1// SPDX-License-Identifier: GPL-2.0
2#define pr_fmt(fmt)	"OF: " fmt
3
4#include <linux/device.h>
5#include <linux/fwnode.h>
6#include <linux/io.h>
7#include <linux/ioport.h>
8#include <linux/logic_pio.h>
9#include <linux/module.h>
10#include <linux/of_address.h>
11#include <linux/pci.h>
12#include <linux/pci_regs.h>
13#include <linux/sizes.h>
14#include <linux/slab.h>
15#include <linux/string.h>
16#include <linux/dma-direct.h> /* for bus_dma_region */
17
18#include "of_private.h"
19
20/* Max address size we deal with */
21#define OF_MAX_ADDR_CELLS	4
22#define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
23#define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
24
25/* Debug utility */
26#ifdef DEBUG
27static void of_dump_addr(const char *s, const __be32 *addr, int na)
28{
29	pr_debug("%s", s);
30	while (na--)
31		pr_cont(" %08x", be32_to_cpu(*(addr++)));
32	pr_cont("\n");
33}
34#else
35static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
36#endif
37
38/* Callbacks for bus specific translators */
39struct of_bus {
40	const char	*name;
41	const char	*addresses;
42	int		(*match)(struct device_node *parent);
43	void		(*count_cells)(struct device_node *child,
44				       int *addrc, int *sizec);
45	u64		(*map)(__be32 *addr, const __be32 *range,
46				int na, int ns, int pna, int fna);
47	int		(*translate)(__be32 *addr, u64 offset, int na);
48	int		flag_cells;
49	unsigned int	(*get_flags)(const __be32 *addr);
50};
51
52/*
53 * Default translator (generic bus)
54 */
55
56static void of_bus_default_count_cells(struct device_node *dev,
57				       int *addrc, int *sizec)
58{
59	if (addrc)
60		*addrc = of_n_addr_cells(dev);
61	if (sizec)
62		*sizec = of_n_size_cells(dev);
63}
64
65static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
66		int na, int ns, int pna, int fna)
67{
68	u64 cp, s, da;
69
70	cp = of_read_number(range + fna, na - fna);
71	s  = of_read_number(range + na + pna, ns);
72	da = of_read_number(addr + fna, na - fna);
73
74	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
75
76	if (da < cp || da >= (cp + s))
77		return OF_BAD_ADDR;
78	return da - cp;
79}
80
81static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
82{
83	u64 a = of_read_number(addr, na);
84	memset(addr, 0, na * 4);
85	a += offset;
86	if (na > 1)
87		addr[na - 2] = cpu_to_be32(a >> 32);
88	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
89
90	return 0;
91}
92
93static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
94{
95	return of_read_number(addr, 1);
96}
97
98static unsigned int of_bus_default_get_flags(const __be32 *addr)
99{
100	return IORESOURCE_MEM;
101}
102
103static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
104				    int ns, int pna, int fna)
105{
106	/* Check that flags match */
107	if (*addr != *range)
108		return OF_BAD_ADDR;
109
110	return of_bus_default_map(addr, range, na, ns, pna, fna);
111}
112
113static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
114{
115	/* Keep "flags" part (high cell) in translated address */
116	return of_bus_default_translate(addr + 1, offset, na - 1);
117}
118
119#ifdef CONFIG_PCI
120static unsigned int of_bus_pci_get_flags(const __be32 *addr)
121{
122	unsigned int flags = 0;
123	u32 w = be32_to_cpup(addr);
124
125	if (!IS_ENABLED(CONFIG_PCI))
126		return 0;
127
128	switch((w >> 24) & 0x03) {
129	case 0x01:
130		flags |= IORESOURCE_IO;
131		break;
132	case 0x02: /* 32 bits */
133		flags |= IORESOURCE_MEM;
134		break;
135
136	case 0x03: /* 64 bits */
137		flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
138		break;
139	}
140	if (w & 0x40000000)
141		flags |= IORESOURCE_PREFETCH;
142	return flags;
143}
144
145/*
146 * PCI bus specific translator
147 */
148
149static bool of_node_is_pcie(struct device_node *np)
150{
151	bool is_pcie = of_node_name_eq(np, "pcie");
152
153	if (is_pcie)
154		pr_warn_once("%pOF: Missing device_type\n", np);
155
156	return is_pcie;
157}
158
159static int of_bus_pci_match(struct device_node *np)
160{
161	/*
162 	 * "pciex" is PCI Express
163	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
164	 * "ht" is hypertransport
165	 *
166	 * If none of the device_type match, and that the node name is
167	 * "pcie", accept the device as PCI (with a warning).
168	 */
169	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
170		of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
171		of_node_is_pcie(np);
172}
173
174static void of_bus_pci_count_cells(struct device_node *np,
175				   int *addrc, int *sizec)
176{
177	if (addrc)
178		*addrc = 3;
179	if (sizec)
180		*sizec = 2;
181}
182
183static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
184		int pna, int fna)
185{
186	unsigned int af, rf;
187
188	af = of_bus_pci_get_flags(addr);
189	rf = of_bus_pci_get_flags(range);
190
191	/* Check address type match */
192	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
193		return OF_BAD_ADDR;
194
195	return of_bus_default_map(addr, range, na, ns, pna, fna);
196}
197
198#endif /* CONFIG_PCI */
199
200/*
201 * of_pci_range_to_resource - Create a resource from an of_pci_range
202 * @range:	the PCI range that describes the resource
203 * @np:		device node where the range belongs to
204 * @res:	pointer to a valid resource that will be updated to
205 *              reflect the values contained in the range.
206 *
207 * Returns -EINVAL if the range cannot be converted to resource.
208 *
209 * Note that if the range is an IO range, the resource will be converted
210 * using pci_address_to_pio() which can fail if it is called too early or
211 * if the range cannot be matched to any host bridge IO space (our case here).
212 * To guard against that we try to register the IO range first.
213 * If that fails we know that pci_address_to_pio() will do too.
214 */
215int of_pci_range_to_resource(struct of_pci_range *range,
216			     struct device_node *np, struct resource *res)
217{
218	int err;
219	res->flags = range->flags;
220	res->parent = res->child = res->sibling = NULL;
221	res->name = np->full_name;
222
223	if (res->flags & IORESOURCE_IO) {
224		unsigned long port;
225		err = pci_register_io_range(&np->fwnode, range->cpu_addr,
226				range->size);
227		if (err)
228			goto invalid_range;
229		port = pci_address_to_pio(range->cpu_addr);
230		if (port == (unsigned long)-1) {
231			err = -EINVAL;
232			goto invalid_range;
233		}
234		res->start = port;
235	} else {
236		if ((sizeof(resource_size_t) < 8) &&
237		    upper_32_bits(range->cpu_addr)) {
238			err = -EINVAL;
239			goto invalid_range;
240		}
241
242		res->start = range->cpu_addr;
243	}
244	res->end = res->start + range->size - 1;
245	return 0;
246
247invalid_range:
248	res->start = (resource_size_t)OF_BAD_ADDR;
249	res->end = (resource_size_t)OF_BAD_ADDR;
250	return err;
251}
252EXPORT_SYMBOL(of_pci_range_to_resource);
253
254/*
255 * of_range_to_resource - Create a resource from a ranges entry
256 * @np:		device node where the range belongs to
257 * @index:	the 'ranges' index to convert to a resource
258 * @res:	pointer to a valid resource that will be updated to
259 *              reflect the values contained in the range.
260 *
261 * Returns ENOENT if the entry is not found or EINVAL if the range cannot be
262 * converted to resource.
263 */
264int of_range_to_resource(struct device_node *np, int index, struct resource *res)
265{
266	int ret, i = 0;
267	struct of_range_parser parser;
268	struct of_range range;
269
270	ret = of_range_parser_init(&parser, np);
271	if (ret)
272		return ret;
273
274	for_each_of_range(&parser, &range)
275		if (i++ == index)
276			return of_pci_range_to_resource(&range, np, res);
277
278	return -ENOENT;
279}
280EXPORT_SYMBOL(of_range_to_resource);
281
282/*
283 * ISA bus specific translator
284 */
285
286static int of_bus_isa_match(struct device_node *np)
287{
288	return of_node_name_eq(np, "isa");
289}
290
291static void of_bus_isa_count_cells(struct device_node *child,
292				   int *addrc, int *sizec)
293{
294	if (addrc)
295		*addrc = 2;
296	if (sizec)
297		*sizec = 1;
298}
299
300static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
301		int pna, int fna)
302{
303	/* Check address type match */
304	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
305		return OF_BAD_ADDR;
306
307	return of_bus_default_map(addr, range, na, ns, pna, fna);
308}
309
310static unsigned int of_bus_isa_get_flags(const __be32 *addr)
311{
312	unsigned int flags = 0;
313	u32 w = be32_to_cpup(addr);
314
315	if (w & 1)
316		flags |= IORESOURCE_IO;
317	else
318		flags |= IORESOURCE_MEM;
319	return flags;
320}
321
322static int of_bus_default_flags_match(struct device_node *np)
323{
324	return of_bus_n_addr_cells(np) == 3;
325}
326
327/*
328 * Array of bus specific translators
329 */
330
331static struct of_bus of_busses[] = {
332#ifdef CONFIG_PCI
333	/* PCI */
334	{
335		.name = "pci",
336		.addresses = "assigned-addresses",
337		.match = of_bus_pci_match,
338		.count_cells = of_bus_pci_count_cells,
339		.map = of_bus_pci_map,
340		.translate = of_bus_default_flags_translate,
341		.flag_cells = 1,
342		.get_flags = of_bus_pci_get_flags,
343	},
344#endif /* CONFIG_PCI */
345	/* ISA */
346	{
347		.name = "isa",
348		.addresses = "reg",
349		.match = of_bus_isa_match,
350		.count_cells = of_bus_isa_count_cells,
351		.map = of_bus_isa_map,
352		.translate = of_bus_default_flags_translate,
353		.flag_cells = 1,
354		.get_flags = of_bus_isa_get_flags,
355	},
356	/* Default with flags cell */
357	{
358		.name = "default-flags",
359		.addresses = "reg",
360		.match = of_bus_default_flags_match,
361		.count_cells = of_bus_default_count_cells,
362		.map = of_bus_default_flags_map,
363		.translate = of_bus_default_flags_translate,
364		.flag_cells = 1,
365		.get_flags = of_bus_default_flags_get_flags,
366	},
367	/* Default */
368	{
369		.name = "default",
370		.addresses = "reg",
371		.match = NULL,
372		.count_cells = of_bus_default_count_cells,
373		.map = of_bus_default_map,
374		.translate = of_bus_default_translate,
375		.get_flags = of_bus_default_get_flags,
376	},
377};
378
379static struct of_bus *of_match_bus(struct device_node *np)
380{
381	int i;
382
383	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
384		if (!of_busses[i].match || of_busses[i].match(np))
385			return &of_busses[i];
386	BUG();
387	return NULL;
388}
389
390static int of_empty_ranges_quirk(struct device_node *np)
391{
392	if (IS_ENABLED(CONFIG_PPC)) {
393		/* To save cycles, we cache the result for global "Mac" setting */
394		static int quirk_state = -1;
395
396		/* PA-SEMI sdc DT bug */
397		if (of_device_is_compatible(np, "1682m-sdc"))
398			return true;
399
400		/* Make quirk cached */
401		if (quirk_state < 0)
402			quirk_state =
403				of_machine_is_compatible("Power Macintosh") ||
404				of_machine_is_compatible("MacRISC");
405		return quirk_state;
406	}
407	return false;
408}
409
410static int of_translate_one(struct device_node *parent, struct of_bus *bus,
411			    struct of_bus *pbus, __be32 *addr,
412			    int na, int ns, int pna, const char *rprop)
413{
414	const __be32 *ranges;
415	unsigned int rlen;
416	int rone;
417	u64 offset = OF_BAD_ADDR;
418
419	/*
420	 * Normally, an absence of a "ranges" property means we are
421	 * crossing a non-translatable boundary, and thus the addresses
422	 * below the current cannot be converted to CPU physical ones.
423	 * Unfortunately, while this is very clear in the spec, it's not
424	 * what Apple understood, and they do have things like /uni-n or
425	 * /ht nodes with no "ranges" property and a lot of perfectly
426	 * useable mapped devices below them. Thus we treat the absence of
427	 * "ranges" as equivalent to an empty "ranges" property which means
428	 * a 1:1 translation at that level. It's up to the caller not to try
429	 * to translate addresses that aren't supposed to be translated in
430	 * the first place. --BenH.
431	 *
432	 * As far as we know, this damage only exists on Apple machines, so
433	 * This code is only enabled on powerpc. --gcl
434	 *
435	 * This quirk also applies for 'dma-ranges' which frequently exist in
436	 * child nodes without 'dma-ranges' in the parent nodes. --RobH
437	 */
438	ranges = of_get_property(parent, rprop, &rlen);
439	if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
440	    strcmp(rprop, "dma-ranges")) {
441		pr_debug("no ranges; cannot translate\n");
442		return 1;
443	}
444	if (ranges == NULL || rlen == 0) {
445		offset = of_read_number(addr, na);
446		memset(addr, 0, pna * 4);
447		pr_debug("empty ranges; 1:1 translation\n");
448		goto finish;
449	}
450
451	pr_debug("walking ranges...\n");
452
453	/* Now walk through the ranges */
454	rlen /= 4;
455	rone = na + pna + ns;
456	for (; rlen >= rone; rlen -= rone, ranges += rone) {
457		offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells);
458		if (offset != OF_BAD_ADDR)
459			break;
460	}
461	if (offset == OF_BAD_ADDR) {
462		pr_debug("not found !\n");
463		return 1;
464	}
465	memcpy(addr, ranges + na, 4 * pna);
466
467 finish:
468	of_dump_addr("parent translation for:", addr, pna);
469	pr_debug("with offset: %llx\n", offset);
470
471	/* Translate it into parent bus space */
472	return pbus->translate(addr, offset, pna);
473}
474
475/*
476 * Translate an address from the device-tree into a CPU physical address,
477 * this walks up the tree and applies the various bus mappings on the
478 * way.
479 *
480 * Note: We consider that crossing any level with #size-cells == 0 to mean
481 * that translation is impossible (that is we are not dealing with a value
482 * that can be mapped to a cpu physical address). This is not really specified
483 * that way, but this is traditionally the way IBM at least do things
484 *
485 * Whenever the translation fails, the *host pointer will be set to the
486 * device that had registered logical PIO mapping, and the return code is
487 * relative to that node.
488 */
489static u64 __of_translate_address(struct device_node *node,
490				  struct device_node *(*get_parent)(const struct device_node *),
491				  const __be32 *in_addr, const char *rprop,
492				  struct device_node **host)
493{
494	struct device_node *dev __free(device_node) = of_node_get(node);
495	struct device_node *parent __free(device_node) = get_parent(dev);
496	struct of_bus *bus, *pbus;
497	__be32 addr[OF_MAX_ADDR_CELLS];
498	int na, ns, pna, pns;
499
500	pr_debug("** translation for device %pOF **\n", dev);
501
502	*host = NULL;
503
504	if (parent == NULL)
505		return OF_BAD_ADDR;
506	bus = of_match_bus(parent);
507
508	/* Count address cells & copy address locally */
509	bus->count_cells(dev, &na, &ns);
510	if (!OF_CHECK_COUNTS(na, ns)) {
511		pr_debug("Bad cell count for %pOF\n", dev);
512		return OF_BAD_ADDR;
513	}
514	memcpy(addr, in_addr, na * 4);
515
516	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
517	    bus->name, na, ns, parent);
518	of_dump_addr("translating address:", addr, na);
519
520	/* Translate */
521	for (;;) {
522		struct logic_pio_hwaddr *iorange;
523
524		/* Switch to parent bus */
525		of_node_put(dev);
526		dev = parent;
527		parent = get_parent(dev);
528
529		/* If root, we have finished */
530		if (parent == NULL) {
531			pr_debug("reached root node\n");
532			return of_read_number(addr, na);
533		}
534
535		/*
536		 * For indirectIO device which has no ranges property, get
537		 * the address from reg directly.
538		 */
539		iorange = find_io_range_by_fwnode(&dev->fwnode);
540		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
541			u64 result = of_read_number(addr + 1, na - 1);
542			pr_debug("indirectIO matched(%pOF) 0x%llx\n",
543				 dev, result);
544			*host = no_free_ptr(dev);
545			return result;
546		}
547
548		/* Get new parent bus and counts */
549		pbus = of_match_bus(parent);
550		pbus->count_cells(dev, &pna, &pns);
551		if (!OF_CHECK_COUNTS(pna, pns)) {
552			pr_err("Bad cell count for %pOF\n", dev);
553			return OF_BAD_ADDR;
554		}
555
556		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
557		    pbus->name, pna, pns, parent);
558
559		/* Apply bus translation */
560		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
561			return OF_BAD_ADDR;
562
563		/* Complete the move up one level */
564		na = pna;
565		ns = pns;
566		bus = pbus;
567
568		of_dump_addr("one level translation:", addr, na);
569	}
570
571	unreachable();
572}
573
574u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
575{
576	struct device_node *host;
577	u64 ret;
578
579	ret = __of_translate_address(dev, of_get_parent,
580				     in_addr, "ranges", &host);
581	if (host) {
582		of_node_put(host);
583		return OF_BAD_ADDR;
584	}
585
586	return ret;
587}
588EXPORT_SYMBOL(of_translate_address);
589
590#ifdef CONFIG_HAS_DMA
591struct device_node *__of_get_dma_parent(const struct device_node *np)
592{
593	struct of_phandle_args args;
594	int ret, index;
595
596	index = of_property_match_string(np, "interconnect-names", "dma-mem");
597	if (index < 0)
598		return of_get_parent(np);
599
600	ret = of_parse_phandle_with_args(np, "interconnects",
601					 "#interconnect-cells",
602					 index, &args);
603	if (ret < 0)
604		return of_get_parent(np);
605
606	return of_node_get(args.np);
607}
608#endif
609
610static struct device_node *of_get_next_dma_parent(struct device_node *np)
611{
612	struct device_node *parent;
613
614	parent = __of_get_dma_parent(np);
615	of_node_put(np);
616
617	return parent;
618}
619
620u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
621{
622	struct device_node *host;
623	u64 ret;
624
625	ret = __of_translate_address(dev, __of_get_dma_parent,
626				     in_addr, "dma-ranges", &host);
627
628	if (host) {
629		of_node_put(host);
630		return OF_BAD_ADDR;
631	}
632
633	return ret;
634}
635EXPORT_SYMBOL(of_translate_dma_address);
636
637/**
638 * of_translate_dma_region - Translate device tree address and size tuple
639 * @dev: device tree node for which to translate
640 * @prop: pointer into array of cells
641 * @start: return value for the start of the DMA range
642 * @length: return value for the length of the DMA range
643 *
644 * Returns a pointer to the cell immediately following the translated DMA region.
645 */
646const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
647				      phys_addr_t *start, size_t *length)
648{
649	struct device_node *parent __free(device_node) = __of_get_dma_parent(dev);
650	u64 address, size;
651	int na, ns;
652
653	if (!parent)
654		return NULL;
655
656	na = of_bus_n_addr_cells(parent);
657	ns = of_bus_n_size_cells(parent);
658
659	address = of_translate_dma_address(dev, prop);
660	if (address == OF_BAD_ADDR)
661		return NULL;
662
663	size = of_read_number(prop + na, ns);
664
665	if (start)
666		*start = address;
667
668	if (length)
669		*length = size;
670
671	return prop + na + ns;
672}
673EXPORT_SYMBOL(of_translate_dma_region);
674
675const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
676			       u64 *size, unsigned int *flags)
677{
678	const __be32 *prop;
679	unsigned int psize;
680	struct device_node *parent __free(device_node) = of_get_parent(dev);
681	struct of_bus *bus;
682	int onesize, i, na, ns;
683
684	if (parent == NULL)
685		return NULL;
686
687	/* match the parent's bus type */
688	bus = of_match_bus(parent);
689	if (strcmp(bus->name, "pci") && (bar_no >= 0))
690		return NULL;
691
692	bus->count_cells(dev, &na, &ns);
693	if (!OF_CHECK_ADDR_COUNT(na))
694		return NULL;
695
696	/* Get "reg" or "assigned-addresses" property */
697	prop = of_get_property(dev, bus->addresses, &psize);
698	if (prop == NULL)
699		return NULL;
700	psize /= 4;
701
702	onesize = na + ns;
703	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
704		u32 val = be32_to_cpu(prop[0]);
705		/* PCI bus matches on BAR number instead of index */
706		if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
707		    ((index >= 0) && (i == index))) {
708			if (size)
709				*size = of_read_number(prop + na, ns);
710			if (flags)
711				*flags = bus->get_flags(prop);
712			return prop;
713		}
714	}
715	return NULL;
716}
717EXPORT_SYMBOL(__of_get_address);
718
719/**
720 * of_property_read_reg - Retrieve the specified "reg" entry index without translating
721 * @np: device tree node for which to retrieve "reg" from
722 * @idx: "reg" entry index to read
723 * @addr: return value for the untranslated address
724 * @size: return value for the entry size
725 *
726 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
727 * size values filled in.
728 */
729int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
730{
731	const __be32 *prop = of_get_address(np, idx, size, NULL);
732
733	if (!prop)
734		return -EINVAL;
735
736	*addr = of_read_number(prop, of_n_addr_cells(np));
737
738	return 0;
739}
740EXPORT_SYMBOL(of_property_read_reg);
741
742static int parser_init(struct of_pci_range_parser *parser,
743			struct device_node *node, const char *name)
744{
745	int rlen;
746
747	parser->node = node;
748	parser->pna = of_n_addr_cells(node);
749	parser->na = of_bus_n_addr_cells(node);
750	parser->ns = of_bus_n_size_cells(node);
751	parser->dma = !strcmp(name, "dma-ranges");
752	parser->bus = of_match_bus(node);
753
754	parser->range = of_get_property(node, name, &rlen);
755	if (parser->range == NULL)
756		return -ENOENT;
757
758	parser->end = parser->range + rlen / sizeof(__be32);
759
760	return 0;
761}
762
763int of_pci_range_parser_init(struct of_pci_range_parser *parser,
764				struct device_node *node)
765{
766	return parser_init(parser, node, "ranges");
767}
768EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
769
770int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
771				struct device_node *node)
772{
773	return parser_init(parser, node, "dma-ranges");
774}
775EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
776#define of_dma_range_parser_init of_pci_dma_range_parser_init
777
778struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
779						struct of_pci_range *range)
780{
781	int na = parser->na;
782	int ns = parser->ns;
783	int np = parser->pna + na + ns;
784	int busflag_na = parser->bus->flag_cells;
785
786	if (!range)
787		return NULL;
788
789	if (!parser->range || parser->range + np > parser->end)
790		return NULL;
791
792	range->flags = parser->bus->get_flags(parser->range);
793
794	range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
795
796	if (parser->dma)
797		range->cpu_addr = of_translate_dma_address(parser->node,
798				parser->range + na);
799	else
800		range->cpu_addr = of_translate_address(parser->node,
801				parser->range + na);
802	range->size = of_read_number(parser->range + parser->pna + na, ns);
803
804	parser->range += np;
805
806	/* Now consume following elements while they are contiguous */
807	while (parser->range + np <= parser->end) {
808		u32 flags = 0;
809		u64 bus_addr, cpu_addr, size;
810
811		flags = parser->bus->get_flags(parser->range);
812		bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
813		if (parser->dma)
814			cpu_addr = of_translate_dma_address(parser->node,
815					parser->range + na);
816		else
817			cpu_addr = of_translate_address(parser->node,
818					parser->range + na);
819		size = of_read_number(parser->range + parser->pna + na, ns);
820
821		if (flags != range->flags)
822			break;
823		if (bus_addr != range->bus_addr + range->size ||
824		    cpu_addr != range->cpu_addr + range->size)
825			break;
826
827		range->size += size;
828		parser->range += np;
829	}
830
831	return range;
832}
833EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
834
835static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
836			u64 size)
837{
838	u64 taddr;
839	unsigned long port;
840	struct device_node *host;
841
842	taddr = __of_translate_address(dev, of_get_parent,
843				       in_addr, "ranges", &host);
844	if (host) {
845		/* host-specific port access */
846		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
847		of_node_put(host);
848	} else {
849		/* memory-mapped I/O range */
850		port = pci_address_to_pio(taddr);
851	}
852
853	if (port == (unsigned long)-1)
854		return OF_BAD_ADDR;
855
856	return port;
857}
858
859#ifdef CONFIG_HAS_DMA
860/**
861 * of_dma_get_range - Get DMA range info and put it into a map array
862 * @np:		device node to get DMA range info
863 * @map:	dma range structure to return
864 *
865 * Look in bottom up direction for the first "dma-ranges" property
866 * and parse it.  Put the information into a DMA offset map array.
867 *
868 * dma-ranges format:
869 *	DMA addr (dma_addr)	: naddr cells
870 *	CPU addr (phys_addr_t)	: pna cells
871 *	size			: nsize cells
872 *
873 * It returns -ENODEV if "dma-ranges" property was not found for this
874 * device in the DT.
875 */
876int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
877{
878	struct device_node *node __free(device_node) = of_node_get(np);
879	const __be32 *ranges = NULL;
880	bool found_dma_ranges = false;
881	struct of_range_parser parser;
882	struct of_range range;
883	struct bus_dma_region *r;
884	int len, num_ranges = 0;
885
886	while (node) {
887		ranges = of_get_property(node, "dma-ranges", &len);
888
889		/* Ignore empty ranges, they imply no translation required */
890		if (ranges && len > 0)
891			break;
892
893		/* Once we find 'dma-ranges', then a missing one is an error */
894		if (found_dma_ranges && !ranges)
895			return -ENODEV;
896
897		found_dma_ranges = true;
898
899		node = of_get_next_dma_parent(node);
900	}
901
902	if (!node || !ranges) {
903		pr_debug("no dma-ranges found for node(%pOF)\n", np);
904		return -ENODEV;
905	}
906	of_dma_range_parser_init(&parser, node);
907	for_each_of_range(&parser, &range) {
908		if (range.cpu_addr == OF_BAD_ADDR) {
909			pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
910			       range.bus_addr, node);
911			continue;
912		}
913		num_ranges++;
914	}
915
916	if (!num_ranges)
917		return -EINVAL;
918
919	r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
920	if (!r)
921		return -ENOMEM;
922
923	/*
924	 * Record all info in the generic DMA ranges array for struct device,
925	 * returning an error if we don't find any parsable ranges.
926	 */
927	*map = r;
928	of_dma_range_parser_init(&parser, node);
929	for_each_of_range(&parser, &range) {
930		pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
931			 range.bus_addr, range.cpu_addr, range.size);
932		if (range.cpu_addr == OF_BAD_ADDR)
933			continue;
934		r->cpu_start = range.cpu_addr;
935		r->dma_start = range.bus_addr;
936		r->size = range.size;
937		r++;
938	}
939	return 0;
940}
941#endif /* CONFIG_HAS_DMA */
942
943/**
944 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
945 * @np: The node to start searching from or NULL to start from the root
946 *
947 * Gets the highest CPU physical address that is addressable by all DMA masters
948 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
949 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
950 */
951phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
952{
953	phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
954	struct of_range_parser parser;
955	phys_addr_t subtree_max_addr;
956	struct device_node *child;
957	struct of_range range;
958	const __be32 *ranges;
959	u64 cpu_end = 0;
960	int len;
961
962	if (!np)
963		np = of_root;
964
965	ranges = of_get_property(np, "dma-ranges", &len);
966	if (ranges && len) {
967		of_dma_range_parser_init(&parser, np);
968		for_each_of_range(&parser, &range)
969			if (range.cpu_addr + range.size > cpu_end)
970				cpu_end = range.cpu_addr + range.size - 1;
971
972		if (max_cpu_addr > cpu_end)
973			max_cpu_addr = cpu_end;
974	}
975
976	for_each_available_child_of_node(np, child) {
977		subtree_max_addr = of_dma_get_max_cpu_address(child);
978		if (max_cpu_addr > subtree_max_addr)
979			max_cpu_addr = subtree_max_addr;
980	}
981
982	return max_cpu_addr;
983}
984
985/**
986 * of_dma_is_coherent - Check if device is coherent
987 * @np:	device node
988 *
989 * It returns true if "dma-coherent" property was found
990 * for this device in the DT, or if DMA is coherent by
991 * default for OF devices on the current platform and no
992 * "dma-noncoherent" property was found for this device.
993 */
994bool of_dma_is_coherent(struct device_node *np)
995{
996	struct device_node *node __free(device_node) = of_node_get(np);
997
998	while (node) {
999		if (of_property_read_bool(node, "dma-coherent"))
1000			return true;
1001
1002		if (of_property_read_bool(node, "dma-noncoherent"))
1003			return false;
1004
1005		node = of_get_next_dma_parent(node);
1006	}
1007	return dma_default_coherent;
1008}
1009EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1010
1011/**
1012 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1013 * @np:	device node
1014 *
1015 * Returns true if the "nonposted-mmio" property was found for
1016 * the device's bus.
1017 *
1018 * This is currently only enabled on builds that support Apple ARM devices, as
1019 * an optimization.
1020 */
1021static bool of_mmio_is_nonposted(struct device_node *np)
1022{
1023	if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1024		return false;
1025
1026	struct device_node *parent __free(device_node) = of_get_parent(np);
1027	if (!parent)
1028		return false;
1029
1030	return of_property_read_bool(parent, "nonposted-mmio");
1031}
1032
1033static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1034		struct resource *r)
1035{
1036	u64 taddr;
1037	const __be32	*addrp;
1038	u64		size;
1039	unsigned int	flags;
1040	const char	*name = NULL;
1041
1042	addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1043	if (addrp == NULL)
1044		return -EINVAL;
1045
1046	/* Get optional "reg-names" property to add a name to a resource */
1047	if (index >= 0)
1048		of_property_read_string_index(dev, "reg-names",	index, &name);
1049
1050	if (flags & IORESOURCE_MEM)
1051		taddr = of_translate_address(dev, addrp);
1052	else if (flags & IORESOURCE_IO)
1053		taddr = of_translate_ioport(dev, addrp, size);
1054	else
1055		return -EINVAL;
1056
1057	if (taddr == OF_BAD_ADDR)
1058		return -EINVAL;
1059	memset(r, 0, sizeof(struct resource));
1060
1061	if (of_mmio_is_nonposted(dev))
1062		flags |= IORESOURCE_MEM_NONPOSTED;
1063
1064	r->start = taddr;
1065	r->end = taddr + size - 1;
1066	r->flags = flags;
1067	r->name = name ? name : dev->full_name;
1068
1069	return 0;
1070}
1071
1072/**
1073 * of_address_to_resource - Translate device tree address and return as resource
1074 * @dev:	Caller's Device Node
1075 * @index:	Index into the array
1076 * @r:		Pointer to resource array
1077 *
1078 * Returns -EINVAL if the range cannot be converted to resource.
1079 *
1080 * Note that if your address is a PIO address, the conversion will fail if
1081 * the physical address can't be internally converted to an IO token with
1082 * pci_address_to_pio(), that is because it's either called too early or it
1083 * can't be matched to any host bridge IO space
1084 */
1085int of_address_to_resource(struct device_node *dev, int index,
1086			   struct resource *r)
1087{
1088	return __of_address_to_resource(dev, index, -1, r);
1089}
1090EXPORT_SYMBOL_GPL(of_address_to_resource);
1091
1092int of_pci_address_to_resource(struct device_node *dev, int bar,
1093			       struct resource *r)
1094{
1095
1096	if (!IS_ENABLED(CONFIG_PCI))
1097		return -ENOSYS;
1098
1099	return __of_address_to_resource(dev, -1, bar, r);
1100}
1101EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1102
1103/**
1104 * of_iomap - Maps the memory mapped IO for a given device_node
1105 * @np:		the device whose io range will be mapped
1106 * @index:	index of the io range
1107 *
1108 * Returns a pointer to the mapped memory
1109 */
1110void __iomem *of_iomap(struct device_node *np, int index)
1111{
1112	struct resource res;
1113
1114	if (of_address_to_resource(np, index, &res))
1115		return NULL;
1116
1117	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1118		return ioremap_np(res.start, resource_size(&res));
1119	else
1120		return ioremap(res.start, resource_size(&res));
1121}
1122EXPORT_SYMBOL(of_iomap);
1123
1124/*
1125 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1126 *			   for a given device_node
1127 * @device:	the device whose io range will be mapped
1128 * @index:	index of the io range
1129 * @name:	name "override" for the memory region request or NULL
1130 *
1131 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1132 * error code on failure. Usage example:
1133 *
1134 *	base = of_io_request_and_map(node, 0, "foo");
1135 *	if (IS_ERR(base))
1136 *		return PTR_ERR(base);
1137 */
1138void __iomem *of_io_request_and_map(struct device_node *np, int index,
1139				    const char *name)
1140{
1141	struct resource res;
1142	void __iomem *mem;
1143
1144	if (of_address_to_resource(np, index, &res))
1145		return IOMEM_ERR_PTR(-EINVAL);
1146
1147	if (!name)
1148		name = res.name;
1149	if (!request_mem_region(res.start, resource_size(&res), name))
1150		return IOMEM_ERR_PTR(-EBUSY);
1151
1152	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1153		mem = ioremap_np(res.start, resource_size(&res));
1154	else
1155		mem = ioremap(res.start, resource_size(&res));
1156
1157	if (!mem) {
1158		release_mem_region(res.start, resource_size(&res));
1159		return IOMEM_ERR_PTR(-ENOMEM);
1160	}
1161
1162	return mem;
1163}
1164EXPORT_SYMBOL(of_io_request_and_map);
1165