1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) International Business Machines Corp., 2006
4 * Copyright (c) Nokia Corporation, 2006
5 *
6 * Author: Artem Bityutskiy (���������������� ����������)
7 *
8 * Jan 2007: Alexander Schmidt, hacked per-volume update.
9 */
10
11/*
12 * This file contains implementation of the volume update and atomic LEB change
13 * functionality.
14 *
15 * The update operation is based on the per-volume update marker which is
16 * stored in the volume table. The update marker is set before the update
17 * starts, and removed after the update has been finished. So if the update was
18 * interrupted by an unclean re-boot or due to some other reasons, the update
19 * marker stays on the flash media and UBI finds it when it attaches the MTD
20 * device next time. If the update marker is set for a volume, the volume is
21 * treated as damaged and most I/O operations are prohibited. Only a new update
22 * operation is allowed.
23 *
24 * Note, in general it is possible to implement the update operation as a
25 * transaction with a roll-back capability.
26 */
27
28#include <linux/err.h>
29#include <linux/uaccess.h>
30#include <linux/math64.h>
31#include "ubi.h"
32
33/**
34 * set_update_marker - set update marker.
35 * @ubi: UBI device description object
36 * @vol: volume description object
37 *
38 * This function sets the update marker flag for volume @vol. Returns zero
39 * in case of success and a negative error code in case of failure.
40 */
41static int set_update_marker(struct ubi_device *ubi, struct ubi_volume *vol)
42{
43	int err;
44	struct ubi_vtbl_record vtbl_rec;
45
46	dbg_gen("set update marker for volume %d", vol->vol_id);
47
48	if (vol->upd_marker) {
49		ubi_assert(ubi->vtbl[vol->vol_id].upd_marker);
50		dbg_gen("already set");
51		return 0;
52	}
53
54	vtbl_rec = ubi->vtbl[vol->vol_id];
55	vtbl_rec.upd_marker = 1;
56
57	mutex_lock(&ubi->device_mutex);
58	err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
59	vol->upd_marker = 1;
60	mutex_unlock(&ubi->device_mutex);
61	return err;
62}
63
64/**
65 * clear_update_marker - clear update marker.
66 * @ubi: UBI device description object
67 * @vol: volume description object
68 * @bytes: new data size in bytes
69 *
70 * This function clears the update marker for volume @vol, sets new volume
71 * data size and clears the "corrupted" flag (static volumes only). Returns
72 * zero in case of success and a negative error code in case of failure.
73 */
74static int clear_update_marker(struct ubi_device *ubi, struct ubi_volume *vol,
75			       long long bytes)
76{
77	int err;
78	struct ubi_vtbl_record vtbl_rec;
79
80	dbg_gen("clear update marker for volume %d", vol->vol_id);
81
82	vtbl_rec = ubi->vtbl[vol->vol_id];
83	ubi_assert(vol->upd_marker && vtbl_rec.upd_marker);
84	vtbl_rec.upd_marker = 0;
85
86	if (vol->vol_type == UBI_STATIC_VOLUME) {
87		vol->corrupted = 0;
88		vol->used_bytes = bytes;
89		vol->used_ebs = div_u64_rem(bytes, vol->usable_leb_size,
90					    &vol->last_eb_bytes);
91		if (vol->last_eb_bytes)
92			vol->used_ebs += 1;
93		else
94			vol->last_eb_bytes = vol->usable_leb_size;
95	}
96
97	mutex_lock(&ubi->device_mutex);
98	err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
99	vol->upd_marker = 0;
100	mutex_unlock(&ubi->device_mutex);
101	return err;
102}
103
104/**
105 * ubi_start_update - start volume update.
106 * @ubi: UBI device description object
107 * @vol: volume description object
108 * @bytes: update bytes
109 *
110 * This function starts volume update operation. If @bytes is zero, the volume
111 * is just wiped out. Returns zero in case of success and a negative error code
112 * in case of failure.
113 */
114int ubi_start_update(struct ubi_device *ubi, struct ubi_volume *vol,
115		     long long bytes)
116{
117	int i, err;
118
119	dbg_gen("start update of volume %d, %llu bytes", vol->vol_id, bytes);
120	ubi_assert(!vol->updating && !vol->changing_leb);
121	vol->updating = 1;
122
123	vol->upd_buf = vmalloc(ubi->leb_size);
124	if (!vol->upd_buf)
125		return -ENOMEM;
126
127	err = set_update_marker(ubi, vol);
128	if (err)
129		return err;
130
131	/* Before updating - wipe out the volume */
132	for (i = 0; i < vol->reserved_pebs; i++) {
133		err = ubi_eba_unmap_leb(ubi, vol, i);
134		if (err)
135			return err;
136	}
137
138	err = ubi_wl_flush(ubi, UBI_ALL, UBI_ALL);
139	if (err)
140		return err;
141
142	if (bytes == 0) {
143		err = clear_update_marker(ubi, vol, 0);
144		if (err)
145			return err;
146
147		vfree(vol->upd_buf);
148		vol->updating = 0;
149		return 0;
150	}
151
152	vol->upd_ebs = div_u64(bytes + vol->usable_leb_size - 1,
153			       vol->usable_leb_size);
154	vol->upd_bytes = bytes;
155	vol->upd_received = 0;
156	return 0;
157}
158
159/**
160 * ubi_start_leb_change - start atomic LEB change.
161 * @ubi: UBI device description object
162 * @vol: volume description object
163 * @req: operation request
164 *
165 * This function starts atomic LEB change operation. Returns zero in case of
166 * success and a negative error code in case of failure.
167 */
168int ubi_start_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
169			 const struct ubi_leb_change_req *req)
170{
171	ubi_assert(!vol->updating && !vol->changing_leb);
172
173	dbg_gen("start changing LEB %d:%d, %u bytes",
174		vol->vol_id, req->lnum, req->bytes);
175	if (req->bytes == 0)
176		return ubi_eba_atomic_leb_change(ubi, vol, req->lnum, NULL, 0);
177
178	vol->upd_bytes = req->bytes;
179	vol->upd_received = 0;
180	vol->changing_leb = 1;
181	vol->ch_lnum = req->lnum;
182
183	vol->upd_buf = vmalloc(ALIGN((int)req->bytes, ubi->min_io_size));
184	if (!vol->upd_buf)
185		return -ENOMEM;
186
187	return 0;
188}
189
190/**
191 * write_leb - write update data.
192 * @ubi: UBI device description object
193 * @vol: volume description object
194 * @lnum: logical eraseblock number
195 * @buf: data to write
196 * @len: data size
197 * @used_ebs: how many logical eraseblocks will this volume contain (static
198 * volumes only)
199 *
200 * This function writes update data to corresponding logical eraseblock. In
201 * case of dynamic volume, this function checks if the data contains 0xFF bytes
202 * at the end. If yes, the 0xFF bytes are cut and not written. So if the whole
203 * buffer contains only 0xFF bytes, the LEB is left unmapped.
204 *
205 * The reason why we skip the trailing 0xFF bytes in case of dynamic volume is
206 * that we want to make sure that more data may be appended to the logical
207 * eraseblock in future. Indeed, writing 0xFF bytes may have side effects and
208 * this PEB won't be writable anymore. So if one writes the file-system image
209 * to the UBI volume where 0xFFs mean free space - UBI makes sure this free
210 * space is writable after the update.
211 *
212 * We do not do this for static volumes because they are read-only. But this
213 * also cannot be done because we have to store per-LEB CRC and the correct
214 * data length.
215 *
216 * This function returns zero in case of success and a negative error code in
217 * case of failure.
218 */
219static int write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
220		     void *buf, int len, int used_ebs)
221{
222	int err;
223
224	if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
225		int l = ALIGN(len, ubi->min_io_size);
226
227		memset(buf + len, 0xFF, l - len);
228		len = ubi_calc_data_len(ubi, buf, l);
229		if (len == 0) {
230			dbg_gen("all %d bytes contain 0xFF - skip", len);
231			return 0;
232		}
233
234		err = ubi_eba_write_leb(ubi, vol, lnum, buf, 0, len);
235	} else {
236		/*
237		 * When writing static volume, and this is the last logical
238		 * eraseblock, the length (@len) does not have to be aligned to
239		 * the minimal flash I/O unit. The 'ubi_eba_write_leb_st()'
240		 * function accepts exact (unaligned) length and stores it in
241		 * the VID header. And it takes care of proper alignment by
242		 * padding the buffer. Here we just make sure the padding will
243		 * contain zeros, not random trash.
244		 */
245		memset(buf + len, 0, vol->usable_leb_size - len);
246		err = ubi_eba_write_leb_st(ubi, vol, lnum, buf, len, used_ebs);
247	}
248
249	return err;
250}
251
252/**
253 * ubi_more_update_data - write more update data.
254 * @ubi: UBI device description object
255 * @vol: volume description object
256 * @buf: write data (user-space memory buffer)
257 * @count: how much bytes to write
258 *
259 * This function writes more data to the volume which is being updated. It may
260 * be called arbitrary number of times until all the update data arriveis. This
261 * function returns %0 in case of success, number of bytes written during the
262 * last call if the whole volume update has been successfully finished, and a
263 * negative error code in case of failure.
264 */
265int ubi_more_update_data(struct ubi_device *ubi, struct ubi_volume *vol,
266			 const void __user *buf, int count)
267{
268	int lnum, offs, err = 0, len, to_write = count;
269
270	dbg_gen("write %d of %lld bytes, %lld already passed",
271		count, vol->upd_bytes, vol->upd_received);
272
273	if (ubi->ro_mode)
274		return -EROFS;
275
276	lnum = div_u64_rem(vol->upd_received,  vol->usable_leb_size, &offs);
277	if (vol->upd_received + count > vol->upd_bytes)
278		to_write = count = vol->upd_bytes - vol->upd_received;
279
280	/*
281	 * When updating volumes, we accumulate whole logical eraseblock of
282	 * data and write it at once.
283	 */
284	if (offs != 0) {
285		/*
286		 * This is a write to the middle of the logical eraseblock. We
287		 * copy the data to our update buffer and wait for more data or
288		 * flush it if the whole eraseblock is written or the update
289		 * is finished.
290		 */
291
292		len = vol->usable_leb_size - offs;
293		if (len > count)
294			len = count;
295
296		err = copy_from_user(vol->upd_buf + offs, buf, len);
297		if (err)
298			return -EFAULT;
299
300		if (offs + len == vol->usable_leb_size ||
301		    vol->upd_received + len == vol->upd_bytes) {
302			int flush_len = offs + len;
303
304			/*
305			 * OK, we gathered either the whole eraseblock or this
306			 * is the last chunk, it's time to flush the buffer.
307			 */
308			ubi_assert(flush_len <= vol->usable_leb_size);
309			err = write_leb(ubi, vol, lnum, vol->upd_buf, flush_len,
310					vol->upd_ebs);
311			if (err)
312				return err;
313		}
314
315		vol->upd_received += len;
316		count -= len;
317		buf += len;
318		lnum += 1;
319	}
320
321	/*
322	 * If we've got more to write, let's continue. At this point we know we
323	 * are starting from the beginning of an eraseblock.
324	 */
325	while (count) {
326		if (count > vol->usable_leb_size)
327			len = vol->usable_leb_size;
328		else
329			len = count;
330
331		err = copy_from_user(vol->upd_buf, buf, len);
332		if (err)
333			return -EFAULT;
334
335		if (len == vol->usable_leb_size ||
336		    vol->upd_received + len == vol->upd_bytes) {
337			err = write_leb(ubi, vol, lnum, vol->upd_buf,
338					len, vol->upd_ebs);
339			if (err)
340				break;
341		}
342
343		vol->upd_received += len;
344		count -= len;
345		lnum += 1;
346		buf += len;
347	}
348
349	ubi_assert(vol->upd_received <= vol->upd_bytes);
350	if (vol->upd_received == vol->upd_bytes) {
351		err = ubi_wl_flush(ubi, UBI_ALL, UBI_ALL);
352		if (err)
353			return err;
354		/* The update is finished, clear the update marker */
355		err = clear_update_marker(ubi, vol, vol->upd_bytes);
356		if (err)
357			return err;
358		vol->updating = 0;
359		err = to_write;
360		vfree(vol->upd_buf);
361	}
362
363	return err;
364}
365
366/**
367 * ubi_more_leb_change_data - accept more data for atomic LEB change.
368 * @ubi: UBI device description object
369 * @vol: volume description object
370 * @buf: write data (user-space memory buffer)
371 * @count: how much bytes to write
372 *
373 * This function accepts more data to the volume which is being under the
374 * "atomic LEB change" operation. It may be called arbitrary number of times
375 * until all data arrives. This function returns %0 in case of success, number
376 * of bytes written during the last call if the whole "atomic LEB change"
377 * operation has been successfully finished, and a negative error code in case
378 * of failure.
379 */
380int ubi_more_leb_change_data(struct ubi_device *ubi, struct ubi_volume *vol,
381			     const void __user *buf, int count)
382{
383	int err;
384
385	dbg_gen("write %d of %lld bytes, %lld already passed",
386		count, vol->upd_bytes, vol->upd_received);
387
388	if (ubi->ro_mode)
389		return -EROFS;
390
391	if (vol->upd_received + count > vol->upd_bytes)
392		count = vol->upd_bytes - vol->upd_received;
393
394	err = copy_from_user(vol->upd_buf + vol->upd_received, buf, count);
395	if (err)
396		return -EFAULT;
397
398	vol->upd_received += count;
399
400	if (vol->upd_received == vol->upd_bytes) {
401		int len = ALIGN((int)vol->upd_bytes, ubi->min_io_size);
402
403		memset(vol->upd_buf + vol->upd_bytes, 0xFF,
404		       len - vol->upd_bytes);
405		len = ubi_calc_data_len(ubi, vol->upd_buf, len);
406		err = ubi_eba_atomic_leb_change(ubi, vol, vol->ch_lnum,
407						vol->upd_buf, len);
408		if (err)
409			return err;
410	}
411
412	ubi_assert(vol->upd_received <= vol->upd_bytes);
413	if (vol->upd_received == vol->upd_bytes) {
414		vol->changing_leb = 0;
415		err = count;
416		vfree(vol->upd_buf);
417	}
418
419	return err;
420}
421