1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2006, Intel Corporation.
4 *
5 * Copyright (C) 2006-2008 Intel Corporation
6 * Author: Ashok Raj <ashok.raj@intel.com>
7 * Author: Shaohua Li <shaohua.li@intel.com>
8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * This file implements early detection/parsing of Remapping Devices
11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12 * tables.
13 *
14 * These routines are used by both DMA-remapping and Interrupt-remapping
15 */
16
17#define pr_fmt(fmt)     "DMAR: " fmt
18
19#include <linux/pci.h>
20#include <linux/dmar.h>
21#include <linux/iova.h>
22#include <linux/timer.h>
23#include <linux/irq.h>
24#include <linux/interrupt.h>
25#include <linux/tboot.h>
26#include <linux/dmi.h>
27#include <linux/slab.h>
28#include <linux/iommu.h>
29#include <linux/numa.h>
30#include <linux/limits.h>
31#include <asm/irq_remapping.h>
32
33#include "iommu.h"
34#include "../irq_remapping.h"
35#include "../iommu-pages.h"
36#include "perf.h"
37#include "trace.h"
38#include "perfmon.h"
39
40typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
41struct dmar_res_callback {
42	dmar_res_handler_t	cb[ACPI_DMAR_TYPE_RESERVED];
43	void			*arg[ACPI_DMAR_TYPE_RESERVED];
44	bool			ignore_unhandled;
45	bool			print_entry;
46};
47
48/*
49 * Assumptions:
50 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
51 *    before IO devices managed by that unit.
52 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
53 *    after IO devices managed by that unit.
54 * 3) Hotplug events are rare.
55 *
56 * Locking rules for DMA and interrupt remapping related global data structures:
57 * 1) Use dmar_global_lock in process context
58 * 2) Use RCU in interrupt context
59 */
60DECLARE_RWSEM(dmar_global_lock);
61LIST_HEAD(dmar_drhd_units);
62
63struct acpi_table_header * __initdata dmar_tbl;
64static int dmar_dev_scope_status = 1;
65static DEFINE_IDA(dmar_seq_ids);
66
67static int alloc_iommu(struct dmar_drhd_unit *drhd);
68static void free_iommu(struct intel_iommu *iommu);
69
70static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
71{
72	/*
73	 * add INCLUDE_ALL at the tail, so scan the list will find it at
74	 * the very end.
75	 */
76	if (drhd->include_all)
77		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
78	else
79		list_add_rcu(&drhd->list, &dmar_drhd_units);
80}
81
82void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
83{
84	struct acpi_dmar_device_scope *scope;
85
86	*cnt = 0;
87	while (start < end) {
88		scope = start;
89		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
90		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
91		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
92			(*cnt)++;
93		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
94			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
95			pr_warn("Unsupported device scope\n");
96		}
97		start += scope->length;
98	}
99	if (*cnt == 0)
100		return NULL;
101
102	return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
103}
104
105void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
106{
107	int i;
108	struct device *tmp_dev;
109
110	if (*devices && *cnt) {
111		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
112			put_device(tmp_dev);
113		kfree(*devices);
114	}
115
116	*devices = NULL;
117	*cnt = 0;
118}
119
120/* Optimize out kzalloc()/kfree() for normal cases */
121static char dmar_pci_notify_info_buf[64];
122
123static struct dmar_pci_notify_info *
124dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
125{
126	int level = 0;
127	size_t size;
128	struct pci_dev *tmp;
129	struct dmar_pci_notify_info *info;
130
131	/*
132	 * Ignore devices that have a domain number higher than what can
133	 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
134	 */
135	if (pci_domain_nr(dev->bus) > U16_MAX)
136		return NULL;
137
138	/* Only generate path[] for device addition event */
139	if (event == BUS_NOTIFY_ADD_DEVICE)
140		for (tmp = dev; tmp; tmp = tmp->bus->self)
141			level++;
142
143	size = struct_size(info, path, level);
144	if (size <= sizeof(dmar_pci_notify_info_buf)) {
145		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
146	} else {
147		info = kzalloc(size, GFP_KERNEL);
148		if (!info) {
149			if (dmar_dev_scope_status == 0)
150				dmar_dev_scope_status = -ENOMEM;
151			return NULL;
152		}
153	}
154
155	info->event = event;
156	info->dev = dev;
157	info->seg = pci_domain_nr(dev->bus);
158	info->level = level;
159	if (event == BUS_NOTIFY_ADD_DEVICE) {
160		for (tmp = dev; tmp; tmp = tmp->bus->self) {
161			level--;
162			info->path[level].bus = tmp->bus->number;
163			info->path[level].device = PCI_SLOT(tmp->devfn);
164			info->path[level].function = PCI_FUNC(tmp->devfn);
165			if (pci_is_root_bus(tmp->bus))
166				info->bus = tmp->bus->number;
167		}
168	}
169
170	return info;
171}
172
173static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
174{
175	if ((void *)info != dmar_pci_notify_info_buf)
176		kfree(info);
177}
178
179static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
180				struct acpi_dmar_pci_path *path, int count)
181{
182	int i;
183
184	if (info->bus != bus)
185		goto fallback;
186	if (info->level != count)
187		goto fallback;
188
189	for (i = 0; i < count; i++) {
190		if (path[i].device != info->path[i].device ||
191		    path[i].function != info->path[i].function)
192			goto fallback;
193	}
194
195	return true;
196
197fallback:
198
199	if (count != 1)
200		return false;
201
202	i = info->level - 1;
203	if (bus              == info->path[i].bus &&
204	    path[0].device   == info->path[i].device &&
205	    path[0].function == info->path[i].function) {
206		pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
207			bus, path[0].device, path[0].function);
208		return true;
209	}
210
211	return false;
212}
213
214/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
215int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
216			  void *start, void*end, u16 segment,
217			  struct dmar_dev_scope *devices,
218			  int devices_cnt)
219{
220	int i, level;
221	struct device *tmp, *dev = &info->dev->dev;
222	struct acpi_dmar_device_scope *scope;
223	struct acpi_dmar_pci_path *path;
224
225	if (segment != info->seg)
226		return 0;
227
228	for (; start < end; start += scope->length) {
229		scope = start;
230		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
231		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
232			continue;
233
234		path = (struct acpi_dmar_pci_path *)(scope + 1);
235		level = (scope->length - sizeof(*scope)) / sizeof(*path);
236		if (!dmar_match_pci_path(info, scope->bus, path, level))
237			continue;
238
239		/*
240		 * We expect devices with endpoint scope to have normal PCI
241		 * headers, and devices with bridge scope to have bridge PCI
242		 * headers.  However PCI NTB devices may be listed in the
243		 * DMAR table with bridge scope, even though they have a
244		 * normal PCI header.  NTB devices are identified by class
245		 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
246		 * for this special case.
247		 */
248		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
249		     info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
250		    (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
251		     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
252		      info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
253			pr_warn("Device scope type does not match for %s\n",
254				pci_name(info->dev));
255			return -EINVAL;
256		}
257
258		for_each_dev_scope(devices, devices_cnt, i, tmp)
259			if (tmp == NULL) {
260				devices[i].bus = info->dev->bus->number;
261				devices[i].devfn = info->dev->devfn;
262				rcu_assign_pointer(devices[i].dev,
263						   get_device(dev));
264				return 1;
265			}
266		if (WARN_ON(i >= devices_cnt))
267			return -EINVAL;
268	}
269
270	return 0;
271}
272
273int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
274			  struct dmar_dev_scope *devices, int count)
275{
276	int index;
277	struct device *tmp;
278
279	if (info->seg != segment)
280		return 0;
281
282	for_each_active_dev_scope(devices, count, index, tmp)
283		if (tmp == &info->dev->dev) {
284			RCU_INIT_POINTER(devices[index].dev, NULL);
285			synchronize_rcu();
286			put_device(tmp);
287			return 1;
288		}
289
290	return 0;
291}
292
293static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
294{
295	int ret = 0;
296	struct dmar_drhd_unit *dmaru;
297	struct acpi_dmar_hardware_unit *drhd;
298
299	for_each_drhd_unit(dmaru) {
300		if (dmaru->include_all)
301			continue;
302
303		drhd = container_of(dmaru->hdr,
304				    struct acpi_dmar_hardware_unit, header);
305		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
306				((void *)drhd) + drhd->header.length,
307				dmaru->segment,
308				dmaru->devices, dmaru->devices_cnt);
309		if (ret)
310			break;
311	}
312	if (ret >= 0)
313		ret = dmar_iommu_notify_scope_dev(info);
314	if (ret < 0 && dmar_dev_scope_status == 0)
315		dmar_dev_scope_status = ret;
316
317	if (ret >= 0)
318		intel_irq_remap_add_device(info);
319
320	return ret;
321}
322
323static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
324{
325	struct dmar_drhd_unit *dmaru;
326
327	for_each_drhd_unit(dmaru)
328		if (dmar_remove_dev_scope(info, dmaru->segment,
329			dmaru->devices, dmaru->devices_cnt))
330			break;
331	dmar_iommu_notify_scope_dev(info);
332}
333
334static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
335{
336	struct pci_dev *physfn = pci_physfn(pdev);
337
338	dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
339}
340
341static int dmar_pci_bus_notifier(struct notifier_block *nb,
342				 unsigned long action, void *data)
343{
344	struct pci_dev *pdev = to_pci_dev(data);
345	struct dmar_pci_notify_info *info;
346
347	/* Only care about add/remove events for physical functions.
348	 * For VFs we actually do the lookup based on the corresponding
349	 * PF in device_to_iommu() anyway. */
350	if (pdev->is_virtfn) {
351		/*
352		 * Ensure that the VF device inherits the irq domain of the
353		 * PF device. Ideally the device would inherit the domain
354		 * from the bus, but DMAR can have multiple units per bus
355		 * which makes this impossible. The VF 'bus' could inherit
356		 * from the PF device, but that's yet another x86'sism to
357		 * inflict on everybody else.
358		 */
359		if (action == BUS_NOTIFY_ADD_DEVICE)
360			vf_inherit_msi_domain(pdev);
361		return NOTIFY_DONE;
362	}
363
364	if (action != BUS_NOTIFY_ADD_DEVICE &&
365	    action != BUS_NOTIFY_REMOVED_DEVICE)
366		return NOTIFY_DONE;
367
368	info = dmar_alloc_pci_notify_info(pdev, action);
369	if (!info)
370		return NOTIFY_DONE;
371
372	down_write(&dmar_global_lock);
373	if (action == BUS_NOTIFY_ADD_DEVICE)
374		dmar_pci_bus_add_dev(info);
375	else if (action == BUS_NOTIFY_REMOVED_DEVICE)
376		dmar_pci_bus_del_dev(info);
377	up_write(&dmar_global_lock);
378
379	dmar_free_pci_notify_info(info);
380
381	return NOTIFY_OK;
382}
383
384static struct notifier_block dmar_pci_bus_nb = {
385	.notifier_call = dmar_pci_bus_notifier,
386	.priority = 1,
387};
388
389static struct dmar_drhd_unit *
390dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
391{
392	struct dmar_drhd_unit *dmaru;
393
394	list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
395				dmar_rcu_check())
396		if (dmaru->segment == drhd->segment &&
397		    dmaru->reg_base_addr == drhd->address)
398			return dmaru;
399
400	return NULL;
401}
402
403/*
404 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
405 * structure which uniquely represent one DMA remapping hardware unit
406 * present in the platform
407 */
408static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
409{
410	struct acpi_dmar_hardware_unit *drhd;
411	struct dmar_drhd_unit *dmaru;
412	int ret;
413
414	drhd = (struct acpi_dmar_hardware_unit *)header;
415	dmaru = dmar_find_dmaru(drhd);
416	if (dmaru)
417		goto out;
418
419	dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
420	if (!dmaru)
421		return -ENOMEM;
422
423	/*
424	 * If header is allocated from slab by ACPI _DSM method, we need to
425	 * copy the content because the memory buffer will be freed on return.
426	 */
427	dmaru->hdr = (void *)(dmaru + 1);
428	memcpy(dmaru->hdr, header, header->length);
429	dmaru->reg_base_addr = drhd->address;
430	dmaru->segment = drhd->segment;
431	/* The size of the register set is 2 ^ N 4 KB pages. */
432	dmaru->reg_size = 1UL << (drhd->size + 12);
433	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
434	dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
435					      ((void *)drhd) + drhd->header.length,
436					      &dmaru->devices_cnt);
437	if (dmaru->devices_cnt && dmaru->devices == NULL) {
438		kfree(dmaru);
439		return -ENOMEM;
440	}
441
442	ret = alloc_iommu(dmaru);
443	if (ret) {
444		dmar_free_dev_scope(&dmaru->devices,
445				    &dmaru->devices_cnt);
446		kfree(dmaru);
447		return ret;
448	}
449	dmar_register_drhd_unit(dmaru);
450
451out:
452	if (arg)
453		(*(int *)arg)++;
454
455	return 0;
456}
457
458static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
459{
460	if (dmaru->devices && dmaru->devices_cnt)
461		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
462	if (dmaru->iommu)
463		free_iommu(dmaru->iommu);
464	kfree(dmaru);
465}
466
467static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
468				      void *arg)
469{
470	struct acpi_dmar_andd *andd = (void *)header;
471
472	/* Check for NUL termination within the designated length */
473	if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
474		pr_warn(FW_BUG
475			   "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
476			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
477			   dmi_get_system_info(DMI_BIOS_VENDOR),
478			   dmi_get_system_info(DMI_BIOS_VERSION),
479			   dmi_get_system_info(DMI_PRODUCT_VERSION));
480		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
481		return -EINVAL;
482	}
483	pr_info("ANDD device: %x name: %s\n", andd->device_number,
484		andd->device_name);
485
486	return 0;
487}
488
489#ifdef CONFIG_ACPI_NUMA
490static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
491{
492	struct acpi_dmar_rhsa *rhsa;
493	struct dmar_drhd_unit *drhd;
494
495	rhsa = (struct acpi_dmar_rhsa *)header;
496	for_each_drhd_unit(drhd) {
497		if (drhd->reg_base_addr == rhsa->base_address) {
498			int node = pxm_to_node(rhsa->proximity_domain);
499
500			if (node != NUMA_NO_NODE && !node_online(node))
501				node = NUMA_NO_NODE;
502			drhd->iommu->node = node;
503			return 0;
504		}
505	}
506	pr_warn(FW_BUG
507		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
508		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
509		rhsa->base_address,
510		dmi_get_system_info(DMI_BIOS_VENDOR),
511		dmi_get_system_info(DMI_BIOS_VERSION),
512		dmi_get_system_info(DMI_PRODUCT_VERSION));
513	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
514
515	return 0;
516}
517#else
518#define	dmar_parse_one_rhsa		dmar_res_noop
519#endif
520
521static void
522dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
523{
524	struct acpi_dmar_hardware_unit *drhd;
525	struct acpi_dmar_reserved_memory *rmrr;
526	struct acpi_dmar_atsr *atsr;
527	struct acpi_dmar_rhsa *rhsa;
528	struct acpi_dmar_satc *satc;
529
530	switch (header->type) {
531	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
532		drhd = container_of(header, struct acpi_dmar_hardware_unit,
533				    header);
534		pr_info("DRHD base: %#016Lx flags: %#x\n",
535			(unsigned long long)drhd->address, drhd->flags);
536		break;
537	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
538		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
539				    header);
540		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
541			(unsigned long long)rmrr->base_address,
542			(unsigned long long)rmrr->end_address);
543		break;
544	case ACPI_DMAR_TYPE_ROOT_ATS:
545		atsr = container_of(header, struct acpi_dmar_atsr, header);
546		pr_info("ATSR flags: %#x\n", atsr->flags);
547		break;
548	case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
549		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
550		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
551		       (unsigned long long)rhsa->base_address,
552		       rhsa->proximity_domain);
553		break;
554	case ACPI_DMAR_TYPE_NAMESPACE:
555		/* We don't print this here because we need to sanity-check
556		   it first. So print it in dmar_parse_one_andd() instead. */
557		break;
558	case ACPI_DMAR_TYPE_SATC:
559		satc = container_of(header, struct acpi_dmar_satc, header);
560		pr_info("SATC flags: 0x%x\n", satc->flags);
561		break;
562	}
563}
564
565/**
566 * dmar_table_detect - checks to see if the platform supports DMAR devices
567 */
568static int __init dmar_table_detect(void)
569{
570	acpi_status status = AE_OK;
571
572	/* if we could find DMAR table, then there are DMAR devices */
573	status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
574
575	if (ACPI_SUCCESS(status) && !dmar_tbl) {
576		pr_warn("Unable to map DMAR\n");
577		status = AE_NOT_FOUND;
578	}
579
580	return ACPI_SUCCESS(status) ? 0 : -ENOENT;
581}
582
583static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
584				       size_t len, struct dmar_res_callback *cb)
585{
586	struct acpi_dmar_header *iter, *next;
587	struct acpi_dmar_header *end = ((void *)start) + len;
588
589	for (iter = start; iter < end; iter = next) {
590		next = (void *)iter + iter->length;
591		if (iter->length == 0) {
592			/* Avoid looping forever on bad ACPI tables */
593			pr_debug(FW_BUG "Invalid 0-length structure\n");
594			break;
595		} else if (next > end) {
596			/* Avoid passing table end */
597			pr_warn(FW_BUG "Record passes table end\n");
598			return -EINVAL;
599		}
600
601		if (cb->print_entry)
602			dmar_table_print_dmar_entry(iter);
603
604		if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
605			/* continue for forward compatibility */
606			pr_debug("Unknown DMAR structure type %d\n",
607				 iter->type);
608		} else if (cb->cb[iter->type]) {
609			int ret;
610
611			ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
612			if (ret)
613				return ret;
614		} else if (!cb->ignore_unhandled) {
615			pr_warn("No handler for DMAR structure type %d\n",
616				iter->type);
617			return -EINVAL;
618		}
619	}
620
621	return 0;
622}
623
624static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
625				       struct dmar_res_callback *cb)
626{
627	return dmar_walk_remapping_entries((void *)(dmar + 1),
628			dmar->header.length - sizeof(*dmar), cb);
629}
630
631/**
632 * parse_dmar_table - parses the DMA reporting table
633 */
634static int __init
635parse_dmar_table(void)
636{
637	struct acpi_table_dmar *dmar;
638	int drhd_count = 0;
639	int ret;
640	struct dmar_res_callback cb = {
641		.print_entry = true,
642		.ignore_unhandled = true,
643		.arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
644		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
645		.cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
646		.cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
647		.cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
648		.cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
649		.cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
650	};
651
652	/*
653	 * Do it again, earlier dmar_tbl mapping could be mapped with
654	 * fixed map.
655	 */
656	dmar_table_detect();
657
658	/*
659	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
660	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
661	 */
662	dmar_tbl = tboot_get_dmar_table(dmar_tbl);
663
664	dmar = (struct acpi_table_dmar *)dmar_tbl;
665	if (!dmar)
666		return -ENODEV;
667
668	if (dmar->width < PAGE_SHIFT - 1) {
669		pr_warn("Invalid DMAR haw\n");
670		return -EINVAL;
671	}
672
673	pr_info("Host address width %d\n", dmar->width + 1);
674	ret = dmar_walk_dmar_table(dmar, &cb);
675	if (ret == 0 && drhd_count == 0)
676		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
677
678	return ret;
679}
680
681static int dmar_pci_device_match(struct dmar_dev_scope devices[],
682				 int cnt, struct pci_dev *dev)
683{
684	int index;
685	struct device *tmp;
686
687	while (dev) {
688		for_each_active_dev_scope(devices, cnt, index, tmp)
689			if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
690				return 1;
691
692		/* Check our parent */
693		dev = dev->bus->self;
694	}
695
696	return 0;
697}
698
699struct dmar_drhd_unit *
700dmar_find_matched_drhd_unit(struct pci_dev *dev)
701{
702	struct dmar_drhd_unit *dmaru;
703	struct acpi_dmar_hardware_unit *drhd;
704
705	dev = pci_physfn(dev);
706
707	rcu_read_lock();
708	for_each_drhd_unit(dmaru) {
709		drhd = container_of(dmaru->hdr,
710				    struct acpi_dmar_hardware_unit,
711				    header);
712
713		if (dmaru->include_all &&
714		    drhd->segment == pci_domain_nr(dev->bus))
715			goto out;
716
717		if (dmar_pci_device_match(dmaru->devices,
718					  dmaru->devices_cnt, dev))
719			goto out;
720	}
721	dmaru = NULL;
722out:
723	rcu_read_unlock();
724
725	return dmaru;
726}
727
728static void __init dmar_acpi_insert_dev_scope(u8 device_number,
729					      struct acpi_device *adev)
730{
731	struct dmar_drhd_unit *dmaru;
732	struct acpi_dmar_hardware_unit *drhd;
733	struct acpi_dmar_device_scope *scope;
734	struct device *tmp;
735	int i;
736	struct acpi_dmar_pci_path *path;
737
738	for_each_drhd_unit(dmaru) {
739		drhd = container_of(dmaru->hdr,
740				    struct acpi_dmar_hardware_unit,
741				    header);
742
743		for (scope = (void *)(drhd + 1);
744		     (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
745		     scope = ((void *)scope) + scope->length) {
746			if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
747				continue;
748			if (scope->enumeration_id != device_number)
749				continue;
750
751			path = (void *)(scope + 1);
752			pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
753				dev_name(&adev->dev), dmaru->reg_base_addr,
754				scope->bus, path->device, path->function);
755			for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
756				if (tmp == NULL) {
757					dmaru->devices[i].bus = scope->bus;
758					dmaru->devices[i].devfn = PCI_DEVFN(path->device,
759									    path->function);
760					rcu_assign_pointer(dmaru->devices[i].dev,
761							   get_device(&adev->dev));
762					return;
763				}
764			BUG_ON(i >= dmaru->devices_cnt);
765		}
766	}
767	pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
768		device_number, dev_name(&adev->dev));
769}
770
771static int __init dmar_acpi_dev_scope_init(void)
772{
773	struct acpi_dmar_andd *andd;
774
775	if (dmar_tbl == NULL)
776		return -ENODEV;
777
778	for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
779	     ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
780	     andd = ((void *)andd) + andd->header.length) {
781		if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
782			acpi_handle h;
783			struct acpi_device *adev;
784
785			if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
786							  andd->device_name,
787							  &h))) {
788				pr_err("Failed to find handle for ACPI object %s\n",
789				       andd->device_name);
790				continue;
791			}
792			adev = acpi_fetch_acpi_dev(h);
793			if (!adev) {
794				pr_err("Failed to get device for ACPI object %s\n",
795				       andd->device_name);
796				continue;
797			}
798			dmar_acpi_insert_dev_scope(andd->device_number, adev);
799		}
800	}
801	return 0;
802}
803
804int __init dmar_dev_scope_init(void)
805{
806	struct pci_dev *dev = NULL;
807	struct dmar_pci_notify_info *info;
808
809	if (dmar_dev_scope_status != 1)
810		return dmar_dev_scope_status;
811
812	if (list_empty(&dmar_drhd_units)) {
813		dmar_dev_scope_status = -ENODEV;
814	} else {
815		dmar_dev_scope_status = 0;
816
817		dmar_acpi_dev_scope_init();
818
819		for_each_pci_dev(dev) {
820			if (dev->is_virtfn)
821				continue;
822
823			info = dmar_alloc_pci_notify_info(dev,
824					BUS_NOTIFY_ADD_DEVICE);
825			if (!info) {
826				pci_dev_put(dev);
827				return dmar_dev_scope_status;
828			} else {
829				dmar_pci_bus_add_dev(info);
830				dmar_free_pci_notify_info(info);
831			}
832		}
833	}
834
835	return dmar_dev_scope_status;
836}
837
838void __init dmar_register_bus_notifier(void)
839{
840	bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
841}
842
843
844int __init dmar_table_init(void)
845{
846	static int dmar_table_initialized;
847	int ret;
848
849	if (dmar_table_initialized == 0) {
850		ret = parse_dmar_table();
851		if (ret < 0) {
852			if (ret != -ENODEV)
853				pr_info("Parse DMAR table failure.\n");
854		} else  if (list_empty(&dmar_drhd_units)) {
855			pr_info("No DMAR devices found\n");
856			ret = -ENODEV;
857		}
858
859		if (ret < 0)
860			dmar_table_initialized = ret;
861		else
862			dmar_table_initialized = 1;
863	}
864
865	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
866}
867
868static void warn_invalid_dmar(u64 addr, const char *message)
869{
870	pr_warn_once(FW_BUG
871		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
872		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
873		addr, message,
874		dmi_get_system_info(DMI_BIOS_VENDOR),
875		dmi_get_system_info(DMI_BIOS_VERSION),
876		dmi_get_system_info(DMI_PRODUCT_VERSION));
877	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
878}
879
880static int __ref
881dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
882{
883	struct acpi_dmar_hardware_unit *drhd;
884	void __iomem *addr;
885	u64 cap, ecap;
886
887	drhd = (void *)entry;
888	if (!drhd->address) {
889		warn_invalid_dmar(0, "");
890		return -EINVAL;
891	}
892
893	if (arg)
894		addr = ioremap(drhd->address, VTD_PAGE_SIZE);
895	else
896		addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
897	if (!addr) {
898		pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
899		return -EINVAL;
900	}
901
902	cap = dmar_readq(addr + DMAR_CAP_REG);
903	ecap = dmar_readq(addr + DMAR_ECAP_REG);
904
905	if (arg)
906		iounmap(addr);
907	else
908		early_iounmap(addr, VTD_PAGE_SIZE);
909
910	if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
911		warn_invalid_dmar(drhd->address, " returns all ones");
912		return -EINVAL;
913	}
914
915	return 0;
916}
917
918void __init detect_intel_iommu(void)
919{
920	int ret;
921	struct dmar_res_callback validate_drhd_cb = {
922		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
923		.ignore_unhandled = true,
924	};
925
926	down_write(&dmar_global_lock);
927	ret = dmar_table_detect();
928	if (!ret)
929		ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
930					   &validate_drhd_cb);
931	if (!ret && !no_iommu && !iommu_detected &&
932	    (!dmar_disabled || dmar_platform_optin())) {
933		iommu_detected = 1;
934		/* Make sure ACS will be enabled */
935		pci_request_acs();
936	}
937
938#ifdef CONFIG_X86
939	if (!ret) {
940		x86_init.iommu.iommu_init = intel_iommu_init;
941		x86_platform.iommu_shutdown = intel_iommu_shutdown;
942	}
943
944#endif
945
946	if (dmar_tbl) {
947		acpi_put_table(dmar_tbl);
948		dmar_tbl = NULL;
949	}
950	up_write(&dmar_global_lock);
951}
952
953static void unmap_iommu(struct intel_iommu *iommu)
954{
955	iounmap(iommu->reg);
956	release_mem_region(iommu->reg_phys, iommu->reg_size);
957}
958
959/**
960 * map_iommu: map the iommu's registers
961 * @iommu: the iommu to map
962 * @drhd: DMA remapping hardware definition structure
963 *
964 * Memory map the iommu's registers.  Start w/ a single page, and
965 * possibly expand if that turns out to be insufficent.
966 */
967static int map_iommu(struct intel_iommu *iommu, struct dmar_drhd_unit *drhd)
968{
969	u64 phys_addr = drhd->reg_base_addr;
970	int map_size, err=0;
971
972	iommu->reg_phys = phys_addr;
973	iommu->reg_size = drhd->reg_size;
974
975	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
976		pr_err("Can't reserve memory\n");
977		err = -EBUSY;
978		goto out;
979	}
980
981	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
982	if (!iommu->reg) {
983		pr_err("Can't map the region\n");
984		err = -ENOMEM;
985		goto release;
986	}
987
988	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
989	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
990
991	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
992		err = -EINVAL;
993		warn_invalid_dmar(phys_addr, " returns all ones");
994		goto unmap;
995	}
996
997	/* the registers might be more than one page */
998	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
999			 cap_max_fault_reg_offset(iommu->cap));
1000	map_size = VTD_PAGE_ALIGN(map_size);
1001	if (map_size > iommu->reg_size) {
1002		iounmap(iommu->reg);
1003		release_mem_region(iommu->reg_phys, iommu->reg_size);
1004		iommu->reg_size = map_size;
1005		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1006					iommu->name)) {
1007			pr_err("Can't reserve memory\n");
1008			err = -EBUSY;
1009			goto out;
1010		}
1011		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1012		if (!iommu->reg) {
1013			pr_err("Can't map the region\n");
1014			err = -ENOMEM;
1015			goto release;
1016		}
1017	}
1018
1019	if (cap_ecmds(iommu->cap)) {
1020		int i;
1021
1022		for (i = 0; i < DMA_MAX_NUM_ECMDCAP; i++) {
1023			iommu->ecmdcap[i] = dmar_readq(iommu->reg + DMAR_ECCAP_REG +
1024						       i * DMA_ECMD_REG_STEP);
1025		}
1026	}
1027
1028	err = 0;
1029	goto out;
1030
1031unmap:
1032	iounmap(iommu->reg);
1033release:
1034	release_mem_region(iommu->reg_phys, iommu->reg_size);
1035out:
1036	return err;
1037}
1038
1039static int alloc_iommu(struct dmar_drhd_unit *drhd)
1040{
1041	struct intel_iommu *iommu;
1042	u32 ver, sts;
1043	int agaw = -1;
1044	int msagaw = -1;
1045	int err;
1046
1047	if (!drhd->reg_base_addr) {
1048		warn_invalid_dmar(0, "");
1049		return -EINVAL;
1050	}
1051
1052	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1053	if (!iommu)
1054		return -ENOMEM;
1055
1056	iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1057					DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1058	if (iommu->seq_id < 0) {
1059		pr_err("Failed to allocate seq_id\n");
1060		err = iommu->seq_id;
1061		goto error;
1062	}
1063	sprintf(iommu->name, "dmar%d", iommu->seq_id);
1064
1065	err = map_iommu(iommu, drhd);
1066	if (err) {
1067		pr_err("Failed to map %s\n", iommu->name);
1068		goto error_free_seq_id;
1069	}
1070
1071	if (!cap_sagaw(iommu->cap) &&
1072	    (!ecap_smts(iommu->ecap) || ecap_slts(iommu->ecap))) {
1073		pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1074			iommu->name);
1075		drhd->ignored = 1;
1076	}
1077
1078	if (!drhd->ignored) {
1079		agaw = iommu_calculate_agaw(iommu);
1080		if (agaw < 0) {
1081			pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1082			       iommu->seq_id);
1083			drhd->ignored = 1;
1084		}
1085	}
1086	if (!drhd->ignored) {
1087		msagaw = iommu_calculate_max_sagaw(iommu);
1088		if (msagaw < 0) {
1089			pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1090			       iommu->seq_id);
1091			drhd->ignored = 1;
1092			agaw = -1;
1093		}
1094	}
1095	iommu->agaw = agaw;
1096	iommu->msagaw = msagaw;
1097	iommu->segment = drhd->segment;
1098	iommu->device_rbtree = RB_ROOT;
1099	spin_lock_init(&iommu->device_rbtree_lock);
1100	mutex_init(&iommu->iopf_lock);
1101	iommu->node = NUMA_NO_NODE;
1102
1103	ver = readl(iommu->reg + DMAR_VER_REG);
1104	pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1105		iommu->name,
1106		(unsigned long long)drhd->reg_base_addr,
1107		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1108		(unsigned long long)iommu->cap,
1109		(unsigned long long)iommu->ecap);
1110
1111	/* Reflect status in gcmd */
1112	sts = readl(iommu->reg + DMAR_GSTS_REG);
1113	if (sts & DMA_GSTS_IRES)
1114		iommu->gcmd |= DMA_GCMD_IRE;
1115	if (sts & DMA_GSTS_TES)
1116		iommu->gcmd |= DMA_GCMD_TE;
1117	if (sts & DMA_GSTS_QIES)
1118		iommu->gcmd |= DMA_GCMD_QIE;
1119
1120	if (alloc_iommu_pmu(iommu))
1121		pr_debug("Cannot alloc PMU for iommu (seq_id = %d)\n", iommu->seq_id);
1122
1123	raw_spin_lock_init(&iommu->register_lock);
1124
1125	/*
1126	 * A value of N in PSS field of eCap register indicates hardware
1127	 * supports PASID field of N+1 bits.
1128	 */
1129	if (pasid_supported(iommu))
1130		iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap);
1131
1132	/*
1133	 * This is only for hotplug; at boot time intel_iommu_enabled won't
1134	 * be set yet. When intel_iommu_init() runs, it registers the units
1135	 * present at boot time, then sets intel_iommu_enabled.
1136	 */
1137	if (intel_iommu_enabled && !drhd->ignored) {
1138		err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1139					     intel_iommu_groups,
1140					     "%s", iommu->name);
1141		if (err)
1142			goto err_unmap;
1143
1144		err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1145		if (err)
1146			goto err_sysfs;
1147
1148		iommu_pmu_register(iommu);
1149	}
1150
1151	drhd->iommu = iommu;
1152	iommu->drhd = drhd;
1153
1154	return 0;
1155
1156err_sysfs:
1157	iommu_device_sysfs_remove(&iommu->iommu);
1158err_unmap:
1159	free_iommu_pmu(iommu);
1160	unmap_iommu(iommu);
1161error_free_seq_id:
1162	ida_free(&dmar_seq_ids, iommu->seq_id);
1163error:
1164	kfree(iommu);
1165	return err;
1166}
1167
1168static void free_iommu(struct intel_iommu *iommu)
1169{
1170	if (intel_iommu_enabled && !iommu->drhd->ignored) {
1171		iommu_pmu_unregister(iommu);
1172		iommu_device_unregister(&iommu->iommu);
1173		iommu_device_sysfs_remove(&iommu->iommu);
1174	}
1175
1176	free_iommu_pmu(iommu);
1177
1178	if (iommu->irq) {
1179		if (iommu->pr_irq) {
1180			free_irq(iommu->pr_irq, iommu);
1181			dmar_free_hwirq(iommu->pr_irq);
1182			iommu->pr_irq = 0;
1183		}
1184		free_irq(iommu->irq, iommu);
1185		dmar_free_hwirq(iommu->irq);
1186		iommu->irq = 0;
1187	}
1188
1189	if (iommu->qi) {
1190		iommu_free_page(iommu->qi->desc);
1191		kfree(iommu->qi->desc_status);
1192		kfree(iommu->qi);
1193	}
1194
1195	if (iommu->reg)
1196		unmap_iommu(iommu);
1197
1198	ida_free(&dmar_seq_ids, iommu->seq_id);
1199	kfree(iommu);
1200}
1201
1202/*
1203 * Reclaim all the submitted descriptors which have completed its work.
1204 */
1205static inline void reclaim_free_desc(struct q_inval *qi)
1206{
1207	while (qi->desc_status[qi->free_tail] == QI_DONE ||
1208	       qi->desc_status[qi->free_tail] == QI_ABORT) {
1209		qi->desc_status[qi->free_tail] = QI_FREE;
1210		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1211		qi->free_cnt++;
1212	}
1213}
1214
1215static const char *qi_type_string(u8 type)
1216{
1217	switch (type) {
1218	case QI_CC_TYPE:
1219		return "Context-cache Invalidation";
1220	case QI_IOTLB_TYPE:
1221		return "IOTLB Invalidation";
1222	case QI_DIOTLB_TYPE:
1223		return "Device-TLB Invalidation";
1224	case QI_IEC_TYPE:
1225		return "Interrupt Entry Cache Invalidation";
1226	case QI_IWD_TYPE:
1227		return "Invalidation Wait";
1228	case QI_EIOTLB_TYPE:
1229		return "PASID-based IOTLB Invalidation";
1230	case QI_PC_TYPE:
1231		return "PASID-cache Invalidation";
1232	case QI_DEIOTLB_TYPE:
1233		return "PASID-based Device-TLB Invalidation";
1234	case QI_PGRP_RESP_TYPE:
1235		return "Page Group Response";
1236	default:
1237		return "UNKNOWN";
1238	}
1239}
1240
1241static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1242{
1243	unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1244	u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1245	struct qi_desc *desc = iommu->qi->desc + head;
1246
1247	if (fault & DMA_FSTS_IQE)
1248		pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1249		       DMAR_IQER_REG_IQEI(iqe_err));
1250	if (fault & DMA_FSTS_ITE)
1251		pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1252		       DMAR_IQER_REG_ITESID(iqe_err));
1253	if (fault & DMA_FSTS_ICE)
1254		pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1255		       DMAR_IQER_REG_ICESID(iqe_err));
1256
1257	pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1258	       qi_type_string(desc->qw0 & 0xf),
1259	       (unsigned long long)desc->qw0,
1260	       (unsigned long long)desc->qw1);
1261
1262	head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1263	head <<= qi_shift(iommu);
1264	desc = iommu->qi->desc + head;
1265
1266	pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1267	       qi_type_string(desc->qw0 & 0xf),
1268	       (unsigned long long)desc->qw0,
1269	       (unsigned long long)desc->qw1);
1270}
1271
1272static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1273{
1274	u32 fault;
1275	int head, tail;
1276	struct device *dev;
1277	u64 iqe_err, ite_sid;
1278	struct q_inval *qi = iommu->qi;
1279	int shift = qi_shift(iommu);
1280
1281	if (qi->desc_status[wait_index] == QI_ABORT)
1282		return -EAGAIN;
1283
1284	fault = readl(iommu->reg + DMAR_FSTS_REG);
1285	if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1286		qi_dump_fault(iommu, fault);
1287
1288	/*
1289	 * If IQE happens, the head points to the descriptor associated
1290	 * with the error. No new descriptors are fetched until the IQE
1291	 * is cleared.
1292	 */
1293	if (fault & DMA_FSTS_IQE) {
1294		head = readl(iommu->reg + DMAR_IQH_REG);
1295		if ((head >> shift) == index) {
1296			struct qi_desc *desc = qi->desc + head;
1297
1298			/*
1299			 * desc->qw2 and desc->qw3 are either reserved or
1300			 * used by software as private data. We won't print
1301			 * out these two qw's for security consideration.
1302			 */
1303			memcpy(desc, qi->desc + (wait_index << shift),
1304			       1 << shift);
1305			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1306			pr_info("Invalidation Queue Error (IQE) cleared\n");
1307			return -EINVAL;
1308		}
1309	}
1310
1311	/*
1312	 * If ITE happens, all pending wait_desc commands are aborted.
1313	 * No new descriptors are fetched until the ITE is cleared.
1314	 */
1315	if (fault & DMA_FSTS_ITE) {
1316		head = readl(iommu->reg + DMAR_IQH_REG);
1317		head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1318		head |= 1;
1319		tail = readl(iommu->reg + DMAR_IQT_REG);
1320		tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1321
1322		/*
1323		 * SID field is valid only when the ITE field is Set in FSTS_REG
1324		 * see Intel VT-d spec r4.1, section 11.4.9.9
1325		 */
1326		iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1327		ite_sid = DMAR_IQER_REG_ITESID(iqe_err);
1328
1329		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1330		pr_info("Invalidation Time-out Error (ITE) cleared\n");
1331
1332		do {
1333			if (qi->desc_status[head] == QI_IN_USE)
1334				qi->desc_status[head] = QI_ABORT;
1335			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1336		} while (head != tail);
1337
1338		/*
1339		 * If device was released or isn't present, no need to retry
1340		 * the ATS invalidate request anymore.
1341		 *
1342		 * 0 value of ite_sid means old VT-d device, no ite_sid value.
1343		 * see Intel VT-d spec r4.1, section 11.4.9.9
1344		 */
1345		if (ite_sid) {
1346			dev = device_rbtree_find(iommu, ite_sid);
1347			if (!dev || !dev_is_pci(dev) ||
1348			    !pci_device_is_present(to_pci_dev(dev)))
1349				return -ETIMEDOUT;
1350		}
1351		if (qi->desc_status[wait_index] == QI_ABORT)
1352			return -EAGAIN;
1353	}
1354
1355	if (fault & DMA_FSTS_ICE) {
1356		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1357		pr_info("Invalidation Completion Error (ICE) cleared\n");
1358	}
1359
1360	return 0;
1361}
1362
1363/*
1364 * Function to submit invalidation descriptors of all types to the queued
1365 * invalidation interface(QI). Multiple descriptors can be submitted at a
1366 * time, a wait descriptor will be appended to each submission to ensure
1367 * hardware has completed the invalidation before return. Wait descriptors
1368 * can be part of the submission but it will not be polled for completion.
1369 */
1370int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1371		   unsigned int count, unsigned long options)
1372{
1373	struct q_inval *qi = iommu->qi;
1374	s64 devtlb_start_ktime = 0;
1375	s64 iotlb_start_ktime = 0;
1376	s64 iec_start_ktime = 0;
1377	struct qi_desc wait_desc;
1378	int wait_index, index;
1379	unsigned long flags;
1380	int offset, shift;
1381	int rc, i;
1382	u64 type;
1383
1384	if (!qi)
1385		return 0;
1386
1387	type = desc->qw0 & GENMASK_ULL(3, 0);
1388
1389	if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1390	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1391		iotlb_start_ktime = ktime_to_ns(ktime_get());
1392
1393	if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1394	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1395		devtlb_start_ktime = ktime_to_ns(ktime_get());
1396
1397	if (type == QI_IEC_TYPE &&
1398	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1399		iec_start_ktime = ktime_to_ns(ktime_get());
1400
1401restart:
1402	rc = 0;
1403
1404	raw_spin_lock_irqsave(&qi->q_lock, flags);
1405	/*
1406	 * Check if we have enough empty slots in the queue to submit,
1407	 * the calculation is based on:
1408	 * # of desc + 1 wait desc + 1 space between head and tail
1409	 */
1410	while (qi->free_cnt < count + 2) {
1411		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1412		cpu_relax();
1413		raw_spin_lock_irqsave(&qi->q_lock, flags);
1414	}
1415
1416	index = qi->free_head;
1417	wait_index = (index + count) % QI_LENGTH;
1418	shift = qi_shift(iommu);
1419
1420	for (i = 0; i < count; i++) {
1421		offset = ((index + i) % QI_LENGTH) << shift;
1422		memcpy(qi->desc + offset, &desc[i], 1 << shift);
1423		qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1424		trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1425				desc[i].qw2, desc[i].qw3);
1426	}
1427	qi->desc_status[wait_index] = QI_IN_USE;
1428
1429	wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1430			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1431	if (options & QI_OPT_WAIT_DRAIN)
1432		wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1433	wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1434	wait_desc.qw2 = 0;
1435	wait_desc.qw3 = 0;
1436
1437	offset = wait_index << shift;
1438	memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1439
1440	qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1441	qi->free_cnt -= count + 1;
1442
1443	/*
1444	 * update the HW tail register indicating the presence of
1445	 * new descriptors.
1446	 */
1447	writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1448
1449	while (qi->desc_status[wait_index] != QI_DONE) {
1450		/*
1451		 * We will leave the interrupts disabled, to prevent interrupt
1452		 * context to queue another cmd while a cmd is already submitted
1453		 * and waiting for completion on this cpu. This is to avoid
1454		 * a deadlock where the interrupt context can wait indefinitely
1455		 * for free slots in the queue.
1456		 */
1457		rc = qi_check_fault(iommu, index, wait_index);
1458		if (rc)
1459			break;
1460
1461		raw_spin_unlock(&qi->q_lock);
1462		cpu_relax();
1463		raw_spin_lock(&qi->q_lock);
1464	}
1465
1466	for (i = 0; i < count; i++)
1467		qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1468
1469	reclaim_free_desc(qi);
1470	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1471
1472	if (rc == -EAGAIN)
1473		goto restart;
1474
1475	if (iotlb_start_ktime)
1476		dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1477				ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1478
1479	if (devtlb_start_ktime)
1480		dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1481				ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1482
1483	if (iec_start_ktime)
1484		dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1485				ktime_to_ns(ktime_get()) - iec_start_ktime);
1486
1487	return rc;
1488}
1489
1490/*
1491 * Flush the global interrupt entry cache.
1492 */
1493void qi_global_iec(struct intel_iommu *iommu)
1494{
1495	struct qi_desc desc;
1496
1497	desc.qw0 = QI_IEC_TYPE;
1498	desc.qw1 = 0;
1499	desc.qw2 = 0;
1500	desc.qw3 = 0;
1501
1502	/* should never fail */
1503	qi_submit_sync(iommu, &desc, 1, 0);
1504}
1505
1506void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1507		      u64 type)
1508{
1509	struct qi_desc desc;
1510
1511	desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1512			| QI_CC_GRAN(type) | QI_CC_TYPE;
1513	desc.qw1 = 0;
1514	desc.qw2 = 0;
1515	desc.qw3 = 0;
1516
1517	qi_submit_sync(iommu, &desc, 1, 0);
1518}
1519
1520void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1521		    unsigned int size_order, u64 type)
1522{
1523	u8 dw = 0, dr = 0;
1524
1525	struct qi_desc desc;
1526	int ih = 0;
1527
1528	if (cap_write_drain(iommu->cap))
1529		dw = 1;
1530
1531	if (cap_read_drain(iommu->cap))
1532		dr = 1;
1533
1534	desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1535		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1536	desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1537		| QI_IOTLB_AM(size_order);
1538	desc.qw2 = 0;
1539	desc.qw3 = 0;
1540
1541	qi_submit_sync(iommu, &desc, 1, 0);
1542}
1543
1544void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1545			u16 qdep, u64 addr, unsigned mask)
1546{
1547	struct qi_desc desc;
1548
1549	/*
1550	 * VT-d spec, section 4.3:
1551	 *
1552	 * Software is recommended to not submit any Device-TLB invalidation
1553	 * requests while address remapping hardware is disabled.
1554	 */
1555	if (!(iommu->gcmd & DMA_GCMD_TE))
1556		return;
1557
1558	if (mask) {
1559		addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1560		desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1561	} else
1562		desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1563
1564	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1565		qdep = 0;
1566
1567	desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1568		   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1569	desc.qw2 = 0;
1570	desc.qw3 = 0;
1571
1572	qi_submit_sync(iommu, &desc, 1, 0);
1573}
1574
1575/* PASID-based IOTLB invalidation */
1576void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1577		     unsigned long npages, bool ih)
1578{
1579	struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1580
1581	/*
1582	 * npages == -1 means a PASID-selective invalidation, otherwise,
1583	 * a positive value for Page-selective-within-PASID invalidation.
1584	 * 0 is not a valid input.
1585	 */
1586	if (WARN_ON(!npages)) {
1587		pr_err("Invalid input npages = %ld\n", npages);
1588		return;
1589	}
1590
1591	if (npages == -1) {
1592		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1593				QI_EIOTLB_DID(did) |
1594				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1595				QI_EIOTLB_TYPE;
1596		desc.qw1 = 0;
1597	} else {
1598		int mask = ilog2(__roundup_pow_of_two(npages));
1599		unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1600
1601		if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1602			addr = ALIGN_DOWN(addr, align);
1603
1604		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1605				QI_EIOTLB_DID(did) |
1606				QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1607				QI_EIOTLB_TYPE;
1608		desc.qw1 = QI_EIOTLB_ADDR(addr) |
1609				QI_EIOTLB_IH(ih) |
1610				QI_EIOTLB_AM(mask);
1611	}
1612
1613	qi_submit_sync(iommu, &desc, 1, 0);
1614}
1615
1616/* PASID-based device IOTLB Invalidate */
1617void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1618			      u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1619{
1620	unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1621	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1622
1623	/*
1624	 * VT-d spec, section 4.3:
1625	 *
1626	 * Software is recommended to not submit any Device-TLB invalidation
1627	 * requests while address remapping hardware is disabled.
1628	 */
1629	if (!(iommu->gcmd & DMA_GCMD_TE))
1630		return;
1631
1632	desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1633		QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1634		QI_DEV_IOTLB_PFSID(pfsid);
1635
1636	/*
1637	 * If S bit is 0, we only flush a single page. If S bit is set,
1638	 * The least significant zero bit indicates the invalidation address
1639	 * range. VT-d spec 6.5.2.6.
1640	 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1641	 * size order = 0 is PAGE_SIZE 4KB
1642	 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1643	 * ECAP.
1644	 */
1645	if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1646		pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1647				    addr, size_order);
1648
1649	/* Take page address */
1650	desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1651
1652	if (size_order) {
1653		/*
1654		 * Existing 0s in address below size_order may be the least
1655		 * significant bit, we must set them to 1s to avoid having
1656		 * smaller size than desired.
1657		 */
1658		desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1659					VTD_PAGE_SHIFT);
1660		/* Clear size_order bit to indicate size */
1661		desc.qw1 &= ~mask;
1662		/* Set the S bit to indicate flushing more than 1 page */
1663		desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1664	}
1665
1666	qi_submit_sync(iommu, &desc, 1, 0);
1667}
1668
1669void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1670			  u64 granu, u32 pasid)
1671{
1672	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1673
1674	desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1675			QI_PC_GRAN(granu) | QI_PC_TYPE;
1676	qi_submit_sync(iommu, &desc, 1, 0);
1677}
1678
1679/*
1680 * Disable Queued Invalidation interface.
1681 */
1682void dmar_disable_qi(struct intel_iommu *iommu)
1683{
1684	unsigned long flags;
1685	u32 sts;
1686	cycles_t start_time = get_cycles();
1687
1688	if (!ecap_qis(iommu->ecap))
1689		return;
1690
1691	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1692
1693	sts =  readl(iommu->reg + DMAR_GSTS_REG);
1694	if (!(sts & DMA_GSTS_QIES))
1695		goto end;
1696
1697	/*
1698	 * Give a chance to HW to complete the pending invalidation requests.
1699	 */
1700	while ((readl(iommu->reg + DMAR_IQT_REG) !=
1701		readl(iommu->reg + DMAR_IQH_REG)) &&
1702		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1703		cpu_relax();
1704
1705	iommu->gcmd &= ~DMA_GCMD_QIE;
1706	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1707
1708	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1709		      !(sts & DMA_GSTS_QIES), sts);
1710end:
1711	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1712}
1713
1714/*
1715 * Enable queued invalidation.
1716 */
1717static void __dmar_enable_qi(struct intel_iommu *iommu)
1718{
1719	u32 sts;
1720	unsigned long flags;
1721	struct q_inval *qi = iommu->qi;
1722	u64 val = virt_to_phys(qi->desc);
1723
1724	qi->free_head = qi->free_tail = 0;
1725	qi->free_cnt = QI_LENGTH;
1726
1727	/*
1728	 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1729	 * is present.
1730	 */
1731	if (ecap_smts(iommu->ecap))
1732		val |= BIT_ULL(11) | BIT_ULL(0);
1733
1734	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1735
1736	/* write zero to the tail reg */
1737	writel(0, iommu->reg + DMAR_IQT_REG);
1738
1739	dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1740
1741	iommu->gcmd |= DMA_GCMD_QIE;
1742	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1743
1744	/* Make sure hardware complete it */
1745	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1746
1747	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1748}
1749
1750/*
1751 * Enable Queued Invalidation interface. This is a must to support
1752 * interrupt-remapping. Also used by DMA-remapping, which replaces
1753 * register based IOTLB invalidation.
1754 */
1755int dmar_enable_qi(struct intel_iommu *iommu)
1756{
1757	struct q_inval *qi;
1758	void *desc;
1759	int order;
1760
1761	if (!ecap_qis(iommu->ecap))
1762		return -ENOENT;
1763
1764	/*
1765	 * queued invalidation is already setup and enabled.
1766	 */
1767	if (iommu->qi)
1768		return 0;
1769
1770	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1771	if (!iommu->qi)
1772		return -ENOMEM;
1773
1774	qi = iommu->qi;
1775
1776	/*
1777	 * Need two pages to accommodate 256 descriptors of 256 bits each
1778	 * if the remapping hardware supports scalable mode translation.
1779	 */
1780	order = ecap_smts(iommu->ecap) ? 1 : 0;
1781	desc = iommu_alloc_pages_node(iommu->node, GFP_ATOMIC, order);
1782	if (!desc) {
1783		kfree(qi);
1784		iommu->qi = NULL;
1785		return -ENOMEM;
1786	}
1787
1788	qi->desc = desc;
1789
1790	qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1791	if (!qi->desc_status) {
1792		iommu_free_page(qi->desc);
1793		kfree(qi);
1794		iommu->qi = NULL;
1795		return -ENOMEM;
1796	}
1797
1798	raw_spin_lock_init(&qi->q_lock);
1799
1800	__dmar_enable_qi(iommu);
1801
1802	return 0;
1803}
1804
1805/* iommu interrupt handling. Most stuff are MSI-like. */
1806
1807enum faulttype {
1808	DMA_REMAP,
1809	INTR_REMAP,
1810	UNKNOWN,
1811};
1812
1813static const char *dma_remap_fault_reasons[] =
1814{
1815	"Software",
1816	"Present bit in root entry is clear",
1817	"Present bit in context entry is clear",
1818	"Invalid context entry",
1819	"Access beyond MGAW",
1820	"PTE Write access is not set",
1821	"PTE Read access is not set",
1822	"Next page table ptr is invalid",
1823	"Root table address invalid",
1824	"Context table ptr is invalid",
1825	"non-zero reserved fields in RTP",
1826	"non-zero reserved fields in CTP",
1827	"non-zero reserved fields in PTE",
1828	"PCE for translation request specifies blocking",
1829};
1830
1831static const char * const dma_remap_sm_fault_reasons[] = {
1832	"SM: Invalid Root Table Address",
1833	"SM: TTM 0 for request with PASID",
1834	"SM: TTM 0 for page group request",
1835	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1836	"SM: Error attempting to access Root Entry",
1837	"SM: Present bit in Root Entry is clear",
1838	"SM: Non-zero reserved field set in Root Entry",
1839	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1840	"SM: Error attempting to access Context Entry",
1841	"SM: Present bit in Context Entry is clear",
1842	"SM: Non-zero reserved field set in the Context Entry",
1843	"SM: Invalid Context Entry",
1844	"SM: DTE field in Context Entry is clear",
1845	"SM: PASID Enable field in Context Entry is clear",
1846	"SM: PASID is larger than the max in Context Entry",
1847	"SM: PRE field in Context-Entry is clear",
1848	"SM: RID_PASID field error in Context-Entry",
1849	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1850	"SM: Error attempting to access the PASID Directory Entry",
1851	"SM: Present bit in Directory Entry is clear",
1852	"SM: Non-zero reserved field set in PASID Directory Entry",
1853	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1854	"SM: Error attempting to access PASID Table Entry",
1855	"SM: Present bit in PASID Table Entry is clear",
1856	"SM: Non-zero reserved field set in PASID Table Entry",
1857	"SM: Invalid Scalable-Mode PASID Table Entry",
1858	"SM: ERE field is clear in PASID Table Entry",
1859	"SM: SRE field is clear in PASID Table Entry",
1860	"Unknown", "Unknown",/* 0x5E-0x5F */
1861	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1862	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1863	"SM: Error attempting to access first-level paging entry",
1864	"SM: Present bit in first-level paging entry is clear",
1865	"SM: Non-zero reserved field set in first-level paging entry",
1866	"SM: Error attempting to access FL-PML4 entry",
1867	"SM: First-level entry address beyond MGAW in Nested translation",
1868	"SM: Read permission error in FL-PML4 entry in Nested translation",
1869	"SM: Read permission error in first-level paging entry in Nested translation",
1870	"SM: Write permission error in first-level paging entry in Nested translation",
1871	"SM: Error attempting to access second-level paging entry",
1872	"SM: Read/Write permission error in second-level paging entry",
1873	"SM: Non-zero reserved field set in second-level paging entry",
1874	"SM: Invalid second-level page table pointer",
1875	"SM: A/D bit update needed in second-level entry when set up in no snoop",
1876	"Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1877	"SM: Address in first-level translation is not canonical",
1878	"SM: U/S set 0 for first-level translation with user privilege",
1879	"SM: No execute permission for request with PASID and ER=1",
1880	"SM: Address beyond the DMA hardware max",
1881	"SM: Second-level entry address beyond the max",
1882	"SM: No write permission for Write/AtomicOp request",
1883	"SM: No read permission for Read/AtomicOp request",
1884	"SM: Invalid address-interrupt address",
1885	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1886	"SM: A/D bit update needed in first-level entry when set up in no snoop",
1887};
1888
1889static const char *irq_remap_fault_reasons[] =
1890{
1891	"Detected reserved fields in the decoded interrupt-remapped request",
1892	"Interrupt index exceeded the interrupt-remapping table size",
1893	"Present field in the IRTE entry is clear",
1894	"Error accessing interrupt-remapping table pointed by IRTA_REG",
1895	"Detected reserved fields in the IRTE entry",
1896	"Blocked a compatibility format interrupt request",
1897	"Blocked an interrupt request due to source-id verification failure",
1898};
1899
1900static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1901{
1902	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1903					ARRAY_SIZE(irq_remap_fault_reasons))) {
1904		*fault_type = INTR_REMAP;
1905		return irq_remap_fault_reasons[fault_reason - 0x20];
1906	} else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1907			ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1908		*fault_type = DMA_REMAP;
1909		return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1910	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1911		*fault_type = DMA_REMAP;
1912		return dma_remap_fault_reasons[fault_reason];
1913	} else {
1914		*fault_type = UNKNOWN;
1915		return "Unknown";
1916	}
1917}
1918
1919
1920static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1921{
1922	if (iommu->irq == irq)
1923		return DMAR_FECTL_REG;
1924	else if (iommu->pr_irq == irq)
1925		return DMAR_PECTL_REG;
1926	else if (iommu->perf_irq == irq)
1927		return DMAR_PERFINTRCTL_REG;
1928	else
1929		BUG();
1930}
1931
1932void dmar_msi_unmask(struct irq_data *data)
1933{
1934	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1935	int reg = dmar_msi_reg(iommu, data->irq);
1936	unsigned long flag;
1937
1938	/* unmask it */
1939	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1940	writel(0, iommu->reg + reg);
1941	/* Read a reg to force flush the post write */
1942	readl(iommu->reg + reg);
1943	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1944}
1945
1946void dmar_msi_mask(struct irq_data *data)
1947{
1948	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1949	int reg = dmar_msi_reg(iommu, data->irq);
1950	unsigned long flag;
1951
1952	/* mask it */
1953	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1954	writel(DMA_FECTL_IM, iommu->reg + reg);
1955	/* Read a reg to force flush the post write */
1956	readl(iommu->reg + reg);
1957	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1958}
1959
1960void dmar_msi_write(int irq, struct msi_msg *msg)
1961{
1962	struct intel_iommu *iommu = irq_get_handler_data(irq);
1963	int reg = dmar_msi_reg(iommu, irq);
1964	unsigned long flag;
1965
1966	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1967	writel(msg->data, iommu->reg + reg + 4);
1968	writel(msg->address_lo, iommu->reg + reg + 8);
1969	writel(msg->address_hi, iommu->reg + reg + 12);
1970	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1971}
1972
1973void dmar_msi_read(int irq, struct msi_msg *msg)
1974{
1975	struct intel_iommu *iommu = irq_get_handler_data(irq);
1976	int reg = dmar_msi_reg(iommu, irq);
1977	unsigned long flag;
1978
1979	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1980	msg->data = readl(iommu->reg + reg + 4);
1981	msg->address_lo = readl(iommu->reg + reg + 8);
1982	msg->address_hi = readl(iommu->reg + reg + 12);
1983	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1984}
1985
1986static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1987		u8 fault_reason, u32 pasid, u16 source_id,
1988		unsigned long long addr)
1989{
1990	const char *reason;
1991	int fault_type;
1992
1993	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1994
1995	if (fault_type == INTR_REMAP) {
1996		pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1997		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1998		       PCI_FUNC(source_id & 0xFF), addr >> 48,
1999		       fault_reason, reason);
2000
2001		return 0;
2002	}
2003
2004	if (pasid == IOMMU_PASID_INVALID)
2005		pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
2006		       type ? "DMA Read" : "DMA Write",
2007		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
2008		       PCI_FUNC(source_id & 0xFF), addr,
2009		       fault_reason, reason);
2010	else
2011		pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
2012		       type ? "DMA Read" : "DMA Write", pasid,
2013		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
2014		       PCI_FUNC(source_id & 0xFF), addr,
2015		       fault_reason, reason);
2016
2017	dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
2018
2019	return 0;
2020}
2021
2022#define PRIMARY_FAULT_REG_LEN (16)
2023irqreturn_t dmar_fault(int irq, void *dev_id)
2024{
2025	struct intel_iommu *iommu = dev_id;
2026	int reg, fault_index;
2027	u32 fault_status;
2028	unsigned long flag;
2029	static DEFINE_RATELIMIT_STATE(rs,
2030				      DEFAULT_RATELIMIT_INTERVAL,
2031				      DEFAULT_RATELIMIT_BURST);
2032
2033	raw_spin_lock_irqsave(&iommu->register_lock, flag);
2034	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2035	if (fault_status && __ratelimit(&rs))
2036		pr_err("DRHD: handling fault status reg %x\n", fault_status);
2037
2038	/* TBD: ignore advanced fault log currently */
2039	if (!(fault_status & DMA_FSTS_PPF))
2040		goto unlock_exit;
2041
2042	fault_index = dma_fsts_fault_record_index(fault_status);
2043	reg = cap_fault_reg_offset(iommu->cap);
2044	while (1) {
2045		/* Disable printing, simply clear the fault when ratelimited */
2046		bool ratelimited = !__ratelimit(&rs);
2047		u8 fault_reason;
2048		u16 source_id;
2049		u64 guest_addr;
2050		u32 pasid;
2051		int type;
2052		u32 data;
2053		bool pasid_present;
2054
2055		/* highest 32 bits */
2056		data = readl(iommu->reg + reg +
2057				fault_index * PRIMARY_FAULT_REG_LEN + 12);
2058		if (!(data & DMA_FRCD_F))
2059			break;
2060
2061		if (!ratelimited) {
2062			fault_reason = dma_frcd_fault_reason(data);
2063			type = dma_frcd_type(data);
2064
2065			pasid = dma_frcd_pasid_value(data);
2066			data = readl(iommu->reg + reg +
2067				     fault_index * PRIMARY_FAULT_REG_LEN + 8);
2068			source_id = dma_frcd_source_id(data);
2069
2070			pasid_present = dma_frcd_pasid_present(data);
2071			guest_addr = dmar_readq(iommu->reg + reg +
2072					fault_index * PRIMARY_FAULT_REG_LEN);
2073			guest_addr = dma_frcd_page_addr(guest_addr);
2074		}
2075
2076		/* clear the fault */
2077		writel(DMA_FRCD_F, iommu->reg + reg +
2078			fault_index * PRIMARY_FAULT_REG_LEN + 12);
2079
2080		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2081
2082		if (!ratelimited)
2083			/* Using pasid -1 if pasid is not present */
2084			dmar_fault_do_one(iommu, type, fault_reason,
2085					  pasid_present ? pasid : IOMMU_PASID_INVALID,
2086					  source_id, guest_addr);
2087
2088		fault_index++;
2089		if (fault_index >= cap_num_fault_regs(iommu->cap))
2090			fault_index = 0;
2091		raw_spin_lock_irqsave(&iommu->register_lock, flag);
2092	}
2093
2094	writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2095	       iommu->reg + DMAR_FSTS_REG);
2096
2097unlock_exit:
2098	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2099	return IRQ_HANDLED;
2100}
2101
2102int dmar_set_interrupt(struct intel_iommu *iommu)
2103{
2104	int irq, ret;
2105
2106	/*
2107	 * Check if the fault interrupt is already initialized.
2108	 */
2109	if (iommu->irq)
2110		return 0;
2111
2112	irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2113	if (irq > 0) {
2114		iommu->irq = irq;
2115	} else {
2116		pr_err("No free IRQ vectors\n");
2117		return -EINVAL;
2118	}
2119
2120	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2121	if (ret)
2122		pr_err("Can't request irq\n");
2123	return ret;
2124}
2125
2126int enable_drhd_fault_handling(unsigned int cpu)
2127{
2128	struct dmar_drhd_unit *drhd;
2129	struct intel_iommu *iommu;
2130
2131	/*
2132	 * Enable fault control interrupt.
2133	 */
2134	for_each_iommu(iommu, drhd) {
2135		u32 fault_status;
2136		int ret;
2137
2138		if (iommu->irq || iommu->node != cpu_to_node(cpu))
2139			continue;
2140
2141		ret = dmar_set_interrupt(iommu);
2142
2143		if (ret) {
2144			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2145			       (unsigned long long)drhd->reg_base_addr, ret);
2146			return -1;
2147		}
2148
2149		/*
2150		 * Clear any previous faults.
2151		 */
2152		dmar_fault(iommu->irq, iommu);
2153		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2154		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2155	}
2156
2157	return 0;
2158}
2159
2160/*
2161 * Re-enable Queued Invalidation interface.
2162 */
2163int dmar_reenable_qi(struct intel_iommu *iommu)
2164{
2165	if (!ecap_qis(iommu->ecap))
2166		return -ENOENT;
2167
2168	if (!iommu->qi)
2169		return -ENOENT;
2170
2171	/*
2172	 * First disable queued invalidation.
2173	 */
2174	dmar_disable_qi(iommu);
2175	/*
2176	 * Then enable queued invalidation again. Since there is no pending
2177	 * invalidation requests now, it's safe to re-enable queued
2178	 * invalidation.
2179	 */
2180	__dmar_enable_qi(iommu);
2181
2182	return 0;
2183}
2184
2185/*
2186 * Check interrupt remapping support in DMAR table description.
2187 */
2188int __init dmar_ir_support(void)
2189{
2190	struct acpi_table_dmar *dmar;
2191	dmar = (struct acpi_table_dmar *)dmar_tbl;
2192	if (!dmar)
2193		return 0;
2194	return dmar->flags & 0x1;
2195}
2196
2197/* Check whether DMAR units are in use */
2198static inline bool dmar_in_use(void)
2199{
2200	return irq_remapping_enabled || intel_iommu_enabled;
2201}
2202
2203static int __init dmar_free_unused_resources(void)
2204{
2205	struct dmar_drhd_unit *dmaru, *dmaru_n;
2206
2207	if (dmar_in_use())
2208		return 0;
2209
2210	if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2211		bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2212
2213	down_write(&dmar_global_lock);
2214	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2215		list_del(&dmaru->list);
2216		dmar_free_drhd(dmaru);
2217	}
2218	up_write(&dmar_global_lock);
2219
2220	return 0;
2221}
2222
2223late_initcall(dmar_free_unused_resources);
2224
2225/*
2226 * DMAR Hotplug Support
2227 * For more details, please refer to Intel(R) Virtualization Technology
2228 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2229 * "Remapping Hardware Unit Hot Plug".
2230 */
2231static guid_t dmar_hp_guid =
2232	GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2233		  0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2234
2235/*
2236 * Currently there's only one revision and BIOS will not check the revision id,
2237 * so use 0 for safety.
2238 */
2239#define	DMAR_DSM_REV_ID			0
2240#define	DMAR_DSM_FUNC_DRHD		1
2241#define	DMAR_DSM_FUNC_ATSR		2
2242#define	DMAR_DSM_FUNC_RHSA		3
2243#define	DMAR_DSM_FUNC_SATC		4
2244
2245static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2246{
2247	return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2248}
2249
2250static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2251				  dmar_res_handler_t handler, void *arg)
2252{
2253	int ret = -ENODEV;
2254	union acpi_object *obj;
2255	struct acpi_dmar_header *start;
2256	struct dmar_res_callback callback;
2257	static int res_type[] = {
2258		[DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2259		[DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2260		[DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2261		[DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2262	};
2263
2264	if (!dmar_detect_dsm(handle, func))
2265		return 0;
2266
2267	obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2268				      func, NULL, ACPI_TYPE_BUFFER);
2269	if (!obj)
2270		return -ENODEV;
2271
2272	memset(&callback, 0, sizeof(callback));
2273	callback.cb[res_type[func]] = handler;
2274	callback.arg[res_type[func]] = arg;
2275	start = (struct acpi_dmar_header *)obj->buffer.pointer;
2276	ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2277
2278	ACPI_FREE(obj);
2279
2280	return ret;
2281}
2282
2283static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2284{
2285	int ret;
2286	struct dmar_drhd_unit *dmaru;
2287
2288	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2289	if (!dmaru)
2290		return -ENODEV;
2291
2292	ret = dmar_ir_hotplug(dmaru, true);
2293	if (ret == 0)
2294		ret = dmar_iommu_hotplug(dmaru, true);
2295
2296	return ret;
2297}
2298
2299static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2300{
2301	int i, ret;
2302	struct device *dev;
2303	struct dmar_drhd_unit *dmaru;
2304
2305	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2306	if (!dmaru)
2307		return 0;
2308
2309	/*
2310	 * All PCI devices managed by this unit should have been destroyed.
2311	 */
2312	if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2313		for_each_active_dev_scope(dmaru->devices,
2314					  dmaru->devices_cnt, i, dev)
2315			return -EBUSY;
2316	}
2317
2318	ret = dmar_ir_hotplug(dmaru, false);
2319	if (ret == 0)
2320		ret = dmar_iommu_hotplug(dmaru, false);
2321
2322	return ret;
2323}
2324
2325static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2326{
2327	struct dmar_drhd_unit *dmaru;
2328
2329	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2330	if (dmaru) {
2331		list_del_rcu(&dmaru->list);
2332		synchronize_rcu();
2333		dmar_free_drhd(dmaru);
2334	}
2335
2336	return 0;
2337}
2338
2339static int dmar_hotplug_insert(acpi_handle handle)
2340{
2341	int ret;
2342	int drhd_count = 0;
2343
2344	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2345				     &dmar_validate_one_drhd, (void *)1);
2346	if (ret)
2347		goto out;
2348
2349	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2350				     &dmar_parse_one_drhd, (void *)&drhd_count);
2351	if (ret == 0 && drhd_count == 0) {
2352		pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2353		goto out;
2354	} else if (ret) {
2355		goto release_drhd;
2356	}
2357
2358	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2359				     &dmar_parse_one_rhsa, NULL);
2360	if (ret)
2361		goto release_drhd;
2362
2363	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2364				     &dmar_parse_one_atsr, NULL);
2365	if (ret)
2366		goto release_atsr;
2367
2368	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2369				     &dmar_hp_add_drhd, NULL);
2370	if (!ret)
2371		return 0;
2372
2373	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2374			       &dmar_hp_remove_drhd, NULL);
2375release_atsr:
2376	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2377			       &dmar_release_one_atsr, NULL);
2378release_drhd:
2379	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2380			       &dmar_hp_release_drhd, NULL);
2381out:
2382	return ret;
2383}
2384
2385static int dmar_hotplug_remove(acpi_handle handle)
2386{
2387	int ret;
2388
2389	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2390				     &dmar_check_one_atsr, NULL);
2391	if (ret)
2392		return ret;
2393
2394	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2395				     &dmar_hp_remove_drhd, NULL);
2396	if (ret == 0) {
2397		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2398					       &dmar_release_one_atsr, NULL));
2399		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2400					       &dmar_hp_release_drhd, NULL));
2401	} else {
2402		dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2403				       &dmar_hp_add_drhd, NULL);
2404	}
2405
2406	return ret;
2407}
2408
2409static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2410				       void *context, void **retval)
2411{
2412	acpi_handle *phdl = retval;
2413
2414	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2415		*phdl = handle;
2416		return AE_CTRL_TERMINATE;
2417	}
2418
2419	return AE_OK;
2420}
2421
2422static int dmar_device_hotplug(acpi_handle handle, bool insert)
2423{
2424	int ret;
2425	acpi_handle tmp = NULL;
2426	acpi_status status;
2427
2428	if (!dmar_in_use())
2429		return 0;
2430
2431	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2432		tmp = handle;
2433	} else {
2434		status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2435					     ACPI_UINT32_MAX,
2436					     dmar_get_dsm_handle,
2437					     NULL, NULL, &tmp);
2438		if (ACPI_FAILURE(status)) {
2439			pr_warn("Failed to locate _DSM method.\n");
2440			return -ENXIO;
2441		}
2442	}
2443	if (tmp == NULL)
2444		return 0;
2445
2446	down_write(&dmar_global_lock);
2447	if (insert)
2448		ret = dmar_hotplug_insert(tmp);
2449	else
2450		ret = dmar_hotplug_remove(tmp);
2451	up_write(&dmar_global_lock);
2452
2453	return ret;
2454}
2455
2456int dmar_device_add(acpi_handle handle)
2457{
2458	return dmar_device_hotplug(handle, true);
2459}
2460
2461int dmar_device_remove(acpi_handle handle)
2462{
2463	return dmar_device_hotplug(handle, false);
2464}
2465
2466/*
2467 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2468 *
2469 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2470 * the ACPI DMAR table. This means that the platform boot firmware has made
2471 * sure no device can issue DMA outside of RMRR regions.
2472 */
2473bool dmar_platform_optin(void)
2474{
2475	struct acpi_table_dmar *dmar;
2476	acpi_status status;
2477	bool ret;
2478
2479	status = acpi_get_table(ACPI_SIG_DMAR, 0,
2480				(struct acpi_table_header **)&dmar);
2481	if (ACPI_FAILURE(status))
2482		return false;
2483
2484	ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2485	acpi_put_table((struct acpi_table_header *)dmar);
2486
2487	return ret;
2488}
2489EXPORT_SYMBOL_GPL(dmar_platform_optin);
2490