1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2023 Intel Corporation
4 */
5
6#include <linux/log2.h>
7#include <linux/math64.h>
8#include "i915_reg.h"
9#include "intel_cx0_phy.h"
10#include "intel_cx0_phy_regs.h"
11#include "intel_ddi.h"
12#include "intel_ddi_buf_trans.h"
13#include "intel_de.h"
14#include "intel_display_types.h"
15#include "intel_dp.h"
16#include "intel_hdmi.h"
17#include "intel_panel.h"
18#include "intel_psr.h"
19#include "intel_tc.h"
20
21#define MB_WRITE_COMMITTED      true
22#define MB_WRITE_UNCOMMITTED    false
23
24#define for_each_cx0_lane_in_mask(__lane_mask, __lane) \
25	for ((__lane) = 0; (__lane) < 2; (__lane)++) \
26		for_each_if((__lane_mask) & BIT(__lane))
27
28#define INTEL_CX0_LANE0		BIT(0)
29#define INTEL_CX0_LANE1		BIT(1)
30#define INTEL_CX0_BOTH_LANES	(INTEL_CX0_LANE1 | INTEL_CX0_LANE0)
31
32bool intel_encoder_is_c10phy(struct intel_encoder *encoder)
33{
34	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
35	enum phy phy = intel_encoder_to_phy(encoder);
36
37	if ((IS_LUNARLAKE(i915) || IS_METEORLAKE(i915)) && phy < PHY_C)
38		return true;
39
40	return false;
41}
42
43static int lane_mask_to_lane(u8 lane_mask)
44{
45	if (WARN_ON((lane_mask & ~INTEL_CX0_BOTH_LANES) ||
46		    hweight8(lane_mask) != 1))
47		return 0;
48
49	return ilog2(lane_mask);
50}
51
52static u8 intel_cx0_get_owned_lane_mask(struct intel_encoder *encoder)
53{
54	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
55
56	if (!intel_tc_port_in_dp_alt_mode(dig_port))
57		return INTEL_CX0_BOTH_LANES;
58
59	/*
60	 * In DP-alt with pin assignment D, only PHY lane 0 is owned
61	 * by display and lane 1 is owned by USB.
62	 */
63	return intel_tc_port_max_lane_count(dig_port) > 2
64		? INTEL_CX0_BOTH_LANES : INTEL_CX0_LANE0;
65}
66
67static void
68assert_dc_off(struct drm_i915_private *i915)
69{
70	bool enabled;
71
72	enabled = intel_display_power_is_enabled(i915, POWER_DOMAIN_DC_OFF);
73	drm_WARN_ON(&i915->drm, !enabled);
74}
75
76static void intel_cx0_program_msgbus_timer(struct intel_encoder *encoder)
77{
78	int lane;
79	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
80
81	for_each_cx0_lane_in_mask(INTEL_CX0_BOTH_LANES, lane)
82		intel_de_rmw(i915,
83			     XELPDP_PORT_MSGBUS_TIMER(i915, encoder->port, lane),
84			     XELPDP_PORT_MSGBUS_TIMER_VAL_MASK,
85			     XELPDP_PORT_MSGBUS_TIMER_VAL);
86}
87
88/*
89 * Prepare HW for CX0 phy transactions.
90 *
91 * It is required that PSR and DC5/6 are disabled before any CX0 message
92 * bus transaction is executed.
93 *
94 * We also do the msgbus timer programming here to ensure that the timer
95 * is already programmed before any access to the msgbus.
96 */
97static intel_wakeref_t intel_cx0_phy_transaction_begin(struct intel_encoder *encoder)
98{
99	intel_wakeref_t wakeref;
100	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
101	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
102
103	intel_psr_pause(intel_dp);
104	wakeref = intel_display_power_get(i915, POWER_DOMAIN_DC_OFF);
105	intel_cx0_program_msgbus_timer(encoder);
106
107	return wakeref;
108}
109
110static void intel_cx0_phy_transaction_end(struct intel_encoder *encoder, intel_wakeref_t wakeref)
111{
112	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
113	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
114
115	intel_psr_resume(intel_dp);
116	intel_display_power_put(i915, POWER_DOMAIN_DC_OFF, wakeref);
117}
118
119static void intel_clear_response_ready_flag(struct intel_encoder *encoder,
120					    int lane)
121{
122	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
123
124	intel_de_rmw(i915, XELPDP_PORT_P2M_MSGBUS_STATUS(i915, encoder->port, lane),
125		     0, XELPDP_PORT_P2M_RESPONSE_READY | XELPDP_PORT_P2M_ERROR_SET);
126}
127
128static void intel_cx0_bus_reset(struct intel_encoder *encoder, int lane)
129{
130	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
131	enum port port = encoder->port;
132	enum phy phy = intel_encoder_to_phy(encoder);
133
134	intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
135		       XELPDP_PORT_M2P_TRANSACTION_RESET);
136
137	if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
138				    XELPDP_PORT_M2P_TRANSACTION_RESET,
139				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
140		drm_err_once(&i915->drm, "Failed to bring PHY %c to idle.\n", phy_name(phy));
141		return;
142	}
143
144	intel_clear_response_ready_flag(encoder, lane);
145}
146
147static int intel_cx0_wait_for_ack(struct intel_encoder *encoder,
148				  int command, int lane, u32 *val)
149{
150	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
151	enum port port = encoder->port;
152	enum phy phy = intel_encoder_to_phy(encoder);
153
154	if (intel_de_wait_custom(i915,
155				 XELPDP_PORT_P2M_MSGBUS_STATUS(i915, port, lane),
156				 XELPDP_PORT_P2M_RESPONSE_READY,
157				 XELPDP_PORT_P2M_RESPONSE_READY,
158				 XELPDP_MSGBUS_TIMEOUT_FAST_US,
159				 XELPDP_MSGBUS_TIMEOUT_SLOW, val)) {
160		drm_dbg_kms(&i915->drm, "PHY %c Timeout waiting for message ACK. Status: 0x%x\n",
161			    phy_name(phy), *val);
162
163		if (!(intel_de_read(i915, XELPDP_PORT_MSGBUS_TIMER(i915, port, lane)) &
164		      XELPDP_PORT_MSGBUS_TIMER_TIMED_OUT))
165			drm_dbg_kms(&i915->drm,
166				    "PHY %c Hardware did not detect a timeout\n",
167				    phy_name(phy));
168
169		intel_cx0_bus_reset(encoder, lane);
170		return -ETIMEDOUT;
171	}
172
173	if (*val & XELPDP_PORT_P2M_ERROR_SET) {
174		drm_dbg_kms(&i915->drm, "PHY %c Error occurred during %s command. Status: 0x%x\n", phy_name(phy),
175			    command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
176		intel_cx0_bus_reset(encoder, lane);
177		return -EINVAL;
178	}
179
180	if (REG_FIELD_GET(XELPDP_PORT_P2M_COMMAND_TYPE_MASK, *val) != command) {
181		drm_dbg_kms(&i915->drm, "PHY %c Not a %s response. MSGBUS Status: 0x%x.\n", phy_name(phy),
182			    command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
183		intel_cx0_bus_reset(encoder, lane);
184		return -EINVAL;
185	}
186
187	return 0;
188}
189
190static int __intel_cx0_read_once(struct intel_encoder *encoder,
191				 int lane, u16 addr)
192{
193	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
194	enum port port = encoder->port;
195	enum phy phy = intel_encoder_to_phy(encoder);
196	int ack;
197	u32 val;
198
199	if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
200				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
201				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
202		drm_dbg_kms(&i915->drm,
203			    "PHY %c Timeout waiting for previous transaction to complete. Reset the bus and retry.\n", phy_name(phy));
204		intel_cx0_bus_reset(encoder, lane);
205		return -ETIMEDOUT;
206	}
207
208	intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
209		       XELPDP_PORT_M2P_TRANSACTION_PENDING |
210		       XELPDP_PORT_M2P_COMMAND_READ |
211		       XELPDP_PORT_M2P_ADDRESS(addr));
212
213	ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_READ_ACK, lane, &val);
214	if (ack < 0)
215		return ack;
216
217	intel_clear_response_ready_flag(encoder, lane);
218
219	/*
220	 * FIXME: Workaround to let HW to settle
221	 * down and let the message bus to end up
222	 * in a known state
223	 */
224	intel_cx0_bus_reset(encoder, lane);
225
226	return REG_FIELD_GET(XELPDP_PORT_P2M_DATA_MASK, val);
227}
228
229static u8 __intel_cx0_read(struct intel_encoder *encoder,
230			   int lane, u16 addr)
231{
232	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
233	enum phy phy = intel_encoder_to_phy(encoder);
234	int i, status;
235
236	assert_dc_off(i915);
237
238	/* 3 tries is assumed to be enough to read successfully */
239	for (i = 0; i < 3; i++) {
240		status = __intel_cx0_read_once(encoder, lane, addr);
241
242		if (status >= 0)
243			return status;
244	}
245
246	drm_err_once(&i915->drm, "PHY %c Read %04x failed after %d retries.\n",
247		     phy_name(phy), addr, i);
248
249	return 0;
250}
251
252static u8 intel_cx0_read(struct intel_encoder *encoder,
253			 u8 lane_mask, u16 addr)
254{
255	int lane = lane_mask_to_lane(lane_mask);
256
257	return __intel_cx0_read(encoder, lane, addr);
258}
259
260static int __intel_cx0_write_once(struct intel_encoder *encoder,
261				  int lane, u16 addr, u8 data, bool committed)
262{
263	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
264	enum port port = encoder->port;
265	enum phy phy = intel_encoder_to_phy(encoder);
266	int ack;
267	u32 val;
268
269	if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
270				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
271				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
272		drm_dbg_kms(&i915->drm,
273			    "PHY %c Timeout waiting for previous transaction to complete. Resetting the bus.\n", phy_name(phy));
274		intel_cx0_bus_reset(encoder, lane);
275		return -ETIMEDOUT;
276	}
277
278	intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
279		       XELPDP_PORT_M2P_TRANSACTION_PENDING |
280		       (committed ? XELPDP_PORT_M2P_COMMAND_WRITE_COMMITTED :
281				    XELPDP_PORT_M2P_COMMAND_WRITE_UNCOMMITTED) |
282		       XELPDP_PORT_M2P_DATA(data) |
283		       XELPDP_PORT_M2P_ADDRESS(addr));
284
285	if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
286				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
287				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
288		drm_dbg_kms(&i915->drm,
289			    "PHY %c Timeout waiting for write to complete. Resetting the bus.\n", phy_name(phy));
290		intel_cx0_bus_reset(encoder, lane);
291		return -ETIMEDOUT;
292	}
293
294	if (committed) {
295		ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_WRITE_ACK, lane, &val);
296		if (ack < 0)
297			return ack;
298	} else if ((intel_de_read(i915, XELPDP_PORT_P2M_MSGBUS_STATUS(i915, port, lane)) &
299		    XELPDP_PORT_P2M_ERROR_SET)) {
300		drm_dbg_kms(&i915->drm,
301			    "PHY %c Error occurred during write command.\n", phy_name(phy));
302		intel_cx0_bus_reset(encoder, lane);
303		return -EINVAL;
304	}
305
306	intel_clear_response_ready_flag(encoder, lane);
307
308	/*
309	 * FIXME: Workaround to let HW to settle
310	 * down and let the message bus to end up
311	 * in a known state
312	 */
313	intel_cx0_bus_reset(encoder, lane);
314
315	return 0;
316}
317
318static void __intel_cx0_write(struct intel_encoder *encoder,
319			      int lane, u16 addr, u8 data, bool committed)
320{
321	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
322	enum phy phy = intel_encoder_to_phy(encoder);
323	int i, status;
324
325	assert_dc_off(i915);
326
327	/* 3 tries is assumed to be enough to write successfully */
328	for (i = 0; i < 3; i++) {
329		status = __intel_cx0_write_once(encoder, lane, addr, data, committed);
330
331		if (status == 0)
332			return;
333	}
334
335	drm_err_once(&i915->drm,
336		     "PHY %c Write %04x failed after %d retries.\n", phy_name(phy), addr, i);
337}
338
339static void intel_cx0_write(struct intel_encoder *encoder,
340			    u8 lane_mask, u16 addr, u8 data, bool committed)
341{
342	int lane;
343
344	for_each_cx0_lane_in_mask(lane_mask, lane)
345		__intel_cx0_write(encoder, lane, addr, data, committed);
346}
347
348static void intel_c20_sram_write(struct intel_encoder *encoder,
349				 int lane, u16 addr, u16 data)
350{
351	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
352
353	assert_dc_off(i915);
354
355	intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_H, addr >> 8, 0);
356	intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_L, addr & 0xff, 0);
357
358	intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_H, data >> 8, 0);
359	intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_L, data & 0xff, 1);
360}
361
362static u16 intel_c20_sram_read(struct intel_encoder *encoder,
363			       int lane, u16 addr)
364{
365	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
366	u16 val;
367
368	assert_dc_off(i915);
369
370	intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_H, addr >> 8, 0);
371	intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_L, addr & 0xff, 1);
372
373	val = intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_H);
374	val <<= 8;
375	val |= intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_L);
376
377	return val;
378}
379
380static void __intel_cx0_rmw(struct intel_encoder *encoder,
381			    int lane, u16 addr, u8 clear, u8 set, bool committed)
382{
383	u8 old, val;
384
385	old = __intel_cx0_read(encoder, lane, addr);
386	val = (old & ~clear) | set;
387
388	if (val != old)
389		__intel_cx0_write(encoder, lane, addr, val, committed);
390}
391
392static void intel_cx0_rmw(struct intel_encoder *encoder,
393			  u8 lane_mask, u16 addr, u8 clear, u8 set, bool committed)
394{
395	u8 lane;
396
397	for_each_cx0_lane_in_mask(lane_mask, lane)
398		__intel_cx0_rmw(encoder, lane, addr, clear, set, committed);
399}
400
401static u8 intel_c10_get_tx_vboost_lvl(const struct intel_crtc_state *crtc_state)
402{
403	if (intel_crtc_has_dp_encoder(crtc_state)) {
404		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
405		    (crtc_state->port_clock == 540000 ||
406		     crtc_state->port_clock == 810000))
407			return 5;
408		else
409			return 4;
410	} else {
411		return 5;
412	}
413}
414
415static u8 intel_c10_get_tx_term_ctl(const struct intel_crtc_state *crtc_state)
416{
417	if (intel_crtc_has_dp_encoder(crtc_state)) {
418		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
419		    (crtc_state->port_clock == 540000 ||
420		     crtc_state->port_clock == 810000))
421			return 5;
422		else
423			return 2;
424	} else {
425		return 6;
426	}
427}
428
429void intel_cx0_phy_set_signal_levels(struct intel_encoder *encoder,
430				     const struct intel_crtc_state *crtc_state)
431{
432	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
433	const struct intel_ddi_buf_trans *trans;
434	u8 owned_lane_mask;
435	intel_wakeref_t wakeref;
436	int n_entries, ln;
437	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
438
439	if (intel_tc_port_in_tbt_alt_mode(dig_port))
440		return;
441
442	owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
443
444	wakeref = intel_cx0_phy_transaction_begin(encoder);
445
446	trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
447	if (drm_WARN_ON_ONCE(&i915->drm, !trans)) {
448		intel_cx0_phy_transaction_end(encoder, wakeref);
449		return;
450	}
451
452	if (intel_encoder_is_c10phy(encoder)) {
453		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
454			      0, C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED);
455		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CMN(3),
456			      C10_CMN3_TXVBOOST_MASK,
457			      C10_CMN3_TXVBOOST(intel_c10_get_tx_vboost_lvl(crtc_state)),
458			      MB_WRITE_UNCOMMITTED);
459		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_TX(1),
460			      C10_TX1_TERMCTL_MASK,
461			      C10_TX1_TERMCTL(intel_c10_get_tx_term_ctl(crtc_state)),
462			      MB_WRITE_COMMITTED);
463	}
464
465	for (ln = 0; ln < crtc_state->lane_count; ln++) {
466		int level = intel_ddi_level(encoder, crtc_state, ln);
467		int lane = ln / 2;
468		int tx = ln % 2;
469		u8 lane_mask = lane == 0 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
470
471		if (!(lane_mask & owned_lane_mask))
472			continue;
473
474		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 0),
475			      C10_PHY_OVRD_LEVEL_MASK,
476			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.pre_cursor),
477			      MB_WRITE_COMMITTED);
478		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 1),
479			      C10_PHY_OVRD_LEVEL_MASK,
480			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.vswing),
481			      MB_WRITE_COMMITTED);
482		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 2),
483			      C10_PHY_OVRD_LEVEL_MASK,
484			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.post_cursor),
485			      MB_WRITE_COMMITTED);
486	}
487
488	/* Write Override enables in 0xD71 */
489	intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_OVRD,
490		      0, PHY_C10_VDR_OVRD_TX1 | PHY_C10_VDR_OVRD_TX2,
491		      MB_WRITE_COMMITTED);
492
493	if (intel_encoder_is_c10phy(encoder))
494		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
495			      0, C10_VDR_CTRL_UPDATE_CFG, MB_WRITE_COMMITTED);
496
497	intel_cx0_phy_transaction_end(encoder, wakeref);
498}
499
500/*
501 * Basic DP link rates with 38.4 MHz reference clock.
502 * Note: The tables below are with SSC. In non-ssc
503 * registers 0xC04 to 0xC08(pll[4] to pll[8]) will be
504 * programmed 0.
505 */
506
507static const struct intel_c10pll_state mtl_c10_dp_rbr = {
508	.clock = 162000,
509	.tx = 0x10,
510	.cmn = 0x21,
511	.pll[0] = 0xB4,
512	.pll[1] = 0,
513	.pll[2] = 0x30,
514	.pll[3] = 0x1,
515	.pll[4] = 0x26,
516	.pll[5] = 0x0C,
517	.pll[6] = 0x98,
518	.pll[7] = 0x46,
519	.pll[8] = 0x1,
520	.pll[9] = 0x1,
521	.pll[10] = 0,
522	.pll[11] = 0,
523	.pll[12] = 0xC0,
524	.pll[13] = 0,
525	.pll[14] = 0,
526	.pll[15] = 0x2,
527	.pll[16] = 0x84,
528	.pll[17] = 0x4F,
529	.pll[18] = 0xE5,
530	.pll[19] = 0x23,
531};
532
533static const struct intel_c10pll_state mtl_c10_edp_r216 = {
534	.clock = 216000,
535	.tx = 0x10,
536	.cmn = 0x21,
537	.pll[0] = 0x4,
538	.pll[1] = 0,
539	.pll[2] = 0xA2,
540	.pll[3] = 0x1,
541	.pll[4] = 0x33,
542	.pll[5] = 0x10,
543	.pll[6] = 0x75,
544	.pll[7] = 0xB3,
545	.pll[8] = 0x1,
546	.pll[9] = 0x1,
547	.pll[10] = 0,
548	.pll[11] = 0,
549	.pll[12] = 0,
550	.pll[13] = 0,
551	.pll[14] = 0,
552	.pll[15] = 0x2,
553	.pll[16] = 0x85,
554	.pll[17] = 0x0F,
555	.pll[18] = 0xE6,
556	.pll[19] = 0x23,
557};
558
559static const struct intel_c10pll_state mtl_c10_edp_r243 = {
560	.clock = 243000,
561	.tx = 0x10,
562	.cmn = 0x21,
563	.pll[0] = 0x34,
564	.pll[1] = 0,
565	.pll[2] = 0xDA,
566	.pll[3] = 0x1,
567	.pll[4] = 0x39,
568	.pll[5] = 0x12,
569	.pll[6] = 0xE3,
570	.pll[7] = 0xE9,
571	.pll[8] = 0x1,
572	.pll[9] = 0x1,
573	.pll[10] = 0,
574	.pll[11] = 0,
575	.pll[12] = 0x20,
576	.pll[13] = 0,
577	.pll[14] = 0,
578	.pll[15] = 0x2,
579	.pll[16] = 0x85,
580	.pll[17] = 0x8F,
581	.pll[18] = 0xE6,
582	.pll[19] = 0x23,
583};
584
585static const struct intel_c10pll_state mtl_c10_dp_hbr1 = {
586	.clock = 270000,
587	.tx = 0x10,
588	.cmn = 0x21,
589	.pll[0] = 0xF4,
590	.pll[1] = 0,
591	.pll[2] = 0xF8,
592	.pll[3] = 0x0,
593	.pll[4] = 0x20,
594	.pll[5] = 0x0A,
595	.pll[6] = 0x29,
596	.pll[7] = 0x10,
597	.pll[8] = 0x1,   /* Verify */
598	.pll[9] = 0x1,
599	.pll[10] = 0,
600	.pll[11] = 0,
601	.pll[12] = 0xA0,
602	.pll[13] = 0,
603	.pll[14] = 0,
604	.pll[15] = 0x1,
605	.pll[16] = 0x84,
606	.pll[17] = 0x4F,
607	.pll[18] = 0xE5,
608	.pll[19] = 0x23,
609};
610
611static const struct intel_c10pll_state mtl_c10_edp_r324 = {
612	.clock = 324000,
613	.tx = 0x10,
614	.cmn = 0x21,
615	.pll[0] = 0xB4,
616	.pll[1] = 0,
617	.pll[2] = 0x30,
618	.pll[3] = 0x1,
619	.pll[4] = 0x26,
620	.pll[5] = 0x0C,
621	.pll[6] = 0x98,
622	.pll[7] = 0x46,
623	.pll[8] = 0x1,
624	.pll[9] = 0x1,
625	.pll[10] = 0,
626	.pll[11] = 0,
627	.pll[12] = 0xC0,
628	.pll[13] = 0,
629	.pll[14] = 0,
630	.pll[15] = 0x1,
631	.pll[16] = 0x85,
632	.pll[17] = 0x4F,
633	.pll[18] = 0xE6,
634	.pll[19] = 0x23,
635};
636
637static const struct intel_c10pll_state mtl_c10_edp_r432 = {
638	.clock = 432000,
639	.tx = 0x10,
640	.cmn = 0x21,
641	.pll[0] = 0x4,
642	.pll[1] = 0,
643	.pll[2] = 0xA2,
644	.pll[3] = 0x1,
645	.pll[4] = 0x33,
646	.pll[5] = 0x10,
647	.pll[6] = 0x75,
648	.pll[7] = 0xB3,
649	.pll[8] = 0x1,
650	.pll[9] = 0x1,
651	.pll[10] = 0,
652	.pll[11] = 0,
653	.pll[12] = 0,
654	.pll[13] = 0,
655	.pll[14] = 0,
656	.pll[15] = 0x1,
657	.pll[16] = 0x85,
658	.pll[17] = 0x0F,
659	.pll[18] = 0xE6,
660	.pll[19] = 0x23,
661};
662
663static const struct intel_c10pll_state mtl_c10_dp_hbr2 = {
664	.clock = 540000,
665	.tx = 0x10,
666	.cmn = 0x21,
667	.pll[0] = 0xF4,
668	.pll[1] = 0,
669	.pll[2] = 0xF8,
670	.pll[3] = 0,
671	.pll[4] = 0x20,
672	.pll[5] = 0x0A,
673	.pll[6] = 0x29,
674	.pll[7] = 0x10,
675	.pll[8] = 0x1,
676	.pll[9] = 0x1,
677	.pll[10] = 0,
678	.pll[11] = 0,
679	.pll[12] = 0xA0,
680	.pll[13] = 0,
681	.pll[14] = 0,
682	.pll[15] = 0,
683	.pll[16] = 0x84,
684	.pll[17] = 0x4F,
685	.pll[18] = 0xE5,
686	.pll[19] = 0x23,
687};
688
689static const struct intel_c10pll_state mtl_c10_edp_r675 = {
690	.clock = 675000,
691	.tx = 0x10,
692	.cmn = 0x21,
693	.pll[0] = 0xB4,
694	.pll[1] = 0,
695	.pll[2] = 0x3E,
696	.pll[3] = 0x1,
697	.pll[4] = 0xA8,
698	.pll[5] = 0x0C,
699	.pll[6] = 0x33,
700	.pll[7] = 0x54,
701	.pll[8] = 0x1,
702	.pll[9] = 0x1,
703	.pll[10] = 0,
704	.pll[11] = 0,
705	.pll[12] = 0xC8,
706	.pll[13] = 0,
707	.pll[14] = 0,
708	.pll[15] = 0,
709	.pll[16] = 0x85,
710	.pll[17] = 0x8F,
711	.pll[18] = 0xE6,
712	.pll[19] = 0x23,
713};
714
715static const struct intel_c10pll_state mtl_c10_dp_hbr3 = {
716	.clock = 810000,
717	.tx = 0x10,
718	.cmn = 0x21,
719	.pll[0] = 0x34,
720	.pll[1] = 0,
721	.pll[2] = 0x84,
722	.pll[3] = 0x1,
723	.pll[4] = 0x30,
724	.pll[5] = 0x0F,
725	.pll[6] = 0x3D,
726	.pll[7] = 0x98,
727	.pll[8] = 0x1,
728	.pll[9] = 0x1,
729	.pll[10] = 0,
730	.pll[11] = 0,
731	.pll[12] = 0xF0,
732	.pll[13] = 0,
733	.pll[14] = 0,
734	.pll[15] = 0,
735	.pll[16] = 0x84,
736	.pll[17] = 0x0F,
737	.pll[18] = 0xE5,
738	.pll[19] = 0x23,
739};
740
741static const struct intel_c10pll_state * const mtl_c10_dp_tables[] = {
742	&mtl_c10_dp_rbr,
743	&mtl_c10_dp_hbr1,
744	&mtl_c10_dp_hbr2,
745	&mtl_c10_dp_hbr3,
746	NULL,
747};
748
749static const struct intel_c10pll_state * const mtl_c10_edp_tables[] = {
750	&mtl_c10_dp_rbr,
751	&mtl_c10_edp_r216,
752	&mtl_c10_edp_r243,
753	&mtl_c10_dp_hbr1,
754	&mtl_c10_edp_r324,
755	&mtl_c10_edp_r432,
756	&mtl_c10_dp_hbr2,
757	&mtl_c10_edp_r675,
758	&mtl_c10_dp_hbr3,
759	NULL,
760};
761
762/* C20 basic DP 1.4 tables */
763static const struct intel_c20pll_state mtl_c20_dp_rbr = {
764	.clock = 162000,
765	.tx = {	0xbe88, /* tx cfg0 */
766		0x5800, /* tx cfg1 */
767		0x0000, /* tx cfg2 */
768		},
769	.cmn = {0x0500, /* cmn cfg0*/
770		0x0005, /* cmn cfg1 */
771		0x0000, /* cmn cfg2 */
772		0x0000, /* cmn cfg3 */
773		},
774	.mpllb = { 0x50a8,	/* mpllb cfg0 */
775		0x2120,		/* mpllb cfg1 */
776		0xcd9a,		/* mpllb cfg2 */
777		0xbfc1,		/* mpllb cfg3 */
778		0x5ab8,         /* mpllb cfg4 */
779		0x4c34,         /* mpllb cfg5 */
780		0x2000,		/* mpllb cfg6 */
781		0x0001,		/* mpllb cfg7 */
782		0x6000,		/* mpllb cfg8 */
783		0x0000,		/* mpllb cfg9 */
784		0x0000,		/* mpllb cfg10 */
785		},
786};
787
788static const struct intel_c20pll_state mtl_c20_dp_hbr1 = {
789	.clock = 270000,
790	.tx = {	0xbe88, /* tx cfg0 */
791		0x4800, /* tx cfg1 */
792		0x0000, /* tx cfg2 */
793		},
794	.cmn = {0x0500, /* cmn cfg0*/
795		0x0005, /* cmn cfg1 */
796		0x0000, /* cmn cfg2 */
797		0x0000, /* cmn cfg3 */
798		},
799	.mpllb = { 0x308c,	/* mpllb cfg0 */
800		0x2110,		/* mpllb cfg1 */
801		0xcc9c,		/* mpllb cfg2 */
802		0xbfc1,		/* mpllb cfg3 */
803		0x4b9a,         /* mpllb cfg4 */
804		0x3f81,         /* mpllb cfg5 */
805		0x2000,		/* mpllb cfg6 */
806		0x0001,		/* mpllb cfg7 */
807		0x5000,		/* mpllb cfg8 */
808		0x0000,		/* mpllb cfg9 */
809		0x0000,		/* mpllb cfg10 */
810		},
811};
812
813static const struct intel_c20pll_state mtl_c20_dp_hbr2 = {
814	.clock = 540000,
815	.tx = {	0xbe88, /* tx cfg0 */
816		0x4800, /* tx cfg1 */
817		0x0000, /* tx cfg2 */
818		},
819	.cmn = {0x0500, /* cmn cfg0*/
820		0x0005, /* cmn cfg1 */
821		0x0000, /* cmn cfg2 */
822		0x0000, /* cmn cfg3 */
823		},
824	.mpllb = { 0x108c,	/* mpllb cfg0 */
825		0x2108,		/* mpllb cfg1 */
826		0xcc9c,		/* mpllb cfg2 */
827		0xbfc1,		/* mpllb cfg3 */
828		0x4b9a,         /* mpllb cfg4 */
829		0x3f81,         /* mpllb cfg5 */
830		0x2000,		/* mpllb cfg6 */
831		0x0001,		/* mpllb cfg7 */
832		0x5000,		/* mpllb cfg8 */
833		0x0000,		/* mpllb cfg9 */
834		0x0000,		/* mpllb cfg10 */
835		},
836};
837
838static const struct intel_c20pll_state mtl_c20_dp_hbr3 = {
839	.clock = 810000,
840	.tx = {	0xbe88, /* tx cfg0 */
841		0x4800, /* tx cfg1 */
842		0x0000, /* tx cfg2 */
843		},
844	.cmn = {0x0500, /* cmn cfg0*/
845		0x0005, /* cmn cfg1 */
846		0x0000, /* cmn cfg2 */
847		0x0000, /* cmn cfg3 */
848		},
849	.mpllb = { 0x10d2,	/* mpllb cfg0 */
850		0x2108,		/* mpllb cfg1 */
851		0x8d98,		/* mpllb cfg2 */
852		0xbfc1,		/* mpllb cfg3 */
853		0x7166,         /* mpllb cfg4 */
854		0x5f42,         /* mpllb cfg5 */
855		0x2000,		/* mpllb cfg6 */
856		0x0001,		/* mpllb cfg7 */
857		0x7800,		/* mpllb cfg8 */
858		0x0000,		/* mpllb cfg9 */
859		0x0000,		/* mpllb cfg10 */
860		},
861};
862
863/* C20 basic DP 2.0 tables */
864static const struct intel_c20pll_state mtl_c20_dp_uhbr10 = {
865	.clock = 1000000, /* 10 Gbps */
866	.tx = {	0xbe21, /* tx cfg0 */
867		0xe800, /* tx cfg1 */
868		0x0000, /* tx cfg2 */
869		},
870	.cmn = {0x0700, /* cmn cfg0*/
871		0x0005, /* cmn cfg1 */
872		0x0000, /* cmn cfg2 */
873		0x0000, /* cmn cfg3 */
874		},
875	.mplla = { 0x3104,	/* mplla cfg0 */
876		0xd105,		/* mplla cfg1 */
877		0xc025,		/* mplla cfg2 */
878		0xc025,		/* mplla cfg3 */
879		0x8c00,		/* mplla cfg4 */
880		0x759a,		/* mplla cfg5 */
881		0x4000,		/* mplla cfg6 */
882		0x0003,		/* mplla cfg7 */
883		0x3555,		/* mplla cfg8 */
884		0x0001,		/* mplla cfg9 */
885		},
886};
887
888static const struct intel_c20pll_state mtl_c20_dp_uhbr13_5 = {
889	.clock = 1350000, /* 13.5 Gbps */
890	.tx = {	0xbea0, /* tx cfg0 */
891		0x4800, /* tx cfg1 */
892		0x0000, /* tx cfg2 */
893		},
894	.cmn = {0x0500, /* cmn cfg0*/
895		0x0005, /* cmn cfg1 */
896		0x0000, /* cmn cfg2 */
897		0x0000, /* cmn cfg3 */
898		},
899	.mpllb = { 0x015f,	/* mpllb cfg0 */
900		0x2205,		/* mpllb cfg1 */
901		0x1b17,		/* mpllb cfg2 */
902		0xffc1,		/* mpllb cfg3 */
903		0xe100,		/* mpllb cfg4 */
904		0xbd00,		/* mpllb cfg5 */
905		0x2000,		/* mpllb cfg6 */
906		0x0001,		/* mpllb cfg7 */
907		0x4800,		/* mpllb cfg8 */
908		0x0000,		/* mpllb cfg9 */
909		0x0000,		/* mpllb cfg10 */
910		},
911};
912
913static const struct intel_c20pll_state mtl_c20_dp_uhbr20 = {
914	.clock = 2000000, /* 20 Gbps */
915	.tx = {	0xbe20, /* tx cfg0 */
916		0x4800, /* tx cfg1 */
917		0x0000, /* tx cfg2 */
918		},
919	.cmn = {0x0500, /* cmn cfg0*/
920		0x0005, /* cmn cfg1 */
921		0x0000, /* cmn cfg2 */
922		0x0000, /* cmn cfg3 */
923		},
924	.mplla = { 0x3104,	/* mplla cfg0 */
925		0xd105,		/* mplla cfg1 */
926		0xc025,		/* mplla cfg2 */
927		0xc025,		/* mplla cfg3 */
928		0xa6ab,		/* mplla cfg4 */
929		0x8c00,		/* mplla cfg5 */
930		0x4000,		/* mplla cfg6 */
931		0x0003,		/* mplla cfg7 */
932		0x3555,		/* mplla cfg8 */
933		0x0001,		/* mplla cfg9 */
934		},
935};
936
937static const struct intel_c20pll_state * const mtl_c20_dp_tables[] = {
938	&mtl_c20_dp_rbr,
939	&mtl_c20_dp_hbr1,
940	&mtl_c20_dp_hbr2,
941	&mtl_c20_dp_hbr3,
942	&mtl_c20_dp_uhbr10,
943	&mtl_c20_dp_uhbr13_5,
944	&mtl_c20_dp_uhbr20,
945	NULL,
946};
947
948/*
949 * HDMI link rates with 38.4 MHz reference clock.
950 */
951
952static const struct intel_c10pll_state mtl_c10_hdmi_25_2 = {
953	.clock = 25200,
954	.tx = 0x10,
955	.cmn = 0x1,
956	.pll[0] = 0x4,
957	.pll[1] = 0,
958	.pll[2] = 0xB2,
959	.pll[3] = 0,
960	.pll[4] = 0,
961	.pll[5] = 0,
962	.pll[6] = 0,
963	.pll[7] = 0,
964	.pll[8] = 0x20,
965	.pll[9] = 0x1,
966	.pll[10] = 0,
967	.pll[11] = 0,
968	.pll[12] = 0,
969	.pll[13] = 0,
970	.pll[14] = 0,
971	.pll[15] = 0xD,
972	.pll[16] = 0x6,
973	.pll[17] = 0x8F,
974	.pll[18] = 0x84,
975	.pll[19] = 0x23,
976};
977
978static const struct intel_c10pll_state mtl_c10_hdmi_27_0 = {
979	.clock = 27000,
980	.tx = 0x10,
981	.cmn = 0x1,
982	.pll[0] = 0x34,
983	.pll[1] = 0,
984	.pll[2] = 0xC0,
985	.pll[3] = 0,
986	.pll[4] = 0,
987	.pll[5] = 0,
988	.pll[6] = 0,
989	.pll[7] = 0,
990	.pll[8] = 0x20,
991	.pll[9] = 0x1,
992	.pll[10] = 0,
993	.pll[11] = 0,
994	.pll[12] = 0x80,
995	.pll[13] = 0,
996	.pll[14] = 0,
997	.pll[15] = 0xD,
998	.pll[16] = 0x6,
999	.pll[17] = 0xCF,
1000	.pll[18] = 0x84,
1001	.pll[19] = 0x23,
1002};
1003
1004static const struct intel_c10pll_state mtl_c10_hdmi_74_25 = {
1005	.clock = 74250,
1006	.tx = 0x10,
1007	.cmn = 0x1,
1008	.pll[0] = 0xF4,
1009	.pll[1] = 0,
1010	.pll[2] = 0x7A,
1011	.pll[3] = 0,
1012	.pll[4] = 0,
1013	.pll[5] = 0,
1014	.pll[6] = 0,
1015	.pll[7] = 0,
1016	.pll[8] = 0x20,
1017	.pll[9] = 0x1,
1018	.pll[10] = 0,
1019	.pll[11] = 0,
1020	.pll[12] = 0x58,
1021	.pll[13] = 0,
1022	.pll[14] = 0,
1023	.pll[15] = 0xB,
1024	.pll[16] = 0x6,
1025	.pll[17] = 0xF,
1026	.pll[18] = 0x85,
1027	.pll[19] = 0x23,
1028};
1029
1030static const struct intel_c10pll_state mtl_c10_hdmi_148_5 = {
1031	.clock = 148500,
1032	.tx = 0x10,
1033	.cmn = 0x1,
1034	.pll[0] = 0xF4,
1035	.pll[1] = 0,
1036	.pll[2] = 0x7A,
1037	.pll[3] = 0,
1038	.pll[4] = 0,
1039	.pll[5] = 0,
1040	.pll[6] = 0,
1041	.pll[7] = 0,
1042	.pll[8] = 0x20,
1043	.pll[9] = 0x1,
1044	.pll[10] = 0,
1045	.pll[11] = 0,
1046	.pll[12] = 0x58,
1047	.pll[13] = 0,
1048	.pll[14] = 0,
1049	.pll[15] = 0xA,
1050	.pll[16] = 0x6,
1051	.pll[17] = 0xF,
1052	.pll[18] = 0x85,
1053	.pll[19] = 0x23,
1054};
1055
1056static const struct intel_c10pll_state mtl_c10_hdmi_594 = {
1057	.clock = 594000,
1058	.tx = 0x10,
1059	.cmn = 0x1,
1060	.pll[0] = 0xF4,
1061	.pll[1] = 0,
1062	.pll[2] = 0x7A,
1063	.pll[3] = 0,
1064	.pll[4] = 0,
1065	.pll[5] = 0,
1066	.pll[6] = 0,
1067	.pll[7] = 0,
1068	.pll[8] = 0x20,
1069	.pll[9] = 0x1,
1070	.pll[10] = 0,
1071	.pll[11] = 0,
1072	.pll[12] = 0x58,
1073	.pll[13] = 0,
1074	.pll[14] = 0,
1075	.pll[15] = 0x8,
1076	.pll[16] = 0x6,
1077	.pll[17] = 0xF,
1078	.pll[18] = 0x85,
1079	.pll[19] = 0x23,
1080};
1081
1082/* Precomputed C10 HDMI PLL tables */
1083static const struct intel_c10pll_state mtl_c10_hdmi_27027 = {
1084	.clock = 27027,
1085	.tx = 0x10,
1086	.cmn = 0x1,
1087	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1088	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1089	.pll[10] = 0xFF, .pll[11] = 0xCC, .pll[12] = 0x9C, .pll[13] = 0xCB, .pll[14] = 0xCC,
1090	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1091};
1092
1093static const struct intel_c10pll_state mtl_c10_hdmi_28320 = {
1094	.clock = 28320,
1095	.tx = 0x10,
1096	.cmn = 0x1,
1097	.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xCC, .pll[3] = 0x00, .pll[4] = 0x00,
1098	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1099	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1100	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1101};
1102
1103static const struct intel_c10pll_state mtl_c10_hdmi_30240 = {
1104	.clock = 30240,
1105	.tx = 0x10,
1106	.cmn = 0x1,
1107	.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xDC, .pll[3] = 0x00, .pll[4] = 0x00,
1108	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1109	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1110	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1111};
1112
1113static const struct intel_c10pll_state mtl_c10_hdmi_31500 = {
1114	.clock = 31500,
1115	.tx = 0x10,
1116	.cmn = 0x1,
1117	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x62, .pll[3] = 0x00, .pll[4] = 0x00,
1118	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1119	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xA0, .pll[13] = 0x00, .pll[14] = 0x00,
1120	.pll[15] = 0x0C, .pll[16] = 0x09, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1121};
1122
1123static const struct intel_c10pll_state mtl_c10_hdmi_36000 = {
1124	.clock = 36000,
1125	.tx = 0x10,
1126	.cmn = 0x1,
1127	.pll[0] = 0xC4, .pll[1] = 0x00, .pll[2] = 0x76, .pll[3] = 0x00, .pll[4] = 0x00,
1128	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1129	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1130	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1131};
1132
1133static const struct intel_c10pll_state mtl_c10_hdmi_40000 = {
1134	.clock = 40000,
1135	.tx = 0x10,
1136	.cmn = 0x1,
1137	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1138	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1139	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x55, .pll[13] = 0x55, .pll[14] = 0x55,
1140	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1141};
1142
1143static const struct intel_c10pll_state mtl_c10_hdmi_49500 = {
1144	.clock = 49500,
1145	.tx = 0x10,
1146	.cmn = 0x1,
1147	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1148	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1149	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1150	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1151};
1152
1153static const struct intel_c10pll_state mtl_c10_hdmi_50000 = {
1154	.clock = 50000,
1155	.tx = 0x10,
1156	.cmn = 0x1,
1157	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xB0, .pll[3] = 0x00, .pll[4] = 0x00,
1158	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1159	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x2A, .pll[13] = 0xA9, .pll[14] = 0xAA,
1160	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1161};
1162
1163static const struct intel_c10pll_state mtl_c10_hdmi_57284 = {
1164	.clock = 57284,
1165	.tx = 0x10,
1166	.cmn = 0x1,
1167	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xCE, .pll[3] = 0x00, .pll[4] = 0x00,
1168	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1169	.pll[10] = 0xFF, .pll[11] = 0x77, .pll[12] = 0x57, .pll[13] = 0x77, .pll[14] = 0x77,
1170	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1171};
1172
1173static const struct intel_c10pll_state mtl_c10_hdmi_58000 = {
1174	.clock = 58000,
1175	.tx = 0x10,
1176	.cmn = 0x1,
1177	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1178	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1179	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xD5, .pll[13] = 0x55, .pll[14] = 0x55,
1180	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1181};
1182
1183static const struct intel_c10pll_state mtl_c10_hdmi_65000 = {
1184	.clock = 65000,
1185	.tx = 0x10,
1186	.cmn = 0x1,
1187	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x66, .pll[3] = 0x00, .pll[4] = 0x00,
1188	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1189	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xB5, .pll[13] = 0x55, .pll[14] = 0x55,
1190	.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1191};
1192
1193static const struct intel_c10pll_state mtl_c10_hdmi_71000 = {
1194	.clock = 71000,
1195	.tx = 0x10,
1196	.cmn = 0x1,
1197	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x72, .pll[3] = 0x00, .pll[4] = 0x00,
1198	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1199	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1200	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1201};
1202
1203static const struct intel_c10pll_state mtl_c10_hdmi_74176 = {
1204	.clock = 74176,
1205	.tx = 0x10,
1206	.cmn = 0x1,
1207	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1208	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1209	.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1210	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1211};
1212
1213static const struct intel_c10pll_state mtl_c10_hdmi_75000 = {
1214	.clock = 75000,
1215	.tx = 0x10,
1216	.cmn = 0x1,
1217	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7C, .pll[3] = 0x00, .pll[4] = 0x00,
1218	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1219	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1220	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1221};
1222
1223static const struct intel_c10pll_state mtl_c10_hdmi_78750 = {
1224	.clock = 78750,
1225	.tx = 0x10,
1226	.cmn = 0x1,
1227	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x84, .pll[3] = 0x00, .pll[4] = 0x00,
1228	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1229	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x08, .pll[13] = 0x00, .pll[14] = 0x00,
1230	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1231};
1232
1233static const struct intel_c10pll_state mtl_c10_hdmi_85500 = {
1234	.clock = 85500,
1235	.tx = 0x10,
1236	.cmn = 0x1,
1237	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x92, .pll[3] = 0x00, .pll[4] = 0x00,
1238	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1239	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x10, .pll[13] = 0x00, .pll[14] = 0x00,
1240	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1241};
1242
1243static const struct intel_c10pll_state mtl_c10_hdmi_88750 = {
1244	.clock = 88750,
1245	.tx = 0x10,
1246	.cmn = 0x1,
1247	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0x98, .pll[3] = 0x00, .pll[4] = 0x00,
1248	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1249	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x72, .pll[13] = 0xA9, .pll[14] = 0xAA,
1250	.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1251};
1252
1253static const struct intel_c10pll_state mtl_c10_hdmi_106500 = {
1254	.clock = 106500,
1255	.tx = 0x10,
1256	.cmn = 0x1,
1257	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBC, .pll[3] = 0x00, .pll[4] = 0x00,
1258	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1259	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xF0, .pll[13] = 0x00, .pll[14] = 0x00,
1260	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1261};
1262
1263static const struct intel_c10pll_state mtl_c10_hdmi_108000 = {
1264	.clock = 108000,
1265	.tx = 0x10,
1266	.cmn = 0x1,
1267	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1268	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1269	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x80, .pll[13] = 0x00, .pll[14] = 0x00,
1270	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1271};
1272
1273static const struct intel_c10pll_state mtl_c10_hdmi_115500 = {
1274	.clock = 115500,
1275	.tx = 0x10,
1276	.cmn = 0x1,
1277	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1278	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1279	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1280	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1281};
1282
1283static const struct intel_c10pll_state mtl_c10_hdmi_119000 = {
1284	.clock = 119000,
1285	.tx = 0x10,
1286	.cmn = 0x1,
1287	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD6, .pll[3] = 0x00, .pll[4] = 0x00,
1288	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1289	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1290	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1291};
1292
1293static const struct intel_c10pll_state mtl_c10_hdmi_135000 = {
1294	.clock = 135000,
1295	.tx = 0x10,
1296	.cmn = 0x1,
1297	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6C, .pll[3] = 0x00, .pll[4] = 0x00,
1298	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1299	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1300	.pll[15] = 0x0A, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1301};
1302
1303static const struct intel_c10pll_state mtl_c10_hdmi_138500 = {
1304	.clock = 138500,
1305	.tx = 0x10,
1306	.cmn = 0x1,
1307	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x70, .pll[3] = 0x00, .pll[4] = 0x00,
1308	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1309	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x22, .pll[13] = 0xA9, .pll[14] = 0xAA,
1310	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1311};
1312
1313static const struct intel_c10pll_state mtl_c10_hdmi_147160 = {
1314	.clock = 147160,
1315	.tx = 0x10,
1316	.cmn = 0x1,
1317	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x78, .pll[3] = 0x00, .pll[4] = 0x00,
1318	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1319	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xA5, .pll[13] = 0x55, .pll[14] = 0x55,
1320	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1321};
1322
1323static const struct intel_c10pll_state mtl_c10_hdmi_148352 = {
1324	.clock = 148352,
1325	.tx = 0x10,
1326	.cmn = 0x1,
1327	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1328	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1329	.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1330	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1331};
1332
1333static const struct intel_c10pll_state mtl_c10_hdmi_154000 = {
1334	.clock = 154000,
1335	.tx = 0x10,
1336	.cmn = 0x1,
1337	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x80, .pll[3] = 0x00, .pll[4] = 0x00,
1338	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1339	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x35, .pll[13] = 0x55, .pll[14] = 0x55,
1340	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1341};
1342
1343static const struct intel_c10pll_state mtl_c10_hdmi_162000 = {
1344	.clock = 162000,
1345	.tx = 0x10,
1346	.cmn = 0x1,
1347	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x88, .pll[3] = 0x00, .pll[4] = 0x00,
1348	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1349	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x60, .pll[13] = 0x00, .pll[14] = 0x00,
1350	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1351};
1352
1353static const struct intel_c10pll_state mtl_c10_hdmi_167000 = {
1354	.clock = 167000,
1355	.tx = 0x10,
1356	.cmn = 0x1,
1357	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x8C, .pll[3] = 0x00, .pll[4] = 0x00,
1358	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1359	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0xFA, .pll[13] = 0xA9, .pll[14] = 0xAA,
1360	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1361};
1362
1363static const struct intel_c10pll_state mtl_c10_hdmi_197802 = {
1364	.clock = 197802,
1365	.tx = 0x10,
1366	.cmn = 0x1,
1367	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1368	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1369	.pll[10] = 0xFF, .pll[11] = 0x99, .pll[12] = 0x05, .pll[13] = 0x98, .pll[14] = 0x99,
1370	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1371};
1372
1373static const struct intel_c10pll_state mtl_c10_hdmi_198000 = {
1374	.clock = 198000,
1375	.tx = 0x10,
1376	.cmn = 0x1,
1377	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1378	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1379	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1380	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1381};
1382
1383static const struct intel_c10pll_state mtl_c10_hdmi_209800 = {
1384	.clock = 209800,
1385	.tx = 0x10,
1386	.cmn = 0x1,
1387	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBA, .pll[3] = 0x00, .pll[4] = 0x00,
1388	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1389	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x45, .pll[13] = 0x55, .pll[14] = 0x55,
1390	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1391};
1392
1393static const struct intel_c10pll_state mtl_c10_hdmi_241500 = {
1394	.clock = 241500,
1395	.tx = 0x10,
1396	.cmn = 0x1,
1397	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xDA, .pll[3] = 0x00, .pll[4] = 0x00,
1398	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1399	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xC8, .pll[13] = 0x00, .pll[14] = 0x00,
1400	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1401};
1402
1403static const struct intel_c10pll_state mtl_c10_hdmi_262750 = {
1404	.clock = 262750,
1405	.tx = 0x10,
1406	.cmn = 0x1,
1407	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x68, .pll[3] = 0x00, .pll[4] = 0x00,
1408	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1409	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x6C, .pll[13] = 0xA9, .pll[14] = 0xAA,
1410	.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1411};
1412
1413static const struct intel_c10pll_state mtl_c10_hdmi_268500 = {
1414	.clock = 268500,
1415	.tx = 0x10,
1416	.cmn = 0x1,
1417	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6A, .pll[3] = 0x00, .pll[4] = 0x00,
1418	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1419	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xEC, .pll[13] = 0x00, .pll[14] = 0x00,
1420	.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1421};
1422
1423static const struct intel_c10pll_state mtl_c10_hdmi_296703 = {
1424	.clock = 296703,
1425	.tx = 0x10,
1426	.cmn = 0x1,
1427	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1428	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1429	.pll[10] = 0xFF, .pll[11] = 0x33, .pll[12] = 0x44, .pll[13] = 0x33, .pll[14] = 0x33,
1430	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1431};
1432
1433static const struct intel_c10pll_state mtl_c10_hdmi_297000 = {
1434	.clock = 297000,
1435	.tx = 0x10,
1436	.cmn = 0x1,
1437	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1438	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1439	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x58, .pll[13] = 0x00, .pll[14] = 0x00,
1440	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1441};
1442
1443static const struct intel_c10pll_state mtl_c10_hdmi_319750 = {
1444	.clock = 319750,
1445	.tx = 0x10,
1446	.cmn = 0x1,
1447	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1448	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1449	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x44, .pll[13] = 0xA9, .pll[14] = 0xAA,
1450	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1451};
1452
1453static const struct intel_c10pll_state mtl_c10_hdmi_497750 = {
1454	.clock = 497750,
1455	.tx = 0x10,
1456	.cmn = 0x1,
1457	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xE2, .pll[3] = 0x00, .pll[4] = 0x00,
1458	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1459	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x9F, .pll[13] = 0x55, .pll[14] = 0x55,
1460	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1461};
1462
1463static const struct intel_c10pll_state mtl_c10_hdmi_592000 = {
1464	.clock = 592000,
1465	.tx = 0x10,
1466	.cmn = 0x1,
1467	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1468	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1469	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x15, .pll[13] = 0x55, .pll[14] = 0x55,
1470	.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1471};
1472
1473static const struct intel_c10pll_state mtl_c10_hdmi_593407 = {
1474	.clock = 593407,
1475	.tx = 0x10,
1476	.cmn = 0x1,
1477	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1478	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1479	.pll[10] = 0xFF, .pll[11] = 0x3B, .pll[12] = 0x44, .pll[13] = 0xBA, .pll[14] = 0xBB,
1480	.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1481};
1482
1483static const struct intel_c10pll_state * const mtl_c10_hdmi_tables[] = {
1484	&mtl_c10_hdmi_25_2, /* Consolidated Table */
1485	&mtl_c10_hdmi_27_0, /* Consolidated Table */
1486	&mtl_c10_hdmi_27027,
1487	&mtl_c10_hdmi_28320,
1488	&mtl_c10_hdmi_30240,
1489	&mtl_c10_hdmi_31500,
1490	&mtl_c10_hdmi_36000,
1491	&mtl_c10_hdmi_40000,
1492	&mtl_c10_hdmi_49500,
1493	&mtl_c10_hdmi_50000,
1494	&mtl_c10_hdmi_57284,
1495	&mtl_c10_hdmi_58000,
1496	&mtl_c10_hdmi_65000,
1497	&mtl_c10_hdmi_71000,
1498	&mtl_c10_hdmi_74176,
1499	&mtl_c10_hdmi_74_25, /* Consolidated Table */
1500	&mtl_c10_hdmi_75000,
1501	&mtl_c10_hdmi_78750,
1502	&mtl_c10_hdmi_85500,
1503	&mtl_c10_hdmi_88750,
1504	&mtl_c10_hdmi_106500,
1505	&mtl_c10_hdmi_108000,
1506	&mtl_c10_hdmi_115500,
1507	&mtl_c10_hdmi_119000,
1508	&mtl_c10_hdmi_135000,
1509	&mtl_c10_hdmi_138500,
1510	&mtl_c10_hdmi_147160,
1511	&mtl_c10_hdmi_148352,
1512	&mtl_c10_hdmi_148_5, /* Consolidated Table */
1513	&mtl_c10_hdmi_154000,
1514	&mtl_c10_hdmi_162000,
1515	&mtl_c10_hdmi_167000,
1516	&mtl_c10_hdmi_197802,
1517	&mtl_c10_hdmi_198000,
1518	&mtl_c10_hdmi_209800,
1519	&mtl_c10_hdmi_241500,
1520	&mtl_c10_hdmi_262750,
1521	&mtl_c10_hdmi_268500,
1522	&mtl_c10_hdmi_296703,
1523	&mtl_c10_hdmi_297000,
1524	&mtl_c10_hdmi_319750,
1525	&mtl_c10_hdmi_497750,
1526	&mtl_c10_hdmi_592000,
1527	&mtl_c10_hdmi_593407,
1528	&mtl_c10_hdmi_594, /* Consolidated Table */
1529	NULL,
1530};
1531
1532static const struct intel_c20pll_state mtl_c20_hdmi_25_175 = {
1533	.clock = 25175,
1534	.tx = {  0xbe88, /* tx cfg0 */
1535		  0x9800, /* tx cfg1 */
1536		  0x0000, /* tx cfg2 */
1537		},
1538	.cmn = { 0x0500, /* cmn cfg0*/
1539		  0x0005, /* cmn cfg1 */
1540		  0x0000, /* cmn cfg2 */
1541		  0x0000, /* cmn cfg3 */
1542		},
1543	.mpllb = { 0xa0d2,	/* mpllb cfg0 */
1544		   0x7d80,	/* mpllb cfg1 */
1545		   0x0906,	/* mpllb cfg2 */
1546		   0xbe40,	/* mpllb cfg3 */
1547		   0x0000,	/* mpllb cfg4 */
1548		   0x0000,	/* mpllb cfg5 */
1549		   0x0200,	/* mpllb cfg6 */
1550		   0x0001,	/* mpllb cfg7 */
1551		   0x0000,	/* mpllb cfg8 */
1552		   0x0000,	/* mpllb cfg9 */
1553		   0x0001,	/* mpllb cfg10 */
1554		},
1555};
1556
1557static const struct intel_c20pll_state mtl_c20_hdmi_27_0 = {
1558	.clock = 27000,
1559	.tx = {  0xbe88, /* tx cfg0 */
1560		  0x9800, /* tx cfg1 */
1561		  0x0000, /* tx cfg2 */
1562		},
1563	.cmn = { 0x0500, /* cmn cfg0*/
1564		  0x0005, /* cmn cfg1 */
1565		  0x0000, /* cmn cfg2 */
1566		  0x0000, /* cmn cfg3 */
1567		},
1568	.mpllb = { 0xa0e0,	/* mpllb cfg0 */
1569		   0x7d80,	/* mpllb cfg1 */
1570		   0x0906,	/* mpllb cfg2 */
1571		   0xbe40,	/* mpllb cfg3 */
1572		   0x0000,	/* mpllb cfg4 */
1573		   0x0000,	/* mpllb cfg5 */
1574		   0x2200,	/* mpllb cfg6 */
1575		   0x0001,	/* mpllb cfg7 */
1576		   0x8000,	/* mpllb cfg8 */
1577		   0x0000,	/* mpllb cfg9 */
1578		   0x0001,	/* mpllb cfg10 */
1579		},
1580};
1581
1582static const struct intel_c20pll_state mtl_c20_hdmi_74_25 = {
1583	.clock = 74250,
1584	.tx = {  0xbe88, /* tx cfg0 */
1585		  0x9800, /* tx cfg1 */
1586		  0x0000, /* tx cfg2 */
1587		},
1588	.cmn = { 0x0500, /* cmn cfg0*/
1589		  0x0005, /* cmn cfg1 */
1590		  0x0000, /* cmn cfg2 */
1591		  0x0000, /* cmn cfg3 */
1592		},
1593	.mpllb = { 0x609a,	/* mpllb cfg0 */
1594		   0x7d40,	/* mpllb cfg1 */
1595		   0xca06,	/* mpllb cfg2 */
1596		   0xbe40,	/* mpllb cfg3 */
1597		   0x0000,	/* mpllb cfg4 */
1598		   0x0000,	/* mpllb cfg5 */
1599		   0x2200,	/* mpllb cfg6 */
1600		   0x0001,	/* mpllb cfg7 */
1601		   0x5800,	/* mpllb cfg8 */
1602		   0x0000,	/* mpllb cfg9 */
1603		   0x0001,	/* mpllb cfg10 */
1604		},
1605};
1606
1607static const struct intel_c20pll_state mtl_c20_hdmi_148_5 = {
1608	.clock = 148500,
1609	.tx = {  0xbe88, /* tx cfg0 */
1610		  0x9800, /* tx cfg1 */
1611		  0x0000, /* tx cfg2 */
1612		},
1613	.cmn = { 0x0500, /* cmn cfg0*/
1614		  0x0005, /* cmn cfg1 */
1615		  0x0000, /* cmn cfg2 */
1616		  0x0000, /* cmn cfg3 */
1617		},
1618	.mpllb = { 0x409a,	/* mpllb cfg0 */
1619		   0x7d20,	/* mpllb cfg1 */
1620		   0xca06,	/* mpllb cfg2 */
1621		   0xbe40,	/* mpllb cfg3 */
1622		   0x0000,	/* mpllb cfg4 */
1623		   0x0000,	/* mpllb cfg5 */
1624		   0x2200,	/* mpllb cfg6 */
1625		   0x0001,	/* mpllb cfg7 */
1626		   0x5800,	/* mpllb cfg8 */
1627		   0x0000,	/* mpllb cfg9 */
1628		   0x0001,	/* mpllb cfg10 */
1629		},
1630};
1631
1632static const struct intel_c20pll_state mtl_c20_hdmi_594 = {
1633	.clock = 594000,
1634	.tx = {  0xbe88, /* tx cfg0 */
1635		  0x9800, /* tx cfg1 */
1636		  0x0000, /* tx cfg2 */
1637		},
1638	.cmn = { 0x0500, /* cmn cfg0*/
1639		  0x0005, /* cmn cfg1 */
1640		  0x0000, /* cmn cfg2 */
1641		  0x0000, /* cmn cfg3 */
1642		},
1643	.mpllb = { 0x009a,	/* mpllb cfg0 */
1644		   0x7d08,	/* mpllb cfg1 */
1645		   0xca06,	/* mpllb cfg2 */
1646		   0xbe40,	/* mpllb cfg3 */
1647		   0x0000,	/* mpllb cfg4 */
1648		   0x0000,	/* mpllb cfg5 */
1649		   0x2200,	/* mpllb cfg6 */
1650		   0x0001,	/* mpllb cfg7 */
1651		   0x5800,	/* mpllb cfg8 */
1652		   0x0000,	/* mpllb cfg9 */
1653		   0x0001,	/* mpllb cfg10 */
1654		},
1655};
1656
1657static const struct intel_c20pll_state mtl_c20_hdmi_300 = {
1658	.clock = 3000000,
1659	.tx = {  0xbe98, /* tx cfg0 */
1660		  0x8800, /* tx cfg1 */
1661		  0x0000, /* tx cfg2 */
1662		},
1663	.cmn = { 0x0500, /* cmn cfg0*/
1664		  0x0005, /* cmn cfg1 */
1665		  0x0000, /* cmn cfg2 */
1666		  0x0000, /* cmn cfg3 */
1667		},
1668	.mpllb = { 0x309c,	/* mpllb cfg0 */
1669		   0x2110,	/* mpllb cfg1 */
1670		   0xca06,	/* mpllb cfg2 */
1671		   0xbe40,	/* mpllb cfg3 */
1672		   0x0000,	/* mpllb cfg4 */
1673		   0x0000,	/* mpllb cfg5 */
1674		   0x2200,	/* mpllb cfg6 */
1675		   0x0001,	/* mpllb cfg7 */
1676		   0x2000,	/* mpllb cfg8 */
1677		   0x0000,	/* mpllb cfg9 */
1678		   0x0004,	/* mpllb cfg10 */
1679		},
1680};
1681
1682static const struct intel_c20pll_state mtl_c20_hdmi_600 = {
1683	.clock = 6000000,
1684	.tx = {  0xbe98, /* tx cfg0 */
1685		  0x8800, /* tx cfg1 */
1686		  0x0000, /* tx cfg2 */
1687		},
1688	.cmn = { 0x0500, /* cmn cfg0*/
1689		  0x0005, /* cmn cfg1 */
1690		  0x0000, /* cmn cfg2 */
1691		  0x0000, /* cmn cfg3 */
1692		},
1693	.mpllb = { 0x109c,	/* mpllb cfg0 */
1694		   0x2108,	/* mpllb cfg1 */
1695		   0xca06,	/* mpllb cfg2 */
1696		   0xbe40,	/* mpllb cfg3 */
1697		   0x0000,	/* mpllb cfg4 */
1698		   0x0000,	/* mpllb cfg5 */
1699		   0x2200,	/* mpllb cfg6 */
1700		   0x0001,	/* mpllb cfg7 */
1701		   0x2000,	/* mpllb cfg8 */
1702		   0x0000,	/* mpllb cfg9 */
1703		   0x0004,	/* mpllb cfg10 */
1704		},
1705};
1706
1707static const struct intel_c20pll_state mtl_c20_hdmi_800 = {
1708	.clock = 8000000,
1709	.tx = {  0xbe98, /* tx cfg0 */
1710		  0x8800, /* tx cfg1 */
1711		  0x0000, /* tx cfg2 */
1712		},
1713	.cmn = { 0x0500, /* cmn cfg0*/
1714		  0x0005, /* cmn cfg1 */
1715		  0x0000, /* cmn cfg2 */
1716		  0x0000, /* cmn cfg3 */
1717		},
1718	.mpllb = { 0x10d0,	/* mpllb cfg0 */
1719		   0x2108,	/* mpllb cfg1 */
1720		   0x4a06,	/* mpllb cfg2 */
1721		   0xbe40,	/* mpllb cfg3 */
1722		   0x0000,	/* mpllb cfg4 */
1723		   0x0000,	/* mpllb cfg5 */
1724		   0x2200,	/* mpllb cfg6 */
1725		   0x0003,	/* mpllb cfg7 */
1726		   0x2aaa,	/* mpllb cfg8 */
1727		   0x0002,	/* mpllb cfg9 */
1728		   0x0004,	/* mpllb cfg10 */
1729		},
1730};
1731
1732static const struct intel_c20pll_state mtl_c20_hdmi_1000 = {
1733	.clock = 10000000,
1734	.tx = {  0xbe98, /* tx cfg0 */
1735		  0x8800, /* tx cfg1 */
1736		  0x0000, /* tx cfg2 */
1737		},
1738	.cmn = { 0x0500, /* cmn cfg0*/
1739		  0x0005, /* cmn cfg1 */
1740		  0x0000, /* cmn cfg2 */
1741		  0x0000, /* cmn cfg3 */
1742		},
1743	.mpllb = { 0x1104,	/* mpllb cfg0 */
1744		   0x2108,	/* mpllb cfg1 */
1745		   0x0a06,	/* mpllb cfg2 */
1746		   0xbe40,	/* mpllb cfg3 */
1747		   0x0000,	/* mpllb cfg4 */
1748		   0x0000,	/* mpllb cfg5 */
1749		   0x2200,	/* mpllb cfg6 */
1750		   0x0003,	/* mpllb cfg7 */
1751		   0x3555,	/* mpllb cfg8 */
1752		   0x0001,	/* mpllb cfg9 */
1753		   0x0004,	/* mpllb cfg10 */
1754		},
1755};
1756
1757static const struct intel_c20pll_state mtl_c20_hdmi_1200 = {
1758	.clock = 12000000,
1759	.tx = {  0xbe98, /* tx cfg0 */
1760		  0x8800, /* tx cfg1 */
1761		  0x0000, /* tx cfg2 */
1762		},
1763	.cmn = { 0x0500, /* cmn cfg0*/
1764		  0x0005, /* cmn cfg1 */
1765		  0x0000, /* cmn cfg2 */
1766		  0x0000, /* cmn cfg3 */
1767		},
1768	.mpllb = { 0x1138,	/* mpllb cfg0 */
1769		   0x2108,	/* mpllb cfg1 */
1770		   0x5486,	/* mpllb cfg2 */
1771		   0xfe40,	/* mpllb cfg3 */
1772		   0x0000,	/* mpllb cfg4 */
1773		   0x0000,	/* mpllb cfg5 */
1774		   0x2200,	/* mpllb cfg6 */
1775		   0x0001,	/* mpllb cfg7 */
1776		   0x4000,	/* mpllb cfg8 */
1777		   0x0000,	/* mpllb cfg9 */
1778		   0x0004,	/* mpllb cfg10 */
1779		},
1780};
1781
1782static const struct intel_c20pll_state * const mtl_c20_hdmi_tables[] = {
1783	&mtl_c20_hdmi_25_175,
1784	&mtl_c20_hdmi_27_0,
1785	&mtl_c20_hdmi_74_25,
1786	&mtl_c20_hdmi_148_5,
1787	&mtl_c20_hdmi_594,
1788	&mtl_c20_hdmi_300,
1789	&mtl_c20_hdmi_600,
1790	&mtl_c20_hdmi_800,
1791	&mtl_c20_hdmi_1000,
1792	&mtl_c20_hdmi_1200,
1793	NULL,
1794};
1795
1796static int intel_c10_phy_check_hdmi_link_rate(int clock)
1797{
1798	const struct intel_c10pll_state * const *tables = mtl_c10_hdmi_tables;
1799	int i;
1800
1801	for (i = 0; tables[i]; i++) {
1802		if (clock == tables[i]->clock)
1803			return MODE_OK;
1804	}
1805
1806	return MODE_CLOCK_RANGE;
1807}
1808
1809static const struct intel_c10pll_state * const *
1810intel_c10pll_tables_get(struct intel_crtc_state *crtc_state,
1811			struct intel_encoder *encoder)
1812{
1813	if (intel_crtc_has_dp_encoder(crtc_state)) {
1814		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
1815			return mtl_c10_edp_tables;
1816		else
1817			return mtl_c10_dp_tables;
1818	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
1819		return mtl_c10_hdmi_tables;
1820	}
1821
1822	MISSING_CASE(encoder->type);
1823	return NULL;
1824}
1825
1826static void intel_c10pll_update_pll(struct intel_crtc_state *crtc_state,
1827				    struct intel_encoder *encoder)
1828{
1829	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
1830	struct intel_cx0pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll;
1831	int i;
1832
1833	if (intel_crtc_has_dp_encoder(crtc_state)) {
1834		if (intel_panel_use_ssc(i915)) {
1835			struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1836
1837			pll_state->ssc_enabled =
1838				(intel_dp->dpcd[DP_MAX_DOWNSPREAD] & DP_MAX_DOWNSPREAD_0_5);
1839		}
1840	}
1841
1842	if (pll_state->ssc_enabled)
1843		return;
1844
1845	drm_WARN_ON(&i915->drm, ARRAY_SIZE(pll_state->c10.pll) < 9);
1846	for (i = 4; i < 9; i++)
1847		pll_state->c10.pll[i] = 0;
1848}
1849
1850static int intel_c10pll_calc_state(struct intel_crtc_state *crtc_state,
1851				   struct intel_encoder *encoder)
1852{
1853	const struct intel_c10pll_state * const *tables;
1854	int i;
1855
1856	tables = intel_c10pll_tables_get(crtc_state, encoder);
1857	if (!tables)
1858		return -EINVAL;
1859
1860	for (i = 0; tables[i]; i++) {
1861		if (crtc_state->port_clock == tables[i]->clock) {
1862			crtc_state->dpll_hw_state.cx0pll.c10 = *tables[i];
1863			intel_c10pll_update_pll(crtc_state, encoder);
1864
1865			return 0;
1866		}
1867	}
1868
1869	return -EINVAL;
1870}
1871
1872static void intel_c10pll_readout_hw_state(struct intel_encoder *encoder,
1873					  struct intel_c10pll_state *pll_state)
1874{
1875	u8 lane = INTEL_CX0_LANE0;
1876	intel_wakeref_t wakeref;
1877	int i;
1878
1879	wakeref = intel_cx0_phy_transaction_begin(encoder);
1880
1881	/*
1882	 * According to C10 VDR Register programming Sequence we need
1883	 * to do this to read PHY internal registers from MsgBus.
1884	 */
1885	intel_cx0_rmw(encoder, lane, PHY_C10_VDR_CONTROL(1),
1886		      0, C10_VDR_CTRL_MSGBUS_ACCESS,
1887		      MB_WRITE_COMMITTED);
1888
1889	for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
1890		pll_state->pll[i] = intel_cx0_read(encoder, lane, PHY_C10_VDR_PLL(i));
1891
1892	pll_state->cmn = intel_cx0_read(encoder, lane, PHY_C10_VDR_CMN(0));
1893	pll_state->tx = intel_cx0_read(encoder, lane, PHY_C10_VDR_TX(0));
1894
1895	intel_cx0_phy_transaction_end(encoder, wakeref);
1896}
1897
1898static void intel_c10_pll_program(struct drm_i915_private *i915,
1899				  const struct intel_crtc_state *crtc_state,
1900				  struct intel_encoder *encoder)
1901{
1902	const struct intel_c10pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll.c10;
1903	int i;
1904
1905	intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
1906		      0, C10_VDR_CTRL_MSGBUS_ACCESS,
1907		      MB_WRITE_COMMITTED);
1908
1909	/* Custom width needs to be programmed to 0 for both the phy lanes */
1910	intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CUSTOM_WIDTH,
1911		      C10_VDR_CUSTOM_WIDTH_MASK, C10_VDR_CUSTOM_WIDTH_8_10,
1912		      MB_WRITE_COMMITTED);
1913	intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
1914		      0, C10_VDR_CTRL_UPDATE_CFG,
1915		      MB_WRITE_COMMITTED);
1916
1917	/* Program the pll values only for the master lane */
1918	for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
1919		intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_PLL(i),
1920				pll_state->pll[i],
1921				(i % 4) ? MB_WRITE_UNCOMMITTED : MB_WRITE_COMMITTED);
1922
1923	intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CMN(0), pll_state->cmn, MB_WRITE_COMMITTED);
1924	intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_TX(0), pll_state->tx, MB_WRITE_COMMITTED);
1925
1926	intel_cx0_rmw(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CONTROL(1),
1927		      0, C10_VDR_CTRL_MASTER_LANE | C10_VDR_CTRL_UPDATE_CFG,
1928		      MB_WRITE_COMMITTED);
1929}
1930
1931void intel_c10pll_dump_hw_state(struct drm_i915_private *i915,
1932				const struct intel_c10pll_state *hw_state)
1933{
1934	bool fracen;
1935	int i;
1936	unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
1937	unsigned int multiplier, tx_clk_div;
1938
1939	fracen = hw_state->pll[0] & C10_PLL0_FRACEN;
1940	drm_dbg_kms(&i915->drm, "c10pll_hw_state: fracen: %s, ",
1941		    str_yes_no(fracen));
1942
1943	if (fracen) {
1944		frac_quot = hw_state->pll[12] << 8 | hw_state->pll[11];
1945		frac_rem =  hw_state->pll[14] << 8 | hw_state->pll[13];
1946		frac_den =  hw_state->pll[10] << 8 | hw_state->pll[9];
1947		drm_dbg_kms(&i915->drm, "quot: %u, rem: %u, den: %u,\n",
1948			    frac_quot, frac_rem, frac_den);
1949	}
1950
1951	multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, hw_state->pll[3]) << 8 |
1952		      hw_state->pll[2]) / 2 + 16;
1953	tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, hw_state->pll[15]);
1954	drm_dbg_kms(&i915->drm,
1955		    "multiplier: %u, tx_clk_div: %u.\n", multiplier, tx_clk_div);
1956
1957	drm_dbg_kms(&i915->drm, "c10pll_rawhw_state:");
1958	drm_dbg_kms(&i915->drm, "tx: 0x%x, cmn: 0x%x\n", hw_state->tx, hw_state->cmn);
1959
1960	BUILD_BUG_ON(ARRAY_SIZE(hw_state->pll) % 4);
1961	for (i = 0; i < ARRAY_SIZE(hw_state->pll); i = i + 4)
1962		drm_dbg_kms(&i915->drm, "pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x\n",
1963			    i, hw_state->pll[i], i + 1, hw_state->pll[i + 1],
1964			    i + 2, hw_state->pll[i + 2], i + 3, hw_state->pll[i + 3]);
1965}
1966
1967static int intel_c20_compute_hdmi_tmds_pll(u64 pixel_clock, struct intel_c20pll_state *pll_state)
1968{
1969	u64 datarate;
1970	u64 mpll_tx_clk_div;
1971	u64 vco_freq_shift;
1972	u64 vco_freq;
1973	u64 multiplier;
1974	u64 mpll_multiplier;
1975	u64 mpll_fracn_quot;
1976	u64 mpll_fracn_rem;
1977	u8  mpllb_ana_freq_vco;
1978	u8  mpll_div_multiplier;
1979
1980	if (pixel_clock < 25175 || pixel_clock > 600000)
1981		return -EINVAL;
1982
1983	datarate = ((u64)pixel_clock * 1000) * 10;
1984	mpll_tx_clk_div = ilog2(div64_u64((u64)CLOCK_9999MHZ, (u64)datarate));
1985	vco_freq_shift = ilog2(div64_u64((u64)CLOCK_4999MHZ * (u64)256, (u64)datarate));
1986	vco_freq = (datarate << vco_freq_shift) >> 8;
1987	multiplier = div64_u64((vco_freq << 28), (REFCLK_38_4_MHZ >> 4));
1988	mpll_multiplier = 2 * (multiplier >> 32);
1989
1990	mpll_fracn_quot = (multiplier >> 16) & 0xFFFF;
1991	mpll_fracn_rem  = multiplier & 0xFFFF;
1992
1993	mpll_div_multiplier = min_t(u8, div64_u64((vco_freq * 16 + (datarate >> 1)),
1994						  datarate), 255);
1995
1996	if (vco_freq <= DATARATE_3000000000)
1997		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_3;
1998	else if (vco_freq <= DATARATE_3500000000)
1999		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_2;
2000	else if (vco_freq <= DATARATE_4000000000)
2001		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_1;
2002	else
2003		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_0;
2004
2005	pll_state->clock	= pixel_clock;
2006	pll_state->tx[0]	= 0xbe88;
2007	pll_state->tx[1]	= 0x9800;
2008	pll_state->tx[2]	= 0x0000;
2009	pll_state->cmn[0]	= 0x0500;
2010	pll_state->cmn[1]	= 0x0005;
2011	pll_state->cmn[2]	= 0x0000;
2012	pll_state->cmn[3]	= 0x0000;
2013	pll_state->mpllb[0]	= (MPLL_TX_CLK_DIV(mpll_tx_clk_div) |
2014				   MPLL_MULTIPLIER(mpll_multiplier));
2015	pll_state->mpllb[1]	= (CAL_DAC_CODE(CAL_DAC_CODE_31) |
2016				   WORD_CLK_DIV |
2017				   MPLL_DIV_MULTIPLIER(mpll_div_multiplier));
2018	pll_state->mpllb[2]	= (MPLLB_ANA_FREQ_VCO(mpllb_ana_freq_vco) |
2019				   CP_PROP(CP_PROP_20) |
2020				   CP_INT(CP_INT_6));
2021	pll_state->mpllb[3]	= (V2I(V2I_2) |
2022				   CP_PROP_GS(CP_PROP_GS_30) |
2023				   CP_INT_GS(CP_INT_GS_28));
2024	pll_state->mpllb[4]	= 0x0000;
2025	pll_state->mpllb[5]	= 0x0000;
2026	pll_state->mpllb[6]	= (C20_MPLLB_FRACEN | SSC_UP_SPREAD);
2027	pll_state->mpllb[7]	= MPLL_FRACN_DEN;
2028	pll_state->mpllb[8]	= mpll_fracn_quot;
2029	pll_state->mpllb[9]	= mpll_fracn_rem;
2030	pll_state->mpllb[10]	= HDMI_DIV(HDMI_DIV_1);
2031
2032	return 0;
2033}
2034
2035static int intel_c20_phy_check_hdmi_link_rate(int clock)
2036{
2037	const struct intel_c20pll_state * const *tables = mtl_c20_hdmi_tables;
2038	int i;
2039
2040	for (i = 0; tables[i]; i++) {
2041		if (clock == tables[i]->clock)
2042			return MODE_OK;
2043	}
2044
2045	if (clock >= 25175 && clock <= 594000)
2046		return MODE_OK;
2047
2048	return MODE_CLOCK_RANGE;
2049}
2050
2051int intel_cx0_phy_check_hdmi_link_rate(struct intel_hdmi *hdmi, int clock)
2052{
2053	struct intel_digital_port *dig_port = hdmi_to_dig_port(hdmi);
2054
2055	if (intel_encoder_is_c10phy(&dig_port->base))
2056		return intel_c10_phy_check_hdmi_link_rate(clock);
2057	return intel_c20_phy_check_hdmi_link_rate(clock);
2058}
2059
2060static const struct intel_c20pll_state * const *
2061intel_c20_pll_tables_get(struct intel_crtc_state *crtc_state,
2062			 struct intel_encoder *encoder)
2063{
2064	if (intel_crtc_has_dp_encoder(crtc_state))
2065		return mtl_c20_dp_tables;
2066	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
2067		return mtl_c20_hdmi_tables;
2068
2069	MISSING_CASE(encoder->type);
2070	return NULL;
2071}
2072
2073static int intel_c20pll_calc_state(struct intel_crtc_state *crtc_state,
2074				   struct intel_encoder *encoder)
2075{
2076	const struct intel_c20pll_state * const *tables;
2077	int i;
2078
2079	/* try computed C20 HDMI tables before using consolidated tables */
2080	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2081		if (intel_c20_compute_hdmi_tmds_pll(crtc_state->port_clock,
2082						    &crtc_state->dpll_hw_state.cx0pll.c20) == 0)
2083			return 0;
2084	}
2085
2086	tables = intel_c20_pll_tables_get(crtc_state, encoder);
2087	if (!tables)
2088		return -EINVAL;
2089
2090	for (i = 0; tables[i]; i++) {
2091		if (crtc_state->port_clock == tables[i]->clock) {
2092			crtc_state->dpll_hw_state.cx0pll.c20 = *tables[i];
2093			return 0;
2094		}
2095	}
2096
2097	return -EINVAL;
2098}
2099
2100int intel_cx0pll_calc_state(struct intel_crtc_state *crtc_state,
2101			    struct intel_encoder *encoder)
2102{
2103	if (intel_encoder_is_c10phy(encoder))
2104		return intel_c10pll_calc_state(crtc_state, encoder);
2105	return intel_c20pll_calc_state(crtc_state, encoder);
2106}
2107
2108static bool intel_c20phy_use_mpllb(const struct intel_c20pll_state *state)
2109{
2110	return state->tx[0] & C20_PHY_USE_MPLLB;
2111}
2112
2113static int intel_c20pll_calc_port_clock(struct intel_encoder *encoder,
2114					const struct intel_c20pll_state *pll_state)
2115{
2116	unsigned int frac, frac_en, frac_quot, frac_rem, frac_den;
2117	unsigned int multiplier, refclk = 38400;
2118	unsigned int tx_clk_div;
2119	unsigned int ref_clk_mpllb_div;
2120	unsigned int fb_clk_div4_en;
2121	unsigned int ref, vco;
2122	unsigned int tx_rate_mult;
2123	unsigned int tx_rate = REG_FIELD_GET(C20_PHY_TX_RATE, pll_state->tx[0]);
2124
2125	if (intel_c20phy_use_mpllb(pll_state)) {
2126		tx_rate_mult = 1;
2127		frac_en = REG_FIELD_GET(C20_MPLLB_FRACEN, pll_state->mpllb[6]);
2128		frac_quot = pll_state->mpllb[8];
2129		frac_rem =  pll_state->mpllb[9];
2130		frac_den =  pll_state->mpllb[7];
2131		multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mpllb[0]);
2132		tx_clk_div = REG_FIELD_GET(C20_MPLLB_TX_CLK_DIV_MASK, pll_state->mpllb[0]);
2133		ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mpllb[6]);
2134		fb_clk_div4_en = 0;
2135	} else {
2136		tx_rate_mult = 2;
2137		frac_en = REG_FIELD_GET(C20_MPLLA_FRACEN, pll_state->mplla[6]);
2138		frac_quot = pll_state->mplla[8];
2139		frac_rem =  pll_state->mplla[9];
2140		frac_den =  pll_state->mplla[7];
2141		multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mplla[0]);
2142		tx_clk_div = REG_FIELD_GET(C20_MPLLA_TX_CLK_DIV_MASK, pll_state->mplla[1]);
2143		ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mplla[6]);
2144		fb_clk_div4_en = REG_FIELD_GET(C20_FB_CLK_DIV4_EN, pll_state->mplla[0]);
2145	}
2146
2147	if (frac_en)
2148		frac = frac_quot + DIV_ROUND_CLOSEST(frac_rem, frac_den);
2149	else
2150		frac = 0;
2151
2152	ref = DIV_ROUND_CLOSEST(refclk * (1 << (1 + fb_clk_div4_en)), 1 << ref_clk_mpllb_div);
2153	vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(ref, (multiplier << (17 - 2)) + frac) >> 17, 10);
2154
2155	return vco << tx_rate_mult >> tx_clk_div >> tx_rate;
2156}
2157
2158static void intel_c20pll_readout_hw_state(struct intel_encoder *encoder,
2159					  struct intel_c20pll_state *pll_state)
2160{
2161	bool cntx;
2162	intel_wakeref_t wakeref;
2163	int i;
2164
2165	wakeref = intel_cx0_phy_transaction_begin(encoder);
2166
2167	/* 1. Read current context selection */
2168	cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & PHY_C20_CONTEXT_TOGGLE;
2169
2170	/* Read Tx configuration */
2171	for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2172		if (cntx)
2173			pll_state->tx[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0,
2174							       PHY_C20_B_TX_CNTX_CFG(i));
2175		else
2176			pll_state->tx[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0,
2177							       PHY_C20_A_TX_CNTX_CFG(i));
2178	}
2179
2180	/* Read common configuration */
2181	for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2182		if (cntx)
2183			pll_state->cmn[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0,
2184								PHY_C20_B_CMN_CNTX_CFG(i));
2185		else
2186			pll_state->cmn[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0,
2187								PHY_C20_A_CMN_CNTX_CFG(i));
2188	}
2189
2190	if (intel_c20phy_use_mpllb(pll_state)) {
2191		/* MPLLB configuration */
2192		for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2193			if (cntx)
2194				pll_state->mpllb[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0,
2195									  PHY_C20_B_MPLLB_CNTX_CFG(i));
2196			else
2197				pll_state->mpllb[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0,
2198									  PHY_C20_A_MPLLB_CNTX_CFG(i));
2199		}
2200	} else {
2201		/* MPLLA configuration */
2202		for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2203			if (cntx)
2204				pll_state->mplla[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0,
2205									  PHY_C20_B_MPLLA_CNTX_CFG(i));
2206			else
2207				pll_state->mplla[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0,
2208									  PHY_C20_A_MPLLA_CNTX_CFG(i));
2209		}
2210	}
2211
2212	pll_state->clock = intel_c20pll_calc_port_clock(encoder, pll_state);
2213
2214	intel_cx0_phy_transaction_end(encoder, wakeref);
2215}
2216
2217void intel_c20pll_dump_hw_state(struct drm_i915_private *i915,
2218				const struct intel_c20pll_state *hw_state)
2219{
2220	int i;
2221
2222	drm_dbg_kms(&i915->drm, "c20pll_hw_state:\n");
2223	drm_dbg_kms(&i915->drm, "tx[0] = 0x%.4x, tx[1] = 0x%.4x, tx[2] = 0x%.4x\n",
2224		    hw_state->tx[0], hw_state->tx[1], hw_state->tx[2]);
2225	drm_dbg_kms(&i915->drm, "cmn[0] = 0x%.4x, cmn[1] = 0x%.4x, cmn[2] = 0x%.4x, cmn[3] = 0x%.4x\n",
2226		    hw_state->cmn[0], hw_state->cmn[1], hw_state->cmn[2], hw_state->cmn[3]);
2227
2228	if (intel_c20phy_use_mpllb(hw_state)) {
2229		for (i = 0; i < ARRAY_SIZE(hw_state->mpllb); i++)
2230			drm_dbg_kms(&i915->drm, "mpllb[%d] = 0x%.4x\n", i, hw_state->mpllb[i]);
2231	} else {
2232		for (i = 0; i < ARRAY_SIZE(hw_state->mplla); i++)
2233			drm_dbg_kms(&i915->drm, "mplla[%d] = 0x%.4x\n", i, hw_state->mplla[i]);
2234	}
2235}
2236
2237static u8 intel_c20_get_dp_rate(u32 clock)
2238{
2239	switch (clock) {
2240	case 162000: /* 1.62 Gbps DP1.4 */
2241		return 0;
2242	case 270000: /* 2.7 Gbps DP1.4 */
2243		return 1;
2244	case 540000: /* 5.4 Gbps DP 1.4 */
2245		return 2;
2246	case 810000: /* 8.1 Gbps DP1.4 */
2247		return 3;
2248	case 216000: /* 2.16 Gbps eDP */
2249		return 4;
2250	case 243000: /* 2.43 Gbps eDP */
2251		return 5;
2252	case 324000: /* 3.24 Gbps eDP */
2253		return 6;
2254	case 432000: /* 4.32 Gbps eDP */
2255		return 7;
2256	case 1000000: /* 10 Gbps DP2.0 */
2257		return 8;
2258	case 1350000: /* 13.5 Gbps DP2.0 */
2259		return 9;
2260	case 2000000: /* 20 Gbps DP2.0 */
2261		return 10;
2262	case 648000: /* 6.48 Gbps eDP*/
2263		return 11;
2264	case 675000: /* 6.75 Gbps eDP*/
2265		return 12;
2266	default:
2267		MISSING_CASE(clock);
2268		return 0;
2269	}
2270}
2271
2272static u8 intel_c20_get_hdmi_rate(u32 clock)
2273{
2274	if (clock >= 25175 && clock <= 600000)
2275		return 0;
2276
2277	switch (clock) {
2278	case 300000: /* 3 Gbps */
2279	case 600000: /* 6 Gbps */
2280	case 1200000: /* 12 Gbps */
2281		return 1;
2282	case 800000: /* 8 Gbps */
2283		return 2;
2284	case 1000000: /* 10 Gbps */
2285		return 3;
2286	default:
2287		MISSING_CASE(clock);
2288		return 0;
2289	}
2290}
2291
2292static bool is_dp2(u32 clock)
2293{
2294	/* DP2.0 clock rates */
2295	if (clock == 1000000 || clock == 1350000 || clock  == 2000000)
2296		return true;
2297
2298	return false;
2299}
2300
2301static bool is_hdmi_frl(u32 clock)
2302{
2303	switch (clock) {
2304	case 300000: /* 3 Gbps */
2305	case 600000: /* 6 Gbps */
2306	case 800000: /* 8 Gbps */
2307	case 1000000: /* 10 Gbps */
2308	case 1200000: /* 12 Gbps */
2309		return true;
2310	default:
2311		return false;
2312	}
2313}
2314
2315static bool intel_c20_protocol_switch_valid(struct intel_encoder *encoder)
2316{
2317	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2318
2319	/* banks should not be cleared for DPALT/USB4/TBT modes */
2320	/* TODO: optimize re-calibration in legacy mode */
2321	return intel_tc_port_in_legacy_mode(intel_dig_port);
2322}
2323
2324static int intel_get_c20_custom_width(u32 clock, bool dp)
2325{
2326	if (dp && is_dp2(clock))
2327		return 2;
2328	else if (is_hdmi_frl(clock))
2329		return 1;
2330	else
2331		return 0;
2332}
2333
2334static void intel_c20_pll_program(struct drm_i915_private *i915,
2335				  const struct intel_crtc_state *crtc_state,
2336				  struct intel_encoder *encoder)
2337{
2338	const struct intel_c20pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll.c20;
2339	bool dp = false;
2340	int lane = crtc_state->lane_count > 2 ? INTEL_CX0_BOTH_LANES : INTEL_CX0_LANE0;
2341	u32 clock = crtc_state->port_clock;
2342	bool cntx;
2343	int i;
2344
2345	if (intel_crtc_has_dp_encoder(crtc_state))
2346		dp = true;
2347
2348	/* 1. Read current context selection */
2349	cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & BIT(0);
2350
2351	/*
2352	 * 2. If there is a protocol switch from HDMI to DP or vice versa, clear
2353	 * the lane #0 MPLLB CAL_DONE_BANK DP2.0 10G and 20G rates enable MPLLA.
2354	 * Protocol switch is only applicable for MPLLA
2355	 */
2356	if (intel_c20_protocol_switch_valid(encoder)) {
2357		for (i = 0; i < 4; i++)
2358			intel_c20_sram_write(encoder, INTEL_CX0_LANE0, RAWLANEAONX_DIG_TX_MPLLB_CAL_DONE_BANK(i), 0);
2359		usleep_range(4000, 4100);
2360	}
2361
2362	/* 3. Write SRAM configuration context. If A in use, write configuration to B context */
2363	/* 3.1 Tx configuration */
2364	for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2365		if (cntx)
2366			intel_c20_sram_write(encoder, INTEL_CX0_LANE0, PHY_C20_A_TX_CNTX_CFG(i), pll_state->tx[i]);
2367		else
2368			intel_c20_sram_write(encoder, INTEL_CX0_LANE0, PHY_C20_B_TX_CNTX_CFG(i), pll_state->tx[i]);
2369	}
2370
2371	/* 3.2 common configuration */
2372	for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2373		if (cntx)
2374			intel_c20_sram_write(encoder, INTEL_CX0_LANE0, PHY_C20_A_CMN_CNTX_CFG(i), pll_state->cmn[i]);
2375		else
2376			intel_c20_sram_write(encoder, INTEL_CX0_LANE0, PHY_C20_B_CMN_CNTX_CFG(i), pll_state->cmn[i]);
2377	}
2378
2379	/* 3.3 mpllb or mplla configuration */
2380	if (intel_c20phy_use_mpllb(pll_state)) {
2381		for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2382			if (cntx)
2383				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2384						     PHY_C20_A_MPLLB_CNTX_CFG(i),
2385						     pll_state->mpllb[i]);
2386			else
2387				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2388						     PHY_C20_B_MPLLB_CNTX_CFG(i),
2389						     pll_state->mpllb[i]);
2390		}
2391	} else {
2392		for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2393			if (cntx)
2394				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2395						     PHY_C20_A_MPLLA_CNTX_CFG(i),
2396						     pll_state->mplla[i]);
2397			else
2398				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2399						     PHY_C20_B_MPLLA_CNTX_CFG(i),
2400						     pll_state->mplla[i]);
2401		}
2402	}
2403
2404	/* 4. Program custom width to match the link protocol */
2405	intel_cx0_rmw(encoder, lane, PHY_C20_VDR_CUSTOM_WIDTH,
2406		      PHY_C20_CUSTOM_WIDTH_MASK,
2407		      PHY_C20_CUSTOM_WIDTH(intel_get_c20_custom_width(clock, dp)),
2408		      MB_WRITE_COMMITTED);
2409
2410	/* 5. For DP or 6. For HDMI */
2411	if (dp) {
2412		intel_cx0_rmw(encoder, lane, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2413			      BIT(6) | PHY_C20_CUSTOM_SERDES_MASK,
2414			      BIT(6) | PHY_C20_CUSTOM_SERDES(intel_c20_get_dp_rate(clock)),
2415			      MB_WRITE_COMMITTED);
2416	} else {
2417		intel_cx0_rmw(encoder, lane, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2418			      BIT(7) | PHY_C20_CUSTOM_SERDES_MASK,
2419			      is_hdmi_frl(clock) ? BIT(7) : 0,
2420			      MB_WRITE_COMMITTED);
2421
2422		intel_cx0_write(encoder, INTEL_CX0_BOTH_LANES, PHY_C20_VDR_HDMI_RATE,
2423				intel_c20_get_hdmi_rate(clock),
2424				MB_WRITE_COMMITTED);
2425	}
2426
2427	/*
2428	 * 7. Write Vendor specific registers to toggle context setting to load
2429	 * the updated programming toggle context bit
2430	 */
2431	intel_cx0_rmw(encoder, lane, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2432		      BIT(0), cntx ? 0 : 1, MB_WRITE_COMMITTED);
2433}
2434
2435static int intel_c10pll_calc_port_clock(struct intel_encoder *encoder,
2436					const struct intel_c10pll_state *pll_state)
2437{
2438	unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
2439	unsigned int multiplier, tx_clk_div, hdmi_div, refclk = 38400;
2440	int tmpclk = 0;
2441
2442	if (pll_state->pll[0] & C10_PLL0_FRACEN) {
2443		frac_quot = pll_state->pll[12] << 8 | pll_state->pll[11];
2444		frac_rem =  pll_state->pll[14] << 8 | pll_state->pll[13];
2445		frac_den =  pll_state->pll[10] << 8 | pll_state->pll[9];
2446	}
2447
2448	multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, pll_state->pll[3]) << 8 |
2449		      pll_state->pll[2]) / 2 + 16;
2450
2451	tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, pll_state->pll[15]);
2452	hdmi_div = REG_FIELD_GET8(C10_PLL15_HDMIDIV_MASK, pll_state->pll[15]);
2453
2454	tmpclk = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, (multiplier << 16) + frac_quot) +
2455				     DIV_ROUND_CLOSEST(refclk * frac_rem, frac_den),
2456				     10 << (tx_clk_div + 16));
2457	tmpclk *= (hdmi_div ? 2 : 1);
2458
2459	return tmpclk;
2460}
2461
2462static void intel_program_port_clock_ctl(struct intel_encoder *encoder,
2463					 const struct intel_crtc_state *crtc_state,
2464					 bool lane_reversal)
2465{
2466	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2467	u32 val = 0;
2468
2469	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL1(i915, encoder->port),
2470		     XELPDP_PORT_REVERSAL,
2471		     lane_reversal ? XELPDP_PORT_REVERSAL : 0);
2472
2473	if (lane_reversal)
2474		val |= XELPDP_LANE1_PHY_CLOCK_SELECT;
2475
2476	val |= XELPDP_FORWARD_CLOCK_UNGATE;
2477
2478	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) &&
2479	    is_hdmi_frl(crtc_state->port_clock))
2480		val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_DIV18CLK);
2481	else
2482		val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_MAXPCLK);
2483
2484	/* TODO: HDMI FRL */
2485	/* DP2.0 10G and 20G rates enable MPLLA*/
2486	if (crtc_state->port_clock == 1000000 || crtc_state->port_clock == 2000000)
2487		val |= crtc_state->dpll_hw_state.cx0pll.ssc_enabled ? XELPDP_SSC_ENABLE_PLLA : 0;
2488	else
2489		val |= crtc_state->dpll_hw_state.cx0pll.ssc_enabled ? XELPDP_SSC_ENABLE_PLLB : 0;
2490
2491	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2492		     XELPDP_LANE1_PHY_CLOCK_SELECT | XELPDP_FORWARD_CLOCK_UNGATE |
2493		     XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_SSC_ENABLE_PLLA |
2494		     XELPDP_SSC_ENABLE_PLLB, val);
2495}
2496
2497static u32 intel_cx0_get_powerdown_update(u8 lane_mask)
2498{
2499	u32 val = 0;
2500	int lane = 0;
2501
2502	for_each_cx0_lane_in_mask(lane_mask, lane)
2503		val |= XELPDP_LANE_POWERDOWN_UPDATE(lane);
2504
2505	return val;
2506}
2507
2508static u32 intel_cx0_get_powerdown_state(u8 lane_mask, u8 state)
2509{
2510	u32 val = 0;
2511	int lane = 0;
2512
2513	for_each_cx0_lane_in_mask(lane_mask, lane)
2514		val |= XELPDP_LANE_POWERDOWN_NEW_STATE(lane, state);
2515
2516	return val;
2517}
2518
2519static void intel_cx0_powerdown_change_sequence(struct intel_encoder *encoder,
2520						u8 lane_mask, u8 state)
2521{
2522	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2523	enum port port = encoder->port;
2524	enum phy phy = intel_encoder_to_phy(encoder);
2525	i915_reg_t buf_ctl2_reg = XELPDP_PORT_BUF_CTL2(i915, port);
2526	int lane;
2527
2528	intel_de_rmw(i915, buf_ctl2_reg,
2529		     intel_cx0_get_powerdown_state(INTEL_CX0_BOTH_LANES, XELPDP_LANE_POWERDOWN_NEW_STATE_MASK),
2530		     intel_cx0_get_powerdown_state(lane_mask, state));
2531
2532	/* Wait for pending transactions.*/
2533	for_each_cx0_lane_in_mask(lane_mask, lane)
2534		if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane),
2535					    XELPDP_PORT_M2P_TRANSACTION_PENDING,
2536					    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
2537			drm_dbg_kms(&i915->drm,
2538				    "PHY %c Timeout waiting for previous transaction to complete. Reset the bus.\n",
2539				    phy_name(phy));
2540			intel_cx0_bus_reset(encoder, lane);
2541		}
2542
2543	intel_de_rmw(i915, buf_ctl2_reg,
2544		     intel_cx0_get_powerdown_update(INTEL_CX0_BOTH_LANES),
2545		     intel_cx0_get_powerdown_update(lane_mask));
2546
2547	/* Update Timeout Value */
2548	if (intel_de_wait_custom(i915, buf_ctl2_reg,
2549				 intel_cx0_get_powerdown_update(lane_mask), 0,
2550				 XELPDP_PORT_POWERDOWN_UPDATE_TIMEOUT_US, 0, NULL))
2551		drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dus.\n",
2552			 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2553}
2554
2555static void intel_cx0_setup_powerdown(struct intel_encoder *encoder)
2556{
2557	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2558	enum port port = encoder->port;
2559
2560	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(i915, port),
2561		     XELPDP_POWER_STATE_READY_MASK,
2562		     XELPDP_POWER_STATE_READY(CX0_P2_STATE_READY));
2563	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL3(i915, port),
2564		     XELPDP_POWER_STATE_ACTIVE_MASK |
2565		     XELPDP_PLL_LANE_STAGGERING_DELAY_MASK,
2566		     XELPDP_POWER_STATE_ACTIVE(CX0_P0_STATE_ACTIVE) |
2567		     XELPDP_PLL_LANE_STAGGERING_DELAY(0));
2568}
2569
2570static u32 intel_cx0_get_pclk_refclk_request(u8 lane_mask)
2571{
2572	u32 val = 0;
2573	int lane = 0;
2574
2575	for_each_cx0_lane_in_mask(lane_mask, lane)
2576		val |= XELPDP_LANE_PCLK_REFCLK_REQUEST(lane);
2577
2578	return val;
2579}
2580
2581static u32 intel_cx0_get_pclk_refclk_ack(u8 lane_mask)
2582{
2583	u32 val = 0;
2584	int lane = 0;
2585
2586	for_each_cx0_lane_in_mask(lane_mask, lane)
2587		val |= XELPDP_LANE_PCLK_REFCLK_ACK(lane);
2588
2589	return val;
2590}
2591
2592static void intel_cx0_phy_lane_reset(struct intel_encoder *encoder,
2593				     bool lane_reversal)
2594{
2595	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2596	enum port port = encoder->port;
2597	enum phy phy = intel_encoder_to_phy(encoder);
2598	u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2599	u8 lane_mask = lane_reversal ? INTEL_CX0_LANE1 : INTEL_CX0_LANE0;
2600	u32 lane_pipe_reset = owned_lane_mask == INTEL_CX0_BOTH_LANES
2601				? XELPDP_LANE_PIPE_RESET(0) | XELPDP_LANE_PIPE_RESET(1)
2602				: XELPDP_LANE_PIPE_RESET(0);
2603	u32 lane_phy_current_status = owned_lane_mask == INTEL_CX0_BOTH_LANES
2604					? (XELPDP_LANE_PHY_CURRENT_STATUS(0) |
2605					   XELPDP_LANE_PHY_CURRENT_STATUS(1))
2606					: XELPDP_LANE_PHY_CURRENT_STATUS(0);
2607
2608	if (intel_de_wait_custom(i915, XELPDP_PORT_BUF_CTL1(i915, port),
2609				 XELPDP_PORT_BUF_SOC_PHY_READY,
2610				 XELPDP_PORT_BUF_SOC_PHY_READY,
2611				 XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US, 0, NULL))
2612		drm_warn(&i915->drm, "PHY %c failed to bring out of SOC reset after %dus.\n",
2613			 phy_name(phy), XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US);
2614
2615	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(i915, port), lane_pipe_reset,
2616		     lane_pipe_reset);
2617
2618	if (intel_de_wait_custom(i915, XELPDP_PORT_BUF_CTL2(i915, port),
2619				 lane_phy_current_status, lane_phy_current_status,
2620				 XELPDP_PORT_RESET_START_TIMEOUT_US, 0, NULL))
2621		drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dus.\n",
2622			 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2623
2624	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, port),
2625		     intel_cx0_get_pclk_refclk_request(owned_lane_mask),
2626		     intel_cx0_get_pclk_refclk_request(lane_mask));
2627
2628	if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, port),
2629				 intel_cx0_get_pclk_refclk_ack(owned_lane_mask),
2630				 intel_cx0_get_pclk_refclk_ack(lane_mask),
2631				 XELPDP_REFCLK_ENABLE_TIMEOUT_US, 0, NULL))
2632		drm_warn(&i915->drm, "PHY %c failed to request refclk after %dus.\n",
2633			 phy_name(phy), XELPDP_REFCLK_ENABLE_TIMEOUT_US);
2634
2635	intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
2636					    CX0_P2_STATE_RESET);
2637	intel_cx0_setup_powerdown(encoder);
2638
2639	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(i915, port), lane_pipe_reset, 0);
2640
2641	if (intel_de_wait_for_clear(i915, XELPDP_PORT_BUF_CTL2(i915, port),
2642				    lane_phy_current_status,
2643				    XELPDP_PORT_RESET_END_TIMEOUT))
2644		drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dms.\n",
2645			 phy_name(phy), XELPDP_PORT_RESET_END_TIMEOUT);
2646}
2647
2648static void intel_cx0_program_phy_lane(struct drm_i915_private *i915,
2649				       struct intel_encoder *encoder, int lane_count,
2650				       bool lane_reversal)
2651{
2652	int i;
2653	u8 disables;
2654	bool dp_alt_mode = intel_tc_port_in_dp_alt_mode(enc_to_dig_port(encoder));
2655	u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2656
2657	if (intel_encoder_is_c10phy(encoder))
2658		intel_cx0_rmw(encoder, owned_lane_mask,
2659			      PHY_C10_VDR_CONTROL(1), 0,
2660			      C10_VDR_CTRL_MSGBUS_ACCESS,
2661			      MB_WRITE_COMMITTED);
2662
2663	if (lane_reversal)
2664		disables = REG_GENMASK8(3, 0) >> lane_count;
2665	else
2666		disables = REG_GENMASK8(3, 0) << lane_count;
2667
2668	if (dp_alt_mode && lane_count == 1) {
2669		disables &= ~REG_GENMASK8(1, 0);
2670		disables |= REG_FIELD_PREP8(REG_GENMASK8(1, 0), 0x1);
2671	}
2672
2673	for (i = 0; i < 4; i++) {
2674		int tx = i % 2 + 1;
2675		u8 lane_mask = i < 2 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
2676
2677		if (!(owned_lane_mask & lane_mask))
2678			continue;
2679
2680		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_TX_CONTROL(tx, 2),
2681			      CONTROL2_DISABLE_SINGLE_TX,
2682			      disables & BIT(i) ? CONTROL2_DISABLE_SINGLE_TX : 0,
2683			      MB_WRITE_COMMITTED);
2684	}
2685
2686	if (intel_encoder_is_c10phy(encoder))
2687		intel_cx0_rmw(encoder, owned_lane_mask,
2688			      PHY_C10_VDR_CONTROL(1), 0,
2689			      C10_VDR_CTRL_UPDATE_CFG,
2690			      MB_WRITE_COMMITTED);
2691}
2692
2693static u32 intel_cx0_get_pclk_pll_request(u8 lane_mask)
2694{
2695	u32 val = 0;
2696	int lane = 0;
2697
2698	for_each_cx0_lane_in_mask(lane_mask, lane)
2699		val |= XELPDP_LANE_PCLK_PLL_REQUEST(lane);
2700
2701	return val;
2702}
2703
2704static u32 intel_cx0_get_pclk_pll_ack(u8 lane_mask)
2705{
2706	u32 val = 0;
2707	int lane = 0;
2708
2709	for_each_cx0_lane_in_mask(lane_mask, lane)
2710		val |= XELPDP_LANE_PCLK_PLL_ACK(lane);
2711
2712	return val;
2713}
2714
2715static void intel_cx0pll_enable(struct intel_encoder *encoder,
2716				const struct intel_crtc_state *crtc_state)
2717{
2718	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2719	enum phy phy = intel_encoder_to_phy(encoder);
2720	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
2721	bool lane_reversal = dig_port->saved_port_bits & DDI_BUF_PORT_REVERSAL;
2722	u8 maxpclk_lane = lane_reversal ? INTEL_CX0_LANE1 :
2723					  INTEL_CX0_LANE0;
2724	intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
2725
2726	/*
2727	 * 1. Program PORT_CLOCK_CTL REGISTER to configure
2728	 * clock muxes, gating and SSC
2729	 */
2730	intel_program_port_clock_ctl(encoder, crtc_state, lane_reversal);
2731
2732	/* 2. Bring PHY out of reset. */
2733	intel_cx0_phy_lane_reset(encoder, lane_reversal);
2734
2735	/*
2736	 * 3. Change Phy power state to Ready.
2737	 * TODO: For DP alt mode use only one lane.
2738	 */
2739	intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
2740					    CX0_P2_STATE_READY);
2741
2742	/*
2743	 * 4. Program PORT_MSGBUS_TIMER register's Message Bus Timer field to 0xA000.
2744	 *    (This is done inside intel_cx0_phy_transaction_begin(), since we would need
2745	 *    the right timer thresholds for readouts too.)
2746	 */
2747
2748	/* 5. Program PHY internal PLL internal registers. */
2749	if (intel_encoder_is_c10phy(encoder))
2750		intel_c10_pll_program(i915, crtc_state, encoder);
2751	else
2752		intel_c20_pll_program(i915, crtc_state, encoder);
2753
2754	/*
2755	 * 6. Program the enabled and disabled owned PHY lane
2756	 * transmitters over message bus
2757	 */
2758	intel_cx0_program_phy_lane(i915, encoder, crtc_state->lane_count, lane_reversal);
2759
2760	/*
2761	 * 7. Follow the Display Voltage Frequency Switching - Sequence
2762	 * Before Frequency Change. We handle this step in bxt_set_cdclk().
2763	 */
2764
2765	/*
2766	 * 8. Program DDI_CLK_VALFREQ to match intended DDI
2767	 * clock frequency.
2768	 */
2769	intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port),
2770		       crtc_state->port_clock);
2771
2772	/*
2773	 * 9. Set PORT_CLOCK_CTL register PCLK PLL Request
2774	 * LN<Lane for maxPCLK> to "1" to enable PLL.
2775	 */
2776	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2777		     intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES),
2778		     intel_cx0_get_pclk_pll_request(maxpclk_lane));
2779
2780	/* 10. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK> == "1". */
2781	if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2782				 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES),
2783				 intel_cx0_get_pclk_pll_ack(maxpclk_lane),
2784				 XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US, 0, NULL))
2785		drm_warn(&i915->drm, "Port %c PLL not locked after %dus.\n",
2786			 phy_name(phy), XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US);
2787
2788	/*
2789	 * 11. Follow the Display Voltage Frequency Switching Sequence After
2790	 * Frequency Change. We handle this step in bxt_set_cdclk().
2791	 */
2792
2793	/* TODO: enable TBT-ALT mode */
2794	intel_cx0_phy_transaction_end(encoder, wakeref);
2795}
2796
2797int intel_mtl_tbt_calc_port_clock(struct intel_encoder *encoder)
2798{
2799	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2800	u32 clock;
2801	u32 val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port));
2802
2803	clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val);
2804
2805	drm_WARN_ON(&i915->drm, !(val & XELPDP_FORWARD_CLOCK_UNGATE));
2806	drm_WARN_ON(&i915->drm, !(val & XELPDP_TBT_CLOCK_REQUEST));
2807	drm_WARN_ON(&i915->drm, !(val & XELPDP_TBT_CLOCK_ACK));
2808
2809	switch (clock) {
2810	case XELPDP_DDI_CLOCK_SELECT_TBT_162:
2811		return 162000;
2812	case XELPDP_DDI_CLOCK_SELECT_TBT_270:
2813		return 270000;
2814	case XELPDP_DDI_CLOCK_SELECT_TBT_540:
2815		return 540000;
2816	case XELPDP_DDI_CLOCK_SELECT_TBT_810:
2817		return 810000;
2818	default:
2819		MISSING_CASE(clock);
2820		return 162000;
2821	}
2822}
2823
2824static int intel_mtl_tbt_clock_select(struct drm_i915_private *i915, int clock)
2825{
2826	switch (clock) {
2827	case 162000:
2828		return XELPDP_DDI_CLOCK_SELECT_TBT_162;
2829	case 270000:
2830		return XELPDP_DDI_CLOCK_SELECT_TBT_270;
2831	case 540000:
2832		return XELPDP_DDI_CLOCK_SELECT_TBT_540;
2833	case 810000:
2834		return XELPDP_DDI_CLOCK_SELECT_TBT_810;
2835	default:
2836		MISSING_CASE(clock);
2837		return XELPDP_DDI_CLOCK_SELECT_TBT_162;
2838	}
2839}
2840
2841static void intel_mtl_tbt_pll_enable(struct intel_encoder *encoder,
2842				     const struct intel_crtc_state *crtc_state)
2843{
2844	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2845	enum phy phy = intel_encoder_to_phy(encoder);
2846	u32 val = 0;
2847
2848	/*
2849	 * 1. Program PORT_CLOCK_CTL REGISTER to configure
2850	 * clock muxes, gating and SSC
2851	 */
2852	val |= XELPDP_DDI_CLOCK_SELECT(intel_mtl_tbt_clock_select(i915, crtc_state->port_clock));
2853	val |= XELPDP_FORWARD_CLOCK_UNGATE;
2854	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2855		     XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_FORWARD_CLOCK_UNGATE, val);
2856
2857	/* 2. Read back PORT_CLOCK_CTL REGISTER */
2858	val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port));
2859
2860	/*
2861	 * 3. Follow the Display Voltage Frequency Switching - Sequence
2862	 * Before Frequency Change. We handle this step in bxt_set_cdclk().
2863	 */
2864
2865	/*
2866	 * 4. Set PORT_CLOCK_CTL register TBT CLOCK Request to "1" to enable PLL.
2867	 */
2868	val |= XELPDP_TBT_CLOCK_REQUEST;
2869	intel_de_write(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port), val);
2870
2871	/* 5. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "1". */
2872	if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2873				 XELPDP_TBT_CLOCK_ACK,
2874				 XELPDP_TBT_CLOCK_ACK,
2875				 100, 0, NULL))
2876		drm_warn(&i915->drm, "[ENCODER:%d:%s][%c] PHY PLL not locked after 100us.\n",
2877			 encoder->base.base.id, encoder->base.name, phy_name(phy));
2878
2879	/*
2880	 * 6. Follow the Display Voltage Frequency Switching Sequence After
2881	 * Frequency Change. We handle this step in bxt_set_cdclk().
2882	 */
2883
2884	/*
2885	 * 7. Program DDI_CLK_VALFREQ to match intended DDI
2886	 * clock frequency.
2887	 */
2888	intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port),
2889		       crtc_state->port_clock);
2890}
2891
2892void intel_mtl_pll_enable(struct intel_encoder *encoder,
2893			  const struct intel_crtc_state *crtc_state)
2894{
2895	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
2896
2897	if (intel_tc_port_in_tbt_alt_mode(dig_port))
2898		intel_mtl_tbt_pll_enable(encoder, crtc_state);
2899	else
2900		intel_cx0pll_enable(encoder, crtc_state);
2901}
2902
2903static void intel_cx0pll_disable(struct intel_encoder *encoder)
2904{
2905	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2906	enum phy phy = intel_encoder_to_phy(encoder);
2907	bool is_c10 = intel_encoder_is_c10phy(encoder);
2908	intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
2909
2910	/* 1. Change owned PHY lane power to Disable state. */
2911	intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
2912					    is_c10 ? CX0_P2PG_STATE_DISABLE :
2913					    CX0_P4PG_STATE_DISABLE);
2914
2915	/*
2916	 * 2. Follow the Display Voltage Frequency Switching Sequence Before
2917	 * Frequency Change. We handle this step in bxt_set_cdclk().
2918	 */
2919
2920	/*
2921	 * 3. Set PORT_CLOCK_CTL register PCLK PLL Request LN<Lane for maxPCLK>
2922	 * to "0" to disable PLL.
2923	 */
2924	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2925		     intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES) |
2926		     intel_cx0_get_pclk_refclk_request(INTEL_CX0_BOTH_LANES), 0);
2927
2928	/* 4. Program DDI_CLK_VALFREQ to 0. */
2929	intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port), 0);
2930
2931	/*
2932	 * 5. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK**> == "0".
2933	 */
2934	if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2935				 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES) |
2936				 intel_cx0_get_pclk_refclk_ack(INTEL_CX0_BOTH_LANES), 0,
2937				 XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US, 0, NULL))
2938		drm_warn(&i915->drm, "Port %c PLL not unlocked after %dus.\n",
2939			 phy_name(phy), XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US);
2940
2941	/*
2942	 * 6. Follow the Display Voltage Frequency Switching Sequence After
2943	 * Frequency Change. We handle this step in bxt_set_cdclk().
2944	 */
2945
2946	/* 7. Program PORT_CLOCK_CTL register to disable and gate clocks. */
2947	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2948		     XELPDP_DDI_CLOCK_SELECT_MASK, 0);
2949	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2950		     XELPDP_FORWARD_CLOCK_UNGATE, 0);
2951
2952	intel_cx0_phy_transaction_end(encoder, wakeref);
2953}
2954
2955static void intel_mtl_tbt_pll_disable(struct intel_encoder *encoder)
2956{
2957	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2958	enum phy phy = intel_encoder_to_phy(encoder);
2959
2960	/*
2961	 * 1. Follow the Display Voltage Frequency Switching Sequence Before
2962	 * Frequency Change. We handle this step in bxt_set_cdclk().
2963	 */
2964
2965	/*
2966	 * 2. Set PORT_CLOCK_CTL register TBT CLOCK Request to "0" to disable PLL.
2967	 */
2968	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2969		     XELPDP_TBT_CLOCK_REQUEST, 0);
2970
2971	/* 3. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "0". */
2972	if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2973				 XELPDP_TBT_CLOCK_ACK, 0, 10, 0, NULL))
2974		drm_warn(&i915->drm, "[ENCODER:%d:%s][%c] PHY PLL not unlocked after 10us.\n",
2975			 encoder->base.base.id, encoder->base.name, phy_name(phy));
2976
2977	/*
2978	 * 4. Follow the Display Voltage Frequency Switching Sequence After
2979	 * Frequency Change. We handle this step in bxt_set_cdclk().
2980	 */
2981
2982	/*
2983	 * 5. Program PORT CLOCK CTRL register to disable and gate clocks
2984	 */
2985	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port),
2986		     XELPDP_DDI_CLOCK_SELECT_MASK |
2987		     XELPDP_FORWARD_CLOCK_UNGATE, 0);
2988
2989	/* 6. Program DDI_CLK_VALFREQ to 0. */
2990	intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port), 0);
2991}
2992
2993void intel_mtl_pll_disable(struct intel_encoder *encoder)
2994{
2995	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
2996
2997	if (intel_tc_port_in_tbt_alt_mode(dig_port))
2998		intel_mtl_tbt_pll_disable(encoder);
2999	else
3000		intel_cx0pll_disable(encoder);
3001}
3002
3003enum icl_port_dpll_id
3004intel_mtl_port_pll_type(struct intel_encoder *encoder,
3005			const struct intel_crtc_state *crtc_state)
3006{
3007	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3008	/*
3009	 * TODO: Determine the PLL type from the SW state, once MTL PLL
3010	 * handling is done via the standard shared DPLL framework.
3011	 */
3012	u32 val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port));
3013	u32 clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val);
3014
3015	if (clock == XELPDP_DDI_CLOCK_SELECT_MAXPCLK ||
3016	    clock == XELPDP_DDI_CLOCK_SELECT_DIV18CLK)
3017		return ICL_PORT_DPLL_MG_PHY;
3018	else
3019		return ICL_PORT_DPLL_DEFAULT;
3020}
3021
3022static void intel_c10pll_state_verify(const struct intel_crtc_state *state,
3023				      struct intel_crtc *crtc,
3024				      struct intel_encoder *encoder,
3025				      struct intel_c10pll_state *mpllb_hw_state)
3026{
3027	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
3028	const struct intel_c10pll_state *mpllb_sw_state = &state->dpll_hw_state.cx0pll.c10;
3029	int i;
3030
3031	if (intel_crtc_needs_fastset(state))
3032		return;
3033
3034	for (i = 0; i < ARRAY_SIZE(mpllb_sw_state->pll); i++) {
3035		u8 expected = mpllb_sw_state->pll[i];
3036
3037		I915_STATE_WARN(i915, mpllb_hw_state->pll[i] != expected,
3038				"[CRTC:%d:%s] mismatch in C10MPLLB: Register[%d] (expected 0x%02x, found 0x%02x)",
3039				crtc->base.base.id, crtc->base.name, i,
3040				expected, mpllb_hw_state->pll[i]);
3041	}
3042
3043	I915_STATE_WARN(i915, mpllb_hw_state->tx != mpllb_sw_state->tx,
3044			"[CRTC:%d:%s] mismatch in C10MPLLB: Register TX0 (expected 0x%02x, found 0x%02x)",
3045			crtc->base.base.id, crtc->base.name,
3046			mpllb_sw_state->tx, mpllb_hw_state->tx);
3047
3048	I915_STATE_WARN(i915, mpllb_hw_state->cmn != mpllb_sw_state->cmn,
3049			"[CRTC:%d:%s] mismatch in C10MPLLB: Register CMN0 (expected 0x%02x, found 0x%02x)",
3050			crtc->base.base.id, crtc->base.name,
3051			mpllb_sw_state->cmn, mpllb_hw_state->cmn);
3052}
3053
3054void intel_cx0pll_readout_hw_state(struct intel_encoder *encoder,
3055				   struct intel_cx0pll_state *pll_state)
3056{
3057	if (intel_encoder_is_c10phy(encoder))
3058		intel_c10pll_readout_hw_state(encoder, &pll_state->c10);
3059	else
3060		intel_c20pll_readout_hw_state(encoder, &pll_state->c20);
3061}
3062
3063int intel_cx0pll_calc_port_clock(struct intel_encoder *encoder,
3064				 const struct intel_cx0pll_state *pll_state)
3065{
3066	if (intel_encoder_is_c10phy(encoder))
3067		return intel_c10pll_calc_port_clock(encoder, &pll_state->c10);
3068
3069	return intel_c20pll_calc_port_clock(encoder, &pll_state->c20);
3070}
3071
3072static void intel_c20pll_state_verify(const struct intel_crtc_state *state,
3073				      struct intel_crtc *crtc,
3074				      struct intel_encoder *encoder,
3075				      struct intel_c20pll_state *mpll_hw_state)
3076{
3077	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
3078	const struct intel_c20pll_state *mpll_sw_state = &state->dpll_hw_state.cx0pll.c20;
3079	bool sw_use_mpllb = intel_c20phy_use_mpllb(mpll_sw_state);
3080	bool hw_use_mpllb = intel_c20phy_use_mpllb(mpll_hw_state);
3081	int i;
3082
3083	I915_STATE_WARN(i915, mpll_hw_state->clock != mpll_sw_state->clock,
3084			"[CRTC:%d:%s] mismatch in C20: Register CLOCK (expected %d, found %d)",
3085			crtc->base.base.id, crtc->base.name,
3086			mpll_sw_state->clock, mpll_hw_state->clock);
3087
3088	I915_STATE_WARN(i915, sw_use_mpllb != hw_use_mpllb,
3089			"[CRTC:%d:%s] mismatch in C20: Register MPLLB selection (expected %d, found %d)",
3090			crtc->base.base.id, crtc->base.name,
3091			sw_use_mpllb, hw_use_mpllb);
3092
3093	if (hw_use_mpllb) {
3094		for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mpllb); i++) {
3095			I915_STATE_WARN(i915, mpll_hw_state->mpllb[i] != mpll_sw_state->mpllb[i],
3096					"[CRTC:%d:%s] mismatch in C20MPLLB: Register[%d] (expected 0x%04x, found 0x%04x)",
3097					crtc->base.base.id, crtc->base.name, i,
3098					mpll_sw_state->mpllb[i], mpll_hw_state->mpllb[i]);
3099		}
3100	} else {
3101		for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mplla); i++) {
3102			I915_STATE_WARN(i915, mpll_hw_state->mplla[i] != mpll_sw_state->mplla[i],
3103					"[CRTC:%d:%s] mismatch in C20MPLLA: Register[%d] (expected 0x%04x, found 0x%04x)",
3104					crtc->base.base.id, crtc->base.name, i,
3105					mpll_sw_state->mplla[i], mpll_hw_state->mplla[i]);
3106		}
3107	}
3108
3109	for (i = 0; i < ARRAY_SIZE(mpll_sw_state->tx); i++) {
3110		I915_STATE_WARN(i915, mpll_hw_state->tx[i] != mpll_sw_state->tx[i],
3111				"[CRTC:%d:%s] mismatch in C20: Register TX[%i] (expected 0x%04x, found 0x%04x)",
3112				crtc->base.base.id, crtc->base.name, i,
3113				mpll_sw_state->tx[i], mpll_hw_state->tx[i]);
3114	}
3115
3116	for (i = 0; i < ARRAY_SIZE(mpll_sw_state->cmn); i++) {
3117		I915_STATE_WARN(i915, mpll_hw_state->cmn[i] != mpll_sw_state->cmn[i],
3118				"[CRTC:%d:%s] mismatch in C20: Register CMN[%i] (expected 0x%04x, found 0x%04x)",
3119				crtc->base.base.id, crtc->base.name, i,
3120				mpll_sw_state->cmn[i], mpll_hw_state->cmn[i]);
3121	}
3122}
3123
3124void intel_cx0pll_state_verify(struct intel_atomic_state *state,
3125			       struct intel_crtc *crtc)
3126{
3127	struct drm_i915_private *i915 = to_i915(state->base.dev);
3128	const struct intel_crtc_state *new_crtc_state =
3129		intel_atomic_get_new_crtc_state(state, crtc);
3130	struct intel_encoder *encoder;
3131	struct intel_cx0pll_state mpll_hw_state = {};
3132
3133	if (DISPLAY_VER(i915) < 14)
3134		return;
3135
3136	if (!new_crtc_state->hw.active)
3137		return;
3138
3139	/* intel_get_crtc_new_encoder() only works for modeset/fastset commits */
3140	if (!intel_crtc_needs_modeset(new_crtc_state) &&
3141	    !intel_crtc_needs_fastset(new_crtc_state))
3142		return;
3143
3144	encoder = intel_get_crtc_new_encoder(state, new_crtc_state);
3145
3146	if (intel_tc_port_in_tbt_alt_mode(enc_to_dig_port(encoder)))
3147		return;
3148
3149	intel_cx0pll_readout_hw_state(encoder, &mpll_hw_state);
3150
3151	if (intel_encoder_is_c10phy(encoder))
3152		intel_c10pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c10);
3153	else
3154		intel_c20pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c20);
3155}
3156