1// SPDX-License-Identifier: GPL-2.0-or-later
2/* ZD1211 USB-WLAN driver for Linux
3 *
4 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
5 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
6 */
7
8#include <linux/kernel.h>
9#include <linux/slab.h>
10
11#include "zd_rf.h"
12#include "zd_usb.h"
13#include "zd_chip.h"
14
15/* This RF programming code is based upon the code found in v2.16.0.0 of the
16 * ZyDAS vendor driver. Unlike other RF's, Ubec publish full technical specs
17 * for this RF on their website, so we're able to understand more than
18 * usual as to what is going on. Thumbs up for Ubec for doing that. */
19
20/* The 3-wire serial interface provides access to 8 write-only registers.
21 * The data format is a 4 bit register address followed by a 20 bit value. */
22#define UW2453_REGWRITE(reg, val) ((((reg) & 0xf) << 20) | ((val) & 0xfffff))
23
24/* For channel tuning, we have to configure registers 1 (synthesizer), 2 (synth
25 * fractional divide ratio) and 3 (VCO config).
26 *
27 * We configure the RF to produce an interrupt when the PLL is locked onto
28 * the configured frequency. During initialization, we run through a variety
29 * of different VCO configurations on channel 1 until we detect a PLL lock.
30 * When this happens, we remember which VCO configuration produced the lock
31 * and use it later. Actually, we use the configuration *after* the one that
32 * produced the lock, which seems odd, but it works.
33 *
34 * If we do not see a PLL lock on any standard VCO config, we fall back on an
35 * autocal configuration, which has a fixed (as opposed to per-channel) VCO
36 * config and different synth values from the standard set (divide ratio
37 * is still shared with the standard set). */
38
39/* The per-channel synth values for all standard VCO configurations. These get
40 * written to register 1. */
41static const u8 uw2453_std_synth[] = {
42	RF_CHANNEL( 1) = 0x47,
43	RF_CHANNEL( 2) = 0x47,
44	RF_CHANNEL( 3) = 0x67,
45	RF_CHANNEL( 4) = 0x67,
46	RF_CHANNEL( 5) = 0x67,
47	RF_CHANNEL( 6) = 0x67,
48	RF_CHANNEL( 7) = 0x57,
49	RF_CHANNEL( 8) = 0x57,
50	RF_CHANNEL( 9) = 0x57,
51	RF_CHANNEL(10) = 0x57,
52	RF_CHANNEL(11) = 0x77,
53	RF_CHANNEL(12) = 0x77,
54	RF_CHANNEL(13) = 0x77,
55	RF_CHANNEL(14) = 0x4f,
56};
57
58/* This table stores the synthesizer fractional divide ratio for *all* VCO
59 * configurations (both standard and autocal). These get written to register 2.
60 */
61static const u16 uw2453_synth_divide[] = {
62	RF_CHANNEL( 1) = 0x999,
63	RF_CHANNEL( 2) = 0x99b,
64	RF_CHANNEL( 3) = 0x998,
65	RF_CHANNEL( 4) = 0x99a,
66	RF_CHANNEL( 5) = 0x999,
67	RF_CHANNEL( 6) = 0x99b,
68	RF_CHANNEL( 7) = 0x998,
69	RF_CHANNEL( 8) = 0x99a,
70	RF_CHANNEL( 9) = 0x999,
71	RF_CHANNEL(10) = 0x99b,
72	RF_CHANNEL(11) = 0x998,
73	RF_CHANNEL(12) = 0x99a,
74	RF_CHANNEL(13) = 0x999,
75	RF_CHANNEL(14) = 0xccc,
76};
77
78/* Here is the data for all the standard VCO configurations. We shrink our
79 * table a little by observing that both channels in a consecutive pair share
80 * the same value. We also observe that the high 4 bits ([0:3] in the specs)
81 * are all 'Reserved' and are always set to 0x4 - we chop them off in the data
82 * below. */
83#define CHAN_TO_PAIRIDX(a) ((a - 1) / 2)
84#define RF_CHANPAIR(a,b) [CHAN_TO_PAIRIDX(a)]
85static const u16 uw2453_std_vco_cfg[][7] = {
86	{ /* table 1 */
87		RF_CHANPAIR( 1,  2) = 0x664d,
88		RF_CHANPAIR( 3,  4) = 0x604d,
89		RF_CHANPAIR( 5,  6) = 0x6675,
90		RF_CHANPAIR( 7,  8) = 0x6475,
91		RF_CHANPAIR( 9, 10) = 0x6655,
92		RF_CHANPAIR(11, 12) = 0x6455,
93		RF_CHANPAIR(13, 14) = 0x6665,
94	},
95	{ /* table 2 */
96		RF_CHANPAIR( 1,  2) = 0x666d,
97		RF_CHANPAIR( 3,  4) = 0x606d,
98		RF_CHANPAIR( 5,  6) = 0x664d,
99		RF_CHANPAIR( 7,  8) = 0x644d,
100		RF_CHANPAIR( 9, 10) = 0x6675,
101		RF_CHANPAIR(11, 12) = 0x6475,
102		RF_CHANPAIR(13, 14) = 0x6655,
103	},
104	{ /* table 3 */
105		RF_CHANPAIR( 1,  2) = 0x665d,
106		RF_CHANPAIR( 3,  4) = 0x605d,
107		RF_CHANPAIR( 5,  6) = 0x666d,
108		RF_CHANPAIR( 7,  8) = 0x646d,
109		RF_CHANPAIR( 9, 10) = 0x664d,
110		RF_CHANPAIR(11, 12) = 0x644d,
111		RF_CHANPAIR(13, 14) = 0x6675,
112	},
113	{ /* table 4 */
114		RF_CHANPAIR( 1,  2) = 0x667d,
115		RF_CHANPAIR( 3,  4) = 0x607d,
116		RF_CHANPAIR( 5,  6) = 0x665d,
117		RF_CHANPAIR( 7,  8) = 0x645d,
118		RF_CHANPAIR( 9, 10) = 0x666d,
119		RF_CHANPAIR(11, 12) = 0x646d,
120		RF_CHANPAIR(13, 14) = 0x664d,
121	},
122	{ /* table 5 */
123		RF_CHANPAIR( 1,  2) = 0x6643,
124		RF_CHANPAIR( 3,  4) = 0x6043,
125		RF_CHANPAIR( 5,  6) = 0x667d,
126		RF_CHANPAIR( 7,  8) = 0x647d,
127		RF_CHANPAIR( 9, 10) = 0x665d,
128		RF_CHANPAIR(11, 12) = 0x645d,
129		RF_CHANPAIR(13, 14) = 0x666d,
130	},
131	{ /* table 6 */
132		RF_CHANPAIR( 1,  2) = 0x6663,
133		RF_CHANPAIR( 3,  4) = 0x6063,
134		RF_CHANPAIR( 5,  6) = 0x6643,
135		RF_CHANPAIR( 7,  8) = 0x6443,
136		RF_CHANPAIR( 9, 10) = 0x667d,
137		RF_CHANPAIR(11, 12) = 0x647d,
138		RF_CHANPAIR(13, 14) = 0x665d,
139	},
140	{ /* table 7 */
141		RF_CHANPAIR( 1,  2) = 0x6653,
142		RF_CHANPAIR( 3,  4) = 0x6053,
143		RF_CHANPAIR( 5,  6) = 0x6663,
144		RF_CHANPAIR( 7,  8) = 0x6463,
145		RF_CHANPAIR( 9, 10) = 0x6643,
146		RF_CHANPAIR(11, 12) = 0x6443,
147		RF_CHANPAIR(13, 14) = 0x667d,
148	},
149	{ /* table 8 */
150		RF_CHANPAIR( 1,  2) = 0x6673,
151		RF_CHANPAIR( 3,  4) = 0x6073,
152		RF_CHANPAIR( 5,  6) = 0x6653,
153		RF_CHANPAIR( 7,  8) = 0x6453,
154		RF_CHANPAIR( 9, 10) = 0x6663,
155		RF_CHANPAIR(11, 12) = 0x6463,
156		RF_CHANPAIR(13, 14) = 0x6643,
157	},
158	{ /* table 9 */
159		RF_CHANPAIR( 1,  2) = 0x664b,
160		RF_CHANPAIR( 3,  4) = 0x604b,
161		RF_CHANPAIR( 5,  6) = 0x6673,
162		RF_CHANPAIR( 7,  8) = 0x6473,
163		RF_CHANPAIR( 9, 10) = 0x6653,
164		RF_CHANPAIR(11, 12) = 0x6453,
165		RF_CHANPAIR(13, 14) = 0x6663,
166	},
167	{ /* table 10 */
168		RF_CHANPAIR( 1,  2) = 0x666b,
169		RF_CHANPAIR( 3,  4) = 0x606b,
170		RF_CHANPAIR( 5,  6) = 0x664b,
171		RF_CHANPAIR( 7,  8) = 0x644b,
172		RF_CHANPAIR( 9, 10) = 0x6673,
173		RF_CHANPAIR(11, 12) = 0x6473,
174		RF_CHANPAIR(13, 14) = 0x6653,
175	},
176	{ /* table 11 */
177		RF_CHANPAIR( 1,  2) = 0x665b,
178		RF_CHANPAIR( 3,  4) = 0x605b,
179		RF_CHANPAIR( 5,  6) = 0x666b,
180		RF_CHANPAIR( 7,  8) = 0x646b,
181		RF_CHANPAIR( 9, 10) = 0x664b,
182		RF_CHANPAIR(11, 12) = 0x644b,
183		RF_CHANPAIR(13, 14) = 0x6673,
184	},
185
186};
187
188/* The per-channel synth values for autocal. These get written to register 1. */
189static const u16 uw2453_autocal_synth[] = {
190	RF_CHANNEL( 1) = 0x6847,
191	RF_CHANNEL( 2) = 0x6847,
192	RF_CHANNEL( 3) = 0x6867,
193	RF_CHANNEL( 4) = 0x6867,
194	RF_CHANNEL( 5) = 0x6867,
195	RF_CHANNEL( 6) = 0x6867,
196	RF_CHANNEL( 7) = 0x6857,
197	RF_CHANNEL( 8) = 0x6857,
198	RF_CHANNEL( 9) = 0x6857,
199	RF_CHANNEL(10) = 0x6857,
200	RF_CHANNEL(11) = 0x6877,
201	RF_CHANNEL(12) = 0x6877,
202	RF_CHANNEL(13) = 0x6877,
203	RF_CHANNEL(14) = 0x684f,
204};
205
206/* The VCO configuration for autocal (all channels) */
207static const u16 UW2453_AUTOCAL_VCO_CFG = 0x6662;
208
209/* TX gain settings. The array index corresponds to the TX power integration
210 * values found in the EEPROM. The values get written to register 7. */
211static u32 uw2453_txgain[] = {
212	[0x00] = 0x0e313,
213	[0x01] = 0x0fb13,
214	[0x02] = 0x0e093,
215	[0x03] = 0x0f893,
216	[0x04] = 0x0ea93,
217	[0x05] = 0x1f093,
218	[0x06] = 0x1f493,
219	[0x07] = 0x1f693,
220	[0x08] = 0x1f393,
221	[0x09] = 0x1f35b,
222	[0x0a] = 0x1e6db,
223	[0x0b] = 0x1ff3f,
224	[0x0c] = 0x1ffff,
225	[0x0d] = 0x361d7,
226	[0x0e] = 0x37fbf,
227	[0x0f] = 0x3ff8b,
228	[0x10] = 0x3ff33,
229	[0x11] = 0x3fb3f,
230	[0x12] = 0x3ffff,
231};
232
233/* RF-specific structure */
234struct uw2453_priv {
235	/* index into synth/VCO config tables where PLL lock was found
236	 * -1 means autocal */
237	int config;
238};
239
240#define UW2453_PRIV(rf) ((struct uw2453_priv *) (rf)->priv)
241
242static int uw2453_synth_set_channel(struct zd_chip *chip, int channel,
243	bool autocal)
244{
245	int r;
246	int idx = channel - 1;
247	u32 val;
248
249	if (autocal)
250		val = UW2453_REGWRITE(1, uw2453_autocal_synth[idx]);
251	else
252		val = UW2453_REGWRITE(1, uw2453_std_synth[idx]);
253
254	r = zd_rfwrite_locked(chip, val, RF_RV_BITS);
255	if (r)
256		return r;
257
258	return zd_rfwrite_locked(chip,
259		UW2453_REGWRITE(2, uw2453_synth_divide[idx]), RF_RV_BITS);
260}
261
262static int uw2453_write_vco_cfg(struct zd_chip *chip, u16 value)
263{
264	/* vendor driver always sets these upper bits even though the specs say
265	 * they are reserved */
266	u32 val = 0x40000 | value;
267	return zd_rfwrite_locked(chip, UW2453_REGWRITE(3, val), RF_RV_BITS);
268}
269
270static int uw2453_init_mode(struct zd_chip *chip)
271{
272	static const u32 rv[] = {
273		UW2453_REGWRITE(0, 0x25f98), /* enter IDLE mode */
274		UW2453_REGWRITE(0, 0x25f9a), /* enter CAL_VCO mode */
275		UW2453_REGWRITE(0, 0x25f94), /* enter RX/TX mode */
276		UW2453_REGWRITE(0, 0x27fd4), /* power down RSSI circuit */
277	};
278
279	return zd_rfwritev_locked(chip, rv, ARRAY_SIZE(rv), RF_RV_BITS);
280}
281
282static int uw2453_set_tx_gain_level(struct zd_chip *chip, int channel)
283{
284	u8 int_value = chip->pwr_int_values[channel - 1];
285
286	if (int_value >= ARRAY_SIZE(uw2453_txgain)) {
287		dev_dbg_f(zd_chip_dev(chip), "can't configure TX gain for "
288			  "int value %x on channel %d\n", int_value, channel);
289		return 0;
290	}
291
292	return zd_rfwrite_locked(chip,
293		UW2453_REGWRITE(7, uw2453_txgain[int_value]), RF_RV_BITS);
294}
295
296static int uw2453_init_hw(struct zd_rf *rf)
297{
298	int i, r;
299	int found_config = -1;
300	u16 intr_status;
301	struct zd_chip *chip = zd_rf_to_chip(rf);
302
303	static const struct zd_ioreq16 ioreqs[] = {
304		{ ZD_CR10,  0x89 }, { ZD_CR15,  0x20 },
305		{ ZD_CR17,  0x28 }, /* 6112 no change */
306		{ ZD_CR23,  0x38 }, { ZD_CR24,  0x20 }, { ZD_CR26,  0x93 },
307		{ ZD_CR27,  0x15 }, { ZD_CR28,  0x3e }, { ZD_CR29,  0x00 },
308		{ ZD_CR33,  0x28 }, { ZD_CR34,  0x30 },
309		{ ZD_CR35,  0x43 }, /* 6112 3e->43 */
310		{ ZD_CR41,  0x24 }, { ZD_CR44,  0x32 },
311		{ ZD_CR46,  0x92 }, /* 6112 96->92 */
312		{ ZD_CR47,  0x1e },
313		{ ZD_CR48,  0x04 }, /* 5602 Roger */
314		{ ZD_CR49,  0xfa }, { ZD_CR79,  0x58 }, { ZD_CR80,  0x30 },
315		{ ZD_CR81,  0x30 }, { ZD_CR87,  0x0a }, { ZD_CR89,  0x04 },
316		{ ZD_CR91,  0x00 }, { ZD_CR92,  0x0a }, { ZD_CR98,  0x8d },
317		{ ZD_CR99,  0x28 }, { ZD_CR100, 0x02 },
318		{ ZD_CR101, 0x09 }, /* 6112 13->1f 6220 1f->13 6407 13->9 */
319		{ ZD_CR102, 0x27 },
320		{ ZD_CR106, 0x1c }, /* 5d07 5112 1f->1c 6220 1c->1f
321				     * 6221 1f->1c
322				     */
323		{ ZD_CR107, 0x1c }, /* 6220 1c->1a 5221 1a->1c */
324		{ ZD_CR109, 0x13 },
325		{ ZD_CR110, 0x1f }, /* 6112 13->1f 6221 1f->13 6407 13->0x09 */
326		{ ZD_CR111, 0x13 }, { ZD_CR112, 0x1f }, { ZD_CR113, 0x27 },
327		{ ZD_CR114, 0x23 }, /* 6221 27->23 */
328		{ ZD_CR115, 0x24 }, /* 6112 24->1c 6220 1c->24 */
329		{ ZD_CR116, 0x24 }, /* 6220 1c->24 */
330		{ ZD_CR117, 0xfa }, /* 6112 fa->f8 6220 f8->f4 6220 f4->fa */
331		{ ZD_CR118, 0xf0 }, /* 5d07 6112 f0->f2 6220 f2->f0 */
332		{ ZD_CR119, 0x1a }, /* 6112 1a->10 6220 10->14 6220 14->1a */
333		{ ZD_CR120, 0x4f },
334		{ ZD_CR121, 0x1f }, /* 6220 4f->1f */
335		{ ZD_CR122, 0xf0 }, { ZD_CR123, 0x57 }, { ZD_CR125, 0xad },
336		{ ZD_CR126, 0x6c }, { ZD_CR127, 0x03 },
337		{ ZD_CR128, 0x14 }, /* 6302 12->11 */
338		{ ZD_CR129, 0x12 }, /* 6301 10->0f */
339		{ ZD_CR130, 0x10 }, { ZD_CR137, 0x50 }, { ZD_CR138, 0xa8 },
340		{ ZD_CR144, 0xac }, { ZD_CR146, 0x20 }, { ZD_CR252, 0xff },
341		{ ZD_CR253, 0xff },
342	};
343
344	static const u32 rv[] = {
345		UW2453_REGWRITE(4, 0x2b),    /* configure receiver gain */
346		UW2453_REGWRITE(5, 0x19e4f), /* configure transmitter gain */
347		UW2453_REGWRITE(6, 0xf81ad), /* enable RX/TX filter tuning */
348		UW2453_REGWRITE(7, 0x3fffe), /* disable TX gain in test mode */
349
350		/* enter CAL_FIL mode, TX gain set by registers, RX gain set by pins,
351		 * RSSI circuit powered down, reduced RSSI range */
352		UW2453_REGWRITE(0, 0x25f9c), /* 5d01 cal_fil */
353
354		/* synthesizer configuration for channel 1 */
355		UW2453_REGWRITE(1, 0x47),
356		UW2453_REGWRITE(2, 0x999),
357
358		/* disable manual VCO band selection */
359		UW2453_REGWRITE(3, 0x7602),
360
361		/* enable manual VCO band selection, configure current level */
362		UW2453_REGWRITE(3, 0x46063),
363	};
364
365	r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
366	if (r)
367		return r;
368
369	r = zd_rfwritev_locked(chip, rv, ARRAY_SIZE(rv), RF_RV_BITS);
370	if (r)
371		return r;
372
373	r = uw2453_init_mode(chip);
374	if (r)
375		return r;
376
377	/* Try all standard VCO configuration settings on channel 1 */
378	for (i = 0; i < ARRAY_SIZE(uw2453_std_vco_cfg) - 1; i++) {
379		/* Configure synthesizer for channel 1 */
380		r = uw2453_synth_set_channel(chip, 1, false);
381		if (r)
382			return r;
383
384		/* Write VCO config */
385		r = uw2453_write_vco_cfg(chip, uw2453_std_vco_cfg[i][0]);
386		if (r)
387			return r;
388
389		/* ack interrupt event */
390		r = zd_iowrite16_locked(chip, 0x0f, UW2453_INTR_REG);
391		if (r)
392			return r;
393
394		/* check interrupt status */
395		r = zd_ioread16_locked(chip, &intr_status, UW2453_INTR_REG);
396		if (r)
397			return r;
398
399		if (!(intr_status & 0xf)) {
400			dev_dbg_f(zd_chip_dev(chip),
401				"PLL locked on configuration %d\n", i);
402			found_config = i;
403			break;
404		}
405	}
406
407	if (found_config == -1) {
408		/* autocal */
409		dev_dbg_f(zd_chip_dev(chip),
410			"PLL did not lock, using autocal\n");
411
412		r = uw2453_synth_set_channel(chip, 1, true);
413		if (r)
414			return r;
415
416		r = uw2453_write_vco_cfg(chip, UW2453_AUTOCAL_VCO_CFG);
417		if (r)
418			return r;
419	}
420
421	/* To match the vendor driver behaviour, we use the configuration after
422	 * the one that produced a lock. */
423	UW2453_PRIV(rf)->config = found_config + 1;
424
425	return zd_iowrite16_locked(chip, 0x06, ZD_CR203);
426}
427
428static int uw2453_set_channel(struct zd_rf *rf, u8 channel)
429{
430	int r;
431	u16 vco_cfg;
432	int config = UW2453_PRIV(rf)->config;
433	bool autocal = (config == -1);
434	struct zd_chip *chip = zd_rf_to_chip(rf);
435
436	static const struct zd_ioreq16 ioreqs[] = {
437		{ ZD_CR80,  0x30 }, { ZD_CR81,  0x30 }, { ZD_CR79,  0x58 },
438		{ ZD_CR12,  0xf0 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x58 },
439	};
440
441	r = uw2453_synth_set_channel(chip, channel, autocal);
442	if (r)
443		return r;
444
445	if (autocal)
446		vco_cfg = UW2453_AUTOCAL_VCO_CFG;
447	else
448		vco_cfg = uw2453_std_vco_cfg[config][CHAN_TO_PAIRIDX(channel)];
449
450	r = uw2453_write_vco_cfg(chip, vco_cfg);
451	if (r)
452		return r;
453
454	r = uw2453_init_mode(chip);
455	if (r)
456		return r;
457
458	r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
459	if (r)
460		return r;
461
462	r = uw2453_set_tx_gain_level(chip, channel);
463	if (r)
464		return r;
465
466	return zd_iowrite16_locked(chip, 0x06, ZD_CR203);
467}
468
469static int uw2453_switch_radio_on(struct zd_rf *rf)
470{
471	int r;
472	struct zd_chip *chip = zd_rf_to_chip(rf);
473	struct zd_ioreq16 ioreqs[] = {
474		{ ZD_CR11,  0x00 }, { ZD_CR251, 0x3f },
475	};
476
477	/* enter RXTX mode */
478	r = zd_rfwrite_locked(chip, UW2453_REGWRITE(0, 0x25f94), RF_RV_BITS);
479	if (r)
480		return r;
481
482	if (zd_chip_is_zd1211b(chip))
483		ioreqs[1].value = 0x7f;
484
485	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
486}
487
488static int uw2453_switch_radio_off(struct zd_rf *rf)
489{
490	int r;
491	struct zd_chip *chip = zd_rf_to_chip(rf);
492	static const struct zd_ioreq16 ioreqs[] = {
493		{ ZD_CR11,  0x04 }, { ZD_CR251, 0x2f },
494	};
495
496	/* enter IDLE mode */
497	/* FIXME: shouldn't we go to SLEEP? sent email to zydas */
498	r = zd_rfwrite_locked(chip, UW2453_REGWRITE(0, 0x25f90), RF_RV_BITS);
499	if (r)
500		return r;
501
502	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
503}
504
505static void uw2453_clear(struct zd_rf *rf)
506{
507	kfree(rf->priv);
508}
509
510int zd_rf_init_uw2453(struct zd_rf *rf)
511{
512	rf->init_hw = uw2453_init_hw;
513	rf->set_channel = uw2453_set_channel;
514	rf->switch_radio_on = uw2453_switch_radio_on;
515	rf->switch_radio_off = uw2453_switch_radio_off;
516	rf->patch_6m_band_edge = zd_rf_generic_patch_6m;
517	rf->clear = uw2453_clear;
518	/* we have our own TX integration code */
519	rf->update_channel_int = 0;
520
521	rf->priv = kmalloc(sizeof(struct uw2453_priv), GFP_KERNEL);
522	if (rf->priv == NULL)
523		return -ENOMEM;
524
525	return 0;
526}
527
528