1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef BLK_INTERNAL_H
3#define BLK_INTERNAL_H
4
5#include <linux/blk-crypto.h>
6#include <linux/memblock.h>	/* for max_pfn/max_low_pfn */
7#include <linux/sched/sysctl.h>
8#include <linux/timekeeping.h>
9#include <xen/xen.h>
10#include "blk-crypto-internal.h"
11
12struct elevator_type;
13
14/* Max future timer expiry for timeouts */
15#define BLK_MAX_TIMEOUT		(5 * HZ)
16
17extern struct dentry *blk_debugfs_root;
18
19struct blk_flush_queue {
20	spinlock_t		mq_flush_lock;
21	unsigned int		flush_pending_idx:1;
22	unsigned int		flush_running_idx:1;
23	blk_status_t 		rq_status;
24	unsigned long		flush_pending_since;
25	struct list_head	flush_queue[2];
26	unsigned long		flush_data_in_flight;
27	struct request		*flush_rq;
28};
29
30bool is_flush_rq(struct request *req);
31
32struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
33					      gfp_t flags);
34void blk_free_flush_queue(struct blk_flush_queue *q);
35
36void blk_freeze_queue(struct request_queue *q);
37void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
38void blk_queue_start_drain(struct request_queue *q);
39int __bio_queue_enter(struct request_queue *q, struct bio *bio);
40void submit_bio_noacct_nocheck(struct bio *bio);
41void bio_await_chain(struct bio *bio);
42
43static inline bool blk_try_enter_queue(struct request_queue *q, bool pm)
44{
45	rcu_read_lock();
46	if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
47		goto fail;
48
49	/*
50	 * The code that increments the pm_only counter must ensure that the
51	 * counter is globally visible before the queue is unfrozen.
52	 */
53	if (blk_queue_pm_only(q) &&
54	    (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
55		goto fail_put;
56
57	rcu_read_unlock();
58	return true;
59
60fail_put:
61	blk_queue_exit(q);
62fail:
63	rcu_read_unlock();
64	return false;
65}
66
67static inline int bio_queue_enter(struct bio *bio)
68{
69	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
70
71	if (blk_try_enter_queue(q, false))
72		return 0;
73	return __bio_queue_enter(q, bio);
74}
75
76static inline void blk_wait_io(struct completion *done)
77{
78	/* Prevent hang_check timer from firing at us during very long I/O */
79	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
80
81	if (timeout)
82		while (!wait_for_completion_io_timeout(done, timeout))
83			;
84	else
85		wait_for_completion_io(done);
86}
87
88#define BIO_INLINE_VECS 4
89struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
90		gfp_t gfp_mask);
91void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
92
93bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
94		struct page *page, unsigned len, unsigned offset,
95		bool *same_page);
96
97static inline bool biovec_phys_mergeable(struct request_queue *q,
98		struct bio_vec *vec1, struct bio_vec *vec2)
99{
100	unsigned long mask = queue_segment_boundary(q);
101	phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset;
102	phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset;
103
104	/*
105	 * Merging adjacent physical pages may not work correctly under KMSAN
106	 * if their metadata pages aren't adjacent. Just disable merging.
107	 */
108	if (IS_ENABLED(CONFIG_KMSAN))
109		return false;
110
111	if (addr1 + vec1->bv_len != addr2)
112		return false;
113	if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
114		return false;
115	if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
116		return false;
117	return true;
118}
119
120static inline bool __bvec_gap_to_prev(const struct queue_limits *lim,
121		struct bio_vec *bprv, unsigned int offset)
122{
123	return (offset & lim->virt_boundary_mask) ||
124		((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask);
125}
126
127/*
128 * Check if adding a bio_vec after bprv with offset would create a gap in
129 * the SG list. Most drivers don't care about this, but some do.
130 */
131static inline bool bvec_gap_to_prev(const struct queue_limits *lim,
132		struct bio_vec *bprv, unsigned int offset)
133{
134	if (!lim->virt_boundary_mask)
135		return false;
136	return __bvec_gap_to_prev(lim, bprv, offset);
137}
138
139static inline bool rq_mergeable(struct request *rq)
140{
141	if (blk_rq_is_passthrough(rq))
142		return false;
143
144	if (req_op(rq) == REQ_OP_FLUSH)
145		return false;
146
147	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
148		return false;
149
150	if (req_op(rq) == REQ_OP_ZONE_APPEND)
151		return false;
152
153	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
154		return false;
155	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
156		return false;
157
158	return true;
159}
160
161/*
162 * There are two different ways to handle DISCARD merges:
163 *  1) If max_discard_segments > 1, the driver treats every bio as a range and
164 *     send the bios to controller together. The ranges don't need to be
165 *     contiguous.
166 *  2) Otherwise, the request will be normal read/write requests.  The ranges
167 *     need to be contiguous.
168 */
169static inline bool blk_discard_mergable(struct request *req)
170{
171	if (req_op(req) == REQ_OP_DISCARD &&
172	    queue_max_discard_segments(req->q) > 1)
173		return true;
174	return false;
175}
176
177static inline unsigned int blk_rq_get_max_segments(struct request *rq)
178{
179	if (req_op(rq) == REQ_OP_DISCARD)
180		return queue_max_discard_segments(rq->q);
181	return queue_max_segments(rq->q);
182}
183
184static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
185						     enum req_op op)
186{
187	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
188		return min(q->limits.max_discard_sectors,
189			   UINT_MAX >> SECTOR_SHIFT);
190
191	if (unlikely(op == REQ_OP_WRITE_ZEROES))
192		return q->limits.max_write_zeroes_sectors;
193
194	return q->limits.max_sectors;
195}
196
197#ifdef CONFIG_BLK_DEV_INTEGRITY
198void blk_flush_integrity(void);
199bool __bio_integrity_endio(struct bio *);
200void bio_integrity_free(struct bio *bio);
201static inline bool bio_integrity_endio(struct bio *bio)
202{
203	if (bio_integrity(bio))
204		return __bio_integrity_endio(bio);
205	return true;
206}
207
208bool blk_integrity_merge_rq(struct request_queue *, struct request *,
209		struct request *);
210bool blk_integrity_merge_bio(struct request_queue *, struct request *,
211		struct bio *);
212
213static inline bool integrity_req_gap_back_merge(struct request *req,
214		struct bio *next)
215{
216	struct bio_integrity_payload *bip = bio_integrity(req->bio);
217	struct bio_integrity_payload *bip_next = bio_integrity(next);
218
219	return bvec_gap_to_prev(&req->q->limits,
220				&bip->bip_vec[bip->bip_vcnt - 1],
221				bip_next->bip_vec[0].bv_offset);
222}
223
224static inline bool integrity_req_gap_front_merge(struct request *req,
225		struct bio *bio)
226{
227	struct bio_integrity_payload *bip = bio_integrity(bio);
228	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
229
230	return bvec_gap_to_prev(&req->q->limits,
231				&bip->bip_vec[bip->bip_vcnt - 1],
232				bip_next->bip_vec[0].bv_offset);
233}
234
235extern const struct attribute_group blk_integrity_attr_group;
236#else /* CONFIG_BLK_DEV_INTEGRITY */
237static inline bool blk_integrity_merge_rq(struct request_queue *rq,
238		struct request *r1, struct request *r2)
239{
240	return true;
241}
242static inline bool blk_integrity_merge_bio(struct request_queue *rq,
243		struct request *r, struct bio *b)
244{
245	return true;
246}
247static inline bool integrity_req_gap_back_merge(struct request *req,
248		struct bio *next)
249{
250	return false;
251}
252static inline bool integrity_req_gap_front_merge(struct request *req,
253		struct bio *bio)
254{
255	return false;
256}
257
258static inline void blk_flush_integrity(void)
259{
260}
261static inline bool bio_integrity_endio(struct bio *bio)
262{
263	return true;
264}
265static inline void bio_integrity_free(struct bio *bio)
266{
267}
268#endif /* CONFIG_BLK_DEV_INTEGRITY */
269
270unsigned long blk_rq_timeout(unsigned long timeout);
271void blk_add_timer(struct request *req);
272
273enum bio_merge_status {
274	BIO_MERGE_OK,
275	BIO_MERGE_NONE,
276	BIO_MERGE_FAILED,
277};
278
279enum bio_merge_status bio_attempt_back_merge(struct request *req,
280		struct bio *bio, unsigned int nr_segs);
281bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
282		unsigned int nr_segs);
283bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
284			struct bio *bio, unsigned int nr_segs);
285
286/*
287 * Plug flush limits
288 */
289#define BLK_MAX_REQUEST_COUNT	32
290#define BLK_PLUG_FLUSH_SIZE	(128 * 1024)
291
292/*
293 * Internal elevator interface
294 */
295#define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
296
297bool blk_insert_flush(struct request *rq);
298
299int elevator_switch(struct request_queue *q, struct elevator_type *new_e);
300void elevator_disable(struct request_queue *q);
301void elevator_exit(struct request_queue *q);
302int elv_register_queue(struct request_queue *q, bool uevent);
303void elv_unregister_queue(struct request_queue *q);
304
305ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
306		char *buf);
307ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
308		char *buf);
309ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
310		char *buf);
311ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
312		char *buf);
313ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
314		const char *buf, size_t count);
315ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
316ssize_t part_timeout_store(struct device *, struct device_attribute *,
317				const char *, size_t);
318
319static inline bool bio_may_exceed_limits(struct bio *bio,
320					 const struct queue_limits *lim)
321{
322	switch (bio_op(bio)) {
323	case REQ_OP_DISCARD:
324	case REQ_OP_SECURE_ERASE:
325	case REQ_OP_WRITE_ZEROES:
326		return true; /* non-trivial splitting decisions */
327	default:
328		break;
329	}
330
331	/*
332	 * All drivers must accept single-segments bios that are <= PAGE_SIZE.
333	 * This is a quick and dirty check that relies on the fact that
334	 * bi_io_vec[0] is always valid if a bio has data.  The check might
335	 * lead to occasional false negatives when bios are cloned, but compared
336	 * to the performance impact of cloned bios themselves the loop below
337	 * doesn't matter anyway.
338	 */
339	return lim->chunk_sectors || bio->bi_vcnt != 1 ||
340		bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE;
341}
342
343struct bio *__bio_split_to_limits(struct bio *bio,
344				  const struct queue_limits *lim,
345				  unsigned int *nr_segs);
346int ll_back_merge_fn(struct request *req, struct bio *bio,
347		unsigned int nr_segs);
348bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
349				struct request *next);
350unsigned int blk_recalc_rq_segments(struct request *rq);
351bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
352enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
353
354int blk_set_default_limits(struct queue_limits *lim);
355int blk_dev_init(void);
356
357/*
358 * Contribute to IO statistics IFF:
359 *
360 *	a) it's attached to a gendisk, and
361 *	b) the queue had IO stats enabled when this request was started
362 */
363static inline bool blk_do_io_stat(struct request *rq)
364{
365	return (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq);
366}
367
368void update_io_ticks(struct block_device *part, unsigned long now, bool end);
369unsigned int part_in_flight(struct block_device *part);
370
371static inline void req_set_nomerge(struct request_queue *q, struct request *req)
372{
373	req->cmd_flags |= REQ_NOMERGE;
374	if (req == q->last_merge)
375		q->last_merge = NULL;
376}
377
378/*
379 * Internal io_context interface
380 */
381struct io_cq *ioc_find_get_icq(struct request_queue *q);
382struct io_cq *ioc_lookup_icq(struct request_queue *q);
383#ifdef CONFIG_BLK_ICQ
384void ioc_clear_queue(struct request_queue *q);
385#else
386static inline void ioc_clear_queue(struct request_queue *q)
387{
388}
389#endif /* CONFIG_BLK_ICQ */
390
391struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q);
392
393static inline bool blk_queue_may_bounce(struct request_queue *q)
394{
395	return IS_ENABLED(CONFIG_BOUNCE) &&
396		q->limits.bounce == BLK_BOUNCE_HIGH &&
397		max_low_pfn >= max_pfn;
398}
399
400static inline struct bio *blk_queue_bounce(struct bio *bio,
401		struct request_queue *q)
402{
403	if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio)))
404		return __blk_queue_bounce(bio, q);
405	return bio;
406}
407
408#ifdef CONFIG_BLK_DEV_ZONED
409void disk_init_zone_resources(struct gendisk *disk);
410void disk_free_zone_resources(struct gendisk *disk);
411static inline bool bio_zone_write_plugging(struct bio *bio)
412{
413	return bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
414}
415static inline bool bio_is_zone_append(struct bio *bio)
416{
417	return bio_op(bio) == REQ_OP_ZONE_APPEND ||
418		bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
419}
420void blk_zone_write_plug_bio_merged(struct bio *bio);
421void blk_zone_write_plug_init_request(struct request *rq);
422static inline void blk_zone_update_request_bio(struct request *rq,
423					       struct bio *bio)
424{
425	/*
426	 * For zone append requests, the request sector indicates the location
427	 * at which the BIO data was written. Return this value to the BIO
428	 * issuer through the BIO iter sector.
429	 * For plugged zone writes, which include emulated zone append, we need
430	 * the original BIO sector so that blk_zone_write_plug_bio_endio() can
431	 * lookup the zone write plug.
432	 */
433	if (req_op(rq) == REQ_OP_ZONE_APPEND || bio_zone_write_plugging(bio))
434		bio->bi_iter.bi_sector = rq->__sector;
435}
436void blk_zone_write_plug_bio_endio(struct bio *bio);
437static inline void blk_zone_bio_endio(struct bio *bio)
438{
439	/*
440	 * For write BIOs to zoned devices, signal the completion of the BIO so
441	 * that the next write BIO can be submitted by zone write plugging.
442	 */
443	if (bio_zone_write_plugging(bio))
444		blk_zone_write_plug_bio_endio(bio);
445}
446
447void blk_zone_write_plug_finish_request(struct request *rq);
448static inline void blk_zone_finish_request(struct request *rq)
449{
450	if (rq->rq_flags & RQF_ZONE_WRITE_PLUGGING)
451		blk_zone_write_plug_finish_request(rq);
452}
453int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd,
454		unsigned long arg);
455int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode,
456		unsigned int cmd, unsigned long arg);
457#else /* CONFIG_BLK_DEV_ZONED */
458static inline void disk_init_zone_resources(struct gendisk *disk)
459{
460}
461static inline void disk_free_zone_resources(struct gendisk *disk)
462{
463}
464static inline bool bio_zone_write_plugging(struct bio *bio)
465{
466	return false;
467}
468static inline bool bio_is_zone_append(struct bio *bio)
469{
470	return false;
471}
472static inline void blk_zone_write_plug_bio_merged(struct bio *bio)
473{
474}
475static inline void blk_zone_write_plug_init_request(struct request *rq)
476{
477}
478static inline void blk_zone_update_request_bio(struct request *rq,
479					       struct bio *bio)
480{
481}
482static inline void blk_zone_bio_endio(struct bio *bio)
483{
484}
485static inline void blk_zone_finish_request(struct request *rq)
486{
487}
488static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
489		unsigned int cmd, unsigned long arg)
490{
491	return -ENOTTY;
492}
493static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
494		blk_mode_t mode, unsigned int cmd, unsigned long arg)
495{
496	return -ENOTTY;
497}
498#endif /* CONFIG_BLK_DEV_ZONED */
499
500struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
501void bdev_add(struct block_device *bdev, dev_t dev);
502
503int blk_alloc_ext_minor(void);
504void blk_free_ext_minor(unsigned int minor);
505#define ADDPART_FLAG_NONE	0
506#define ADDPART_FLAG_RAID	1
507#define ADDPART_FLAG_WHOLEDISK	2
508int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
509		sector_t length);
510int bdev_del_partition(struct gendisk *disk, int partno);
511int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
512		sector_t length);
513void drop_partition(struct block_device *part);
514
515void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors);
516
517struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id,
518		struct lock_class_key *lkclass);
519
520int bio_add_hw_page(struct request_queue *q, struct bio *bio,
521		struct page *page, unsigned int len, unsigned int offset,
522		unsigned int max_sectors, bool *same_page);
523
524/*
525 * Clean up a page appropriately, where the page may be pinned, may have a
526 * ref taken on it or neither.
527 */
528static inline void bio_release_page(struct bio *bio, struct page *page)
529{
530	if (bio_flagged(bio, BIO_PAGE_PINNED))
531		unpin_user_page(page);
532}
533
534struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id);
535
536int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode);
537
538int disk_alloc_events(struct gendisk *disk);
539void disk_add_events(struct gendisk *disk);
540void disk_del_events(struct gendisk *disk);
541void disk_release_events(struct gendisk *disk);
542void disk_block_events(struct gendisk *disk);
543void disk_unblock_events(struct gendisk *disk);
544void disk_flush_events(struct gendisk *disk, unsigned int mask);
545extern struct device_attribute dev_attr_events;
546extern struct device_attribute dev_attr_events_async;
547extern struct device_attribute dev_attr_events_poll_msecs;
548
549extern struct attribute_group blk_trace_attr_group;
550
551blk_mode_t file_to_blk_mode(struct file *file);
552int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode,
553		loff_t lstart, loff_t lend);
554long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
555long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
556
557extern const struct address_space_operations def_blk_aops;
558
559int disk_register_independent_access_ranges(struct gendisk *disk);
560void disk_unregister_independent_access_ranges(struct gendisk *disk);
561
562#ifdef CONFIG_FAIL_MAKE_REQUEST
563bool should_fail_request(struct block_device *part, unsigned int bytes);
564#else /* CONFIG_FAIL_MAKE_REQUEST */
565static inline bool should_fail_request(struct block_device *part,
566					unsigned int bytes)
567{
568	return false;
569}
570#endif /* CONFIG_FAIL_MAKE_REQUEST */
571
572/*
573 * Optimized request reference counting. Ideally we'd make timeouts be more
574 * clever, as that's the only reason we need references at all... But until
575 * this happens, this is faster than using refcount_t. Also see:
576 *
577 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count")
578 */
579#define req_ref_zero_or_close_to_overflow(req)	\
580	((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u)
581
582static inline bool req_ref_inc_not_zero(struct request *req)
583{
584	return atomic_inc_not_zero(&req->ref);
585}
586
587static inline bool req_ref_put_and_test(struct request *req)
588{
589	WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
590	return atomic_dec_and_test(&req->ref);
591}
592
593static inline void req_ref_set(struct request *req, int value)
594{
595	atomic_set(&req->ref, value);
596}
597
598static inline int req_ref_read(struct request *req)
599{
600	return atomic_read(&req->ref);
601}
602
603static inline u64 blk_time_get_ns(void)
604{
605	struct blk_plug *plug = current->plug;
606
607	if (!plug || !in_task())
608		return ktime_get_ns();
609
610	/*
611	 * 0 could very well be a valid time, but rather than flag "this is
612	 * a valid timestamp" separately, just accept that we'll do an extra
613	 * ktime_get_ns() if we just happen to get 0 as the current time.
614	 */
615	if (!plug->cur_ktime) {
616		plug->cur_ktime = ktime_get_ns();
617		current->flags |= PF_BLOCK_TS;
618	}
619	return plug->cur_ktime;
620}
621
622static inline ktime_t blk_time_get(void)
623{
624	return ns_to_ktime(blk_time_get_ns());
625}
626
627/*
628 * From most significant bit:
629 * 1 bit: reserved for other usage, see below
630 * 12 bits: original size of bio
631 * 51 bits: issue time of bio
632 */
633#define BIO_ISSUE_RES_BITS      1
634#define BIO_ISSUE_SIZE_BITS     12
635#define BIO_ISSUE_RES_SHIFT     (64 - BIO_ISSUE_RES_BITS)
636#define BIO_ISSUE_SIZE_SHIFT    (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
637#define BIO_ISSUE_TIME_MASK     ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
638#define BIO_ISSUE_SIZE_MASK     \
639	(((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
640#define BIO_ISSUE_RES_MASK      (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
641
642/* Reserved bit for blk-throtl */
643#define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
644
645static inline u64 __bio_issue_time(u64 time)
646{
647	return time & BIO_ISSUE_TIME_MASK;
648}
649
650static inline u64 bio_issue_time(struct bio_issue *issue)
651{
652	return __bio_issue_time(issue->value);
653}
654
655static inline sector_t bio_issue_size(struct bio_issue *issue)
656{
657	return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
658}
659
660static inline void bio_issue_init(struct bio_issue *issue,
661				       sector_t size)
662{
663	size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
664	issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
665			(blk_time_get_ns() & BIO_ISSUE_TIME_MASK) |
666			((u64)size << BIO_ISSUE_SIZE_SHIFT));
667}
668
669void bdev_release(struct file *bdev_file);
670int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder,
671	      const struct blk_holder_ops *hops, struct file *bdev_file);
672int bdev_permission(dev_t dev, blk_mode_t mode, void *holder);
673
674#endif /* BLK_INTERNAL_H */
675