1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/fs/exec.c
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 */
7
8/*
9 * #!-checking implemented by tytso.
10 */
11/*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20 * current->executable is only used by the procfs.  This allows a dispatch
21 * table to check for several different types  of binary formats.  We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26#include <linux/kernel_read_file.h>
27#include <linux/slab.h>
28#include <linux/file.h>
29#include <linux/fdtable.h>
30#include <linux/mm.h>
31#include <linux/stat.h>
32#include <linux/fcntl.h>
33#include <linux/swap.h>
34#include <linux/string.h>
35#include <linux/init.h>
36#include <linux/sched/mm.h>
37#include <linux/sched/coredump.h>
38#include <linux/sched/signal.h>
39#include <linux/sched/numa_balancing.h>
40#include <linux/sched/task.h>
41#include <linux/pagemap.h>
42#include <linux/perf_event.h>
43#include <linux/highmem.h>
44#include <linux/spinlock.h>
45#include <linux/key.h>
46#include <linux/personality.h>
47#include <linux/binfmts.h>
48#include <linux/utsname.h>
49#include <linux/pid_namespace.h>
50#include <linux/module.h>
51#include <linux/namei.h>
52#include <linux/mount.h>
53#include <linux/security.h>
54#include <linux/syscalls.h>
55#include <linux/tsacct_kern.h>
56#include <linux/cn_proc.h>
57#include <linux/audit.h>
58#include <linux/kmod.h>
59#include <linux/fsnotify.h>
60#include <linux/fs_struct.h>
61#include <linux/oom.h>
62#include <linux/compat.h>
63#include <linux/vmalloc.h>
64#include <linux/io_uring.h>
65#include <linux/syscall_user_dispatch.h>
66#include <linux/coredump.h>
67#include <linux/time_namespace.h>
68#include <linux/user_events.h>
69#include <linux/rseq.h>
70#include <linux/ksm.h>
71
72#include <linux/uaccess.h>
73#include <asm/mmu_context.h>
74#include <asm/tlb.h>
75
76#include <trace/events/task.h>
77#include "internal.h"
78
79#include <trace/events/sched.h>
80
81static int bprm_creds_from_file(struct linux_binprm *bprm);
82
83int suid_dumpable = 0;
84
85static LIST_HEAD(formats);
86static DEFINE_RWLOCK(binfmt_lock);
87
88void __register_binfmt(struct linux_binfmt * fmt, int insert)
89{
90	write_lock(&binfmt_lock);
91	insert ? list_add(&fmt->lh, &formats) :
92		 list_add_tail(&fmt->lh, &formats);
93	write_unlock(&binfmt_lock);
94}
95
96EXPORT_SYMBOL(__register_binfmt);
97
98void unregister_binfmt(struct linux_binfmt * fmt)
99{
100	write_lock(&binfmt_lock);
101	list_del(&fmt->lh);
102	write_unlock(&binfmt_lock);
103}
104
105EXPORT_SYMBOL(unregister_binfmt);
106
107static inline void put_binfmt(struct linux_binfmt * fmt)
108{
109	module_put(fmt->module);
110}
111
112bool path_noexec(const struct path *path)
113{
114	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116}
117
118#ifdef CONFIG_USELIB
119/*
120 * Note that a shared library must be both readable and executable due to
121 * security reasons.
122 *
123 * Also note that we take the address to load from the file itself.
124 */
125SYSCALL_DEFINE1(uselib, const char __user *, library)
126{
127	struct linux_binfmt *fmt;
128	struct file *file;
129	struct filename *tmp = getname(library);
130	int error = PTR_ERR(tmp);
131	static const struct open_flags uselib_flags = {
132		.open_flag = O_LARGEFILE | O_RDONLY,
133		.acc_mode = MAY_READ | MAY_EXEC,
134		.intent = LOOKUP_OPEN,
135		.lookup_flags = LOOKUP_FOLLOW,
136	};
137
138	if (IS_ERR(tmp))
139		goto out;
140
141	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142	putname(tmp);
143	error = PTR_ERR(file);
144	if (IS_ERR(file))
145		goto out;
146
147	/*
148	 * may_open() has already checked for this, so it should be
149	 * impossible to trip now. But we need to be extra cautious
150	 * and check again at the very end too.
151	 */
152	error = -EACCES;
153	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
154			 path_noexec(&file->f_path)))
155		goto exit;
156
157	error = -ENOEXEC;
158
159	read_lock(&binfmt_lock);
160	list_for_each_entry(fmt, &formats, lh) {
161		if (!fmt->load_shlib)
162			continue;
163		if (!try_module_get(fmt->module))
164			continue;
165		read_unlock(&binfmt_lock);
166		error = fmt->load_shlib(file);
167		read_lock(&binfmt_lock);
168		put_binfmt(fmt);
169		if (error != -ENOEXEC)
170			break;
171	}
172	read_unlock(&binfmt_lock);
173exit:
174	fput(file);
175out:
176	return error;
177}
178#endif /* #ifdef CONFIG_USELIB */
179
180#ifdef CONFIG_MMU
181/*
182 * The nascent bprm->mm is not visible until exec_mmap() but it can
183 * use a lot of memory, account these pages in current->mm temporary
184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185 * change the counter back via acct_arg_size(0).
186 */
187static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188{
189	struct mm_struct *mm = current->mm;
190	long diff = (long)(pages - bprm->vma_pages);
191
192	if (!mm || !diff)
193		return;
194
195	bprm->vma_pages = pages;
196	add_mm_counter(mm, MM_ANONPAGES, diff);
197}
198
199static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200		int write)
201{
202	struct page *page;
203	struct vm_area_struct *vma = bprm->vma;
204	struct mm_struct *mm = bprm->mm;
205	int ret;
206
207	/*
208	 * Avoid relying on expanding the stack down in GUP (which
209	 * does not work for STACK_GROWSUP anyway), and just do it
210	 * by hand ahead of time.
211	 */
212	if (write && pos < vma->vm_start) {
213		mmap_write_lock(mm);
214		ret = expand_downwards(vma, pos);
215		if (unlikely(ret < 0)) {
216			mmap_write_unlock(mm);
217			return NULL;
218		}
219		mmap_write_downgrade(mm);
220	} else
221		mmap_read_lock(mm);
222
223	/*
224	 * We are doing an exec().  'current' is the process
225	 * doing the exec and 'mm' is the new process's mm.
226	 */
227	ret = get_user_pages_remote(mm, pos, 1,
228			write ? FOLL_WRITE : 0,
229			&page, NULL);
230	mmap_read_unlock(mm);
231	if (ret <= 0)
232		return NULL;
233
234	if (write)
235		acct_arg_size(bprm, vma_pages(vma));
236
237	return page;
238}
239
240static void put_arg_page(struct page *page)
241{
242	put_page(page);
243}
244
245static void free_arg_pages(struct linux_binprm *bprm)
246{
247}
248
249static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
250		struct page *page)
251{
252	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
253}
254
255static int __bprm_mm_init(struct linux_binprm *bprm)
256{
257	int err;
258	struct vm_area_struct *vma = NULL;
259	struct mm_struct *mm = bprm->mm;
260
261	bprm->vma = vma = vm_area_alloc(mm);
262	if (!vma)
263		return -ENOMEM;
264	vma_set_anonymous(vma);
265
266	if (mmap_write_lock_killable(mm)) {
267		err = -EINTR;
268		goto err_free;
269	}
270
271	/*
272	 * Need to be called with mmap write lock
273	 * held, to avoid race with ksmd.
274	 */
275	err = ksm_execve(mm);
276	if (err)
277		goto err_ksm;
278
279	/*
280	 * Place the stack at the largest stack address the architecture
281	 * supports. Later, we'll move this to an appropriate place. We don't
282	 * use STACK_TOP because that can depend on attributes which aren't
283	 * configured yet.
284	 */
285	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
286	vma->vm_end = STACK_TOP_MAX;
287	vma->vm_start = vma->vm_end - PAGE_SIZE;
288	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
289	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
290
291	err = insert_vm_struct(mm, vma);
292	if (err)
293		goto err;
294
295	mm->stack_vm = mm->total_vm = 1;
296	mmap_write_unlock(mm);
297	bprm->p = vma->vm_end - sizeof(void *);
298	return 0;
299err:
300	ksm_exit(mm);
301err_ksm:
302	mmap_write_unlock(mm);
303err_free:
304	bprm->vma = NULL;
305	vm_area_free(vma);
306	return err;
307}
308
309static bool valid_arg_len(struct linux_binprm *bprm, long len)
310{
311	return len <= MAX_ARG_STRLEN;
312}
313
314#else
315
316static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
317{
318}
319
320static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
321		int write)
322{
323	struct page *page;
324
325	page = bprm->page[pos / PAGE_SIZE];
326	if (!page && write) {
327		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
328		if (!page)
329			return NULL;
330		bprm->page[pos / PAGE_SIZE] = page;
331	}
332
333	return page;
334}
335
336static void put_arg_page(struct page *page)
337{
338}
339
340static void free_arg_page(struct linux_binprm *bprm, int i)
341{
342	if (bprm->page[i]) {
343		__free_page(bprm->page[i]);
344		bprm->page[i] = NULL;
345	}
346}
347
348static void free_arg_pages(struct linux_binprm *bprm)
349{
350	int i;
351
352	for (i = 0; i < MAX_ARG_PAGES; i++)
353		free_arg_page(bprm, i);
354}
355
356static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
357		struct page *page)
358{
359}
360
361static int __bprm_mm_init(struct linux_binprm *bprm)
362{
363	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
364	return 0;
365}
366
367static bool valid_arg_len(struct linux_binprm *bprm, long len)
368{
369	return len <= bprm->p;
370}
371
372#endif /* CONFIG_MMU */
373
374/*
375 * Create a new mm_struct and populate it with a temporary stack
376 * vm_area_struct.  We don't have enough context at this point to set the stack
377 * flags, permissions, and offset, so we use temporary values.  We'll update
378 * them later in setup_arg_pages().
379 */
380static int bprm_mm_init(struct linux_binprm *bprm)
381{
382	int err;
383	struct mm_struct *mm = NULL;
384
385	bprm->mm = mm = mm_alloc();
386	err = -ENOMEM;
387	if (!mm)
388		goto err;
389
390	/* Save current stack limit for all calculations made during exec. */
391	task_lock(current->group_leader);
392	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
393	task_unlock(current->group_leader);
394
395	err = __bprm_mm_init(bprm);
396	if (err)
397		goto err;
398
399	return 0;
400
401err:
402	if (mm) {
403		bprm->mm = NULL;
404		mmdrop(mm);
405	}
406
407	return err;
408}
409
410struct user_arg_ptr {
411#ifdef CONFIG_COMPAT
412	bool is_compat;
413#endif
414	union {
415		const char __user *const __user *native;
416#ifdef CONFIG_COMPAT
417		const compat_uptr_t __user *compat;
418#endif
419	} ptr;
420};
421
422static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
423{
424	const char __user *native;
425
426#ifdef CONFIG_COMPAT
427	if (unlikely(argv.is_compat)) {
428		compat_uptr_t compat;
429
430		if (get_user(compat, argv.ptr.compat + nr))
431			return ERR_PTR(-EFAULT);
432
433		return compat_ptr(compat);
434	}
435#endif
436
437	if (get_user(native, argv.ptr.native + nr))
438		return ERR_PTR(-EFAULT);
439
440	return native;
441}
442
443/*
444 * count() counts the number of strings in array ARGV.
445 */
446static int count(struct user_arg_ptr argv, int max)
447{
448	int i = 0;
449
450	if (argv.ptr.native != NULL) {
451		for (;;) {
452			const char __user *p = get_user_arg_ptr(argv, i);
453
454			if (!p)
455				break;
456
457			if (IS_ERR(p))
458				return -EFAULT;
459
460			if (i >= max)
461				return -E2BIG;
462			++i;
463
464			if (fatal_signal_pending(current))
465				return -ERESTARTNOHAND;
466			cond_resched();
467		}
468	}
469	return i;
470}
471
472static int count_strings_kernel(const char *const *argv)
473{
474	int i;
475
476	if (!argv)
477		return 0;
478
479	for (i = 0; argv[i]; ++i) {
480		if (i >= MAX_ARG_STRINGS)
481			return -E2BIG;
482		if (fatal_signal_pending(current))
483			return -ERESTARTNOHAND;
484		cond_resched();
485	}
486	return i;
487}
488
489static int bprm_stack_limits(struct linux_binprm *bprm)
490{
491	unsigned long limit, ptr_size;
492
493	/*
494	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
495	 * (whichever is smaller) for the argv+env strings.
496	 * This ensures that:
497	 *  - the remaining binfmt code will not run out of stack space,
498	 *  - the program will have a reasonable amount of stack left
499	 *    to work from.
500	 */
501	limit = _STK_LIM / 4 * 3;
502	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
503	/*
504	 * We've historically supported up to 32 pages (ARG_MAX)
505	 * of argument strings even with small stacks
506	 */
507	limit = max_t(unsigned long, limit, ARG_MAX);
508	/*
509	 * We must account for the size of all the argv and envp pointers to
510	 * the argv and envp strings, since they will also take up space in
511	 * the stack. They aren't stored until much later when we can't
512	 * signal to the parent that the child has run out of stack space.
513	 * Instead, calculate it here so it's possible to fail gracefully.
514	 *
515	 * In the case of argc = 0, make sure there is space for adding a
516	 * empty string (which will bump argc to 1), to ensure confused
517	 * userspace programs don't start processing from argv[1], thinking
518	 * argc can never be 0, to keep them from walking envp by accident.
519	 * See do_execveat_common().
520	 */
521	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
522	if (limit <= ptr_size)
523		return -E2BIG;
524	limit -= ptr_size;
525
526	bprm->argmin = bprm->p - limit;
527	return 0;
528}
529
530/*
531 * 'copy_strings()' copies argument/environment strings from the old
532 * processes's memory to the new process's stack.  The call to get_user_pages()
533 * ensures the destination page is created and not swapped out.
534 */
535static int copy_strings(int argc, struct user_arg_ptr argv,
536			struct linux_binprm *bprm)
537{
538	struct page *kmapped_page = NULL;
539	char *kaddr = NULL;
540	unsigned long kpos = 0;
541	int ret;
542
543	while (argc-- > 0) {
544		const char __user *str;
545		int len;
546		unsigned long pos;
547
548		ret = -EFAULT;
549		str = get_user_arg_ptr(argv, argc);
550		if (IS_ERR(str))
551			goto out;
552
553		len = strnlen_user(str, MAX_ARG_STRLEN);
554		if (!len)
555			goto out;
556
557		ret = -E2BIG;
558		if (!valid_arg_len(bprm, len))
559			goto out;
560
561		/* We're going to work our way backwards. */
562		pos = bprm->p;
563		str += len;
564		bprm->p -= len;
565#ifdef CONFIG_MMU
566		if (bprm->p < bprm->argmin)
567			goto out;
568#endif
569
570		while (len > 0) {
571			int offset, bytes_to_copy;
572
573			if (fatal_signal_pending(current)) {
574				ret = -ERESTARTNOHAND;
575				goto out;
576			}
577			cond_resched();
578
579			offset = pos % PAGE_SIZE;
580			if (offset == 0)
581				offset = PAGE_SIZE;
582
583			bytes_to_copy = offset;
584			if (bytes_to_copy > len)
585				bytes_to_copy = len;
586
587			offset -= bytes_to_copy;
588			pos -= bytes_to_copy;
589			str -= bytes_to_copy;
590			len -= bytes_to_copy;
591
592			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
593				struct page *page;
594
595				page = get_arg_page(bprm, pos, 1);
596				if (!page) {
597					ret = -E2BIG;
598					goto out;
599				}
600
601				if (kmapped_page) {
602					flush_dcache_page(kmapped_page);
603					kunmap_local(kaddr);
604					put_arg_page(kmapped_page);
605				}
606				kmapped_page = page;
607				kaddr = kmap_local_page(kmapped_page);
608				kpos = pos & PAGE_MASK;
609				flush_arg_page(bprm, kpos, kmapped_page);
610			}
611			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
612				ret = -EFAULT;
613				goto out;
614			}
615		}
616	}
617	ret = 0;
618out:
619	if (kmapped_page) {
620		flush_dcache_page(kmapped_page);
621		kunmap_local(kaddr);
622		put_arg_page(kmapped_page);
623	}
624	return ret;
625}
626
627/*
628 * Copy and argument/environment string from the kernel to the processes stack.
629 */
630int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
631{
632	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
633	unsigned long pos = bprm->p;
634
635	if (len == 0)
636		return -EFAULT;
637	if (!valid_arg_len(bprm, len))
638		return -E2BIG;
639
640	/* We're going to work our way backwards. */
641	arg += len;
642	bprm->p -= len;
643	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
644		return -E2BIG;
645
646	while (len > 0) {
647		unsigned int bytes_to_copy = min_t(unsigned int, len,
648				min_not_zero(offset_in_page(pos), PAGE_SIZE));
649		struct page *page;
650
651		pos -= bytes_to_copy;
652		arg -= bytes_to_copy;
653		len -= bytes_to_copy;
654
655		page = get_arg_page(bprm, pos, 1);
656		if (!page)
657			return -E2BIG;
658		flush_arg_page(bprm, pos & PAGE_MASK, page);
659		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
660		put_arg_page(page);
661	}
662
663	return 0;
664}
665EXPORT_SYMBOL(copy_string_kernel);
666
667static int copy_strings_kernel(int argc, const char *const *argv,
668			       struct linux_binprm *bprm)
669{
670	while (argc-- > 0) {
671		int ret = copy_string_kernel(argv[argc], bprm);
672		if (ret < 0)
673			return ret;
674		if (fatal_signal_pending(current))
675			return -ERESTARTNOHAND;
676		cond_resched();
677	}
678	return 0;
679}
680
681#ifdef CONFIG_MMU
682
683/*
684 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
685 * the binfmt code determines where the new stack should reside, we shift it to
686 * its final location.  The process proceeds as follows:
687 *
688 * 1) Use shift to calculate the new vma endpoints.
689 * 2) Extend vma to cover both the old and new ranges.  This ensures the
690 *    arguments passed to subsequent functions are consistent.
691 * 3) Move vma's page tables to the new range.
692 * 4) Free up any cleared pgd range.
693 * 5) Shrink the vma to cover only the new range.
694 */
695static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
696{
697	struct mm_struct *mm = vma->vm_mm;
698	unsigned long old_start = vma->vm_start;
699	unsigned long old_end = vma->vm_end;
700	unsigned long length = old_end - old_start;
701	unsigned long new_start = old_start - shift;
702	unsigned long new_end = old_end - shift;
703	VMA_ITERATOR(vmi, mm, new_start);
704	struct vm_area_struct *next;
705	struct mmu_gather tlb;
706
707	BUG_ON(new_start > new_end);
708
709	/*
710	 * ensure there are no vmas between where we want to go
711	 * and where we are
712	 */
713	if (vma != vma_next(&vmi))
714		return -EFAULT;
715
716	vma_iter_prev_range(&vmi);
717	/*
718	 * cover the whole range: [new_start, old_end)
719	 */
720	if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
721		return -ENOMEM;
722
723	/*
724	 * move the page tables downwards, on failure we rely on
725	 * process cleanup to remove whatever mess we made.
726	 */
727	if (length != move_page_tables(vma, old_start,
728				       vma, new_start, length, false, true))
729		return -ENOMEM;
730
731	lru_add_drain();
732	tlb_gather_mmu(&tlb, mm);
733	next = vma_next(&vmi);
734	if (new_end > old_start) {
735		/*
736		 * when the old and new regions overlap clear from new_end.
737		 */
738		free_pgd_range(&tlb, new_end, old_end, new_end,
739			next ? next->vm_start : USER_PGTABLES_CEILING);
740	} else {
741		/*
742		 * otherwise, clean from old_start; this is done to not touch
743		 * the address space in [new_end, old_start) some architectures
744		 * have constraints on va-space that make this illegal (IA64) -
745		 * for the others its just a little faster.
746		 */
747		free_pgd_range(&tlb, old_start, old_end, new_end,
748			next ? next->vm_start : USER_PGTABLES_CEILING);
749	}
750	tlb_finish_mmu(&tlb);
751
752	vma_prev(&vmi);
753	/* Shrink the vma to just the new range */
754	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
755}
756
757/*
758 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
759 * the stack is optionally relocated, and some extra space is added.
760 */
761int setup_arg_pages(struct linux_binprm *bprm,
762		    unsigned long stack_top,
763		    int executable_stack)
764{
765	unsigned long ret;
766	unsigned long stack_shift;
767	struct mm_struct *mm = current->mm;
768	struct vm_area_struct *vma = bprm->vma;
769	struct vm_area_struct *prev = NULL;
770	unsigned long vm_flags;
771	unsigned long stack_base;
772	unsigned long stack_size;
773	unsigned long stack_expand;
774	unsigned long rlim_stack;
775	struct mmu_gather tlb;
776	struct vma_iterator vmi;
777
778#ifdef CONFIG_STACK_GROWSUP
779	/* Limit stack size */
780	stack_base = bprm->rlim_stack.rlim_max;
781
782	stack_base = calc_max_stack_size(stack_base);
783
784	/* Add space for stack randomization. */
785	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
786
787	/* Make sure we didn't let the argument array grow too large. */
788	if (vma->vm_end - vma->vm_start > stack_base)
789		return -ENOMEM;
790
791	stack_base = PAGE_ALIGN(stack_top - stack_base);
792
793	stack_shift = vma->vm_start - stack_base;
794	mm->arg_start = bprm->p - stack_shift;
795	bprm->p = vma->vm_end - stack_shift;
796#else
797	stack_top = arch_align_stack(stack_top);
798	stack_top = PAGE_ALIGN(stack_top);
799
800	if (unlikely(stack_top < mmap_min_addr) ||
801	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
802		return -ENOMEM;
803
804	stack_shift = vma->vm_end - stack_top;
805
806	bprm->p -= stack_shift;
807	mm->arg_start = bprm->p;
808#endif
809
810	if (bprm->loader)
811		bprm->loader -= stack_shift;
812	bprm->exec -= stack_shift;
813
814	if (mmap_write_lock_killable(mm))
815		return -EINTR;
816
817	vm_flags = VM_STACK_FLAGS;
818
819	/*
820	 * Adjust stack execute permissions; explicitly enable for
821	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
822	 * (arch default) otherwise.
823	 */
824	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
825		vm_flags |= VM_EXEC;
826	else if (executable_stack == EXSTACK_DISABLE_X)
827		vm_flags &= ~VM_EXEC;
828	vm_flags |= mm->def_flags;
829	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
830
831	vma_iter_init(&vmi, mm, vma->vm_start);
832
833	tlb_gather_mmu(&tlb, mm);
834	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
835			vm_flags);
836	tlb_finish_mmu(&tlb);
837
838	if (ret)
839		goto out_unlock;
840	BUG_ON(prev != vma);
841
842	if (unlikely(vm_flags & VM_EXEC)) {
843		pr_warn_once("process '%pD4' started with executable stack\n",
844			     bprm->file);
845	}
846
847	/* Move stack pages down in memory. */
848	if (stack_shift) {
849		ret = shift_arg_pages(vma, stack_shift);
850		if (ret)
851			goto out_unlock;
852	}
853
854	/* mprotect_fixup is overkill to remove the temporary stack flags */
855	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
856
857	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
858	stack_size = vma->vm_end - vma->vm_start;
859	/*
860	 * Align this down to a page boundary as expand_stack
861	 * will align it up.
862	 */
863	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
864
865	stack_expand = min(rlim_stack, stack_size + stack_expand);
866
867#ifdef CONFIG_STACK_GROWSUP
868	stack_base = vma->vm_start + stack_expand;
869#else
870	stack_base = vma->vm_end - stack_expand;
871#endif
872	current->mm->start_stack = bprm->p;
873	ret = expand_stack_locked(vma, stack_base);
874	if (ret)
875		ret = -EFAULT;
876
877out_unlock:
878	mmap_write_unlock(mm);
879	return ret;
880}
881EXPORT_SYMBOL(setup_arg_pages);
882
883#else
884
885/*
886 * Transfer the program arguments and environment from the holding pages
887 * onto the stack. The provided stack pointer is adjusted accordingly.
888 */
889int transfer_args_to_stack(struct linux_binprm *bprm,
890			   unsigned long *sp_location)
891{
892	unsigned long index, stop, sp;
893	int ret = 0;
894
895	stop = bprm->p >> PAGE_SHIFT;
896	sp = *sp_location;
897
898	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
899		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
900		char *src = kmap_local_page(bprm->page[index]) + offset;
901		sp -= PAGE_SIZE - offset;
902		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
903			ret = -EFAULT;
904		kunmap_local(src);
905		if (ret)
906			goto out;
907	}
908
909	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
910	*sp_location = sp;
911
912out:
913	return ret;
914}
915EXPORT_SYMBOL(transfer_args_to_stack);
916
917#endif /* CONFIG_MMU */
918
919/*
920 * On success, caller must call do_close_execat() on the returned
921 * struct file to close it.
922 */
923static struct file *do_open_execat(int fd, struct filename *name, int flags)
924{
925	struct file *file;
926	int err;
927	struct open_flags open_exec_flags = {
928		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
929		.acc_mode = MAY_EXEC,
930		.intent = LOOKUP_OPEN,
931		.lookup_flags = LOOKUP_FOLLOW,
932	};
933
934	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
935		return ERR_PTR(-EINVAL);
936	if (flags & AT_SYMLINK_NOFOLLOW)
937		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
938	if (flags & AT_EMPTY_PATH)
939		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
940
941	file = do_filp_open(fd, name, &open_exec_flags);
942	if (IS_ERR(file))
943		goto out;
944
945	/*
946	 * may_open() has already checked for this, so it should be
947	 * impossible to trip now. But we need to be extra cautious
948	 * and check again at the very end too.
949	 */
950	err = -EACCES;
951	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
952			 path_noexec(&file->f_path)))
953		goto exit;
954
955	err = deny_write_access(file);
956	if (err)
957		goto exit;
958
959out:
960	return file;
961
962exit:
963	fput(file);
964	return ERR_PTR(err);
965}
966
967/**
968 * open_exec - Open a path name for execution
969 *
970 * @name: path name to open with the intent of executing it.
971 *
972 * Returns ERR_PTR on failure or allocated struct file on success.
973 *
974 * As this is a wrapper for the internal do_open_execat(), callers
975 * must call allow_write_access() before fput() on release. Also see
976 * do_close_execat().
977 */
978struct file *open_exec(const char *name)
979{
980	struct filename *filename = getname_kernel(name);
981	struct file *f = ERR_CAST(filename);
982
983	if (!IS_ERR(filename)) {
984		f = do_open_execat(AT_FDCWD, filename, 0);
985		putname(filename);
986	}
987	return f;
988}
989EXPORT_SYMBOL(open_exec);
990
991#if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
992ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
993{
994	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
995	if (res > 0)
996		flush_icache_user_range(addr, addr + len);
997	return res;
998}
999EXPORT_SYMBOL(read_code);
1000#endif
1001
1002/*
1003 * Maps the mm_struct mm into the current task struct.
1004 * On success, this function returns with exec_update_lock
1005 * held for writing.
1006 */
1007static int exec_mmap(struct mm_struct *mm)
1008{
1009	struct task_struct *tsk;
1010	struct mm_struct *old_mm, *active_mm;
1011	int ret;
1012
1013	/* Notify parent that we're no longer interested in the old VM */
1014	tsk = current;
1015	old_mm = current->mm;
1016	exec_mm_release(tsk, old_mm);
1017
1018	ret = down_write_killable(&tsk->signal->exec_update_lock);
1019	if (ret)
1020		return ret;
1021
1022	if (old_mm) {
1023		/*
1024		 * If there is a pending fatal signal perhaps a signal
1025		 * whose default action is to create a coredump get
1026		 * out and die instead of going through with the exec.
1027		 */
1028		ret = mmap_read_lock_killable(old_mm);
1029		if (ret) {
1030			up_write(&tsk->signal->exec_update_lock);
1031			return ret;
1032		}
1033	}
1034
1035	task_lock(tsk);
1036	membarrier_exec_mmap(mm);
1037
1038	local_irq_disable();
1039	active_mm = tsk->active_mm;
1040	tsk->active_mm = mm;
1041	tsk->mm = mm;
1042	mm_init_cid(mm);
1043	/*
1044	 * This prevents preemption while active_mm is being loaded and
1045	 * it and mm are being updated, which could cause problems for
1046	 * lazy tlb mm refcounting when these are updated by context
1047	 * switches. Not all architectures can handle irqs off over
1048	 * activate_mm yet.
1049	 */
1050	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1051		local_irq_enable();
1052	activate_mm(active_mm, mm);
1053	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1054		local_irq_enable();
1055	lru_gen_add_mm(mm);
1056	task_unlock(tsk);
1057	lru_gen_use_mm(mm);
1058	if (old_mm) {
1059		mmap_read_unlock(old_mm);
1060		BUG_ON(active_mm != old_mm);
1061		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1062		mm_update_next_owner(old_mm);
1063		mmput(old_mm);
1064		return 0;
1065	}
1066	mmdrop_lazy_tlb(active_mm);
1067	return 0;
1068}
1069
1070static int de_thread(struct task_struct *tsk)
1071{
1072	struct signal_struct *sig = tsk->signal;
1073	struct sighand_struct *oldsighand = tsk->sighand;
1074	spinlock_t *lock = &oldsighand->siglock;
1075
1076	if (thread_group_empty(tsk))
1077		goto no_thread_group;
1078
1079	/*
1080	 * Kill all other threads in the thread group.
1081	 */
1082	spin_lock_irq(lock);
1083	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1084		/*
1085		 * Another group action in progress, just
1086		 * return so that the signal is processed.
1087		 */
1088		spin_unlock_irq(lock);
1089		return -EAGAIN;
1090	}
1091
1092	sig->group_exec_task = tsk;
1093	sig->notify_count = zap_other_threads(tsk);
1094	if (!thread_group_leader(tsk))
1095		sig->notify_count--;
1096
1097	while (sig->notify_count) {
1098		__set_current_state(TASK_KILLABLE);
1099		spin_unlock_irq(lock);
1100		schedule();
1101		if (__fatal_signal_pending(tsk))
1102			goto killed;
1103		spin_lock_irq(lock);
1104	}
1105	spin_unlock_irq(lock);
1106
1107	/*
1108	 * At this point all other threads have exited, all we have to
1109	 * do is to wait for the thread group leader to become inactive,
1110	 * and to assume its PID:
1111	 */
1112	if (!thread_group_leader(tsk)) {
1113		struct task_struct *leader = tsk->group_leader;
1114
1115		for (;;) {
1116			cgroup_threadgroup_change_begin(tsk);
1117			write_lock_irq(&tasklist_lock);
1118			/*
1119			 * Do this under tasklist_lock to ensure that
1120			 * exit_notify() can't miss ->group_exec_task
1121			 */
1122			sig->notify_count = -1;
1123			if (likely(leader->exit_state))
1124				break;
1125			__set_current_state(TASK_KILLABLE);
1126			write_unlock_irq(&tasklist_lock);
1127			cgroup_threadgroup_change_end(tsk);
1128			schedule();
1129			if (__fatal_signal_pending(tsk))
1130				goto killed;
1131		}
1132
1133		/*
1134		 * The only record we have of the real-time age of a
1135		 * process, regardless of execs it's done, is start_time.
1136		 * All the past CPU time is accumulated in signal_struct
1137		 * from sister threads now dead.  But in this non-leader
1138		 * exec, nothing survives from the original leader thread,
1139		 * whose birth marks the true age of this process now.
1140		 * When we take on its identity by switching to its PID, we
1141		 * also take its birthdate (always earlier than our own).
1142		 */
1143		tsk->start_time = leader->start_time;
1144		tsk->start_boottime = leader->start_boottime;
1145
1146		BUG_ON(!same_thread_group(leader, tsk));
1147		/*
1148		 * An exec() starts a new thread group with the
1149		 * TGID of the previous thread group. Rehash the
1150		 * two threads with a switched PID, and release
1151		 * the former thread group leader:
1152		 */
1153
1154		/* Become a process group leader with the old leader's pid.
1155		 * The old leader becomes a thread of the this thread group.
1156		 */
1157		exchange_tids(tsk, leader);
1158		transfer_pid(leader, tsk, PIDTYPE_TGID);
1159		transfer_pid(leader, tsk, PIDTYPE_PGID);
1160		transfer_pid(leader, tsk, PIDTYPE_SID);
1161
1162		list_replace_rcu(&leader->tasks, &tsk->tasks);
1163		list_replace_init(&leader->sibling, &tsk->sibling);
1164
1165		tsk->group_leader = tsk;
1166		leader->group_leader = tsk;
1167
1168		tsk->exit_signal = SIGCHLD;
1169		leader->exit_signal = -1;
1170
1171		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1172		leader->exit_state = EXIT_DEAD;
1173		/*
1174		 * We are going to release_task()->ptrace_unlink() silently,
1175		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1176		 * the tracer won't block again waiting for this thread.
1177		 */
1178		if (unlikely(leader->ptrace))
1179			__wake_up_parent(leader, leader->parent);
1180		write_unlock_irq(&tasklist_lock);
1181		cgroup_threadgroup_change_end(tsk);
1182
1183		release_task(leader);
1184	}
1185
1186	sig->group_exec_task = NULL;
1187	sig->notify_count = 0;
1188
1189no_thread_group:
1190	/* we have changed execution domain */
1191	tsk->exit_signal = SIGCHLD;
1192
1193	BUG_ON(!thread_group_leader(tsk));
1194	return 0;
1195
1196killed:
1197	/* protects against exit_notify() and __exit_signal() */
1198	read_lock(&tasklist_lock);
1199	sig->group_exec_task = NULL;
1200	sig->notify_count = 0;
1201	read_unlock(&tasklist_lock);
1202	return -EAGAIN;
1203}
1204
1205
1206/*
1207 * This function makes sure the current process has its own signal table,
1208 * so that flush_signal_handlers can later reset the handlers without
1209 * disturbing other processes.  (Other processes might share the signal
1210 * table via the CLONE_SIGHAND option to clone().)
1211 */
1212static int unshare_sighand(struct task_struct *me)
1213{
1214	struct sighand_struct *oldsighand = me->sighand;
1215
1216	if (refcount_read(&oldsighand->count) != 1) {
1217		struct sighand_struct *newsighand;
1218		/*
1219		 * This ->sighand is shared with the CLONE_SIGHAND
1220		 * but not CLONE_THREAD task, switch to the new one.
1221		 */
1222		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1223		if (!newsighand)
1224			return -ENOMEM;
1225
1226		refcount_set(&newsighand->count, 1);
1227
1228		write_lock_irq(&tasklist_lock);
1229		spin_lock(&oldsighand->siglock);
1230		memcpy(newsighand->action, oldsighand->action,
1231		       sizeof(newsighand->action));
1232		rcu_assign_pointer(me->sighand, newsighand);
1233		spin_unlock(&oldsighand->siglock);
1234		write_unlock_irq(&tasklist_lock);
1235
1236		__cleanup_sighand(oldsighand);
1237	}
1238	return 0;
1239}
1240
1241char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1242{
1243	task_lock(tsk);
1244	/* Always NUL terminated and zero-padded */
1245	strscpy_pad(buf, tsk->comm, buf_size);
1246	task_unlock(tsk);
1247	return buf;
1248}
1249EXPORT_SYMBOL_GPL(__get_task_comm);
1250
1251/*
1252 * These functions flushes out all traces of the currently running executable
1253 * so that a new one can be started
1254 */
1255
1256void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1257{
1258	task_lock(tsk);
1259	trace_task_rename(tsk, buf);
1260	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1261	task_unlock(tsk);
1262	perf_event_comm(tsk, exec);
1263}
1264
1265/*
1266 * Calling this is the point of no return. None of the failures will be
1267 * seen by userspace since either the process is already taking a fatal
1268 * signal (via de_thread() or coredump), or will have SEGV raised
1269 * (after exec_mmap()) by search_binary_handler (see below).
1270 */
1271int begin_new_exec(struct linux_binprm * bprm)
1272{
1273	struct task_struct *me = current;
1274	int retval;
1275
1276	/* Once we are committed compute the creds */
1277	retval = bprm_creds_from_file(bprm);
1278	if (retval)
1279		return retval;
1280
1281	/*
1282	 * This tracepoint marks the point before flushing the old exec where
1283	 * the current task is still unchanged, but errors are fatal (point of
1284	 * no return). The later "sched_process_exec" tracepoint is called after
1285	 * the current task has successfully switched to the new exec.
1286	 */
1287	trace_sched_prepare_exec(current, bprm);
1288
1289	/*
1290	 * Ensure all future errors are fatal.
1291	 */
1292	bprm->point_of_no_return = true;
1293
1294	/*
1295	 * Make this the only thread in the thread group.
1296	 */
1297	retval = de_thread(me);
1298	if (retval)
1299		goto out;
1300
1301	/*
1302	 * Cancel any io_uring activity across execve
1303	 */
1304	io_uring_task_cancel();
1305
1306	/* Ensure the files table is not shared. */
1307	retval = unshare_files();
1308	if (retval)
1309		goto out;
1310
1311	/*
1312	 * Must be called _before_ exec_mmap() as bprm->mm is
1313	 * not visible until then. Doing it here also ensures
1314	 * we don't race against replace_mm_exe_file().
1315	 */
1316	retval = set_mm_exe_file(bprm->mm, bprm->file);
1317	if (retval)
1318		goto out;
1319
1320	/* If the binary is not readable then enforce mm->dumpable=0 */
1321	would_dump(bprm, bprm->file);
1322	if (bprm->have_execfd)
1323		would_dump(bprm, bprm->executable);
1324
1325	/*
1326	 * Release all of the old mmap stuff
1327	 */
1328	acct_arg_size(bprm, 0);
1329	retval = exec_mmap(bprm->mm);
1330	if (retval)
1331		goto out;
1332
1333	bprm->mm = NULL;
1334
1335	retval = exec_task_namespaces();
1336	if (retval)
1337		goto out_unlock;
1338
1339#ifdef CONFIG_POSIX_TIMERS
1340	spin_lock_irq(&me->sighand->siglock);
1341	posix_cpu_timers_exit(me);
1342	spin_unlock_irq(&me->sighand->siglock);
1343	exit_itimers(me);
1344	flush_itimer_signals();
1345#endif
1346
1347	/*
1348	 * Make the signal table private.
1349	 */
1350	retval = unshare_sighand(me);
1351	if (retval)
1352		goto out_unlock;
1353
1354	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1355					PF_NOFREEZE | PF_NO_SETAFFINITY);
1356	flush_thread();
1357	me->personality &= ~bprm->per_clear;
1358
1359	clear_syscall_work_syscall_user_dispatch(me);
1360
1361	/*
1362	 * We have to apply CLOEXEC before we change whether the process is
1363	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1364	 * trying to access the should-be-closed file descriptors of a process
1365	 * undergoing exec(2).
1366	 */
1367	do_close_on_exec(me->files);
1368
1369	if (bprm->secureexec) {
1370		/* Make sure parent cannot signal privileged process. */
1371		me->pdeath_signal = 0;
1372
1373		/*
1374		 * For secureexec, reset the stack limit to sane default to
1375		 * avoid bad behavior from the prior rlimits. This has to
1376		 * happen before arch_pick_mmap_layout(), which examines
1377		 * RLIMIT_STACK, but after the point of no return to avoid
1378		 * needing to clean up the change on failure.
1379		 */
1380		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1381			bprm->rlim_stack.rlim_cur = _STK_LIM;
1382	}
1383
1384	me->sas_ss_sp = me->sas_ss_size = 0;
1385
1386	/*
1387	 * Figure out dumpability. Note that this checking only of current
1388	 * is wrong, but userspace depends on it. This should be testing
1389	 * bprm->secureexec instead.
1390	 */
1391	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1392	    !(uid_eq(current_euid(), current_uid()) &&
1393	      gid_eq(current_egid(), current_gid())))
1394		set_dumpable(current->mm, suid_dumpable);
1395	else
1396		set_dumpable(current->mm, SUID_DUMP_USER);
1397
1398	perf_event_exec();
1399	__set_task_comm(me, kbasename(bprm->filename), true);
1400
1401	/* An exec changes our domain. We are no longer part of the thread
1402	   group */
1403	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1404	flush_signal_handlers(me, 0);
1405
1406	retval = set_cred_ucounts(bprm->cred);
1407	if (retval < 0)
1408		goto out_unlock;
1409
1410	/*
1411	 * install the new credentials for this executable
1412	 */
1413	security_bprm_committing_creds(bprm);
1414
1415	commit_creds(bprm->cred);
1416	bprm->cred = NULL;
1417
1418	/*
1419	 * Disable monitoring for regular users
1420	 * when executing setuid binaries. Must
1421	 * wait until new credentials are committed
1422	 * by commit_creds() above
1423	 */
1424	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1425		perf_event_exit_task(me);
1426	/*
1427	 * cred_guard_mutex must be held at least to this point to prevent
1428	 * ptrace_attach() from altering our determination of the task's
1429	 * credentials; any time after this it may be unlocked.
1430	 */
1431	security_bprm_committed_creds(bprm);
1432
1433	/* Pass the opened binary to the interpreter. */
1434	if (bprm->have_execfd) {
1435		retval = get_unused_fd_flags(0);
1436		if (retval < 0)
1437			goto out_unlock;
1438		fd_install(retval, bprm->executable);
1439		bprm->executable = NULL;
1440		bprm->execfd = retval;
1441	}
1442	return 0;
1443
1444out_unlock:
1445	up_write(&me->signal->exec_update_lock);
1446	if (!bprm->cred)
1447		mutex_unlock(&me->signal->cred_guard_mutex);
1448
1449out:
1450	return retval;
1451}
1452EXPORT_SYMBOL(begin_new_exec);
1453
1454void would_dump(struct linux_binprm *bprm, struct file *file)
1455{
1456	struct inode *inode = file_inode(file);
1457	struct mnt_idmap *idmap = file_mnt_idmap(file);
1458	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1459		struct user_namespace *old, *user_ns;
1460		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1461
1462		/* Ensure mm->user_ns contains the executable */
1463		user_ns = old = bprm->mm->user_ns;
1464		while ((user_ns != &init_user_ns) &&
1465		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1466			user_ns = user_ns->parent;
1467
1468		if (old != user_ns) {
1469			bprm->mm->user_ns = get_user_ns(user_ns);
1470			put_user_ns(old);
1471		}
1472	}
1473}
1474EXPORT_SYMBOL(would_dump);
1475
1476void setup_new_exec(struct linux_binprm * bprm)
1477{
1478	/* Setup things that can depend upon the personality */
1479	struct task_struct *me = current;
1480
1481	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1482
1483	arch_setup_new_exec();
1484
1485	/* Set the new mm task size. We have to do that late because it may
1486	 * depend on TIF_32BIT which is only updated in flush_thread() on
1487	 * some architectures like powerpc
1488	 */
1489	me->mm->task_size = TASK_SIZE;
1490	up_write(&me->signal->exec_update_lock);
1491	mutex_unlock(&me->signal->cred_guard_mutex);
1492}
1493EXPORT_SYMBOL(setup_new_exec);
1494
1495/* Runs immediately before start_thread() takes over. */
1496void finalize_exec(struct linux_binprm *bprm)
1497{
1498	/* Store any stack rlimit changes before starting thread. */
1499	task_lock(current->group_leader);
1500	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1501	task_unlock(current->group_leader);
1502}
1503EXPORT_SYMBOL(finalize_exec);
1504
1505/*
1506 * Prepare credentials and lock ->cred_guard_mutex.
1507 * setup_new_exec() commits the new creds and drops the lock.
1508 * Or, if exec fails before, free_bprm() should release ->cred
1509 * and unlock.
1510 */
1511static int prepare_bprm_creds(struct linux_binprm *bprm)
1512{
1513	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1514		return -ERESTARTNOINTR;
1515
1516	bprm->cred = prepare_exec_creds();
1517	if (likely(bprm->cred))
1518		return 0;
1519
1520	mutex_unlock(&current->signal->cred_guard_mutex);
1521	return -ENOMEM;
1522}
1523
1524/* Matches do_open_execat() */
1525static void do_close_execat(struct file *file)
1526{
1527	if (!file)
1528		return;
1529	allow_write_access(file);
1530	fput(file);
1531}
1532
1533static void free_bprm(struct linux_binprm *bprm)
1534{
1535	if (bprm->mm) {
1536		acct_arg_size(bprm, 0);
1537		mmput(bprm->mm);
1538	}
1539	free_arg_pages(bprm);
1540	if (bprm->cred) {
1541		mutex_unlock(&current->signal->cred_guard_mutex);
1542		abort_creds(bprm->cred);
1543	}
1544	do_close_execat(bprm->file);
1545	if (bprm->executable)
1546		fput(bprm->executable);
1547	/* If a binfmt changed the interp, free it. */
1548	if (bprm->interp != bprm->filename)
1549		kfree(bprm->interp);
1550	kfree(bprm->fdpath);
1551	kfree(bprm);
1552}
1553
1554static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1555{
1556	struct linux_binprm *bprm;
1557	struct file *file;
1558	int retval = -ENOMEM;
1559
1560	file = do_open_execat(fd, filename, flags);
1561	if (IS_ERR(file))
1562		return ERR_CAST(file);
1563
1564	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1565	if (!bprm) {
1566		do_close_execat(file);
1567		return ERR_PTR(-ENOMEM);
1568	}
1569
1570	bprm->file = file;
1571
1572	if (fd == AT_FDCWD || filename->name[0] == '/') {
1573		bprm->filename = filename->name;
1574	} else {
1575		if (filename->name[0] == '\0')
1576			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1577		else
1578			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1579						  fd, filename->name);
1580		if (!bprm->fdpath)
1581			goto out_free;
1582
1583		/*
1584		 * Record that a name derived from an O_CLOEXEC fd will be
1585		 * inaccessible after exec.  This allows the code in exec to
1586		 * choose to fail when the executable is not mmaped into the
1587		 * interpreter and an open file descriptor is not passed to
1588		 * the interpreter.  This makes for a better user experience
1589		 * than having the interpreter start and then immediately fail
1590		 * when it finds the executable is inaccessible.
1591		 */
1592		if (get_close_on_exec(fd))
1593			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1594
1595		bprm->filename = bprm->fdpath;
1596	}
1597	bprm->interp = bprm->filename;
1598
1599	retval = bprm_mm_init(bprm);
1600	if (!retval)
1601		return bprm;
1602
1603out_free:
1604	free_bprm(bprm);
1605	return ERR_PTR(retval);
1606}
1607
1608int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1609{
1610	/* If a binfmt changed the interp, free it first. */
1611	if (bprm->interp != bprm->filename)
1612		kfree(bprm->interp);
1613	bprm->interp = kstrdup(interp, GFP_KERNEL);
1614	if (!bprm->interp)
1615		return -ENOMEM;
1616	return 0;
1617}
1618EXPORT_SYMBOL(bprm_change_interp);
1619
1620/*
1621 * determine how safe it is to execute the proposed program
1622 * - the caller must hold ->cred_guard_mutex to protect against
1623 *   PTRACE_ATTACH or seccomp thread-sync
1624 */
1625static void check_unsafe_exec(struct linux_binprm *bprm)
1626{
1627	struct task_struct *p = current, *t;
1628	unsigned n_fs;
1629
1630	if (p->ptrace)
1631		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1632
1633	/*
1634	 * This isn't strictly necessary, but it makes it harder for LSMs to
1635	 * mess up.
1636	 */
1637	if (task_no_new_privs(current))
1638		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1639
1640	/*
1641	 * If another task is sharing our fs, we cannot safely
1642	 * suid exec because the differently privileged task
1643	 * will be able to manipulate the current directory, etc.
1644	 * It would be nice to force an unshare instead...
1645	 */
1646	n_fs = 1;
1647	spin_lock(&p->fs->lock);
1648	rcu_read_lock();
1649	for_other_threads(p, t) {
1650		if (t->fs == p->fs)
1651			n_fs++;
1652	}
1653	rcu_read_unlock();
1654
1655	/* "users" and "in_exec" locked for copy_fs() */
1656	if (p->fs->users > n_fs)
1657		bprm->unsafe |= LSM_UNSAFE_SHARE;
1658	else
1659		p->fs->in_exec = 1;
1660	spin_unlock(&p->fs->lock);
1661}
1662
1663static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1664{
1665	/* Handle suid and sgid on files */
1666	struct mnt_idmap *idmap;
1667	struct inode *inode = file_inode(file);
1668	unsigned int mode;
1669	vfsuid_t vfsuid;
1670	vfsgid_t vfsgid;
1671
1672	if (!mnt_may_suid(file->f_path.mnt))
1673		return;
1674
1675	if (task_no_new_privs(current))
1676		return;
1677
1678	mode = READ_ONCE(inode->i_mode);
1679	if (!(mode & (S_ISUID|S_ISGID)))
1680		return;
1681
1682	idmap = file_mnt_idmap(file);
1683
1684	/* Be careful if suid/sgid is set */
1685	inode_lock(inode);
1686
1687	/* reload atomically mode/uid/gid now that lock held */
1688	mode = inode->i_mode;
1689	vfsuid = i_uid_into_vfsuid(idmap, inode);
1690	vfsgid = i_gid_into_vfsgid(idmap, inode);
1691	inode_unlock(inode);
1692
1693	/* We ignore suid/sgid if there are no mappings for them in the ns */
1694	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1695	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1696		return;
1697
1698	if (mode & S_ISUID) {
1699		bprm->per_clear |= PER_CLEAR_ON_SETID;
1700		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1701	}
1702
1703	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1704		bprm->per_clear |= PER_CLEAR_ON_SETID;
1705		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1706	}
1707}
1708
1709/*
1710 * Compute brpm->cred based upon the final binary.
1711 */
1712static int bprm_creds_from_file(struct linux_binprm *bprm)
1713{
1714	/* Compute creds based on which file? */
1715	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1716
1717	bprm_fill_uid(bprm, file);
1718	return security_bprm_creds_from_file(bprm, file);
1719}
1720
1721/*
1722 * Fill the binprm structure from the inode.
1723 * Read the first BINPRM_BUF_SIZE bytes
1724 *
1725 * This may be called multiple times for binary chains (scripts for example).
1726 */
1727static int prepare_binprm(struct linux_binprm *bprm)
1728{
1729	loff_t pos = 0;
1730
1731	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1732	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1733}
1734
1735/*
1736 * Arguments are '\0' separated strings found at the location bprm->p
1737 * points to; chop off the first by relocating brpm->p to right after
1738 * the first '\0' encountered.
1739 */
1740int remove_arg_zero(struct linux_binprm *bprm)
1741{
1742	unsigned long offset;
1743	char *kaddr;
1744	struct page *page;
1745
1746	if (!bprm->argc)
1747		return 0;
1748
1749	do {
1750		offset = bprm->p & ~PAGE_MASK;
1751		page = get_arg_page(bprm, bprm->p, 0);
1752		if (!page)
1753			return -EFAULT;
1754		kaddr = kmap_local_page(page);
1755
1756		for (; offset < PAGE_SIZE && kaddr[offset];
1757				offset++, bprm->p++)
1758			;
1759
1760		kunmap_local(kaddr);
1761		put_arg_page(page);
1762	} while (offset == PAGE_SIZE);
1763
1764	bprm->p++;
1765	bprm->argc--;
1766
1767	return 0;
1768}
1769EXPORT_SYMBOL(remove_arg_zero);
1770
1771#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1772/*
1773 * cycle the list of binary formats handler, until one recognizes the image
1774 */
1775static int search_binary_handler(struct linux_binprm *bprm)
1776{
1777	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1778	struct linux_binfmt *fmt;
1779	int retval;
1780
1781	retval = prepare_binprm(bprm);
1782	if (retval < 0)
1783		return retval;
1784
1785	retval = security_bprm_check(bprm);
1786	if (retval)
1787		return retval;
1788
1789	retval = -ENOENT;
1790 retry:
1791	read_lock(&binfmt_lock);
1792	list_for_each_entry(fmt, &formats, lh) {
1793		if (!try_module_get(fmt->module))
1794			continue;
1795		read_unlock(&binfmt_lock);
1796
1797		retval = fmt->load_binary(bprm);
1798
1799		read_lock(&binfmt_lock);
1800		put_binfmt(fmt);
1801		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1802			read_unlock(&binfmt_lock);
1803			return retval;
1804		}
1805	}
1806	read_unlock(&binfmt_lock);
1807
1808	if (need_retry) {
1809		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1810		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1811			return retval;
1812		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1813			return retval;
1814		need_retry = false;
1815		goto retry;
1816	}
1817
1818	return retval;
1819}
1820
1821/* binfmt handlers will call back into begin_new_exec() on success. */
1822static int exec_binprm(struct linux_binprm *bprm)
1823{
1824	pid_t old_pid, old_vpid;
1825	int ret, depth;
1826
1827	/* Need to fetch pid before load_binary changes it */
1828	old_pid = current->pid;
1829	rcu_read_lock();
1830	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1831	rcu_read_unlock();
1832
1833	/* This allows 4 levels of binfmt rewrites before failing hard. */
1834	for (depth = 0;; depth++) {
1835		struct file *exec;
1836		if (depth > 5)
1837			return -ELOOP;
1838
1839		ret = search_binary_handler(bprm);
1840		if (ret < 0)
1841			return ret;
1842		if (!bprm->interpreter)
1843			break;
1844
1845		exec = bprm->file;
1846		bprm->file = bprm->interpreter;
1847		bprm->interpreter = NULL;
1848
1849		allow_write_access(exec);
1850		if (unlikely(bprm->have_execfd)) {
1851			if (bprm->executable) {
1852				fput(exec);
1853				return -ENOEXEC;
1854			}
1855			bprm->executable = exec;
1856		} else
1857			fput(exec);
1858	}
1859
1860	audit_bprm(bprm);
1861	trace_sched_process_exec(current, old_pid, bprm);
1862	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1863	proc_exec_connector(current);
1864	return 0;
1865}
1866
1867static int bprm_execve(struct linux_binprm *bprm)
1868{
1869	int retval;
1870
1871	retval = prepare_bprm_creds(bprm);
1872	if (retval)
1873		return retval;
1874
1875	/*
1876	 * Check for unsafe execution states before exec_binprm(), which
1877	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1878	 * where setuid-ness is evaluated.
1879	 */
1880	check_unsafe_exec(bprm);
1881	current->in_execve = 1;
1882	sched_mm_cid_before_execve(current);
1883
1884	sched_exec();
1885
1886	/* Set the unchanging part of bprm->cred */
1887	retval = security_bprm_creds_for_exec(bprm);
1888	if (retval)
1889		goto out;
1890
1891	retval = exec_binprm(bprm);
1892	if (retval < 0)
1893		goto out;
1894
1895	sched_mm_cid_after_execve(current);
1896	/* execve succeeded */
1897	current->fs->in_exec = 0;
1898	current->in_execve = 0;
1899	rseq_execve(current);
1900	user_events_execve(current);
1901	acct_update_integrals(current);
1902	task_numa_free(current, false);
1903	return retval;
1904
1905out:
1906	/*
1907	 * If past the point of no return ensure the code never
1908	 * returns to the userspace process.  Use an existing fatal
1909	 * signal if present otherwise terminate the process with
1910	 * SIGSEGV.
1911	 */
1912	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1913		force_fatal_sig(SIGSEGV);
1914
1915	sched_mm_cid_after_execve(current);
1916	current->fs->in_exec = 0;
1917	current->in_execve = 0;
1918
1919	return retval;
1920}
1921
1922static int do_execveat_common(int fd, struct filename *filename,
1923			      struct user_arg_ptr argv,
1924			      struct user_arg_ptr envp,
1925			      int flags)
1926{
1927	struct linux_binprm *bprm;
1928	int retval;
1929
1930	if (IS_ERR(filename))
1931		return PTR_ERR(filename);
1932
1933	/*
1934	 * We move the actual failure in case of RLIMIT_NPROC excess from
1935	 * set*uid() to execve() because too many poorly written programs
1936	 * don't check setuid() return code.  Here we additionally recheck
1937	 * whether NPROC limit is still exceeded.
1938	 */
1939	if ((current->flags & PF_NPROC_EXCEEDED) &&
1940	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1941		retval = -EAGAIN;
1942		goto out_ret;
1943	}
1944
1945	/* We're below the limit (still or again), so we don't want to make
1946	 * further execve() calls fail. */
1947	current->flags &= ~PF_NPROC_EXCEEDED;
1948
1949	bprm = alloc_bprm(fd, filename, flags);
1950	if (IS_ERR(bprm)) {
1951		retval = PTR_ERR(bprm);
1952		goto out_ret;
1953	}
1954
1955	retval = count(argv, MAX_ARG_STRINGS);
1956	if (retval == 0)
1957		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1958			     current->comm, bprm->filename);
1959	if (retval < 0)
1960		goto out_free;
1961	bprm->argc = retval;
1962
1963	retval = count(envp, MAX_ARG_STRINGS);
1964	if (retval < 0)
1965		goto out_free;
1966	bprm->envc = retval;
1967
1968	retval = bprm_stack_limits(bprm);
1969	if (retval < 0)
1970		goto out_free;
1971
1972	retval = copy_string_kernel(bprm->filename, bprm);
1973	if (retval < 0)
1974		goto out_free;
1975	bprm->exec = bprm->p;
1976
1977	retval = copy_strings(bprm->envc, envp, bprm);
1978	if (retval < 0)
1979		goto out_free;
1980
1981	retval = copy_strings(bprm->argc, argv, bprm);
1982	if (retval < 0)
1983		goto out_free;
1984
1985	/*
1986	 * When argv is empty, add an empty string ("") as argv[0] to
1987	 * ensure confused userspace programs that start processing
1988	 * from argv[1] won't end up walking envp. See also
1989	 * bprm_stack_limits().
1990	 */
1991	if (bprm->argc == 0) {
1992		retval = copy_string_kernel("", bprm);
1993		if (retval < 0)
1994			goto out_free;
1995		bprm->argc = 1;
1996	}
1997
1998	retval = bprm_execve(bprm);
1999out_free:
2000	free_bprm(bprm);
2001
2002out_ret:
2003	putname(filename);
2004	return retval;
2005}
2006
2007int kernel_execve(const char *kernel_filename,
2008		  const char *const *argv, const char *const *envp)
2009{
2010	struct filename *filename;
2011	struct linux_binprm *bprm;
2012	int fd = AT_FDCWD;
2013	int retval;
2014
2015	/* It is non-sense for kernel threads to call execve */
2016	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
2017		return -EINVAL;
2018
2019	filename = getname_kernel(kernel_filename);
2020	if (IS_ERR(filename))
2021		return PTR_ERR(filename);
2022
2023	bprm = alloc_bprm(fd, filename, 0);
2024	if (IS_ERR(bprm)) {
2025		retval = PTR_ERR(bprm);
2026		goto out_ret;
2027	}
2028
2029	retval = count_strings_kernel(argv);
2030	if (WARN_ON_ONCE(retval == 0))
2031		retval = -EINVAL;
2032	if (retval < 0)
2033		goto out_free;
2034	bprm->argc = retval;
2035
2036	retval = count_strings_kernel(envp);
2037	if (retval < 0)
2038		goto out_free;
2039	bprm->envc = retval;
2040
2041	retval = bprm_stack_limits(bprm);
2042	if (retval < 0)
2043		goto out_free;
2044
2045	retval = copy_string_kernel(bprm->filename, bprm);
2046	if (retval < 0)
2047		goto out_free;
2048	bprm->exec = bprm->p;
2049
2050	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2051	if (retval < 0)
2052		goto out_free;
2053
2054	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2055	if (retval < 0)
2056		goto out_free;
2057
2058	retval = bprm_execve(bprm);
2059out_free:
2060	free_bprm(bprm);
2061out_ret:
2062	putname(filename);
2063	return retval;
2064}
2065
2066static int do_execve(struct filename *filename,
2067	const char __user *const __user *__argv,
2068	const char __user *const __user *__envp)
2069{
2070	struct user_arg_ptr argv = { .ptr.native = __argv };
2071	struct user_arg_ptr envp = { .ptr.native = __envp };
2072	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2073}
2074
2075static int do_execveat(int fd, struct filename *filename,
2076		const char __user *const __user *__argv,
2077		const char __user *const __user *__envp,
2078		int flags)
2079{
2080	struct user_arg_ptr argv = { .ptr.native = __argv };
2081	struct user_arg_ptr envp = { .ptr.native = __envp };
2082
2083	return do_execveat_common(fd, filename, argv, envp, flags);
2084}
2085
2086#ifdef CONFIG_COMPAT
2087static int compat_do_execve(struct filename *filename,
2088	const compat_uptr_t __user *__argv,
2089	const compat_uptr_t __user *__envp)
2090{
2091	struct user_arg_ptr argv = {
2092		.is_compat = true,
2093		.ptr.compat = __argv,
2094	};
2095	struct user_arg_ptr envp = {
2096		.is_compat = true,
2097		.ptr.compat = __envp,
2098	};
2099	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2100}
2101
2102static int compat_do_execveat(int fd, struct filename *filename,
2103			      const compat_uptr_t __user *__argv,
2104			      const compat_uptr_t __user *__envp,
2105			      int flags)
2106{
2107	struct user_arg_ptr argv = {
2108		.is_compat = true,
2109		.ptr.compat = __argv,
2110	};
2111	struct user_arg_ptr envp = {
2112		.is_compat = true,
2113		.ptr.compat = __envp,
2114	};
2115	return do_execveat_common(fd, filename, argv, envp, flags);
2116}
2117#endif
2118
2119void set_binfmt(struct linux_binfmt *new)
2120{
2121	struct mm_struct *mm = current->mm;
2122
2123	if (mm->binfmt)
2124		module_put(mm->binfmt->module);
2125
2126	mm->binfmt = new;
2127	if (new)
2128		__module_get(new->module);
2129}
2130EXPORT_SYMBOL(set_binfmt);
2131
2132/*
2133 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2134 */
2135void set_dumpable(struct mm_struct *mm, int value)
2136{
2137	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2138		return;
2139
2140	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2141}
2142
2143SYSCALL_DEFINE3(execve,
2144		const char __user *, filename,
2145		const char __user *const __user *, argv,
2146		const char __user *const __user *, envp)
2147{
2148	return do_execve(getname(filename), argv, envp);
2149}
2150
2151SYSCALL_DEFINE5(execveat,
2152		int, fd, const char __user *, filename,
2153		const char __user *const __user *, argv,
2154		const char __user *const __user *, envp,
2155		int, flags)
2156{
2157	return do_execveat(fd,
2158			   getname_uflags(filename, flags),
2159			   argv, envp, flags);
2160}
2161
2162#ifdef CONFIG_COMPAT
2163COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2164	const compat_uptr_t __user *, argv,
2165	const compat_uptr_t __user *, envp)
2166{
2167	return compat_do_execve(getname(filename), argv, envp);
2168}
2169
2170COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2171		       const char __user *, filename,
2172		       const compat_uptr_t __user *, argv,
2173		       const compat_uptr_t __user *, envp,
2174		       int,  flags)
2175{
2176	return compat_do_execveat(fd,
2177				  getname_uflags(filename, flags),
2178				  argv, envp, flags);
2179}
2180#endif
2181
2182#ifdef CONFIG_SYSCTL
2183
2184static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2185		void *buffer, size_t *lenp, loff_t *ppos)
2186{
2187	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2188
2189	if (!error)
2190		validate_coredump_safety();
2191	return error;
2192}
2193
2194static struct ctl_table fs_exec_sysctls[] = {
2195	{
2196		.procname	= "suid_dumpable",
2197		.data		= &suid_dumpable,
2198		.maxlen		= sizeof(int),
2199		.mode		= 0644,
2200		.proc_handler	= proc_dointvec_minmax_coredump,
2201		.extra1		= SYSCTL_ZERO,
2202		.extra2		= SYSCTL_TWO,
2203	},
2204};
2205
2206static int __init init_fs_exec_sysctls(void)
2207{
2208	register_sysctl_init("fs", fs_exec_sysctls);
2209	return 0;
2210}
2211
2212fs_initcall(init_fs_exec_sysctls);
2213#endif /* CONFIG_SYSCTL */
2214