flight.
5367			 */
5368			inode_dio_wait(inode);
5369		}
5370
5371		filemap_invalidate_lock(inode->i_mapping);
5372
5373		rc = ext4_break_layouts(inode);
5374		if (rc) {
5375			filemap_invalidate_unlock(inode->i_mapping);
5376			goto err_out;
5377		}
5378
5379		if (attr->ia_size != inode->i_size) {
5380			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5381			if (IS_ERR(handle)) {
5382				error = PTR_ERR(handle);
5383				goto out_mmap_sem;
5384			}
5385			if (ext4_handle_valid(handle) && shrink) {
5386				error = ext4_orphan_add(handle, inode);
5387				orphan = 1;
5388			}
5389			/*
5390			 * Update c/mtime on truncate up, ext4_truncate() will
5391			 * update c/mtime in shrink case below
5392			 */
5393			if (!shrink)
5394				inode_set_mtime_to_ts(inode,
5395						      inode_set_ctime_current(inode));
5396
5397			if (shrink)
5398				ext4_fc_track_range(handle, inode,
5399					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5400					inode->i_sb->s_blocksize_bits,
5401					EXT_MAX_BLOCKS - 1);
5402			else
5403				ext4_fc_track_range(
5404					handle, inode,
5405					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5406					inode->i_sb->s_blocksize_bits,
5407					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5408					inode->i_sb->s_blocksize_bits);
5409
5410			down_write(&EXT4_I(inode)->i_data_sem);
5411			old_disksize = EXT4_I(inode)->i_disksize;
5412			EXT4_I(inode)->i_disksize = attr->ia_size;
5413			rc = ext4_mark_inode_dirty(handle, inode);
5414			if (!error)
5415				error = rc;
5416			/*
5417			 * We have to update i_size under i_data_sem together
5418			 * with i_disksize to avoid races with writeback code
5419			 * running ext4_wb_update_i_disksize().
5420			 */
5421			if (!error)
5422				i_size_write(inode, attr->ia_size);
5423			else
5424				EXT4_I(inode)->i_disksize = old_disksize;
5425			up_write(&EXT4_I(inode)->i_data_sem);
5426			ext4_journal_stop(handle);
5427			if (error)
5428				goto out_mmap_sem;
5429			if (!shrink) {
5430				pagecache_isize_extended(inode, oldsize,
5431							 inode->i_size);
5432			} else if (ext4_should_journal_data(inode)) {
5433				ext4_wait_for_tail_page_commit(inode);
5434			}
5435		}
5436
5437		/*
5438		 * Truncate pagecache after we've waited for commit
5439		 * in data=journal mode to make pages freeable.
5440		 */
5441		truncate_pagecache(inode, inode->i_size);
5442		/*
5443		 * Call ext4_truncate() even if i_size didn't change to
5444		 * truncate possible preallocated blocks.
5445		 */
5446		if (attr->ia_size <= oldsize) {
5447			rc = ext4_truncate(inode);
5448			if (rc)
5449				error = rc;
5450		}
5451out_mmap_sem:
5452		filemap_invalidate_unlock(inode->i_mapping);
5453	}
5454
5455	if (!error) {
5456		if (inc_ivers)
5457			inode_inc_iversion(inode);
5458		setattr_copy(idmap, inode, attr);
5459		mark_inode_dirty(inode);
5460	}
5461
5462	/*
5463	 * If the call to ext4_truncate failed to get a transaction handle at
5464	 * all, we need to clean up the in-core orphan list manually.
5465	 */
5466	if (orphan && inode->i_nlink)
5467		ext4_orphan_del(NULL, inode);
5468
5469	if (!error && (ia_valid & ATTR_MODE))
5470		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5471
5472err_out:
5473	if  (error)
5474		ext4_std_error(inode->i_sb, error);
5475	if (!error)
5476		error = rc;
5477	return error;
5478}
5479
5480u32 ext4_dio_alignment(struct inode *inode)
5481{
5482	if (fsverity_active(inode))
5483		return 0;
5484	if (ext4_should_journal_data(inode))
5485		return 0;
5486	if (ext4_has_inline_data(inode))
5487		return 0;
5488	if (IS_ENCRYPTED(inode)) {
5489		if (!fscrypt_dio_supported(inode))
5490			return 0;
5491		return i_blocksize(inode);
5492	}
5493	return 1; /* use the iomap defaults */
5494}
5495
5496int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5497		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5498{
5499	struct inode *inode = d_inode(path->dentry);
5500	struct ext4_inode *raw_inode;
5501	struct ext4_inode_info *ei = EXT4_I(inode);
5502	unsigned int flags;
5503
5504	if ((request_mask & STATX_BTIME) &&
5505	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5506		stat->result_mask |= STATX_BTIME;
5507		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5508		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5509	}
5510
5511	/*
5512	 * Return the DIO alignment restrictions if requested.  We only return
5513	 * this information when requested, since on encrypted files it might
5514	 * take a fair bit of work to get if the file wasn't opened recently.
5515	 */
5516	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5517		u32 dio_align = ext4_dio_alignment(inode);
5518
5519		stat->result_mask |= STATX_DIOALIGN;
5520		if (dio_align == 1) {
5521			struct block_device *bdev = inode->i_sb->s_bdev;
5522
5523			/* iomap defaults */
5524			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5525			stat->dio_offset_align = bdev_logical_block_size(bdev);
5526		} else {
5527			stat->dio_mem_align = dio_align;
5528			stat->dio_offset_align = dio_align;
5529		}
5530	}
5531
5532	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5533	if (flags & EXT4_APPEND_FL)
5534		stat->attributes |= STATX_ATTR_APPEND;
5535	if (flags & EXT4_COMPR_FL)
5536		stat->attributes |= STATX_ATTR_COMPRESSED;
5537	if (flags & EXT4_ENCRYPT_FL)
5538		stat->attributes |= STATX_ATTR_ENCRYPTED;
5539	if (flags & EXT4_IMMUTABLE_FL)
5540		stat->attributes |= STATX_ATTR_IMMUTABLE;
5541	if (flags & EXT4_NODUMP_FL)
5542		stat->attributes |= STATX_ATTR_NODUMP;
5543	if (flags & EXT4_VERITY_FL)
5544		stat->attributes |= STATX_ATTR_VERITY;
5545
5546	stat->attributes_mask |= (STATX_ATTR_APPEND |
5547				  STATX_ATTR_COMPRESSED |
5548				  STATX_ATTR_ENCRYPTED |
5549				  STATX_ATTR_IMMUTABLE |
5550				  STATX_ATTR_NODUMP |
5551				  STATX_ATTR_VERITY);
5552
5553	generic_fillattr(idmap, request_mask, inode, stat);
5554	return 0;
5555}
5556
5557int ext4_file_getattr(struct mnt_idmap *idmap,
5558		      const struct path *path, struct kstat *stat,
5559		      u32 request_mask, unsigned int query_flags)
5560{
5561	struct inode *inode = d_inode(path->dentry);
5562	u64 delalloc_blocks;
5563
5564	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5565
5566	/*
5567	 * If there is inline data in the inode, the inode will normally not
5568	 * have data blocks allocated (it may have an external xattr block).
5569	 * Report at least one sector for such files, so tools like tar, rsync,
5570	 * others don't incorrectly think the file is completely sparse.
5571	 */
5572	if (unlikely(ext4_has_inline_data(inode)))
5573		stat->blocks += (stat->size + 511) >> 9;
5574
5575	/*
5576	 * We can't update i_blocks if the block allocation is delayed
5577	 * otherwise in the case of system crash before the real block
5578	 * allocation is done, we will have i_blocks inconsistent with
5579	 * on-disk file blocks.
5580	 * We always keep i_blocks updated together with real
5581	 * allocation. But to not confuse with user, stat
5582	 * will return the blocks that include the delayed allocation
5583	 * blocks for this file.
5584	 */
5585	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5586				   EXT4_I(inode)->i_reserved_data_blocks);
5587	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5588	return 0;
5589}
5590
5591static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5592				   int pextents)
5593{
5594	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5595		return ext4_ind_trans_blocks(inode, lblocks);
5596	return ext4_ext_index_trans_blocks(inode, pextents);
5597}
5598
5599/*
5600 * Account for index blocks, block groups bitmaps and block group
5601 * descriptor blocks if modify datablocks and index blocks
5602 * worse case, the indexs blocks spread over different block groups
5603 *
5604 * If datablocks are discontiguous, they are possible to spread over
5605 * different block groups too. If they are contiguous, with flexbg,
5606 * they could still across block group boundary.
5607 *
5608 * Also account for superblock, inode, quota and xattr blocks
5609 */
5610static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5611				  int pextents)
5612{
5613	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5614	int gdpblocks;
5615	int idxblocks;
5616	int ret;
5617
5618	/*
5619	 * How many index blocks need to touch to map @lblocks logical blocks
5620	 * to @pextents physical extents?
5621	 */
5622	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5623
5624	ret = idxblocks;
5625
5626	/*
5627	 * Now let's see how many group bitmaps and group descriptors need
5628	 * to account
5629	 */
5630	groups = idxblocks + pextents;
5631	gdpblocks = groups;
5632	if (groups > ngroups)
5633		groups = ngroups;
5634	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5635		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5636
5637	/* bitmaps and block group descriptor blocks */
5638	ret += groups + gdpblocks;
5639
5640	/* Blocks for super block, inode, quota and xattr blocks */
5641	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5642
5643	return ret;
5644}
5645
5646/*
5647 * Calculate the total number of credits to reserve to fit
5648 * the modification of a single pages into a single transaction,
5649 * which may include multiple chunks of block allocations.
5650 *
5651 * This could be called via ext4_write_begin()
5652 *
5653 * We need to consider the worse case, when
5654 * one new block per extent.
5655 */
5656int ext4_writepage_trans_blocks(struct inode *inode)
5657{
5658	int bpp = ext4_journal_blocks_per_page(inode);
5659	int ret;
5660
5661	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5662
5663	/* Account for data blocks for journalled mode */
5664	if (ext4_should_journal_data(inode))
5665		ret += bpp;
5666	return ret;
5667}
5668
5669/*
5670 * Calculate the journal credits for a chunk of data modification.
5671 *
5672 * This is called from DIO, fallocate or whoever calling
5673 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5674 *
5675 * journal buffers for data blocks are not included here, as DIO
5676 * and fallocate do no need to journal data buffers.
5677 */
5678int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5679{
5680	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5681}
5682
5683/*
5684 * The caller must have previously called ext4_reserve_inode_write().
5685 * Give this, we know that the caller already has write access to iloc->bh.
5686 */
5687int ext4_mark_iloc_dirty(handle_t *handle,
5688			 struct inode *inode, struct ext4_iloc *iloc)
5689{
5690	int err = 0;
5691
5692	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5693		put_bh(iloc->bh);
5694		return -EIO;
5695	}
5696	ext4_fc_track_inode(handle, inode);
5697
5698	/* the do_update_inode consumes one bh->b_count */
5699	get_bh(iloc->bh);
5700
5701	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5702	err = ext4_do_update_inode(handle, inode, iloc);
5703	put_bh(iloc->bh);
5704	return err;
5705}
5706
5707/*
5708 * On success, We end up with an outstanding reference count against
5709 * iloc->bh.  This _must_ be cleaned up later.
5710 */
5711
5712int
5713ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5714			 struct ext4_iloc *iloc)
5715{
5716	int err;
5717
5718	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5719		return -EIO;
5720
5721	err = ext4_get_inode_loc(inode, iloc);
5722	if (!err) {
5723		BUFFER_TRACE(iloc->bh, "get_write_access");
5724		err = ext4_journal_get_write_access(handle, inode->i_sb,
5725						    iloc->bh, EXT4_JTR_NONE);
5726		if (err) {
5727			brelse(iloc->bh);
5728			iloc->bh = NULL;
5729		}
5730	}
5731	ext4_std_error(inode->i_sb, err);
5732	return err;
5733}
5734
5735static int __ext4_expand_extra_isize(struct inode *inode,
5736				     unsigned int new_extra_isize,
5737				     struct ext4_iloc *iloc,
5738				     handle_t *handle, int *no_expand)
5739{
5740	struct ext4_inode *raw_inode;
5741	struct ext4_xattr_ibody_header *header;
5742	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5743	struct ext4_inode_info *ei = EXT4_I(inode);
5744	int error;
5745
5746	/* this was checked at iget time, but double check for good measure */
5747	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5748	    (ei->i_extra_isize & 3)) {
5749		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5750				 ei->i_extra_isize,
5751				 EXT4_INODE_SIZE(inode->i_sb));
5752		return -EFSCORRUPTED;
5753	}
5754	if ((new_extra_isize < ei->i_extra_isize) ||
5755	    (new_extra_isize < 4) ||
5756	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5757		return -EINVAL;	/* Should never happen */
5758
5759	raw_inode = ext4_raw_inode(iloc);
5760
5761	header = IHDR(inode, raw_inode);
5762
5763	/* No extended attributes present */
5764	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5765	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5766		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5767		       EXT4_I(inode)->i_extra_isize, 0,
5768		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5769		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5770		return 0;
5771	}
5772
5773	/*
5774	 * We may need to allocate external xattr block so we need quotas
5775	 * initialized. Here we can be called with various locks held so we
5776	 * cannot affort to initialize quotas ourselves. So just bail.
5777	 */
5778	if (dquot_initialize_needed(inode))
5779		return -EAGAIN;
5780
5781	/* try to expand with EAs present */
5782	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5783					   raw_inode, handle);
5784	if (error) {
5785		/*
5786		 * Inode size expansion failed; don't try again
5787		 */
5788		*no_expand = 1;
5789	}
5790
5791	return error;
5792}
5793
5794/*
5795 * Expand an inode by new_extra_isize bytes.
5796 * Returns 0 on success or negative error number on failure.
5797 */
5798static int ext4_try_to_expand_extra_isize(struct inode *inode,
5799					  unsigned int new_extra_isize,
5800					  struct ext4_iloc iloc,
5801					  handle_t *handle)
5802{
5803	int no_expand;
5804	int error;
5805
5806	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5807		return -EOVERFLOW;
5808
5809	/*
5810	 * In nojournal mode, we can immediately attempt to expand
5811	 * the inode.  When journaled, we first need to obtain extra
5812	 * buffer credits since we may write into the EA block
5813	 * with this same handle. If journal_extend fails, then it will
5814	 * only result in a minor loss of functionality for that inode.
5815	 * If this is felt to be critical, then e2fsck should be run to
5816	 * force a large enough s_min_extra_isize.
5817	 */
5818	if (ext4_journal_extend(handle,
5819				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5820		return -ENOSPC;
5821
5822	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5823		return -EBUSY;
5824
5825	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5826					  handle, &no_expand);
5827	ext4_write_unlock_xattr(inode, &no_expand);
5828
5829	return error;
5830}
5831
5832int ext4_expand_extra_isize(struct inode *inode,
5833			    unsigned int new_extra_isize,
5834			    struct ext4_iloc *iloc)
5835{
5836	handle_t *handle;
5837	int no_expand;
5838	int error, rc;
5839
5840	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5841		brelse(iloc->bh);
5842		return -EOVERFLOW;
5843	}
5844
5845	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5846				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5847	if (IS_ERR(handle)) {
5848		error = PTR_ERR(handle);
5849		brelse(iloc->bh);
5850		return error;
5851	}
5852
5853	ext4_write_lock_xattr(inode, &no_expand);
5854
5855	BUFFER_TRACE(iloc->bh, "get_write_access");
5856	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5857					      EXT4_JTR_NONE);
5858	if (error) {
5859		brelse(iloc->bh);
5860		goto out_unlock;
5861	}
5862
5863	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5864					  handle, &no_expand);
5865
5866	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5867	if (!error)
5868		error = rc;
5869
5870out_unlock:
5871	ext4_write_unlock_xattr(inode, &no_expand);
5872	ext4_journal_stop(handle);
5873	return error;
5874}
5875
5876/*
5877 * What we do here is to mark the in-core inode as clean with respect to inode
5878 * dirtiness (it may still be data-dirty).
5879 * This means that the in-core inode may be reaped by prune_icache
5880 * without having to perform any I/O.  This is a very good thing,
5881 * because *any* task may call prune_icache - even ones which
5882 * have a transaction open against a different journal.
5883 *
5884 * Is this cheating?  Not really.  Sure, we haven't written the
5885 * inode out, but prune_icache isn't a user-visible syncing function.
5886 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5887 * we start and wait on commits.
5888 */
5889int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5890				const char *func, unsigned int line)
5891{
5892	struct ext4_iloc iloc;
5893	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5894	int err;
5895
5896	might_sleep();
5897	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5898	err = ext4_reserve_inode_write(handle, inode, &iloc);
5899	if (err)
5900		goto out;
5901
5902	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5903		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5904					       iloc, handle);
5905
5906	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5907out:
5908	if (unlikely(err))
5909		ext4_error_inode_err(inode, func, line, 0, err,
5910					"mark_inode_dirty error");
5911	return err;
5912}
5913
5914/*
5915 * ext4_dirty_inode() is called from __mark_inode_dirty()
5916 *
5917 * We're really interested in the case where a file is being extended.
5918 * i_size has been changed by generic_commit_write() and we thus need
5919 * to include the updated inode in the current transaction.
5920 *
5921 * Also, dquot_alloc_block() will always dirty the inode when blocks
5922 * are allocated to the file.
5923 *
5924 * If the inode is marked synchronous, we don't honour that here - doing
5925 * so would cause a commit on atime updates, which we don't bother doing.
5926 * We handle synchronous inodes at the highest possible level.
5927 */
5928void ext4_dirty_inode(struct inode *inode, int flags)
5929{
5930	handle_t *handle;
5931
5932	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5933	if (IS_ERR(handle))
5934		return;
5935	ext4_mark_inode_dirty(handle, inode);
5936	ext4_journal_stop(handle);
5937}
5938
5939int ext4_change_inode_journal_flag(struct inode *inode, int val)
5940{
5941	journal_t *journal;
5942	handle_t *handle;
5943	int err;
5944	int alloc_ctx;
5945
5946	/*
5947	 * We have to be very careful here: changing a data block's
5948	 * journaling status dynamically is dangerous.  If we write a
5949	 * data block to the journal, change the status and then delete
5950	 * that block, we risk forgetting to revoke the old log record
5951	 * from the journal and so a subsequent replay can corrupt data.
5952	 * So, first we make sure that the journal is empty and that
5953	 * nobody is changing anything.
5954	 */
5955
5956	journal = EXT4_JOURNAL(inode);
5957	if (!journal)
5958		return 0;
5959	if (is_journal_aborted(journal))
5960		return -EROFS;
5961
5962	/* Wait for all existing dio workers */
5963	inode_dio_wait(inode);
5964
5965	/*
5966	 * Before flushing the journal and switching inode's aops, we have
5967	 * to flush all dirty data the inode has. There can be outstanding
5968	 * delayed allocations, there can be unwritten extents created by
5969	 * fallocate or buffered writes in dioread_nolock mode covered by
5970	 * dirty data which can be converted only after flushing the dirty
5971	 * data (and journalled aops don't know how to handle these cases).
5972	 */
5973	if (val) {
5974		filemap_invalidate_lock(inode->i_mapping);
5975		err = filemap_write_and_wait(inode->i_mapping);
5976		if (err < 0) {
5977			filemap_invalidate_unlock(inode->i_mapping);
5978			return err;
5979		}
5980	}
5981
5982	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
5983	jbd2_journal_lock_updates(journal);
5984
5985	/*
5986	 * OK, there are no updates running now, and all cached data is
5987	 * synced to disk.  We are now in a completely consistent state
5988	 * which doesn't have anything in the journal, and we know that
5989	 * no filesystem updates are running, so it is safe to modify
5990	 * the inode's in-core data-journaling state flag now.
5991	 */
5992
5993	if (val)
5994		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5995	else {
5996		err = jbd2_journal_flush(journal, 0);
5997		if (err < 0) {
5998			jbd2_journal_unlock_updates(journal);
5999			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6000			return err;
6001		}
6002		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6003	}
6004	ext4_set_aops(inode);
6005
6006	jbd2_journal_unlock_updates(journal);
6007	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6008
6009	if (val)
6010		filemap_invalidate_unlock(inode->i_mapping);
6011
6012	/* Finally we can mark the inode as dirty. */
6013
6014	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6015	if (IS_ERR(handle))
6016		return PTR_ERR(handle);
6017
6018	ext4_fc_mark_ineligible(inode->i_sb,
6019		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6020	err = ext4_mark_inode_dirty(handle, inode);
6021	ext4_handle_sync(handle);
6022	ext4_journal_stop(handle);
6023	ext4_std_error(inode->i_sb, err);
6024
6025	return err;
6026}
6027
6028static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6029			    struct buffer_head *bh)
6030{
6031	return !buffer_mapped(bh);
6032}
6033
6034vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6035{
6036	struct vm_area_struct *vma = vmf->vma;
6037	struct folio *folio = page_folio(vmf->page);
6038	loff_t size;
6039	unsigned long len;
6040	int err;
6041	vm_fault_t ret;
6042	struct file *file = vma->vm_file;
6043	struct inode *inode = file_inode(file);
6044	struct address_space *mapping = inode->i_mapping;
6045	handle_t *handle;
6046	get_block_t *get_block;
6047	int retries = 0;
6048
6049	if (unlikely(IS_IMMUTABLE(inode)))
6050		return VM_FAULT_SIGBUS;
6051
6052	sb_start_pagefault(inode->i_sb);
6053	file_update_time(vma->vm_file);
6054
6055	filemap_invalidate_lock_shared(mapping);
6056
6057	err = ext4_convert_inline_data(inode);
6058	if (err)
6059		goto out_ret;
6060
6061	/*
6062	 * On data journalling we skip straight to the transaction handle:
6063	 * there's no delalloc; page truncated will be checked later; the
6064	 * early return w/ all buffers mapped (calculates size/len) can't
6065	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6066	 */
6067	if (ext4_should_journal_data(inode))
6068		goto retry_alloc;
6069
6070	/* Delalloc case is easy... */
6071	if (test_opt(inode->i_sb, DELALLOC) &&
6072	    !ext4_nonda_switch(inode->i_sb)) {
6073		do {
6074			err = block_page_mkwrite(vma, vmf,
6075						   ext4_da_get_block_prep);
6076		} while (err == -ENOSPC &&
6077		       ext4_should_retry_alloc(inode->i_sb, &retries));
6078		goto out_ret;
6079	}
6080
6081	folio_lock(folio);
6082	size = i_size_read(inode);
6083	/* Page got truncated from under us? */
6084	if (folio->mapping != mapping || folio_pos(folio) > size) {
6085		folio_unlock(folio);
6086		ret = VM_FAULT_NOPAGE;
6087		goto out;
6088	}
6089
6090	len = folio_size(folio);
6091	if (folio_pos(folio) + len > size)
6092		len = size - folio_pos(folio);
6093	/*
6094	 * Return if we have all the buffers mapped. This avoids the need to do
6095	 * journal_start/journal_stop which can block and take a long time
6096	 *
6097	 * This cannot be done for data journalling, as we have to add the
6098	 * inode to the transaction's list to writeprotect pages on commit.
6099	 */
6100	if (folio_buffers(folio)) {
6101		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6102					    0, len, NULL,
6103					    ext4_bh_unmapped)) {
6104			/* Wait so that we don't change page under IO */
6105			folio_wait_stable(folio);
6106			ret = VM_FAULT_LOCKED;
6107			goto out;
6108		}
6109	}
6110	folio_unlock(folio);
6111	/* OK, we need to fill the hole... */
6112	if (ext4_should_dioread_nolock(inode))
6113		get_block = ext4_get_block_unwritten;
6114	else
6115		get_block = ext4_get_block;
6116retry_alloc:
6117	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6118				    ext4_writepage_trans_blocks(inode));
6119	if (IS_ERR(handle)) {
6120		ret = VM_FAULT_SIGBUS;
6121		goto out;
6122	}
6123	/*
6124	 * Data journalling can't use block_page_mkwrite() because it
6125	 * will set_buffer_dirty() before do_journal_get_write_access()
6126	 * thus might hit warning messages for dirty metadata buffers.
6127	 */
6128	if (!ext4_should_journal_data(inode)) {
6129		err = block_page_mkwrite(vma, vmf, get_block);
6130	} else {
6131		folio_lock(folio);
6132		size = i_size_read(inode);
6133		/* Page got truncated from under us? */
6134		if (folio->mapping != mapping || folio_pos(folio) > size) {
6135			ret = VM_FAULT_NOPAGE;
6136			goto out_error;
6137		}
6138
6139		len = folio_size(folio);
6140		if (folio_pos(folio) + len > size)
6141			len = size - folio_pos(folio);
6142
6143		err = __block_write_begin(&folio->page, 0, len, ext4_get_block);
6144		if (!err) {
6145			ret = VM_FAULT_SIGBUS;
6146			if (ext4_journal_folio_buffers(handle, folio, len))
6147				goto out_error;
6148		} else {
6149			folio_unlock(folio);
6150		}
6151	}
6152	ext4_journal_stop(handle);
6153	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6154		goto retry_alloc;
6155out_ret:
6156	ret = vmf_fs_error(err);
6157out:
6158	filemap_invalidate_unlock_shared(mapping);
6159	sb_end_pagefault(inode->i_sb);
6160	return ret;
6161out_error:
6162	folio_unlock(folio);
6163	ext4_journal_stop(handle);
6164	goto out;
6165}
6166