1// SPDX-License-Identifier: GPL-2.0-only
2#undef DEBUG
3
4/*
5 * ARM performance counter support.
6 *
7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 *
10 * This code is based on the sparc64 perf event code, which is in turn based
11 * on the x86 code.
12 */
13#define pr_fmt(fmt) "hw perfevents: " fmt
14
15#include <linux/bitmap.h>
16#include <linux/cpumask.h>
17#include <linux/cpu_pm.h>
18#include <linux/export.h>
19#include <linux/kernel.h>
20#include <linux/perf/arm_pmu.h>
21#include <linux/slab.h>
22#include <linux/sched/clock.h>
23#include <linux/spinlock.h>
24#include <linux/irq.h>
25#include <linux/irqdesc.h>
26
27#include <asm/irq_regs.h>
28
29static int armpmu_count_irq_users(const int irq);
30
31struct pmu_irq_ops {
32	void (*enable_pmuirq)(unsigned int irq);
33	void (*disable_pmuirq)(unsigned int irq);
34	void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35};
36
37static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38{
39	free_irq(irq, per_cpu_ptr(devid, cpu));
40}
41
42static const struct pmu_irq_ops pmuirq_ops = {
43	.enable_pmuirq = enable_irq,
44	.disable_pmuirq = disable_irq_nosync,
45	.free_pmuirq = armpmu_free_pmuirq
46};
47
48static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49{
50	free_nmi(irq, per_cpu_ptr(devid, cpu));
51}
52
53static const struct pmu_irq_ops pmunmi_ops = {
54	.enable_pmuirq = enable_nmi,
55	.disable_pmuirq = disable_nmi_nosync,
56	.free_pmuirq = armpmu_free_pmunmi
57};
58
59static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60{
61	enable_percpu_irq(irq, IRQ_TYPE_NONE);
62}
63
64static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65				   void __percpu *devid)
66{
67	if (armpmu_count_irq_users(irq) == 1)
68		free_percpu_irq(irq, devid);
69}
70
71static const struct pmu_irq_ops percpu_pmuirq_ops = {
72	.enable_pmuirq = armpmu_enable_percpu_pmuirq,
73	.disable_pmuirq = disable_percpu_irq,
74	.free_pmuirq = armpmu_free_percpu_pmuirq
75};
76
77static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78{
79	if (!prepare_percpu_nmi(irq))
80		enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81}
82
83static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84{
85	disable_percpu_nmi(irq);
86	teardown_percpu_nmi(irq);
87}
88
89static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90				      void __percpu *devid)
91{
92	if (armpmu_count_irq_users(irq) == 1)
93		free_percpu_nmi(irq, devid);
94}
95
96static const struct pmu_irq_ops percpu_pmunmi_ops = {
97	.enable_pmuirq = armpmu_enable_percpu_pmunmi,
98	.disable_pmuirq = armpmu_disable_percpu_pmunmi,
99	.free_pmuirq = armpmu_free_percpu_pmunmi
100};
101
102static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103static DEFINE_PER_CPU(int, cpu_irq);
104static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105
106static bool has_nmi;
107
108static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109{
110	if (event->hw.flags & ARMPMU_EVT_64BIT)
111		return GENMASK_ULL(63, 0);
112	else if (event->hw.flags & ARMPMU_EVT_63BIT)
113		return GENMASK_ULL(62, 0);
114	else if (event->hw.flags & ARMPMU_EVT_47BIT)
115		return GENMASK_ULL(46, 0);
116	else
117		return GENMASK_ULL(31, 0);
118}
119
120static int
121armpmu_map_cache_event(const unsigned (*cache_map)
122				      [PERF_COUNT_HW_CACHE_MAX]
123				      [PERF_COUNT_HW_CACHE_OP_MAX]
124				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
125		       u64 config)
126{
127	unsigned int cache_type, cache_op, cache_result, ret;
128
129	cache_type = (config >>  0) & 0xff;
130	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
131		return -EINVAL;
132
133	cache_op = (config >>  8) & 0xff;
134	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
135		return -EINVAL;
136
137	cache_result = (config >> 16) & 0xff;
138	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
139		return -EINVAL;
140
141	if (!cache_map)
142		return -ENOENT;
143
144	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
145
146	if (ret == CACHE_OP_UNSUPPORTED)
147		return -ENOENT;
148
149	return ret;
150}
151
152static int
153armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
154{
155	int mapping;
156
157	if (config >= PERF_COUNT_HW_MAX)
158		return -EINVAL;
159
160	if (!event_map)
161		return -ENOENT;
162
163	mapping = (*event_map)[config];
164	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
165}
166
167static int
168armpmu_map_raw_event(u32 raw_event_mask, u64 config)
169{
170	return (int)(config & raw_event_mask);
171}
172
173int
174armpmu_map_event(struct perf_event *event,
175		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
176		 const unsigned (*cache_map)
177				[PERF_COUNT_HW_CACHE_MAX]
178				[PERF_COUNT_HW_CACHE_OP_MAX]
179				[PERF_COUNT_HW_CACHE_RESULT_MAX],
180		 u32 raw_event_mask)
181{
182	u64 config = event->attr.config;
183	int type = event->attr.type;
184
185	if (type == event->pmu->type)
186		return armpmu_map_raw_event(raw_event_mask, config);
187
188	switch (type) {
189	case PERF_TYPE_HARDWARE:
190		return armpmu_map_hw_event(event_map, config);
191	case PERF_TYPE_HW_CACHE:
192		return armpmu_map_cache_event(cache_map, config);
193	case PERF_TYPE_RAW:
194		return armpmu_map_raw_event(raw_event_mask, config);
195	}
196
197	return -ENOENT;
198}
199
200int armpmu_event_set_period(struct perf_event *event)
201{
202	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
203	struct hw_perf_event *hwc = &event->hw;
204	s64 left = local64_read(&hwc->period_left);
205	s64 period = hwc->sample_period;
206	u64 max_period;
207	int ret = 0;
208
209	max_period = arm_pmu_event_max_period(event);
210	if (unlikely(left <= -period)) {
211		left = period;
212		local64_set(&hwc->period_left, left);
213		hwc->last_period = period;
214		ret = 1;
215	}
216
217	if (unlikely(left <= 0)) {
218		left += period;
219		local64_set(&hwc->period_left, left);
220		hwc->last_period = period;
221		ret = 1;
222	}
223
224	/*
225	 * Limit the maximum period to prevent the counter value
226	 * from overtaking the one we are about to program. In
227	 * effect we are reducing max_period to account for
228	 * interrupt latency (and we are being very conservative).
229	 */
230	if (left > (max_period >> 1))
231		left = (max_period >> 1);
232
233	local64_set(&hwc->prev_count, (u64)-left);
234
235	armpmu->write_counter(event, (u64)(-left) & max_period);
236
237	perf_event_update_userpage(event);
238
239	return ret;
240}
241
242u64 armpmu_event_update(struct perf_event *event)
243{
244	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
245	struct hw_perf_event *hwc = &event->hw;
246	u64 delta, prev_raw_count, new_raw_count;
247	u64 max_period = arm_pmu_event_max_period(event);
248
249again:
250	prev_raw_count = local64_read(&hwc->prev_count);
251	new_raw_count = armpmu->read_counter(event);
252
253	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
254			     new_raw_count) != prev_raw_count)
255		goto again;
256
257	delta = (new_raw_count - prev_raw_count) & max_period;
258
259	local64_add(delta, &event->count);
260	local64_sub(delta, &hwc->period_left);
261
262	return new_raw_count;
263}
264
265static void
266armpmu_read(struct perf_event *event)
267{
268	armpmu_event_update(event);
269}
270
271static void
272armpmu_stop(struct perf_event *event, int flags)
273{
274	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
275	struct hw_perf_event *hwc = &event->hw;
276
277	/*
278	 * ARM pmu always has to update the counter, so ignore
279	 * PERF_EF_UPDATE, see comments in armpmu_start().
280	 */
281	if (!(hwc->state & PERF_HES_STOPPED)) {
282		armpmu->disable(event);
283		armpmu_event_update(event);
284		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
285	}
286}
287
288static void armpmu_start(struct perf_event *event, int flags)
289{
290	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
291	struct hw_perf_event *hwc = &event->hw;
292
293	/*
294	 * ARM pmu always has to reprogram the period, so ignore
295	 * PERF_EF_RELOAD, see the comment below.
296	 */
297	if (flags & PERF_EF_RELOAD)
298		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
299
300	hwc->state = 0;
301	/*
302	 * Set the period again. Some counters can't be stopped, so when we
303	 * were stopped we simply disabled the IRQ source and the counter
304	 * may have been left counting. If we don't do this step then we may
305	 * get an interrupt too soon or *way* too late if the overflow has
306	 * happened since disabling.
307	 */
308	armpmu_event_set_period(event);
309	armpmu->enable(event);
310}
311
312static void
313armpmu_del(struct perf_event *event, int flags)
314{
315	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
316	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
317	struct hw_perf_event *hwc = &event->hw;
318	int idx = hwc->idx;
319
320	armpmu_stop(event, PERF_EF_UPDATE);
321	hw_events->events[idx] = NULL;
322	armpmu->clear_event_idx(hw_events, event);
323	perf_event_update_userpage(event);
324	/* Clear the allocated counter */
325	hwc->idx = -1;
326}
327
328static int
329armpmu_add(struct perf_event *event, int flags)
330{
331	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
332	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
333	struct hw_perf_event *hwc = &event->hw;
334	int idx;
335
336	/* An event following a process won't be stopped earlier */
337	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
338		return -ENOENT;
339
340	/* If we don't have a space for the counter then finish early. */
341	idx = armpmu->get_event_idx(hw_events, event);
342	if (idx < 0)
343		return idx;
344
345	/*
346	 * If there is an event in the counter we are going to use then make
347	 * sure it is disabled.
348	 */
349	event->hw.idx = idx;
350	armpmu->disable(event);
351	hw_events->events[idx] = event;
352
353	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
354	if (flags & PERF_EF_START)
355		armpmu_start(event, PERF_EF_RELOAD);
356
357	/* Propagate our changes to the userspace mapping. */
358	perf_event_update_userpage(event);
359
360	return 0;
361}
362
363static int
364validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
365			       struct perf_event *event)
366{
367	struct arm_pmu *armpmu;
368
369	if (is_software_event(event))
370		return 1;
371
372	/*
373	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
374	 * core perf code won't check that the pmu->ctx == leader->ctx
375	 * until after pmu->event_init(event).
376	 */
377	if (event->pmu != pmu)
378		return 0;
379
380	if (event->state < PERF_EVENT_STATE_OFF)
381		return 1;
382
383	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
384		return 1;
385
386	armpmu = to_arm_pmu(event->pmu);
387	return armpmu->get_event_idx(hw_events, event) >= 0;
388}
389
390static int
391validate_group(struct perf_event *event)
392{
393	struct perf_event *sibling, *leader = event->group_leader;
394	struct pmu_hw_events fake_pmu;
395
396	/*
397	 * Initialise the fake PMU. We only need to populate the
398	 * used_mask for the purposes of validation.
399	 */
400	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
401
402	if (!validate_event(event->pmu, &fake_pmu, leader))
403		return -EINVAL;
404
405	if (event == leader)
406		return 0;
407
408	for_each_sibling_event(sibling, leader) {
409		if (!validate_event(event->pmu, &fake_pmu, sibling))
410			return -EINVAL;
411	}
412
413	if (!validate_event(event->pmu, &fake_pmu, event))
414		return -EINVAL;
415
416	return 0;
417}
418
419static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
420{
421	struct arm_pmu *armpmu;
422	int ret;
423	u64 start_clock, finish_clock;
424
425	/*
426	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
427	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
428	 * do any necessary shifting, we just need to perform the first
429	 * dereference.
430	 */
431	armpmu = *(void **)dev;
432	if (WARN_ON_ONCE(!armpmu))
433		return IRQ_NONE;
434
435	start_clock = sched_clock();
436	ret = armpmu->handle_irq(armpmu);
437	finish_clock = sched_clock();
438
439	perf_sample_event_took(finish_clock - start_clock);
440	return ret;
441}
442
443static int
444__hw_perf_event_init(struct perf_event *event)
445{
446	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
447	struct hw_perf_event *hwc = &event->hw;
448	int mapping, ret;
449
450	hwc->flags = 0;
451	mapping = armpmu->map_event(event);
452
453	if (mapping < 0) {
454		pr_debug("event %x:%llx not supported\n", event->attr.type,
455			 event->attr.config);
456		return mapping;
457	}
458
459	/*
460	 * We don't assign an index until we actually place the event onto
461	 * hardware. Use -1 to signify that we haven't decided where to put it
462	 * yet. For SMP systems, each core has it's own PMU so we can't do any
463	 * clever allocation or constraints checking at this point.
464	 */
465	hwc->idx		= -1;
466	hwc->config_base	= 0;
467	hwc->config		= 0;
468	hwc->event_base		= 0;
469
470	/*
471	 * Check whether we need to exclude the counter from certain modes.
472	 */
473	if (armpmu->set_event_filter) {
474		ret = armpmu->set_event_filter(hwc, &event->attr);
475		if (ret)
476			return ret;
477	}
478
479	/*
480	 * Store the event encoding into the config_base field.
481	 */
482	hwc->config_base	    |= (unsigned long)mapping;
483
484	if (!is_sampling_event(event)) {
485		/*
486		 * For non-sampling runs, limit the sample_period to half
487		 * of the counter width. That way, the new counter value
488		 * is far less likely to overtake the previous one unless
489		 * you have some serious IRQ latency issues.
490		 */
491		hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
492		hwc->last_period    = hwc->sample_period;
493		local64_set(&hwc->period_left, hwc->sample_period);
494	}
495
496	return validate_group(event);
497}
498
499static int armpmu_event_init(struct perf_event *event)
500{
501	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
502
503	/*
504	 * Reject CPU-affine events for CPUs that are of a different class to
505	 * that which this PMU handles. Process-following events (where
506	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
507	 * reject them later (in armpmu_add) if they're scheduled on a
508	 * different class of CPU.
509	 */
510	if (event->cpu != -1 &&
511		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
512		return -ENOENT;
513
514	/* does not support taken branch sampling */
515	if (has_branch_stack(event))
516		return -EOPNOTSUPP;
517
518	return __hw_perf_event_init(event);
519}
520
521static void armpmu_enable(struct pmu *pmu)
522{
523	struct arm_pmu *armpmu = to_arm_pmu(pmu);
524	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
525	bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
526
527	/* For task-bound events we may be called on other CPUs */
528	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
529		return;
530
531	if (enabled)
532		armpmu->start(armpmu);
533}
534
535static void armpmu_disable(struct pmu *pmu)
536{
537	struct arm_pmu *armpmu = to_arm_pmu(pmu);
538
539	/* For task-bound events we may be called on other CPUs */
540	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
541		return;
542
543	armpmu->stop(armpmu);
544}
545
546/*
547 * In heterogeneous systems, events are specific to a particular
548 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
549 * the same microarchitecture.
550 */
551static bool armpmu_filter(struct pmu *pmu, int cpu)
552{
553	struct arm_pmu *armpmu = to_arm_pmu(pmu);
554	return !cpumask_test_cpu(cpu, &armpmu->supported_cpus);
555}
556
557static ssize_t cpus_show(struct device *dev,
558			 struct device_attribute *attr, char *buf)
559{
560	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
561	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
562}
563
564static DEVICE_ATTR_RO(cpus);
565
566static struct attribute *armpmu_common_attrs[] = {
567	&dev_attr_cpus.attr,
568	NULL,
569};
570
571static const struct attribute_group armpmu_common_attr_group = {
572	.attrs = armpmu_common_attrs,
573};
574
575static int armpmu_count_irq_users(const int irq)
576{
577	int cpu, count = 0;
578
579	for_each_possible_cpu(cpu) {
580		if (per_cpu(cpu_irq, cpu) == irq)
581			count++;
582	}
583
584	return count;
585}
586
587static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
588{
589	const struct pmu_irq_ops *ops = NULL;
590	int cpu;
591
592	for_each_possible_cpu(cpu) {
593		if (per_cpu(cpu_irq, cpu) != irq)
594			continue;
595
596		ops = per_cpu(cpu_irq_ops, cpu);
597		if (ops)
598			break;
599	}
600
601	return ops;
602}
603
604void armpmu_free_irq(int irq, int cpu)
605{
606	if (per_cpu(cpu_irq, cpu) == 0)
607		return;
608	if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
609		return;
610
611	per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
612
613	per_cpu(cpu_irq, cpu) = 0;
614	per_cpu(cpu_irq_ops, cpu) = NULL;
615}
616
617int armpmu_request_irq(int irq, int cpu)
618{
619	int err = 0;
620	const irq_handler_t handler = armpmu_dispatch_irq;
621	const struct pmu_irq_ops *irq_ops;
622
623	if (!irq)
624		return 0;
625
626	if (!irq_is_percpu_devid(irq)) {
627		unsigned long irq_flags;
628
629		err = irq_force_affinity(irq, cpumask_of(cpu));
630
631		if (err && num_possible_cpus() > 1) {
632			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
633				irq, cpu);
634			goto err_out;
635		}
636
637		irq_flags = IRQF_PERCPU |
638			    IRQF_NOBALANCING | IRQF_NO_AUTOEN |
639			    IRQF_NO_THREAD;
640
641		err = request_nmi(irq, handler, irq_flags, "arm-pmu",
642				  per_cpu_ptr(&cpu_armpmu, cpu));
643
644		/* If cannot get an NMI, get a normal interrupt */
645		if (err) {
646			err = request_irq(irq, handler, irq_flags, "arm-pmu",
647					  per_cpu_ptr(&cpu_armpmu, cpu));
648			irq_ops = &pmuirq_ops;
649		} else {
650			has_nmi = true;
651			irq_ops = &pmunmi_ops;
652		}
653	} else if (armpmu_count_irq_users(irq) == 0) {
654		err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
655
656		/* If cannot get an NMI, get a normal interrupt */
657		if (err) {
658			err = request_percpu_irq(irq, handler, "arm-pmu",
659						 &cpu_armpmu);
660			irq_ops = &percpu_pmuirq_ops;
661		} else {
662			has_nmi = true;
663			irq_ops = &percpu_pmunmi_ops;
664		}
665	} else {
666		/* Per cpudevid irq was already requested by another CPU */
667		irq_ops = armpmu_find_irq_ops(irq);
668
669		if (WARN_ON(!irq_ops))
670			err = -EINVAL;
671	}
672
673	if (err)
674		goto err_out;
675
676	per_cpu(cpu_irq, cpu) = irq;
677	per_cpu(cpu_irq_ops, cpu) = irq_ops;
678	return 0;
679
680err_out:
681	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
682	return err;
683}
684
685static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
686{
687	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
688	return per_cpu(hw_events->irq, cpu);
689}
690
691bool arm_pmu_irq_is_nmi(void)
692{
693	return has_nmi;
694}
695
696/*
697 * PMU hardware loses all context when a CPU goes offline.
698 * When a CPU is hotplugged back in, since some hardware registers are
699 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
700 * junk values out of them.
701 */
702static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
703{
704	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
705	int irq;
706
707	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
708		return 0;
709	if (pmu->reset)
710		pmu->reset(pmu);
711
712	per_cpu(cpu_armpmu, cpu) = pmu;
713
714	irq = armpmu_get_cpu_irq(pmu, cpu);
715	if (irq)
716		per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
717
718	return 0;
719}
720
721static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
722{
723	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
724	int irq;
725
726	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
727		return 0;
728
729	irq = armpmu_get_cpu_irq(pmu, cpu);
730	if (irq)
731		per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
732
733	per_cpu(cpu_armpmu, cpu) = NULL;
734
735	return 0;
736}
737
738#ifdef CONFIG_CPU_PM
739static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
740{
741	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
742	struct perf_event *event;
743	int idx;
744
745	for (idx = 0; idx < armpmu->num_events; idx++) {
746		event = hw_events->events[idx];
747		if (!event)
748			continue;
749
750		switch (cmd) {
751		case CPU_PM_ENTER:
752			/*
753			 * Stop and update the counter
754			 */
755			armpmu_stop(event, PERF_EF_UPDATE);
756			break;
757		case CPU_PM_EXIT:
758		case CPU_PM_ENTER_FAILED:
759			 /*
760			  * Restore and enable the counter.
761			  */
762			armpmu_start(event, PERF_EF_RELOAD);
763			break;
764		default:
765			break;
766		}
767	}
768}
769
770static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
771			     void *v)
772{
773	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
774	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
775	bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
776
777	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
778		return NOTIFY_DONE;
779
780	/*
781	 * Always reset the PMU registers on power-up even if
782	 * there are no events running.
783	 */
784	if (cmd == CPU_PM_EXIT && armpmu->reset)
785		armpmu->reset(armpmu);
786
787	if (!enabled)
788		return NOTIFY_OK;
789
790	switch (cmd) {
791	case CPU_PM_ENTER:
792		armpmu->stop(armpmu);
793		cpu_pm_pmu_setup(armpmu, cmd);
794		break;
795	case CPU_PM_EXIT:
796	case CPU_PM_ENTER_FAILED:
797		cpu_pm_pmu_setup(armpmu, cmd);
798		armpmu->start(armpmu);
799		break;
800	default:
801		return NOTIFY_DONE;
802	}
803
804	return NOTIFY_OK;
805}
806
807static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
808{
809	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
810	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
811}
812
813static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
814{
815	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
816}
817#else
818static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
819static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
820#endif
821
822static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
823{
824	int err;
825
826	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
827				       &cpu_pmu->node);
828	if (err)
829		goto out;
830
831	err = cpu_pm_pmu_register(cpu_pmu);
832	if (err)
833		goto out_unregister;
834
835	return 0;
836
837out_unregister:
838	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
839					    &cpu_pmu->node);
840out:
841	return err;
842}
843
844static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
845{
846	cpu_pm_pmu_unregister(cpu_pmu);
847	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
848					    &cpu_pmu->node);
849}
850
851struct arm_pmu *armpmu_alloc(void)
852{
853	struct arm_pmu *pmu;
854	int cpu;
855
856	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
857	if (!pmu)
858		goto out;
859
860	pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL);
861	if (!pmu->hw_events) {
862		pr_info("failed to allocate per-cpu PMU data.\n");
863		goto out_free_pmu;
864	}
865
866	pmu->pmu = (struct pmu) {
867		.pmu_enable	= armpmu_enable,
868		.pmu_disable	= armpmu_disable,
869		.event_init	= armpmu_event_init,
870		.add		= armpmu_add,
871		.del		= armpmu_del,
872		.start		= armpmu_start,
873		.stop		= armpmu_stop,
874		.read		= armpmu_read,
875		.filter		= armpmu_filter,
876		.attr_groups	= pmu->attr_groups,
877		/*
878		 * This is a CPU PMU potentially in a heterogeneous
879		 * configuration (e.g. big.LITTLE) so
880		 * PERF_PMU_CAP_EXTENDED_HW_TYPE is required to open
881		 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE events on a
882		 * specific PMU.
883		 */
884		.capabilities	= PERF_PMU_CAP_EXTENDED_REGS |
885				  PERF_PMU_CAP_EXTENDED_HW_TYPE,
886	};
887
888	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
889		&armpmu_common_attr_group;
890
891	for_each_possible_cpu(cpu) {
892		struct pmu_hw_events *events;
893
894		events = per_cpu_ptr(pmu->hw_events, cpu);
895		events->percpu_pmu = pmu;
896	}
897
898	return pmu;
899
900out_free_pmu:
901	kfree(pmu);
902out:
903	return NULL;
904}
905
906void armpmu_free(struct arm_pmu *pmu)
907{
908	free_percpu(pmu->hw_events);
909	kfree(pmu);
910}
911
912int armpmu_register(struct arm_pmu *pmu)
913{
914	int ret;
915
916	ret = cpu_pmu_init(pmu);
917	if (ret)
918		return ret;
919
920	if (!pmu->set_event_filter)
921		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
922
923	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
924	if (ret)
925		goto out_destroy;
926
927	pr_info("enabled with %s PMU driver, %d counters available%s\n",
928		pmu->name, pmu->num_events,
929		has_nmi ? ", using NMIs" : "");
930
931	kvm_host_pmu_init(pmu);
932
933	return 0;
934
935out_destroy:
936	cpu_pmu_destroy(pmu);
937	return ret;
938}
939
940static int arm_pmu_hp_init(void)
941{
942	int ret;
943
944	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
945				      "perf/arm/pmu:starting",
946				      arm_perf_starting_cpu,
947				      arm_perf_teardown_cpu);
948	if (ret)
949		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
950		       ret);
951	return ret;
952}
953subsys_initcall(arm_pmu_hp_init);
954