1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * eCryptfs: Linux filesystem encryption layer
4 *
5 * Copyright (C) 1997-2003 Erez Zadok
6 * Copyright (C) 2001-2003 Stony Brook University
7 * Copyright (C) 2004-2007 International Business Machines Corp.
8 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9 *              Michael C. Thompson <mcthomps@us.ibm.com>
10 *              Tyler Hicks <code@tyhicks.com>
11 */
12
13#include <linux/dcache.h>
14#include <linux/file.h>
15#include <linux/module.h>
16#include <linux/namei.h>
17#include <linux/skbuff.h>
18#include <linux/mount.h>
19#include <linux/pagemap.h>
20#include <linux/key.h>
21#include <linux/parser.h>
22#include <linux/fs_stack.h>
23#include <linux/slab.h>
24#include <linux/magic.h>
25#include "ecryptfs_kernel.h"
26
27/*
28 * Module parameter that defines the ecryptfs_verbosity level.
29 */
30int ecryptfs_verbosity = 0;
31
32module_param(ecryptfs_verbosity, int, 0);
33MODULE_PARM_DESC(ecryptfs_verbosity,
34		 "Initial verbosity level (0 or 1; defaults to "
35		 "0, which is Quiet)");
36
37/*
38 * Module parameter that defines the number of message buffer elements
39 */
40unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS;
41
42module_param(ecryptfs_message_buf_len, uint, 0);
43MODULE_PARM_DESC(ecryptfs_message_buf_len,
44		 "Number of message buffer elements");
45
46/*
47 * Module parameter that defines the maximum guaranteed amount of time to wait
48 * for a response from ecryptfsd.  The actual sleep time will be, more than
49 * likely, a small amount greater than this specified value, but only less if
50 * the message successfully arrives.
51 */
52signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ;
53
54module_param(ecryptfs_message_wait_timeout, long, 0);
55MODULE_PARM_DESC(ecryptfs_message_wait_timeout,
56		 "Maximum number of seconds that an operation will "
57		 "sleep while waiting for a message response from "
58		 "userspace");
59
60/*
61 * Module parameter that is an estimate of the maximum number of users
62 * that will be concurrently using eCryptfs. Set this to the right
63 * value to balance performance and memory use.
64 */
65unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS;
66
67module_param(ecryptfs_number_of_users, uint, 0);
68MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of "
69		 "concurrent users of eCryptfs");
70
71void __ecryptfs_printk(const char *fmt, ...)
72{
73	va_list args;
74	va_start(args, fmt);
75	if (fmt[1] == '7') { /* KERN_DEBUG */
76		if (ecryptfs_verbosity >= 1)
77			vprintk(fmt, args);
78	} else
79		vprintk(fmt, args);
80	va_end(args);
81}
82
83/*
84 * ecryptfs_init_lower_file
85 * @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with
86 *                   the lower dentry and the lower mount set
87 *
88 * eCryptfs only ever keeps a single open file for every lower
89 * inode. All I/O operations to the lower inode occur through that
90 * file. When the first eCryptfs dentry that interposes with the first
91 * lower dentry for that inode is created, this function creates the
92 * lower file struct and associates it with the eCryptfs
93 * inode. When all eCryptfs files associated with the inode are released, the
94 * file is closed.
95 *
96 * The lower file will be opened with read/write permissions, if
97 * possible. Otherwise, it is opened read-only.
98 *
99 * This function does nothing if a lower file is already
100 * associated with the eCryptfs inode.
101 *
102 * Returns zero on success; non-zero otherwise
103 */
104static int ecryptfs_init_lower_file(struct dentry *dentry,
105				    struct file **lower_file)
106{
107	const struct cred *cred = current_cred();
108	const struct path *path = ecryptfs_dentry_to_lower_path(dentry);
109	int rc;
110
111	rc = ecryptfs_privileged_open(lower_file, path->dentry, path->mnt,
112				      cred);
113	if (rc) {
114		printk(KERN_ERR "Error opening lower file "
115		       "for lower_dentry [0x%p] and lower_mnt [0x%p]; "
116		       "rc = [%d]\n", path->dentry, path->mnt, rc);
117		(*lower_file) = NULL;
118	}
119	return rc;
120}
121
122int ecryptfs_get_lower_file(struct dentry *dentry, struct inode *inode)
123{
124	struct ecryptfs_inode_info *inode_info;
125	int count, rc = 0;
126
127	inode_info = ecryptfs_inode_to_private(inode);
128	mutex_lock(&inode_info->lower_file_mutex);
129	count = atomic_inc_return(&inode_info->lower_file_count);
130	if (WARN_ON_ONCE(count < 1))
131		rc = -EINVAL;
132	else if (count == 1) {
133		rc = ecryptfs_init_lower_file(dentry,
134					      &inode_info->lower_file);
135		if (rc)
136			atomic_set(&inode_info->lower_file_count, 0);
137	}
138	mutex_unlock(&inode_info->lower_file_mutex);
139	return rc;
140}
141
142void ecryptfs_put_lower_file(struct inode *inode)
143{
144	struct ecryptfs_inode_info *inode_info;
145
146	inode_info = ecryptfs_inode_to_private(inode);
147	if (atomic_dec_and_mutex_lock(&inode_info->lower_file_count,
148				      &inode_info->lower_file_mutex)) {
149		filemap_write_and_wait(inode->i_mapping);
150		fput(inode_info->lower_file);
151		inode_info->lower_file = NULL;
152		mutex_unlock(&inode_info->lower_file_mutex);
153	}
154}
155
156enum { ecryptfs_opt_sig, ecryptfs_opt_ecryptfs_sig,
157       ecryptfs_opt_cipher, ecryptfs_opt_ecryptfs_cipher,
158       ecryptfs_opt_ecryptfs_key_bytes,
159       ecryptfs_opt_passthrough, ecryptfs_opt_xattr_metadata,
160       ecryptfs_opt_encrypted_view, ecryptfs_opt_fnek_sig,
161       ecryptfs_opt_fn_cipher, ecryptfs_opt_fn_cipher_key_bytes,
162       ecryptfs_opt_unlink_sigs, ecryptfs_opt_mount_auth_tok_only,
163       ecryptfs_opt_check_dev_ruid,
164       ecryptfs_opt_err };
165
166static const match_table_t tokens = {
167	{ecryptfs_opt_sig, "sig=%s"},
168	{ecryptfs_opt_ecryptfs_sig, "ecryptfs_sig=%s"},
169	{ecryptfs_opt_cipher, "cipher=%s"},
170	{ecryptfs_opt_ecryptfs_cipher, "ecryptfs_cipher=%s"},
171	{ecryptfs_opt_ecryptfs_key_bytes, "ecryptfs_key_bytes=%u"},
172	{ecryptfs_opt_passthrough, "ecryptfs_passthrough"},
173	{ecryptfs_opt_xattr_metadata, "ecryptfs_xattr_metadata"},
174	{ecryptfs_opt_encrypted_view, "ecryptfs_encrypted_view"},
175	{ecryptfs_opt_fnek_sig, "ecryptfs_fnek_sig=%s"},
176	{ecryptfs_opt_fn_cipher, "ecryptfs_fn_cipher=%s"},
177	{ecryptfs_opt_fn_cipher_key_bytes, "ecryptfs_fn_key_bytes=%u"},
178	{ecryptfs_opt_unlink_sigs, "ecryptfs_unlink_sigs"},
179	{ecryptfs_opt_mount_auth_tok_only, "ecryptfs_mount_auth_tok_only"},
180	{ecryptfs_opt_check_dev_ruid, "ecryptfs_check_dev_ruid"},
181	{ecryptfs_opt_err, NULL}
182};
183
184static int ecryptfs_init_global_auth_toks(
185	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
186{
187	struct ecryptfs_global_auth_tok *global_auth_tok;
188	struct ecryptfs_auth_tok *auth_tok;
189	int rc = 0;
190
191	list_for_each_entry(global_auth_tok,
192			    &mount_crypt_stat->global_auth_tok_list,
193			    mount_crypt_stat_list) {
194		rc = ecryptfs_keyring_auth_tok_for_sig(
195			&global_auth_tok->global_auth_tok_key, &auth_tok,
196			global_auth_tok->sig);
197		if (rc) {
198			printk(KERN_ERR "Could not find valid key in user "
199			       "session keyring for sig specified in mount "
200			       "option: [%s]\n", global_auth_tok->sig);
201			global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID;
202			goto out;
203		} else {
204			global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID;
205			up_write(&(global_auth_tok->global_auth_tok_key)->sem);
206		}
207	}
208out:
209	return rc;
210}
211
212static void ecryptfs_init_mount_crypt_stat(
213	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
214{
215	memset((void *)mount_crypt_stat, 0,
216	       sizeof(struct ecryptfs_mount_crypt_stat));
217	INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list);
218	mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex);
219	mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED;
220}
221
222/**
223 * ecryptfs_parse_options
224 * @sbi: The ecryptfs super block
225 * @options: The options passed to the kernel
226 * @check_ruid: set to 1 if device uid should be checked against the ruid
227 *
228 * Parse mount options:
229 * debug=N 	   - ecryptfs_verbosity level for debug output
230 * sig=XXX	   - description(signature) of the key to use
231 *
232 * Returns the dentry object of the lower-level (lower/interposed)
233 * directory; We want to mount our stackable file system on top of
234 * that lower directory.
235 *
236 * The signature of the key to use must be the description of a key
237 * already in the keyring. Mounting will fail if the key can not be
238 * found.
239 *
240 * Returns zero on success; non-zero on error
241 */
242static int ecryptfs_parse_options(struct ecryptfs_sb_info *sbi, char *options,
243				  uid_t *check_ruid)
244{
245	char *p;
246	int rc = 0;
247	int sig_set = 0;
248	int cipher_name_set = 0;
249	int fn_cipher_name_set = 0;
250	int cipher_key_bytes;
251	int cipher_key_bytes_set = 0;
252	int fn_cipher_key_bytes;
253	int fn_cipher_key_bytes_set = 0;
254	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
255		&sbi->mount_crypt_stat;
256	substring_t args[MAX_OPT_ARGS];
257	int token;
258	char *sig_src;
259	char *cipher_name_src;
260	char *fn_cipher_name_src;
261	char *fnek_src;
262	char *cipher_key_bytes_src;
263	char *fn_cipher_key_bytes_src;
264	u8 cipher_code;
265
266	*check_ruid = 0;
267
268	if (!options) {
269		rc = -EINVAL;
270		goto out;
271	}
272	ecryptfs_init_mount_crypt_stat(mount_crypt_stat);
273	while ((p = strsep(&options, ",")) != NULL) {
274		if (!*p)
275			continue;
276		token = match_token(p, tokens, args);
277		switch (token) {
278		case ecryptfs_opt_sig:
279		case ecryptfs_opt_ecryptfs_sig:
280			sig_src = args[0].from;
281			rc = ecryptfs_add_global_auth_tok(mount_crypt_stat,
282							  sig_src, 0);
283			if (rc) {
284				printk(KERN_ERR "Error attempting to register "
285				       "global sig; rc = [%d]\n", rc);
286				goto out;
287			}
288			sig_set = 1;
289			break;
290		case ecryptfs_opt_cipher:
291		case ecryptfs_opt_ecryptfs_cipher:
292			cipher_name_src = args[0].from;
293			strscpy(mount_crypt_stat->global_default_cipher_name,
294				cipher_name_src);
295			cipher_name_set = 1;
296			break;
297		case ecryptfs_opt_ecryptfs_key_bytes:
298			cipher_key_bytes_src = args[0].from;
299			cipher_key_bytes =
300				(int)simple_strtol(cipher_key_bytes_src,
301						   &cipher_key_bytes_src, 0);
302			mount_crypt_stat->global_default_cipher_key_size =
303				cipher_key_bytes;
304			cipher_key_bytes_set = 1;
305			break;
306		case ecryptfs_opt_passthrough:
307			mount_crypt_stat->flags |=
308				ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED;
309			break;
310		case ecryptfs_opt_xattr_metadata:
311			mount_crypt_stat->flags |=
312				ECRYPTFS_XATTR_METADATA_ENABLED;
313			break;
314		case ecryptfs_opt_encrypted_view:
315			mount_crypt_stat->flags |=
316				ECRYPTFS_XATTR_METADATA_ENABLED;
317			mount_crypt_stat->flags |=
318				ECRYPTFS_ENCRYPTED_VIEW_ENABLED;
319			break;
320		case ecryptfs_opt_fnek_sig:
321			fnek_src = args[0].from;
322			strscpy(mount_crypt_stat->global_default_fnek_sig,
323				fnek_src);
324			rc = ecryptfs_add_global_auth_tok(
325				mount_crypt_stat,
326				mount_crypt_stat->global_default_fnek_sig,
327				ECRYPTFS_AUTH_TOK_FNEK);
328			if (rc) {
329				printk(KERN_ERR "Error attempting to register "
330				       "global fnek sig [%s]; rc = [%d]\n",
331				       mount_crypt_stat->global_default_fnek_sig,
332				       rc);
333				goto out;
334			}
335			mount_crypt_stat->flags |=
336				(ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
337				 | ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK);
338			break;
339		case ecryptfs_opt_fn_cipher:
340			fn_cipher_name_src = args[0].from;
341			strscpy(mount_crypt_stat->global_default_fn_cipher_name,
342				fn_cipher_name_src);
343			fn_cipher_name_set = 1;
344			break;
345		case ecryptfs_opt_fn_cipher_key_bytes:
346			fn_cipher_key_bytes_src = args[0].from;
347			fn_cipher_key_bytes =
348				(int)simple_strtol(fn_cipher_key_bytes_src,
349						   &fn_cipher_key_bytes_src, 0);
350			mount_crypt_stat->global_default_fn_cipher_key_bytes =
351				fn_cipher_key_bytes;
352			fn_cipher_key_bytes_set = 1;
353			break;
354		case ecryptfs_opt_unlink_sigs:
355			mount_crypt_stat->flags |= ECRYPTFS_UNLINK_SIGS;
356			break;
357		case ecryptfs_opt_mount_auth_tok_only:
358			mount_crypt_stat->flags |=
359				ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY;
360			break;
361		case ecryptfs_opt_check_dev_ruid:
362			*check_ruid = 1;
363			break;
364		case ecryptfs_opt_err:
365		default:
366			printk(KERN_WARNING
367			       "%s: eCryptfs: unrecognized option [%s]\n",
368			       __func__, p);
369		}
370	}
371	if (!sig_set) {
372		rc = -EINVAL;
373		ecryptfs_printk(KERN_ERR, "You must supply at least one valid "
374				"auth tok signature as a mount "
375				"parameter; see the eCryptfs README\n");
376		goto out;
377	}
378	if (!cipher_name_set) {
379		int cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER);
380
381		BUG_ON(cipher_name_len > ECRYPTFS_MAX_CIPHER_NAME_SIZE);
382		strcpy(mount_crypt_stat->global_default_cipher_name,
383		       ECRYPTFS_DEFAULT_CIPHER);
384	}
385	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
386	    && !fn_cipher_name_set)
387		strcpy(mount_crypt_stat->global_default_fn_cipher_name,
388		       mount_crypt_stat->global_default_cipher_name);
389	if (!cipher_key_bytes_set)
390		mount_crypt_stat->global_default_cipher_key_size = 0;
391	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
392	    && !fn_cipher_key_bytes_set)
393		mount_crypt_stat->global_default_fn_cipher_key_bytes =
394			mount_crypt_stat->global_default_cipher_key_size;
395
396	cipher_code = ecryptfs_code_for_cipher_string(
397		mount_crypt_stat->global_default_cipher_name,
398		mount_crypt_stat->global_default_cipher_key_size);
399	if (!cipher_code) {
400		ecryptfs_printk(KERN_ERR,
401				"eCryptfs doesn't support cipher: %s\n",
402				mount_crypt_stat->global_default_cipher_name);
403		rc = -EINVAL;
404		goto out;
405	}
406
407	mutex_lock(&key_tfm_list_mutex);
408	if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name,
409				 NULL)) {
410		rc = ecryptfs_add_new_key_tfm(
411			NULL, mount_crypt_stat->global_default_cipher_name,
412			mount_crypt_stat->global_default_cipher_key_size);
413		if (rc) {
414			printk(KERN_ERR "Error attempting to initialize "
415			       "cipher with name = [%s] and key size = [%td]; "
416			       "rc = [%d]\n",
417			       mount_crypt_stat->global_default_cipher_name,
418			       mount_crypt_stat->global_default_cipher_key_size,
419			       rc);
420			rc = -EINVAL;
421			mutex_unlock(&key_tfm_list_mutex);
422			goto out;
423		}
424	}
425	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
426	    && !ecryptfs_tfm_exists(
427		    mount_crypt_stat->global_default_fn_cipher_name, NULL)) {
428		rc = ecryptfs_add_new_key_tfm(
429			NULL, mount_crypt_stat->global_default_fn_cipher_name,
430			mount_crypt_stat->global_default_fn_cipher_key_bytes);
431		if (rc) {
432			printk(KERN_ERR "Error attempting to initialize "
433			       "cipher with name = [%s] and key size = [%td]; "
434			       "rc = [%d]\n",
435			       mount_crypt_stat->global_default_fn_cipher_name,
436			       mount_crypt_stat->global_default_fn_cipher_key_bytes,
437			       rc);
438			rc = -EINVAL;
439			mutex_unlock(&key_tfm_list_mutex);
440			goto out;
441		}
442	}
443	mutex_unlock(&key_tfm_list_mutex);
444	rc = ecryptfs_init_global_auth_toks(mount_crypt_stat);
445	if (rc)
446		printk(KERN_WARNING "One or more global auth toks could not "
447		       "properly register; rc = [%d]\n", rc);
448out:
449	return rc;
450}
451
452struct kmem_cache *ecryptfs_sb_info_cache;
453static struct file_system_type ecryptfs_fs_type;
454
455/*
456 * ecryptfs_mount
457 * @fs_type: The filesystem type that the superblock should belong to
458 * @flags: The flags associated with the mount
459 * @dev_name: The path to mount over
460 * @raw_data: The options passed into the kernel
461 */
462static struct dentry *ecryptfs_mount(struct file_system_type *fs_type, int flags,
463			const char *dev_name, void *raw_data)
464{
465	struct super_block *s;
466	struct ecryptfs_sb_info *sbi;
467	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
468	struct ecryptfs_dentry_info *root_info;
469	const char *err = "Getting sb failed";
470	struct inode *inode;
471	struct path path;
472	uid_t check_ruid;
473	int rc;
474
475	sbi = kmem_cache_zalloc(ecryptfs_sb_info_cache, GFP_KERNEL);
476	if (!sbi) {
477		rc = -ENOMEM;
478		goto out;
479	}
480
481	if (!dev_name) {
482		rc = -EINVAL;
483		err = "Device name cannot be null";
484		goto out;
485	}
486
487	rc = ecryptfs_parse_options(sbi, raw_data, &check_ruid);
488	if (rc) {
489		err = "Error parsing options";
490		goto out;
491	}
492	mount_crypt_stat = &sbi->mount_crypt_stat;
493
494	s = sget(fs_type, NULL, set_anon_super, flags, NULL);
495	if (IS_ERR(s)) {
496		rc = PTR_ERR(s);
497		goto out;
498	}
499
500	rc = super_setup_bdi(s);
501	if (rc)
502		goto out1;
503
504	ecryptfs_set_superblock_private(s, sbi);
505
506	/* ->kill_sb() will take care of sbi after that point */
507	sbi = NULL;
508	s->s_op = &ecryptfs_sops;
509	s->s_xattr = ecryptfs_xattr_handlers;
510	s->s_d_op = &ecryptfs_dops;
511
512	err = "Reading sb failed";
513	rc = kern_path(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &path);
514	if (rc) {
515		ecryptfs_printk(KERN_WARNING, "kern_path() failed\n");
516		goto out1;
517	}
518	if (path.dentry->d_sb->s_type == &ecryptfs_fs_type) {
519		rc = -EINVAL;
520		printk(KERN_ERR "Mount on filesystem of type "
521			"eCryptfs explicitly disallowed due to "
522			"known incompatibilities\n");
523		goto out_free;
524	}
525
526	if (is_idmapped_mnt(path.mnt)) {
527		rc = -EINVAL;
528		printk(KERN_ERR "Mounting on idmapped mounts currently disallowed\n");
529		goto out_free;
530	}
531
532	if (check_ruid && !uid_eq(d_inode(path.dentry)->i_uid, current_uid())) {
533		rc = -EPERM;
534		printk(KERN_ERR "Mount of device (uid: %d) not owned by "
535		       "requested user (uid: %d)\n",
536			i_uid_read(d_inode(path.dentry)),
537			from_kuid(&init_user_ns, current_uid()));
538		goto out_free;
539	}
540
541	ecryptfs_set_superblock_lower(s, path.dentry->d_sb);
542
543	/**
544	 * Set the POSIX ACL flag based on whether they're enabled in the lower
545	 * mount.
546	 */
547	s->s_flags = flags & ~SB_POSIXACL;
548	s->s_flags |= path.dentry->d_sb->s_flags & SB_POSIXACL;
549
550	/**
551	 * Force a read-only eCryptfs mount when:
552	 *   1) The lower mount is ro
553	 *   2) The ecryptfs_encrypted_view mount option is specified
554	 */
555	if (sb_rdonly(path.dentry->d_sb) || mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
556		s->s_flags |= SB_RDONLY;
557
558	s->s_maxbytes = path.dentry->d_sb->s_maxbytes;
559	s->s_blocksize = path.dentry->d_sb->s_blocksize;
560	s->s_magic = ECRYPTFS_SUPER_MAGIC;
561	s->s_stack_depth = path.dentry->d_sb->s_stack_depth + 1;
562
563	rc = -EINVAL;
564	if (s->s_stack_depth > FILESYSTEM_MAX_STACK_DEPTH) {
565		pr_err("eCryptfs: maximum fs stacking depth exceeded\n");
566		goto out_free;
567	}
568
569	inode = ecryptfs_get_inode(d_inode(path.dentry), s);
570	rc = PTR_ERR(inode);
571	if (IS_ERR(inode))
572		goto out_free;
573
574	s->s_root = d_make_root(inode);
575	if (!s->s_root) {
576		rc = -ENOMEM;
577		goto out_free;
578	}
579
580	rc = -ENOMEM;
581	root_info = kmem_cache_zalloc(ecryptfs_dentry_info_cache, GFP_KERNEL);
582	if (!root_info)
583		goto out_free;
584
585	/* ->kill_sb() will take care of root_info */
586	ecryptfs_set_dentry_private(s->s_root, root_info);
587	root_info->lower_path = path;
588
589	s->s_flags |= SB_ACTIVE;
590	return dget(s->s_root);
591
592out_free:
593	path_put(&path);
594out1:
595	deactivate_locked_super(s);
596out:
597	if (sbi) {
598		ecryptfs_destroy_mount_crypt_stat(&sbi->mount_crypt_stat);
599		kmem_cache_free(ecryptfs_sb_info_cache, sbi);
600	}
601	printk(KERN_ERR "%s; rc = [%d]\n", err, rc);
602	return ERR_PTR(rc);
603}
604
605/**
606 * ecryptfs_kill_block_super
607 * @sb: The ecryptfs super block
608 *
609 * Used to bring the superblock down and free the private data.
610 */
611static void ecryptfs_kill_block_super(struct super_block *sb)
612{
613	struct ecryptfs_sb_info *sb_info = ecryptfs_superblock_to_private(sb);
614	kill_anon_super(sb);
615	if (!sb_info)
616		return;
617	ecryptfs_destroy_mount_crypt_stat(&sb_info->mount_crypt_stat);
618	kmem_cache_free(ecryptfs_sb_info_cache, sb_info);
619}
620
621static struct file_system_type ecryptfs_fs_type = {
622	.owner = THIS_MODULE,
623	.name = "ecryptfs",
624	.mount = ecryptfs_mount,
625	.kill_sb = ecryptfs_kill_block_super,
626	.fs_flags = 0
627};
628MODULE_ALIAS_FS("ecryptfs");
629
630/*
631 * inode_info_init_once
632 *
633 * Initializes the ecryptfs_inode_info_cache when it is created
634 */
635static void
636inode_info_init_once(void *vptr)
637{
638	struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr;
639
640	inode_init_once(&ei->vfs_inode);
641}
642
643static struct ecryptfs_cache_info {
644	struct kmem_cache **cache;
645	const char *name;
646	size_t size;
647	slab_flags_t flags;
648	void (*ctor)(void *obj);
649} ecryptfs_cache_infos[] = {
650	{
651		.cache = &ecryptfs_auth_tok_list_item_cache,
652		.name = "ecryptfs_auth_tok_list_item",
653		.size = sizeof(struct ecryptfs_auth_tok_list_item),
654	},
655	{
656		.cache = &ecryptfs_file_info_cache,
657		.name = "ecryptfs_file_cache",
658		.size = sizeof(struct ecryptfs_file_info),
659	},
660	{
661		.cache = &ecryptfs_dentry_info_cache,
662		.name = "ecryptfs_dentry_info_cache",
663		.size = sizeof(struct ecryptfs_dentry_info),
664	},
665	{
666		.cache = &ecryptfs_inode_info_cache,
667		.name = "ecryptfs_inode_cache",
668		.size = sizeof(struct ecryptfs_inode_info),
669		.flags = SLAB_ACCOUNT,
670		.ctor = inode_info_init_once,
671	},
672	{
673		.cache = &ecryptfs_sb_info_cache,
674		.name = "ecryptfs_sb_cache",
675		.size = sizeof(struct ecryptfs_sb_info),
676	},
677	{
678		.cache = &ecryptfs_header_cache,
679		.name = "ecryptfs_headers",
680		.size = PAGE_SIZE,
681	},
682	{
683		.cache = &ecryptfs_xattr_cache,
684		.name = "ecryptfs_xattr_cache",
685		.size = PAGE_SIZE,
686	},
687	{
688		.cache = &ecryptfs_key_record_cache,
689		.name = "ecryptfs_key_record_cache",
690		.size = sizeof(struct ecryptfs_key_record),
691	},
692	{
693		.cache = &ecryptfs_key_sig_cache,
694		.name = "ecryptfs_key_sig_cache",
695		.size = sizeof(struct ecryptfs_key_sig),
696	},
697	{
698		.cache = &ecryptfs_global_auth_tok_cache,
699		.name = "ecryptfs_global_auth_tok_cache",
700		.size = sizeof(struct ecryptfs_global_auth_tok),
701	},
702	{
703		.cache = &ecryptfs_key_tfm_cache,
704		.name = "ecryptfs_key_tfm_cache",
705		.size = sizeof(struct ecryptfs_key_tfm),
706	},
707};
708
709static void ecryptfs_free_kmem_caches(void)
710{
711	int i;
712
713	/*
714	 * Make sure all delayed rcu free inodes are flushed before we
715	 * destroy cache.
716	 */
717	rcu_barrier();
718
719	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
720		struct ecryptfs_cache_info *info;
721
722		info = &ecryptfs_cache_infos[i];
723		kmem_cache_destroy(*(info->cache));
724	}
725}
726
727/**
728 * ecryptfs_init_kmem_caches
729 *
730 * Returns zero on success; non-zero otherwise
731 */
732static int ecryptfs_init_kmem_caches(void)
733{
734	int i;
735
736	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
737		struct ecryptfs_cache_info *info;
738
739		info = &ecryptfs_cache_infos[i];
740		*(info->cache) = kmem_cache_create(info->name, info->size, 0,
741				SLAB_HWCACHE_ALIGN | info->flags, info->ctor);
742		if (!*(info->cache)) {
743			ecryptfs_free_kmem_caches();
744			ecryptfs_printk(KERN_WARNING, "%s: "
745					"kmem_cache_create failed\n",
746					info->name);
747			return -ENOMEM;
748		}
749	}
750	return 0;
751}
752
753static struct kobject *ecryptfs_kobj;
754
755static ssize_t version_show(struct kobject *kobj,
756			    struct kobj_attribute *attr, char *buff)
757{
758	return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK);
759}
760
761static struct kobj_attribute version_attr = __ATTR_RO(version);
762
763static struct attribute *attributes[] = {
764	&version_attr.attr,
765	NULL,
766};
767
768static const struct attribute_group attr_group = {
769	.attrs = attributes,
770};
771
772static int do_sysfs_registration(void)
773{
774	int rc;
775
776	ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj);
777	if (!ecryptfs_kobj) {
778		printk(KERN_ERR "Unable to create ecryptfs kset\n");
779		rc = -ENOMEM;
780		goto out;
781	}
782	rc = sysfs_create_group(ecryptfs_kobj, &attr_group);
783	if (rc) {
784		printk(KERN_ERR
785		       "Unable to create ecryptfs version attributes\n");
786		kobject_put(ecryptfs_kobj);
787	}
788out:
789	return rc;
790}
791
792static void do_sysfs_unregistration(void)
793{
794	sysfs_remove_group(ecryptfs_kobj, &attr_group);
795	kobject_put(ecryptfs_kobj);
796}
797
798static int __init ecryptfs_init(void)
799{
800	int rc;
801
802	if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_SIZE) {
803		rc = -EINVAL;
804		ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is "
805				"larger than the host's page size, and so "
806				"eCryptfs cannot run on this system. The "
807				"default eCryptfs extent size is [%u] bytes; "
808				"the page size is [%lu] bytes.\n",
809				ECRYPTFS_DEFAULT_EXTENT_SIZE,
810				(unsigned long)PAGE_SIZE);
811		goto out;
812	}
813	rc = ecryptfs_init_kmem_caches();
814	if (rc) {
815		printk(KERN_ERR
816		       "Failed to allocate one or more kmem_cache objects\n");
817		goto out;
818	}
819	rc = do_sysfs_registration();
820	if (rc) {
821		printk(KERN_ERR "sysfs registration failed\n");
822		goto out_free_kmem_caches;
823	}
824	rc = ecryptfs_init_kthread();
825	if (rc) {
826		printk(KERN_ERR "%s: kthread initialization failed; "
827		       "rc = [%d]\n", __func__, rc);
828		goto out_do_sysfs_unregistration;
829	}
830	rc = ecryptfs_init_messaging();
831	if (rc) {
832		printk(KERN_ERR "Failure occurred while attempting to "
833				"initialize the communications channel to "
834				"ecryptfsd\n");
835		goto out_destroy_kthread;
836	}
837	rc = ecryptfs_init_crypto();
838	if (rc) {
839		printk(KERN_ERR "Failure whilst attempting to init crypto; "
840		       "rc = [%d]\n", rc);
841		goto out_release_messaging;
842	}
843	rc = register_filesystem(&ecryptfs_fs_type);
844	if (rc) {
845		printk(KERN_ERR "Failed to register filesystem\n");
846		goto out_destroy_crypto;
847	}
848	if (ecryptfs_verbosity > 0)
849		printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values "
850			"will be written to the syslog!\n", ecryptfs_verbosity);
851
852	goto out;
853out_destroy_crypto:
854	ecryptfs_destroy_crypto();
855out_release_messaging:
856	ecryptfs_release_messaging();
857out_destroy_kthread:
858	ecryptfs_destroy_kthread();
859out_do_sysfs_unregistration:
860	do_sysfs_unregistration();
861out_free_kmem_caches:
862	ecryptfs_free_kmem_caches();
863out:
864	return rc;
865}
866
867static void __exit ecryptfs_exit(void)
868{
869	int rc;
870
871	rc = ecryptfs_destroy_crypto();
872	if (rc)
873		printk(KERN_ERR "Failure whilst attempting to destroy crypto; "
874		       "rc = [%d]\n", rc);
875	ecryptfs_release_messaging();
876	ecryptfs_destroy_kthread();
877	do_sysfs_unregistration();
878	unregister_filesystem(&ecryptfs_fs_type);
879	ecryptfs_free_kmem_caches();
880}
881
882MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>");
883MODULE_DESCRIPTION("eCryptfs");
884
885MODULE_LICENSE("GPL");
886
887module_init(ecryptfs_init)
888module_exit(ecryptfs_exit)
889