1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Functions related to segment and merge handling
4 */
5#include <linux/kernel.h>
6#include <linux/module.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
9#include <linux/blk-integrity.h>
10#include <linux/scatterlist.h>
11#include <linux/part_stat.h>
12#include <linux/blk-cgroup.h>
13
14#include <trace/events/block.h>
15
16#include "blk.h"
17#include "blk-mq-sched.h"
18#include "blk-rq-qos.h"
19#include "blk-throttle.h"
20
21static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
22{
23	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
24}
25
26static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
27{
28	struct bvec_iter iter = bio->bi_iter;
29	int idx;
30
31	bio_get_first_bvec(bio, bv);
32	if (bv->bv_len == bio->bi_iter.bi_size)
33		return;		/* this bio only has a single bvec */
34
35	bio_advance_iter(bio, &iter, iter.bi_size);
36
37	if (!iter.bi_bvec_done)
38		idx = iter.bi_idx - 1;
39	else	/* in the middle of bvec */
40		idx = iter.bi_idx;
41
42	*bv = bio->bi_io_vec[idx];
43
44	/*
45	 * iter.bi_bvec_done records actual length of the last bvec
46	 * if this bio ends in the middle of one io vector
47	 */
48	if (iter.bi_bvec_done)
49		bv->bv_len = iter.bi_bvec_done;
50}
51
52static inline bool bio_will_gap(struct request_queue *q,
53		struct request *prev_rq, struct bio *prev, struct bio *next)
54{
55	struct bio_vec pb, nb;
56
57	if (!bio_has_data(prev) || !queue_virt_boundary(q))
58		return false;
59
60	/*
61	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62	 * is quite difficult to respect the sg gap limit.  We work hard to
63	 * merge a huge number of small single bios in case of mkfs.
64	 */
65	if (prev_rq)
66		bio_get_first_bvec(prev_rq->bio, &pb);
67	else
68		bio_get_first_bvec(prev, &pb);
69	if (pb.bv_offset & queue_virt_boundary(q))
70		return true;
71
72	/*
73	 * We don't need to worry about the situation that the merged segment
74	 * ends in unaligned virt boundary:
75	 *
76	 * - if 'pb' ends aligned, the merged segment ends aligned
77	 * - if 'pb' ends unaligned, the next bio must include
78	 *   one single bvec of 'nb', otherwise the 'nb' can't
79	 *   merge with 'pb'
80	 */
81	bio_get_last_bvec(prev, &pb);
82	bio_get_first_bvec(next, &nb);
83	if (biovec_phys_mergeable(q, &pb, &nb))
84		return false;
85	return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
86}
87
88static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
89{
90	return bio_will_gap(req->q, req, req->biotail, bio);
91}
92
93static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
94{
95	return bio_will_gap(req->q, NULL, bio, req->bio);
96}
97
98/*
99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
100 * is defined as 'unsigned int', meantime it has to be aligned to with the
101 * logical block size, which is the minimum accepted unit by hardware.
102 */
103static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
104{
105	return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
106}
107
108static struct bio *bio_split_discard(struct bio *bio,
109				     const struct queue_limits *lim,
110				     unsigned *nsegs, struct bio_set *bs)
111{
112	unsigned int max_discard_sectors, granularity;
113	sector_t tmp;
114	unsigned split_sectors;
115
116	*nsegs = 1;
117
118	granularity = max(lim->discard_granularity >> 9, 1U);
119
120	max_discard_sectors =
121		min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
122	max_discard_sectors -= max_discard_sectors % granularity;
123	if (unlikely(!max_discard_sectors))
124		return NULL;
125
126	if (bio_sectors(bio) <= max_discard_sectors)
127		return NULL;
128
129	split_sectors = max_discard_sectors;
130
131	/*
132	 * If the next starting sector would be misaligned, stop the discard at
133	 * the previous aligned sector.
134	 */
135	tmp = bio->bi_iter.bi_sector + split_sectors -
136		((lim->discard_alignment >> 9) % granularity);
137	tmp = sector_div(tmp, granularity);
138
139	if (split_sectors > tmp)
140		split_sectors -= tmp;
141
142	return bio_split(bio, split_sectors, GFP_NOIO, bs);
143}
144
145static struct bio *bio_split_write_zeroes(struct bio *bio,
146					  const struct queue_limits *lim,
147					  unsigned *nsegs, struct bio_set *bs)
148{
149	*nsegs = 0;
150	if (!lim->max_write_zeroes_sectors)
151		return NULL;
152	if (bio_sectors(bio) <= lim->max_write_zeroes_sectors)
153		return NULL;
154	return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs);
155}
156
157/*
158 * Return the maximum number of sectors from the start of a bio that may be
159 * submitted as a single request to a block device. If enough sectors remain,
160 * align the end to the physical block size. Otherwise align the end to the
161 * logical block size. This approach minimizes the number of non-aligned
162 * requests that are submitted to a block device if the start of a bio is not
163 * aligned to a physical block boundary.
164 */
165static inline unsigned get_max_io_size(struct bio *bio,
166				       const struct queue_limits *lim)
167{
168	unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
169	unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
170	unsigned max_sectors = lim->max_sectors, start, end;
171
172	if (lim->chunk_sectors) {
173		max_sectors = min(max_sectors,
174			blk_chunk_sectors_left(bio->bi_iter.bi_sector,
175					       lim->chunk_sectors));
176	}
177
178	start = bio->bi_iter.bi_sector & (pbs - 1);
179	end = (start + max_sectors) & ~(pbs - 1);
180	if (end > start)
181		return end - start;
182	return max_sectors & ~(lbs - 1);
183}
184
185/**
186 * get_max_segment_size() - maximum number of bytes to add as a single segment
187 * @lim: Request queue limits.
188 * @start_page: See below.
189 * @offset: Offset from @start_page where to add a segment.
190 *
191 * Returns the maximum number of bytes that can be added as a single segment.
192 */
193static inline unsigned get_max_segment_size(const struct queue_limits *lim,
194		struct page *start_page, unsigned long offset)
195{
196	unsigned long mask = lim->seg_boundary_mask;
197
198	offset = mask & (page_to_phys(start_page) + offset);
199
200	/*
201	 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
202	 * after having calculated the minimum.
203	 */
204	return min(mask - offset, (unsigned long)lim->max_segment_size - 1) + 1;
205}
206
207/**
208 * bvec_split_segs - verify whether or not a bvec should be split in the middle
209 * @lim:      [in] queue limits to split based on
210 * @bv:       [in] bvec to examine
211 * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
212 *            by the number of segments from @bv that may be appended to that
213 *            bio without exceeding @max_segs
214 * @bytes:    [in,out] Number of bytes in the bio being built. Incremented
215 *            by the number of bytes from @bv that may be appended to that
216 *            bio without exceeding @max_bytes
217 * @max_segs: [in] upper bound for *@nsegs
218 * @max_bytes: [in] upper bound for *@bytes
219 *
220 * When splitting a bio, it can happen that a bvec is encountered that is too
221 * big to fit in a single segment and hence that it has to be split in the
222 * middle. This function verifies whether or not that should happen. The value
223 * %true is returned if and only if appending the entire @bv to a bio with
224 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
225 * the block driver.
226 */
227static bool bvec_split_segs(const struct queue_limits *lim,
228		const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
229		unsigned max_segs, unsigned max_bytes)
230{
231	unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
232	unsigned len = min(bv->bv_len, max_len);
233	unsigned total_len = 0;
234	unsigned seg_size = 0;
235
236	while (len && *nsegs < max_segs) {
237		seg_size = get_max_segment_size(lim, bv->bv_page,
238						bv->bv_offset + total_len);
239		seg_size = min(seg_size, len);
240
241		(*nsegs)++;
242		total_len += seg_size;
243		len -= seg_size;
244
245		if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
246			break;
247	}
248
249	*bytes += total_len;
250
251	/* tell the caller to split the bvec if it is too big to fit */
252	return len > 0 || bv->bv_len > max_len;
253}
254
255/**
256 * bio_split_rw - split a bio in two bios
257 * @bio:  [in] bio to be split
258 * @lim:  [in] queue limits to split based on
259 * @segs: [out] number of segments in the bio with the first half of the sectors
260 * @bs:	  [in] bio set to allocate the clone from
261 * @max_bytes: [in] maximum number of bytes per bio
262 *
263 * Clone @bio, update the bi_iter of the clone to represent the first sectors
264 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
265 * following is guaranteed for the cloned bio:
266 * - That it has at most @max_bytes worth of data
267 * - That it has at most queue_max_segments(@q) segments.
268 *
269 * Except for discard requests the cloned bio will point at the bi_io_vec of
270 * the original bio. It is the responsibility of the caller to ensure that the
271 * original bio is not freed before the cloned bio. The caller is also
272 * responsible for ensuring that @bs is only destroyed after processing of the
273 * split bio has finished.
274 */
275struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
276		unsigned *segs, struct bio_set *bs, unsigned max_bytes)
277{
278	struct bio_vec bv, bvprv, *bvprvp = NULL;
279	struct bvec_iter iter;
280	unsigned nsegs = 0, bytes = 0;
281
282	bio_for_each_bvec(bv, bio, iter) {
283		/*
284		 * If the queue doesn't support SG gaps and adding this
285		 * offset would create a gap, disallow it.
286		 */
287		if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
288			goto split;
289
290		if (nsegs < lim->max_segments &&
291		    bytes + bv.bv_len <= max_bytes &&
292		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
293			nsegs++;
294			bytes += bv.bv_len;
295		} else {
296			if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
297					lim->max_segments, max_bytes))
298				goto split;
299		}
300
301		bvprv = bv;
302		bvprvp = &bvprv;
303	}
304
305	*segs = nsegs;
306	return NULL;
307split:
308	/*
309	 * We can't sanely support splitting for a REQ_NOWAIT bio. End it
310	 * with EAGAIN if splitting is required and return an error pointer.
311	 */
312	if (bio->bi_opf & REQ_NOWAIT) {
313		bio->bi_status = BLK_STS_AGAIN;
314		bio_endio(bio);
315		return ERR_PTR(-EAGAIN);
316	}
317
318	*segs = nsegs;
319
320	/*
321	 * Individual bvecs might not be logical block aligned. Round down the
322	 * split size so that each bio is properly block size aligned, even if
323	 * we do not use the full hardware limits.
324	 */
325	bytes = ALIGN_DOWN(bytes, lim->logical_block_size);
326
327	/*
328	 * Bio splitting may cause subtle trouble such as hang when doing sync
329	 * iopoll in direct IO routine. Given performance gain of iopoll for
330	 * big IO can be trival, disable iopoll when split needed.
331	 */
332	bio_clear_polled(bio);
333	return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs);
334}
335EXPORT_SYMBOL_GPL(bio_split_rw);
336
337/**
338 * __bio_split_to_limits - split a bio to fit the queue limits
339 * @bio:     bio to be split
340 * @lim:     queue limits to split based on
341 * @nr_segs: returns the number of segments in the returned bio
342 *
343 * Check if @bio needs splitting based on the queue limits, and if so split off
344 * a bio fitting the limits from the beginning of @bio and return it.  @bio is
345 * shortened to the remainder and re-submitted.
346 *
347 * The split bio is allocated from @q->bio_split, which is provided by the
348 * block layer.
349 */
350struct bio *__bio_split_to_limits(struct bio *bio,
351				  const struct queue_limits *lim,
352				  unsigned int *nr_segs)
353{
354	struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split;
355	struct bio *split;
356
357	switch (bio_op(bio)) {
358	case REQ_OP_DISCARD:
359	case REQ_OP_SECURE_ERASE:
360		split = bio_split_discard(bio, lim, nr_segs, bs);
361		break;
362	case REQ_OP_WRITE_ZEROES:
363		split = bio_split_write_zeroes(bio, lim, nr_segs, bs);
364		break;
365	default:
366		split = bio_split_rw(bio, lim, nr_segs, bs,
367				get_max_io_size(bio, lim) << SECTOR_SHIFT);
368		if (IS_ERR(split))
369			return NULL;
370		break;
371	}
372
373	if (split) {
374		/* there isn't chance to merge the split bio */
375		split->bi_opf |= REQ_NOMERGE;
376
377		blkcg_bio_issue_init(split);
378		bio_chain(split, bio);
379		trace_block_split(split, bio->bi_iter.bi_sector);
380		WARN_ON_ONCE(bio_zone_write_plugging(bio));
381		submit_bio_noacct(bio);
382		return split;
383	}
384	return bio;
385}
386
387/**
388 * bio_split_to_limits - split a bio to fit the queue limits
389 * @bio:     bio to be split
390 *
391 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
392 * if so split off a bio fitting the limits from the beginning of @bio and
393 * return it.  @bio is shortened to the remainder and re-submitted.
394 *
395 * The split bio is allocated from @q->bio_split, which is provided by the
396 * block layer.
397 */
398struct bio *bio_split_to_limits(struct bio *bio)
399{
400	const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits;
401	unsigned int nr_segs;
402
403	if (bio_may_exceed_limits(bio, lim))
404		return __bio_split_to_limits(bio, lim, &nr_segs);
405	return bio;
406}
407EXPORT_SYMBOL(bio_split_to_limits);
408
409unsigned int blk_recalc_rq_segments(struct request *rq)
410{
411	unsigned int nr_phys_segs = 0;
412	unsigned int bytes = 0;
413	struct req_iterator iter;
414	struct bio_vec bv;
415
416	if (!rq->bio)
417		return 0;
418
419	switch (bio_op(rq->bio)) {
420	case REQ_OP_DISCARD:
421	case REQ_OP_SECURE_ERASE:
422		if (queue_max_discard_segments(rq->q) > 1) {
423			struct bio *bio = rq->bio;
424
425			for_each_bio(bio)
426				nr_phys_segs++;
427			return nr_phys_segs;
428		}
429		return 1;
430	case REQ_OP_WRITE_ZEROES:
431		return 0;
432	default:
433		break;
434	}
435
436	rq_for_each_bvec(bv, rq, iter)
437		bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
438				UINT_MAX, UINT_MAX);
439	return nr_phys_segs;
440}
441
442static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
443		struct scatterlist *sglist)
444{
445	if (!*sg)
446		return sglist;
447
448	/*
449	 * If the driver previously mapped a shorter list, we could see a
450	 * termination bit prematurely unless it fully inits the sg table
451	 * on each mapping. We KNOW that there must be more entries here
452	 * or the driver would be buggy, so force clear the termination bit
453	 * to avoid doing a full sg_init_table() in drivers for each command.
454	 */
455	sg_unmark_end(*sg);
456	return sg_next(*sg);
457}
458
459static unsigned blk_bvec_map_sg(struct request_queue *q,
460		struct bio_vec *bvec, struct scatterlist *sglist,
461		struct scatterlist **sg)
462{
463	unsigned nbytes = bvec->bv_len;
464	unsigned nsegs = 0, total = 0;
465
466	while (nbytes > 0) {
467		unsigned offset = bvec->bv_offset + total;
468		unsigned len = min(get_max_segment_size(&q->limits,
469				   bvec->bv_page, offset), nbytes);
470		struct page *page = bvec->bv_page;
471
472		/*
473		 * Unfortunately a fair number of drivers barf on scatterlists
474		 * that have an offset larger than PAGE_SIZE, despite other
475		 * subsystems dealing with that invariant just fine.  For now
476		 * stick to the legacy format where we never present those from
477		 * the block layer, but the code below should be removed once
478		 * these offenders (mostly MMC/SD drivers) are fixed.
479		 */
480		page += (offset >> PAGE_SHIFT);
481		offset &= ~PAGE_MASK;
482
483		*sg = blk_next_sg(sg, sglist);
484		sg_set_page(*sg, page, len, offset);
485
486		total += len;
487		nbytes -= len;
488		nsegs++;
489	}
490
491	return nsegs;
492}
493
494static inline int __blk_bvec_map_sg(struct bio_vec bv,
495		struct scatterlist *sglist, struct scatterlist **sg)
496{
497	*sg = blk_next_sg(sg, sglist);
498	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
499	return 1;
500}
501
502/* only try to merge bvecs into one sg if they are from two bios */
503static inline bool
504__blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
505			   struct bio_vec *bvprv, struct scatterlist **sg)
506{
507
508	int nbytes = bvec->bv_len;
509
510	if (!*sg)
511		return false;
512
513	if ((*sg)->length + nbytes > queue_max_segment_size(q))
514		return false;
515
516	if (!biovec_phys_mergeable(q, bvprv, bvec))
517		return false;
518
519	(*sg)->length += nbytes;
520
521	return true;
522}
523
524static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
525			     struct scatterlist *sglist,
526			     struct scatterlist **sg)
527{
528	struct bio_vec bvec, bvprv = { NULL };
529	struct bvec_iter iter;
530	int nsegs = 0;
531	bool new_bio = false;
532
533	for_each_bio(bio) {
534		bio_for_each_bvec(bvec, bio, iter) {
535			/*
536			 * Only try to merge bvecs from two bios given we
537			 * have done bio internal merge when adding pages
538			 * to bio
539			 */
540			if (new_bio &&
541			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
542				goto next_bvec;
543
544			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
545				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
546			else
547				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
548 next_bvec:
549			new_bio = false;
550		}
551		if (likely(bio->bi_iter.bi_size)) {
552			bvprv = bvec;
553			new_bio = true;
554		}
555	}
556
557	return nsegs;
558}
559
560/*
561 * map a request to scatterlist, return number of sg entries setup. Caller
562 * must make sure sg can hold rq->nr_phys_segments entries
563 */
564int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
565		struct scatterlist *sglist, struct scatterlist **last_sg)
566{
567	int nsegs = 0;
568
569	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
570		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
571	else if (rq->bio)
572		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
573
574	if (*last_sg)
575		sg_mark_end(*last_sg);
576
577	/*
578	 * Something must have been wrong if the figured number of
579	 * segment is bigger than number of req's physical segments
580	 */
581	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
582
583	return nsegs;
584}
585EXPORT_SYMBOL(__blk_rq_map_sg);
586
587static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
588						  sector_t offset)
589{
590	struct request_queue *q = rq->q;
591	unsigned int max_sectors;
592
593	if (blk_rq_is_passthrough(rq))
594		return q->limits.max_hw_sectors;
595
596	max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
597	if (!q->limits.chunk_sectors ||
598	    req_op(rq) == REQ_OP_DISCARD ||
599	    req_op(rq) == REQ_OP_SECURE_ERASE)
600		return max_sectors;
601	return min(max_sectors,
602		   blk_chunk_sectors_left(offset, q->limits.chunk_sectors));
603}
604
605static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
606		unsigned int nr_phys_segs)
607{
608	if (!blk_cgroup_mergeable(req, bio))
609		goto no_merge;
610
611	if (blk_integrity_merge_bio(req->q, req, bio) == false)
612		goto no_merge;
613
614	/* discard request merge won't add new segment */
615	if (req_op(req) == REQ_OP_DISCARD)
616		return 1;
617
618	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
619		goto no_merge;
620
621	/*
622	 * This will form the start of a new hw segment.  Bump both
623	 * counters.
624	 */
625	req->nr_phys_segments += nr_phys_segs;
626	return 1;
627
628no_merge:
629	req_set_nomerge(req->q, req);
630	return 0;
631}
632
633int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
634{
635	if (req_gap_back_merge(req, bio))
636		return 0;
637	if (blk_integrity_rq(req) &&
638	    integrity_req_gap_back_merge(req, bio))
639		return 0;
640	if (!bio_crypt_ctx_back_mergeable(req, bio))
641		return 0;
642	if (blk_rq_sectors(req) + bio_sectors(bio) >
643	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
644		req_set_nomerge(req->q, req);
645		return 0;
646	}
647
648	return ll_new_hw_segment(req, bio, nr_segs);
649}
650
651static int ll_front_merge_fn(struct request *req, struct bio *bio,
652		unsigned int nr_segs)
653{
654	if (req_gap_front_merge(req, bio))
655		return 0;
656	if (blk_integrity_rq(req) &&
657	    integrity_req_gap_front_merge(req, bio))
658		return 0;
659	if (!bio_crypt_ctx_front_mergeable(req, bio))
660		return 0;
661	if (blk_rq_sectors(req) + bio_sectors(bio) >
662	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
663		req_set_nomerge(req->q, req);
664		return 0;
665	}
666
667	return ll_new_hw_segment(req, bio, nr_segs);
668}
669
670static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
671		struct request *next)
672{
673	unsigned short segments = blk_rq_nr_discard_segments(req);
674
675	if (segments >= queue_max_discard_segments(q))
676		goto no_merge;
677	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
678	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
679		goto no_merge;
680
681	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
682	return true;
683no_merge:
684	req_set_nomerge(q, req);
685	return false;
686}
687
688static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
689				struct request *next)
690{
691	int total_phys_segments;
692
693	if (req_gap_back_merge(req, next->bio))
694		return 0;
695
696	/*
697	 * Will it become too large?
698	 */
699	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
700	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
701		return 0;
702
703	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
704	if (total_phys_segments > blk_rq_get_max_segments(req))
705		return 0;
706
707	if (!blk_cgroup_mergeable(req, next->bio))
708		return 0;
709
710	if (blk_integrity_merge_rq(q, req, next) == false)
711		return 0;
712
713	if (!bio_crypt_ctx_merge_rq(req, next))
714		return 0;
715
716	/* Merge is OK... */
717	req->nr_phys_segments = total_phys_segments;
718	return 1;
719}
720
721/**
722 * blk_rq_set_mixed_merge - mark a request as mixed merge
723 * @rq: request to mark as mixed merge
724 *
725 * Description:
726 *     @rq is about to be mixed merged.  Make sure the attributes
727 *     which can be mixed are set in each bio and mark @rq as mixed
728 *     merged.
729 */
730static void blk_rq_set_mixed_merge(struct request *rq)
731{
732	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
733	struct bio *bio;
734
735	if (rq->rq_flags & RQF_MIXED_MERGE)
736		return;
737
738	/*
739	 * @rq will no longer represent mixable attributes for all the
740	 * contained bios.  It will just track those of the first one.
741	 * Distributes the attributs to each bio.
742	 */
743	for (bio = rq->bio; bio; bio = bio->bi_next) {
744		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
745			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
746		bio->bi_opf |= ff;
747	}
748	rq->rq_flags |= RQF_MIXED_MERGE;
749}
750
751static inline blk_opf_t bio_failfast(const struct bio *bio)
752{
753	if (bio->bi_opf & REQ_RAHEAD)
754		return REQ_FAILFAST_MASK;
755
756	return bio->bi_opf & REQ_FAILFAST_MASK;
757}
758
759/*
760 * After we are marked as MIXED_MERGE, any new RA bio has to be updated
761 * as failfast, and request's failfast has to be updated in case of
762 * front merge.
763 */
764static inline void blk_update_mixed_merge(struct request *req,
765		struct bio *bio, bool front_merge)
766{
767	if (req->rq_flags & RQF_MIXED_MERGE) {
768		if (bio->bi_opf & REQ_RAHEAD)
769			bio->bi_opf |= REQ_FAILFAST_MASK;
770
771		if (front_merge) {
772			req->cmd_flags &= ~REQ_FAILFAST_MASK;
773			req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK;
774		}
775	}
776}
777
778static void blk_account_io_merge_request(struct request *req)
779{
780	if (blk_do_io_stat(req)) {
781		part_stat_lock();
782		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
783		part_stat_local_dec(req->part,
784				    in_flight[op_is_write(req_op(req))]);
785		part_stat_unlock();
786	}
787}
788
789static enum elv_merge blk_try_req_merge(struct request *req,
790					struct request *next)
791{
792	if (blk_discard_mergable(req))
793		return ELEVATOR_DISCARD_MERGE;
794	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
795		return ELEVATOR_BACK_MERGE;
796
797	return ELEVATOR_NO_MERGE;
798}
799
800/*
801 * For non-mq, this has to be called with the request spinlock acquired.
802 * For mq with scheduling, the appropriate queue wide lock should be held.
803 */
804static struct request *attempt_merge(struct request_queue *q,
805				     struct request *req, struct request *next)
806{
807	if (!rq_mergeable(req) || !rq_mergeable(next))
808		return NULL;
809
810	if (req_op(req) != req_op(next))
811		return NULL;
812
813	if (rq_data_dir(req) != rq_data_dir(next))
814		return NULL;
815
816	/* Don't merge requests with different write hints. */
817	if (req->write_hint != next->write_hint)
818		return NULL;
819
820	if (req->ioprio != next->ioprio)
821		return NULL;
822
823	/*
824	 * If we are allowed to merge, then append bio list
825	 * from next to rq and release next. merge_requests_fn
826	 * will have updated segment counts, update sector
827	 * counts here. Handle DISCARDs separately, as they
828	 * have separate settings.
829	 */
830
831	switch (blk_try_req_merge(req, next)) {
832	case ELEVATOR_DISCARD_MERGE:
833		if (!req_attempt_discard_merge(q, req, next))
834			return NULL;
835		break;
836	case ELEVATOR_BACK_MERGE:
837		if (!ll_merge_requests_fn(q, req, next))
838			return NULL;
839		break;
840	default:
841		return NULL;
842	}
843
844	/*
845	 * If failfast settings disagree or any of the two is already
846	 * a mixed merge, mark both as mixed before proceeding.  This
847	 * makes sure that all involved bios have mixable attributes
848	 * set properly.
849	 */
850	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
851	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
852	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
853		blk_rq_set_mixed_merge(req);
854		blk_rq_set_mixed_merge(next);
855	}
856
857	/*
858	 * At this point we have either done a back merge or front merge. We
859	 * need the smaller start_time_ns of the merged requests to be the
860	 * current request for accounting purposes.
861	 */
862	if (next->start_time_ns < req->start_time_ns)
863		req->start_time_ns = next->start_time_ns;
864
865	req->biotail->bi_next = next->bio;
866	req->biotail = next->biotail;
867
868	req->__data_len += blk_rq_bytes(next);
869
870	if (!blk_discard_mergable(req))
871		elv_merge_requests(q, req, next);
872
873	blk_crypto_rq_put_keyslot(next);
874
875	/*
876	 * 'next' is going away, so update stats accordingly
877	 */
878	blk_account_io_merge_request(next);
879
880	trace_block_rq_merge(next);
881
882	/*
883	 * ownership of bio passed from next to req, return 'next' for
884	 * the caller to free
885	 */
886	next->bio = NULL;
887	return next;
888}
889
890static struct request *attempt_back_merge(struct request_queue *q,
891		struct request *rq)
892{
893	struct request *next = elv_latter_request(q, rq);
894
895	if (next)
896		return attempt_merge(q, rq, next);
897
898	return NULL;
899}
900
901static struct request *attempt_front_merge(struct request_queue *q,
902		struct request *rq)
903{
904	struct request *prev = elv_former_request(q, rq);
905
906	if (prev)
907		return attempt_merge(q, prev, rq);
908
909	return NULL;
910}
911
912/*
913 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
914 * otherwise. The caller is responsible for freeing 'next' if the merge
915 * happened.
916 */
917bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
918			   struct request *next)
919{
920	return attempt_merge(q, rq, next);
921}
922
923bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
924{
925	if (!rq_mergeable(rq) || !bio_mergeable(bio))
926		return false;
927
928	if (req_op(rq) != bio_op(bio))
929		return false;
930
931	/* different data direction or already started, don't merge */
932	if (bio_data_dir(bio) != rq_data_dir(rq))
933		return false;
934
935	/* don't merge across cgroup boundaries */
936	if (!blk_cgroup_mergeable(rq, bio))
937		return false;
938
939	/* only merge integrity protected bio into ditto rq */
940	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
941		return false;
942
943	/* Only merge if the crypt contexts are compatible */
944	if (!bio_crypt_rq_ctx_compatible(rq, bio))
945		return false;
946
947	/* Don't merge requests with different write hints. */
948	if (rq->write_hint != bio->bi_write_hint)
949		return false;
950
951	if (rq->ioprio != bio_prio(bio))
952		return false;
953
954	return true;
955}
956
957enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
958{
959	if (blk_discard_mergable(rq))
960		return ELEVATOR_DISCARD_MERGE;
961	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
962		return ELEVATOR_BACK_MERGE;
963	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
964		return ELEVATOR_FRONT_MERGE;
965	return ELEVATOR_NO_MERGE;
966}
967
968static void blk_account_io_merge_bio(struct request *req)
969{
970	if (!blk_do_io_stat(req))
971		return;
972
973	part_stat_lock();
974	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
975	part_stat_unlock();
976}
977
978enum bio_merge_status bio_attempt_back_merge(struct request *req,
979		struct bio *bio, unsigned int nr_segs)
980{
981	const blk_opf_t ff = bio_failfast(bio);
982
983	if (!ll_back_merge_fn(req, bio, nr_segs))
984		return BIO_MERGE_FAILED;
985
986	trace_block_bio_backmerge(bio);
987	rq_qos_merge(req->q, req, bio);
988
989	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
990		blk_rq_set_mixed_merge(req);
991
992	blk_update_mixed_merge(req, bio, false);
993
994	if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
995		blk_zone_write_plug_bio_merged(bio);
996
997	req->biotail->bi_next = bio;
998	req->biotail = bio;
999	req->__data_len += bio->bi_iter.bi_size;
1000
1001	bio_crypt_free_ctx(bio);
1002
1003	blk_account_io_merge_bio(req);
1004	return BIO_MERGE_OK;
1005}
1006
1007static enum bio_merge_status bio_attempt_front_merge(struct request *req,
1008		struct bio *bio, unsigned int nr_segs)
1009{
1010	const blk_opf_t ff = bio_failfast(bio);
1011
1012	/*
1013	 * A front merge for writes to sequential zones of a zoned block device
1014	 * can happen only if the user submitted writes out of order. Do not
1015	 * merge such write to let it fail.
1016	 */
1017	if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
1018		return BIO_MERGE_FAILED;
1019
1020	if (!ll_front_merge_fn(req, bio, nr_segs))
1021		return BIO_MERGE_FAILED;
1022
1023	trace_block_bio_frontmerge(bio);
1024	rq_qos_merge(req->q, req, bio);
1025
1026	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1027		blk_rq_set_mixed_merge(req);
1028
1029	blk_update_mixed_merge(req, bio, true);
1030
1031	bio->bi_next = req->bio;
1032	req->bio = bio;
1033
1034	req->__sector = bio->bi_iter.bi_sector;
1035	req->__data_len += bio->bi_iter.bi_size;
1036
1037	bio_crypt_do_front_merge(req, bio);
1038
1039	blk_account_io_merge_bio(req);
1040	return BIO_MERGE_OK;
1041}
1042
1043static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
1044		struct request *req, struct bio *bio)
1045{
1046	unsigned short segments = blk_rq_nr_discard_segments(req);
1047
1048	if (segments >= queue_max_discard_segments(q))
1049		goto no_merge;
1050	if (blk_rq_sectors(req) + bio_sectors(bio) >
1051	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1052		goto no_merge;
1053
1054	rq_qos_merge(q, req, bio);
1055
1056	req->biotail->bi_next = bio;
1057	req->biotail = bio;
1058	req->__data_len += bio->bi_iter.bi_size;
1059	req->nr_phys_segments = segments + 1;
1060
1061	blk_account_io_merge_bio(req);
1062	return BIO_MERGE_OK;
1063no_merge:
1064	req_set_nomerge(q, req);
1065	return BIO_MERGE_FAILED;
1066}
1067
1068static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1069						   struct request *rq,
1070						   struct bio *bio,
1071						   unsigned int nr_segs,
1072						   bool sched_allow_merge)
1073{
1074	if (!blk_rq_merge_ok(rq, bio))
1075		return BIO_MERGE_NONE;
1076
1077	switch (blk_try_merge(rq, bio)) {
1078	case ELEVATOR_BACK_MERGE:
1079		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1080			return bio_attempt_back_merge(rq, bio, nr_segs);
1081		break;
1082	case ELEVATOR_FRONT_MERGE:
1083		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1084			return bio_attempt_front_merge(rq, bio, nr_segs);
1085		break;
1086	case ELEVATOR_DISCARD_MERGE:
1087		return bio_attempt_discard_merge(q, rq, bio);
1088	default:
1089		return BIO_MERGE_NONE;
1090	}
1091
1092	return BIO_MERGE_FAILED;
1093}
1094
1095/**
1096 * blk_attempt_plug_merge - try to merge with %current's plugged list
1097 * @q: request_queue new bio is being queued at
1098 * @bio: new bio being queued
1099 * @nr_segs: number of segments in @bio
1100 * from the passed in @q already in the plug list
1101 *
1102 * Determine whether @bio being queued on @q can be merged with the previous
1103 * request on %current's plugged list.  Returns %true if merge was successful,
1104 * otherwise %false.
1105 *
1106 * Plugging coalesces IOs from the same issuer for the same purpose without
1107 * going through @q->queue_lock.  As such it's more of an issuing mechanism
1108 * than scheduling, and the request, while may have elvpriv data, is not
1109 * added on the elevator at this point.  In addition, we don't have
1110 * reliable access to the elevator outside queue lock.  Only check basic
1111 * merging parameters without querying the elevator.
1112 *
1113 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1114 */
1115bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1116		unsigned int nr_segs)
1117{
1118	struct blk_plug *plug = current->plug;
1119	struct request *rq;
1120
1121	if (!plug || rq_list_empty(plug->mq_list))
1122		return false;
1123
1124	rq_list_for_each(&plug->mq_list, rq) {
1125		if (rq->q == q) {
1126			if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1127			    BIO_MERGE_OK)
1128				return true;
1129			break;
1130		}
1131
1132		/*
1133		 * Only keep iterating plug list for merges if we have multiple
1134		 * queues
1135		 */
1136		if (!plug->multiple_queues)
1137			break;
1138	}
1139	return false;
1140}
1141
1142/*
1143 * Iterate list of requests and see if we can merge this bio with any
1144 * of them.
1145 */
1146bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1147			struct bio *bio, unsigned int nr_segs)
1148{
1149	struct request *rq;
1150	int checked = 8;
1151
1152	list_for_each_entry_reverse(rq, list, queuelist) {
1153		if (!checked--)
1154			break;
1155
1156		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1157		case BIO_MERGE_NONE:
1158			continue;
1159		case BIO_MERGE_OK:
1160			return true;
1161		case BIO_MERGE_FAILED:
1162			return false;
1163		}
1164
1165	}
1166
1167	return false;
1168}
1169EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1170
1171bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1172		unsigned int nr_segs, struct request **merged_request)
1173{
1174	struct request *rq;
1175
1176	switch (elv_merge(q, &rq, bio)) {
1177	case ELEVATOR_BACK_MERGE:
1178		if (!blk_mq_sched_allow_merge(q, rq, bio))
1179			return false;
1180		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1181			return false;
1182		*merged_request = attempt_back_merge(q, rq);
1183		if (!*merged_request)
1184			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1185		return true;
1186	case ELEVATOR_FRONT_MERGE:
1187		if (!blk_mq_sched_allow_merge(q, rq, bio))
1188			return false;
1189		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1190			return false;
1191		*merged_request = attempt_front_merge(q, rq);
1192		if (!*merged_request)
1193			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1194		return true;
1195	case ELEVATOR_DISCARD_MERGE:
1196		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1197	default:
1198		return false;
1199	}
1200}
1201EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1202