1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 *   Avi Kivity   <avi@qumranet.com>
13 *   Yaniv Kamay  <yaniv@qumranet.com>
14 */
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/highmem.h>
18#include <linux/hrtimer.h>
19#include <linux/kernel.h>
20#include <linux/kvm_host.h>
21#include <linux/module.h>
22#include <linux/moduleparam.h>
23#include <linux/mod_devicetable.h>
24#include <linux/mm.h>
25#include <linux/objtool.h>
26#include <linux/sched.h>
27#include <linux/sched/smt.h>
28#include <linux/slab.h>
29#include <linux/tboot.h>
30#include <linux/trace_events.h>
31#include <linux/entry-kvm.h>
32
33#include <asm/apic.h>
34#include <asm/asm.h>
35#include <asm/cpu.h>
36#include <asm/cpu_device_id.h>
37#include <asm/debugreg.h>
38#include <asm/desc.h>
39#include <asm/fpu/api.h>
40#include <asm/fpu/xstate.h>
41#include <asm/fred.h>
42#include <asm/idtentry.h>
43#include <asm/io.h>
44#include <asm/irq_remapping.h>
45#include <asm/reboot.h>
46#include <asm/perf_event.h>
47#include <asm/mmu_context.h>
48#include <asm/mshyperv.h>
49#include <asm/mwait.h>
50#include <asm/spec-ctrl.h>
51#include <asm/vmx.h>
52
53#include <trace/events/ipi.h>
54
55#include "capabilities.h"
56#include "cpuid.h"
57#include "hyperv.h"
58#include "kvm_onhyperv.h"
59#include "irq.h"
60#include "kvm_cache_regs.h"
61#include "lapic.h"
62#include "mmu.h"
63#include "nested.h"
64#include "pmu.h"
65#include "sgx.h"
66#include "trace.h"
67#include "vmcs.h"
68#include "vmcs12.h"
69#include "vmx.h"
70#include "x86.h"
71#include "x86_ops.h"
72#include "smm.h"
73#include "vmx_onhyperv.h"
74#include "posted_intr.h"
75
76MODULE_AUTHOR("Qumranet");
77MODULE_LICENSE("GPL");
78
79#ifdef MODULE
80static const struct x86_cpu_id vmx_cpu_id[] = {
81	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
82	{}
83};
84MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
85#endif
86
87bool __read_mostly enable_vpid = 1;
88module_param_named(vpid, enable_vpid, bool, 0444);
89
90static bool __read_mostly enable_vnmi = 1;
91module_param_named(vnmi, enable_vnmi, bool, 0444);
92
93bool __read_mostly flexpriority_enabled = 1;
94module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
95
96bool __read_mostly enable_ept = 1;
97module_param_named(ept, enable_ept, bool, 0444);
98
99bool __read_mostly enable_unrestricted_guest = 1;
100module_param_named(unrestricted_guest,
101			enable_unrestricted_guest, bool, 0444);
102
103bool __read_mostly enable_ept_ad_bits = 1;
104module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
105
106static bool __read_mostly emulate_invalid_guest_state = true;
107module_param(emulate_invalid_guest_state, bool, 0444);
108
109static bool __read_mostly fasteoi = 1;
110module_param(fasteoi, bool, 0444);
111
112module_param(enable_apicv, bool, 0444);
113
114bool __read_mostly enable_ipiv = true;
115module_param(enable_ipiv, bool, 0444);
116
117/*
118 * If nested=1, nested virtualization is supported, i.e., guests may use
119 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
120 * use VMX instructions.
121 */
122static bool __read_mostly nested = 1;
123module_param(nested, bool, 0444);
124
125bool __read_mostly enable_pml = 1;
126module_param_named(pml, enable_pml, bool, 0444);
127
128static bool __read_mostly error_on_inconsistent_vmcs_config = true;
129module_param(error_on_inconsistent_vmcs_config, bool, 0444);
130
131static bool __read_mostly dump_invalid_vmcs = 0;
132module_param(dump_invalid_vmcs, bool, 0644);
133
134#define MSR_BITMAP_MODE_X2APIC		1
135#define MSR_BITMAP_MODE_X2APIC_APICV	2
136
137#define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
138
139/* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
140static int __read_mostly cpu_preemption_timer_multi;
141static bool __read_mostly enable_preemption_timer = 1;
142#ifdef CONFIG_X86_64
143module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
144#endif
145
146extern bool __read_mostly allow_smaller_maxphyaddr;
147module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
148
149#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
150#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
151#define KVM_VM_CR0_ALWAYS_ON				\
152	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
153
154#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
155#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
156#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
157
158#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
159
160#define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
161	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
162	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
163	RTIT_STATUS_BYTECNT))
164
165/*
166 * List of MSRs that can be directly passed to the guest.
167 * In addition to these x2apic, PT and LBR MSRs are handled specially.
168 */
169static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
170	MSR_IA32_SPEC_CTRL,
171	MSR_IA32_PRED_CMD,
172	MSR_IA32_FLUSH_CMD,
173	MSR_IA32_TSC,
174#ifdef CONFIG_X86_64
175	MSR_FS_BASE,
176	MSR_GS_BASE,
177	MSR_KERNEL_GS_BASE,
178	MSR_IA32_XFD,
179	MSR_IA32_XFD_ERR,
180#endif
181	MSR_IA32_SYSENTER_CS,
182	MSR_IA32_SYSENTER_ESP,
183	MSR_IA32_SYSENTER_EIP,
184	MSR_CORE_C1_RES,
185	MSR_CORE_C3_RESIDENCY,
186	MSR_CORE_C6_RESIDENCY,
187	MSR_CORE_C7_RESIDENCY,
188};
189
190/*
191 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
192 * ple_gap:    upper bound on the amount of time between two successive
193 *             executions of PAUSE in a loop. Also indicate if ple enabled.
194 *             According to test, this time is usually smaller than 128 cycles.
195 * ple_window: upper bound on the amount of time a guest is allowed to execute
196 *             in a PAUSE loop. Tests indicate that most spinlocks are held for
197 *             less than 2^12 cycles
198 * Time is measured based on a counter that runs at the same rate as the TSC,
199 * refer SDM volume 3b section 21.6.13 & 22.1.3.
200 */
201static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
202module_param(ple_gap, uint, 0444);
203
204static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
205module_param(ple_window, uint, 0444);
206
207/* Default doubles per-vcpu window every exit. */
208static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
209module_param(ple_window_grow, uint, 0444);
210
211/* Default resets per-vcpu window every exit to ple_window. */
212static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
213module_param(ple_window_shrink, uint, 0444);
214
215/* Default is to compute the maximum so we can never overflow. */
216static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
217module_param(ple_window_max, uint, 0444);
218
219/* Default is SYSTEM mode, 1 for host-guest mode */
220int __read_mostly pt_mode = PT_MODE_SYSTEM;
221module_param(pt_mode, int, S_IRUGO);
222
223struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
224
225static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
226static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
227static DEFINE_MUTEX(vmx_l1d_flush_mutex);
228
229/* Storage for pre module init parameter parsing */
230static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
231
232static const struct {
233	const char *option;
234	bool for_parse;
235} vmentry_l1d_param[] = {
236	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
237	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
238	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
239	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
240	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
241	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
242};
243
244#define L1D_CACHE_ORDER 4
245static void *vmx_l1d_flush_pages;
246
247static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
248{
249	struct page *page;
250	unsigned int i;
251
252	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
253		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
254		return 0;
255	}
256
257	if (!enable_ept) {
258		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
259		return 0;
260	}
261
262	if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
263		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
264		return 0;
265	}
266
267	/* If set to auto use the default l1tf mitigation method */
268	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
269		switch (l1tf_mitigation) {
270		case L1TF_MITIGATION_OFF:
271			l1tf = VMENTER_L1D_FLUSH_NEVER;
272			break;
273		case L1TF_MITIGATION_FLUSH_NOWARN:
274		case L1TF_MITIGATION_FLUSH:
275		case L1TF_MITIGATION_FLUSH_NOSMT:
276			l1tf = VMENTER_L1D_FLUSH_COND;
277			break;
278		case L1TF_MITIGATION_FULL:
279		case L1TF_MITIGATION_FULL_FORCE:
280			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
281			break;
282		}
283	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
284		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
285	}
286
287	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
288	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
289		/*
290		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
291		 * lifetime and so should not be charged to a memcg.
292		 */
293		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
294		if (!page)
295			return -ENOMEM;
296		vmx_l1d_flush_pages = page_address(page);
297
298		/*
299		 * Initialize each page with a different pattern in
300		 * order to protect against KSM in the nested
301		 * virtualization case.
302		 */
303		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
304			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
305			       PAGE_SIZE);
306		}
307	}
308
309	l1tf_vmx_mitigation = l1tf;
310
311	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
312		static_branch_enable(&vmx_l1d_should_flush);
313	else
314		static_branch_disable(&vmx_l1d_should_flush);
315
316	if (l1tf == VMENTER_L1D_FLUSH_COND)
317		static_branch_enable(&vmx_l1d_flush_cond);
318	else
319		static_branch_disable(&vmx_l1d_flush_cond);
320	return 0;
321}
322
323static int vmentry_l1d_flush_parse(const char *s)
324{
325	unsigned int i;
326
327	if (s) {
328		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
329			if (vmentry_l1d_param[i].for_parse &&
330			    sysfs_streq(s, vmentry_l1d_param[i].option))
331				return i;
332		}
333	}
334	return -EINVAL;
335}
336
337static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
338{
339	int l1tf, ret;
340
341	l1tf = vmentry_l1d_flush_parse(s);
342	if (l1tf < 0)
343		return l1tf;
344
345	if (!boot_cpu_has(X86_BUG_L1TF))
346		return 0;
347
348	/*
349	 * Has vmx_init() run already? If not then this is the pre init
350	 * parameter parsing. In that case just store the value and let
351	 * vmx_init() do the proper setup after enable_ept has been
352	 * established.
353	 */
354	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
355		vmentry_l1d_flush_param = l1tf;
356		return 0;
357	}
358
359	mutex_lock(&vmx_l1d_flush_mutex);
360	ret = vmx_setup_l1d_flush(l1tf);
361	mutex_unlock(&vmx_l1d_flush_mutex);
362	return ret;
363}
364
365static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
366{
367	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
368		return sysfs_emit(s, "???\n");
369
370	return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
371}
372
373static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
374{
375	u64 msr;
376
377	if (!vmx->disable_fb_clear)
378		return;
379
380	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
381	msr |= FB_CLEAR_DIS;
382	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
383	/* Cache the MSR value to avoid reading it later */
384	vmx->msr_ia32_mcu_opt_ctrl = msr;
385}
386
387static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
388{
389	if (!vmx->disable_fb_clear)
390		return;
391
392	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
393	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
394}
395
396static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
397{
398	/*
399	 * Disable VERW's behavior of clearing CPU buffers for the guest if the
400	 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
401	 * the mitigation. Disabling the clearing behavior provides a
402	 * performance boost for guests that aren't aware that manually clearing
403	 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
404	 * and VM-Exit.
405	 */
406	vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
407				(host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
408				!boot_cpu_has_bug(X86_BUG_MDS) &&
409				!boot_cpu_has_bug(X86_BUG_TAA);
410
411	/*
412	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
413	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
414	 * execute VERW.
415	 */
416	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
417	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
418	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
419	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
420	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
421	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
422		vmx->disable_fb_clear = false;
423}
424
425static const struct kernel_param_ops vmentry_l1d_flush_ops = {
426	.set = vmentry_l1d_flush_set,
427	.get = vmentry_l1d_flush_get,
428};
429module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
430
431static u32 vmx_segment_access_rights(struct kvm_segment *var);
432
433void vmx_vmexit(void);
434
435#define vmx_insn_failed(fmt...)		\
436do {					\
437	WARN_ONCE(1, fmt);		\
438	pr_warn_ratelimited(fmt);	\
439} while (0)
440
441noinline void vmread_error(unsigned long field)
442{
443	vmx_insn_failed("vmread failed: field=%lx\n", field);
444}
445
446#ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
447noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
448{
449	if (fault) {
450		kvm_spurious_fault();
451	} else {
452		instrumentation_begin();
453		vmread_error(field);
454		instrumentation_end();
455	}
456}
457#endif
458
459noinline void vmwrite_error(unsigned long field, unsigned long value)
460{
461	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
462			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
463}
464
465noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
466{
467	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
468			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
469}
470
471noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
472{
473	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
474			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
475}
476
477noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
478{
479	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
480			ext, vpid, gva);
481}
482
483noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
484{
485	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
486			ext, eptp, gpa);
487}
488
489static DEFINE_PER_CPU(struct vmcs *, vmxarea);
490DEFINE_PER_CPU(struct vmcs *, current_vmcs);
491/*
492 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
493 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
494 */
495static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
496
497static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
498static DEFINE_SPINLOCK(vmx_vpid_lock);
499
500struct vmcs_config vmcs_config __ro_after_init;
501struct vmx_capability vmx_capability __ro_after_init;
502
503#define VMX_SEGMENT_FIELD(seg)					\
504	[VCPU_SREG_##seg] = {                                   \
505		.selector = GUEST_##seg##_SELECTOR,		\
506		.base = GUEST_##seg##_BASE,		   	\
507		.limit = GUEST_##seg##_LIMIT,		   	\
508		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
509	}
510
511static const struct kvm_vmx_segment_field {
512	unsigned selector;
513	unsigned base;
514	unsigned limit;
515	unsigned ar_bytes;
516} kvm_vmx_segment_fields[] = {
517	VMX_SEGMENT_FIELD(CS),
518	VMX_SEGMENT_FIELD(DS),
519	VMX_SEGMENT_FIELD(ES),
520	VMX_SEGMENT_FIELD(FS),
521	VMX_SEGMENT_FIELD(GS),
522	VMX_SEGMENT_FIELD(SS),
523	VMX_SEGMENT_FIELD(TR),
524	VMX_SEGMENT_FIELD(LDTR),
525};
526
527static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
528{
529	vmx->segment_cache.bitmask = 0;
530}
531
532static unsigned long host_idt_base;
533
534#if IS_ENABLED(CONFIG_HYPERV)
535static bool __read_mostly enlightened_vmcs = true;
536module_param(enlightened_vmcs, bool, 0444);
537
538static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
539{
540	struct hv_enlightened_vmcs *evmcs;
541	hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
542
543	if (partition_assist_page == INVALID_PAGE)
544		return -ENOMEM;
545
546	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
547
548	evmcs->partition_assist_page = partition_assist_page;
549	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
550	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
551
552	return 0;
553}
554
555static __init void hv_init_evmcs(void)
556{
557	int cpu;
558
559	if (!enlightened_vmcs)
560		return;
561
562	/*
563	 * Enlightened VMCS usage should be recommended and the host needs
564	 * to support eVMCS v1 or above.
565	 */
566	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
567	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
568	     KVM_EVMCS_VERSION) {
569
570		/* Check that we have assist pages on all online CPUs */
571		for_each_online_cpu(cpu) {
572			if (!hv_get_vp_assist_page(cpu)) {
573				enlightened_vmcs = false;
574				break;
575			}
576		}
577
578		if (enlightened_vmcs) {
579			pr_info("Using Hyper-V Enlightened VMCS\n");
580			static_branch_enable(&__kvm_is_using_evmcs);
581		}
582
583		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
584			vt_x86_ops.enable_l2_tlb_flush
585				= hv_enable_l2_tlb_flush;
586	} else {
587		enlightened_vmcs = false;
588	}
589}
590
591static void hv_reset_evmcs(void)
592{
593	struct hv_vp_assist_page *vp_ap;
594
595	if (!kvm_is_using_evmcs())
596		return;
597
598	/*
599	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
600	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
601	 * doesn't have a VP assist page allocated.
602	 */
603	vp_ap = hv_get_vp_assist_page(smp_processor_id());
604	if (WARN_ON_ONCE(!vp_ap))
605		return;
606
607	/*
608	 * Reset everything to support using non-enlightened VMCS access later
609	 * (e.g. when we reload the module with enlightened_vmcs=0)
610	 */
611	vp_ap->nested_control.features.directhypercall = 0;
612	vp_ap->current_nested_vmcs = 0;
613	vp_ap->enlighten_vmentry = 0;
614}
615
616#else /* IS_ENABLED(CONFIG_HYPERV) */
617static void hv_init_evmcs(void) {}
618static void hv_reset_evmcs(void) {}
619#endif /* IS_ENABLED(CONFIG_HYPERV) */
620
621/*
622 * Comment's format: document - errata name - stepping - processor name.
623 * Refer from
624 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
625 */
626static u32 vmx_preemption_cpu_tfms[] = {
627/* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
6280x000206E6,
629/* 323056.pdf - AAX65  - C2 - Xeon L3406 */
630/* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
631/* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
6320x00020652,
633/* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
6340x00020655,
635/* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
636/* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
637/*
638 * 320767.pdf - AAP86  - B1 -
639 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
640 */
6410x000106E5,
642/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
6430x000106A0,
644/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
6450x000106A1,
646/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
6470x000106A4,
648 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
649 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
650 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
6510x000106A5,
652 /* Xeon E3-1220 V2 */
6530x000306A8,
654};
655
656static inline bool cpu_has_broken_vmx_preemption_timer(void)
657{
658	u32 eax = cpuid_eax(0x00000001), i;
659
660	/* Clear the reserved bits */
661	eax &= ~(0x3U << 14 | 0xfU << 28);
662	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
663		if (eax == vmx_preemption_cpu_tfms[i])
664			return true;
665
666	return false;
667}
668
669static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
670{
671	return flexpriority_enabled && lapic_in_kernel(vcpu);
672}
673
674static int vmx_get_passthrough_msr_slot(u32 msr)
675{
676	int i;
677
678	switch (msr) {
679	case 0x800 ... 0x8ff:
680		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
681		return -ENOENT;
682	case MSR_IA32_RTIT_STATUS:
683	case MSR_IA32_RTIT_OUTPUT_BASE:
684	case MSR_IA32_RTIT_OUTPUT_MASK:
685	case MSR_IA32_RTIT_CR3_MATCH:
686	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
687		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
688	case MSR_LBR_SELECT:
689	case MSR_LBR_TOS:
690	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
691	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
692	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
693	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
694	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
695		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
696		return -ENOENT;
697	}
698
699	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
700		if (vmx_possible_passthrough_msrs[i] == msr)
701			return i;
702	}
703
704	WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
705	return -ENOENT;
706}
707
708struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
709{
710	int i;
711
712	i = kvm_find_user_return_msr(msr);
713	if (i >= 0)
714		return &vmx->guest_uret_msrs[i];
715	return NULL;
716}
717
718static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
719				  struct vmx_uret_msr *msr, u64 data)
720{
721	unsigned int slot = msr - vmx->guest_uret_msrs;
722	int ret = 0;
723
724	if (msr->load_into_hardware) {
725		preempt_disable();
726		ret = kvm_set_user_return_msr(slot, data, msr->mask);
727		preempt_enable();
728	}
729	if (!ret)
730		msr->data = data;
731	return ret;
732}
733
734/*
735 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
736 *
737 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
738 * atomically track post-VMXON state, e.g. this may be called in NMI context.
739 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
740 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
741 * magically in RM, VM86, compat mode, or at CPL>0.
742 */
743static int kvm_cpu_vmxoff(void)
744{
745	asm goto("1: vmxoff\n\t"
746			  _ASM_EXTABLE(1b, %l[fault])
747			  ::: "cc", "memory" : fault);
748
749	cr4_clear_bits(X86_CR4_VMXE);
750	return 0;
751
752fault:
753	cr4_clear_bits(X86_CR4_VMXE);
754	return -EIO;
755}
756
757static void vmx_emergency_disable(void)
758{
759	int cpu = raw_smp_processor_id();
760	struct loaded_vmcs *v;
761
762	kvm_rebooting = true;
763
764	/*
765	 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
766	 * set in task context.  If this races with VMX is disabled by an NMI,
767	 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
768	 * kvm_rebooting set.
769	 */
770	if (!(__read_cr4() & X86_CR4_VMXE))
771		return;
772
773	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
774			    loaded_vmcss_on_cpu_link)
775		vmcs_clear(v->vmcs);
776
777	kvm_cpu_vmxoff();
778}
779
780static void __loaded_vmcs_clear(void *arg)
781{
782	struct loaded_vmcs *loaded_vmcs = arg;
783	int cpu = raw_smp_processor_id();
784
785	if (loaded_vmcs->cpu != cpu)
786		return; /* vcpu migration can race with cpu offline */
787	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
788		per_cpu(current_vmcs, cpu) = NULL;
789
790	vmcs_clear(loaded_vmcs->vmcs);
791	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
792		vmcs_clear(loaded_vmcs->shadow_vmcs);
793
794	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
795
796	/*
797	 * Ensure all writes to loaded_vmcs, including deleting it from its
798	 * current percpu list, complete before setting loaded_vmcs->cpu to
799	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
800	 * and add loaded_vmcs to its percpu list before it's deleted from this
801	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
802	 */
803	smp_wmb();
804
805	loaded_vmcs->cpu = -1;
806	loaded_vmcs->launched = 0;
807}
808
809void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
810{
811	int cpu = loaded_vmcs->cpu;
812
813	if (cpu != -1)
814		smp_call_function_single(cpu,
815			 __loaded_vmcs_clear, loaded_vmcs, 1);
816}
817
818static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
819				       unsigned field)
820{
821	bool ret;
822	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
823
824	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
825		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
826		vmx->segment_cache.bitmask = 0;
827	}
828	ret = vmx->segment_cache.bitmask & mask;
829	vmx->segment_cache.bitmask |= mask;
830	return ret;
831}
832
833static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
834{
835	u16 *p = &vmx->segment_cache.seg[seg].selector;
836
837	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
838		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
839	return *p;
840}
841
842static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
843{
844	ulong *p = &vmx->segment_cache.seg[seg].base;
845
846	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
847		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
848	return *p;
849}
850
851static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
852{
853	u32 *p = &vmx->segment_cache.seg[seg].limit;
854
855	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
856		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
857	return *p;
858}
859
860static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
861{
862	u32 *p = &vmx->segment_cache.seg[seg].ar;
863
864	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
865		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
866	return *p;
867}
868
869void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
870{
871	u32 eb;
872
873	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
874	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
875	/*
876	 * #VE isn't used for VMX.  To test against unexpected changes
877	 * related to #VE for VMX, intercept unexpected #VE and warn on it.
878	 */
879	if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
880		eb |= 1u << VE_VECTOR;
881	/*
882	 * Guest access to VMware backdoor ports could legitimately
883	 * trigger #GP because of TSS I/O permission bitmap.
884	 * We intercept those #GP and allow access to them anyway
885	 * as VMware does.
886	 */
887	if (enable_vmware_backdoor)
888		eb |= (1u << GP_VECTOR);
889	if ((vcpu->guest_debug &
890	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
891	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
892		eb |= 1u << BP_VECTOR;
893	if (to_vmx(vcpu)->rmode.vm86_active)
894		eb = ~0;
895	if (!vmx_need_pf_intercept(vcpu))
896		eb &= ~(1u << PF_VECTOR);
897
898	/* When we are running a nested L2 guest and L1 specified for it a
899	 * certain exception bitmap, we must trap the same exceptions and pass
900	 * them to L1. When running L2, we will only handle the exceptions
901	 * specified above if L1 did not want them.
902	 */
903	if (is_guest_mode(vcpu))
904		eb |= get_vmcs12(vcpu)->exception_bitmap;
905	else {
906		int mask = 0, match = 0;
907
908		if (enable_ept && (eb & (1u << PF_VECTOR))) {
909			/*
910			 * If EPT is enabled, #PF is currently only intercepted
911			 * if MAXPHYADDR is smaller on the guest than on the
912			 * host.  In that case we only care about present,
913			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
914			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
915			 */
916			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
917			match = PFERR_PRESENT_MASK;
918		}
919		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
920		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
921	}
922
923	/*
924	 * Disabling xfd interception indicates that dynamic xfeatures
925	 * might be used in the guest. Always trap #NM in this case
926	 * to save guest xfd_err timely.
927	 */
928	if (vcpu->arch.xfd_no_write_intercept)
929		eb |= (1u << NM_VECTOR);
930
931	vmcs_write32(EXCEPTION_BITMAP, eb);
932}
933
934/*
935 * Check if MSR is intercepted for currently loaded MSR bitmap.
936 */
937static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
938{
939	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
940		return true;
941
942	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
943}
944
945unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
946{
947	unsigned int flags = 0;
948
949	if (vmx->loaded_vmcs->launched)
950		flags |= VMX_RUN_VMRESUME;
951
952	/*
953	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
954	 * to change it directly without causing a vmexit.  In that case read
955	 * it after vmexit and store it in vmx->spec_ctrl.
956	 */
957	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
958		flags |= VMX_RUN_SAVE_SPEC_CTRL;
959
960	return flags;
961}
962
963static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
964		unsigned long entry, unsigned long exit)
965{
966	vm_entry_controls_clearbit(vmx, entry);
967	vm_exit_controls_clearbit(vmx, exit);
968}
969
970int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
971{
972	unsigned int i;
973
974	for (i = 0; i < m->nr; ++i) {
975		if (m->val[i].index == msr)
976			return i;
977	}
978	return -ENOENT;
979}
980
981static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
982{
983	int i;
984	struct msr_autoload *m = &vmx->msr_autoload;
985
986	switch (msr) {
987	case MSR_EFER:
988		if (cpu_has_load_ia32_efer()) {
989			clear_atomic_switch_msr_special(vmx,
990					VM_ENTRY_LOAD_IA32_EFER,
991					VM_EXIT_LOAD_IA32_EFER);
992			return;
993		}
994		break;
995	case MSR_CORE_PERF_GLOBAL_CTRL:
996		if (cpu_has_load_perf_global_ctrl()) {
997			clear_atomic_switch_msr_special(vmx,
998					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
999					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1000			return;
1001		}
1002		break;
1003	}
1004	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1005	if (i < 0)
1006		goto skip_guest;
1007	--m->guest.nr;
1008	m->guest.val[i] = m->guest.val[m->guest.nr];
1009	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1010
1011skip_guest:
1012	i = vmx_find_loadstore_msr_slot(&m->host, msr);
1013	if (i < 0)
1014		return;
1015
1016	--m->host.nr;
1017	m->host.val[i] = m->host.val[m->host.nr];
1018	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1019}
1020
1021static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1022		unsigned long entry, unsigned long exit,
1023		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1024		u64 guest_val, u64 host_val)
1025{
1026	vmcs_write64(guest_val_vmcs, guest_val);
1027	if (host_val_vmcs != HOST_IA32_EFER)
1028		vmcs_write64(host_val_vmcs, host_val);
1029	vm_entry_controls_setbit(vmx, entry);
1030	vm_exit_controls_setbit(vmx, exit);
1031}
1032
1033static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1034				  u64 guest_val, u64 host_val, bool entry_only)
1035{
1036	int i, j = 0;
1037	struct msr_autoload *m = &vmx->msr_autoload;
1038
1039	switch (msr) {
1040	case MSR_EFER:
1041		if (cpu_has_load_ia32_efer()) {
1042			add_atomic_switch_msr_special(vmx,
1043					VM_ENTRY_LOAD_IA32_EFER,
1044					VM_EXIT_LOAD_IA32_EFER,
1045					GUEST_IA32_EFER,
1046					HOST_IA32_EFER,
1047					guest_val, host_val);
1048			return;
1049		}
1050		break;
1051	case MSR_CORE_PERF_GLOBAL_CTRL:
1052		if (cpu_has_load_perf_global_ctrl()) {
1053			add_atomic_switch_msr_special(vmx,
1054					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1055					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1056					GUEST_IA32_PERF_GLOBAL_CTRL,
1057					HOST_IA32_PERF_GLOBAL_CTRL,
1058					guest_val, host_val);
1059			return;
1060		}
1061		break;
1062	case MSR_IA32_PEBS_ENABLE:
1063		/* PEBS needs a quiescent period after being disabled (to write
1064		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1065		 * provide that period, so a CPU could write host's record into
1066		 * guest's memory.
1067		 */
1068		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1069	}
1070
1071	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1072	if (!entry_only)
1073		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1074
1075	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1076	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1077		printk_once(KERN_WARNING "Not enough msr switch entries. "
1078				"Can't add msr %x\n", msr);
1079		return;
1080	}
1081	if (i < 0) {
1082		i = m->guest.nr++;
1083		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1084	}
1085	m->guest.val[i].index = msr;
1086	m->guest.val[i].value = guest_val;
1087
1088	if (entry_only)
1089		return;
1090
1091	if (j < 0) {
1092		j = m->host.nr++;
1093		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1094	}
1095	m->host.val[j].index = msr;
1096	m->host.val[j].value = host_val;
1097}
1098
1099static bool update_transition_efer(struct vcpu_vmx *vmx)
1100{
1101	u64 guest_efer = vmx->vcpu.arch.efer;
1102	u64 ignore_bits = 0;
1103	int i;
1104
1105	/* Shadow paging assumes NX to be available.  */
1106	if (!enable_ept)
1107		guest_efer |= EFER_NX;
1108
1109	/*
1110	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1111	 */
1112	ignore_bits |= EFER_SCE;
1113#ifdef CONFIG_X86_64
1114	ignore_bits |= EFER_LMA | EFER_LME;
1115	/* SCE is meaningful only in long mode on Intel */
1116	if (guest_efer & EFER_LMA)
1117		ignore_bits &= ~(u64)EFER_SCE;
1118#endif
1119
1120	/*
1121	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1122	 * On CPUs that support "load IA32_EFER", always switch EFER
1123	 * atomically, since it's faster than switching it manually.
1124	 */
1125	if (cpu_has_load_ia32_efer() ||
1126	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1127		if (!(guest_efer & EFER_LMA))
1128			guest_efer &= ~EFER_LME;
1129		if (guest_efer != host_efer)
1130			add_atomic_switch_msr(vmx, MSR_EFER,
1131					      guest_efer, host_efer, false);
1132		else
1133			clear_atomic_switch_msr(vmx, MSR_EFER);
1134		return false;
1135	}
1136
1137	i = kvm_find_user_return_msr(MSR_EFER);
1138	if (i < 0)
1139		return false;
1140
1141	clear_atomic_switch_msr(vmx, MSR_EFER);
1142
1143	guest_efer &= ~ignore_bits;
1144	guest_efer |= host_efer & ignore_bits;
1145
1146	vmx->guest_uret_msrs[i].data = guest_efer;
1147	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1148
1149	return true;
1150}
1151
1152#ifdef CONFIG_X86_32
1153/*
1154 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1155 * VMCS rather than the segment table.  KVM uses this helper to figure
1156 * out the current bases to poke them into the VMCS before entry.
1157 */
1158static unsigned long segment_base(u16 selector)
1159{
1160	struct desc_struct *table;
1161	unsigned long v;
1162
1163	if (!(selector & ~SEGMENT_RPL_MASK))
1164		return 0;
1165
1166	table = get_current_gdt_ro();
1167
1168	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1169		u16 ldt_selector = kvm_read_ldt();
1170
1171		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1172			return 0;
1173
1174		table = (struct desc_struct *)segment_base(ldt_selector);
1175	}
1176	v = get_desc_base(&table[selector >> 3]);
1177	return v;
1178}
1179#endif
1180
1181static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1182{
1183	return vmx_pt_mode_is_host_guest() &&
1184	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1185}
1186
1187static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1188{
1189	/* The base must be 128-byte aligned and a legal physical address. */
1190	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1191}
1192
1193static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1194{
1195	u32 i;
1196
1197	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1198	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1199	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1200	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1201	for (i = 0; i < addr_range; i++) {
1202		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1203		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1204	}
1205}
1206
1207static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1208{
1209	u32 i;
1210
1211	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1212	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1213	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1214	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1215	for (i = 0; i < addr_range; i++) {
1216		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1217		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1218	}
1219}
1220
1221static void pt_guest_enter(struct vcpu_vmx *vmx)
1222{
1223	if (vmx_pt_mode_is_system())
1224		return;
1225
1226	/*
1227	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1228	 * Save host state before VM entry.
1229	 */
1230	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1231	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1232		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1233		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1234		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1235	}
1236}
1237
1238static void pt_guest_exit(struct vcpu_vmx *vmx)
1239{
1240	if (vmx_pt_mode_is_system())
1241		return;
1242
1243	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1244		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1245		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1246	}
1247
1248	/*
1249	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1250	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1251	 */
1252	if (vmx->pt_desc.host.ctl)
1253		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1254}
1255
1256void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1257			unsigned long fs_base, unsigned long gs_base)
1258{
1259	if (unlikely(fs_sel != host->fs_sel)) {
1260		if (!(fs_sel & 7))
1261			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1262		else
1263			vmcs_write16(HOST_FS_SELECTOR, 0);
1264		host->fs_sel = fs_sel;
1265	}
1266	if (unlikely(gs_sel != host->gs_sel)) {
1267		if (!(gs_sel & 7))
1268			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1269		else
1270			vmcs_write16(HOST_GS_SELECTOR, 0);
1271		host->gs_sel = gs_sel;
1272	}
1273	if (unlikely(fs_base != host->fs_base)) {
1274		vmcs_writel(HOST_FS_BASE, fs_base);
1275		host->fs_base = fs_base;
1276	}
1277	if (unlikely(gs_base != host->gs_base)) {
1278		vmcs_writel(HOST_GS_BASE, gs_base);
1279		host->gs_base = gs_base;
1280	}
1281}
1282
1283void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1284{
1285	struct vcpu_vmx *vmx = to_vmx(vcpu);
1286	struct vmcs_host_state *host_state;
1287#ifdef CONFIG_X86_64
1288	int cpu = raw_smp_processor_id();
1289#endif
1290	unsigned long fs_base, gs_base;
1291	u16 fs_sel, gs_sel;
1292	int i;
1293
1294	/*
1295	 * Note that guest MSRs to be saved/restored can also be changed
1296	 * when guest state is loaded. This happens when guest transitions
1297	 * to/from long-mode by setting MSR_EFER.LMA.
1298	 */
1299	if (!vmx->guest_uret_msrs_loaded) {
1300		vmx->guest_uret_msrs_loaded = true;
1301		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1302			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1303				continue;
1304
1305			kvm_set_user_return_msr(i,
1306						vmx->guest_uret_msrs[i].data,
1307						vmx->guest_uret_msrs[i].mask);
1308		}
1309	}
1310
1311	if (vmx->nested.need_vmcs12_to_shadow_sync)
1312		nested_sync_vmcs12_to_shadow(vcpu);
1313
1314	if (vmx->guest_state_loaded)
1315		return;
1316
1317	host_state = &vmx->loaded_vmcs->host_state;
1318
1319	/*
1320	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1321	 * allow segment selectors with cpl > 0 or ti == 1.
1322	 */
1323	host_state->ldt_sel = kvm_read_ldt();
1324
1325#ifdef CONFIG_X86_64
1326	savesegment(ds, host_state->ds_sel);
1327	savesegment(es, host_state->es_sel);
1328
1329	gs_base = cpu_kernelmode_gs_base(cpu);
1330	if (likely(is_64bit_mm(current->mm))) {
1331		current_save_fsgs();
1332		fs_sel = current->thread.fsindex;
1333		gs_sel = current->thread.gsindex;
1334		fs_base = current->thread.fsbase;
1335		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1336	} else {
1337		savesegment(fs, fs_sel);
1338		savesegment(gs, gs_sel);
1339		fs_base = read_msr(MSR_FS_BASE);
1340		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1341	}
1342
1343	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1344#else
1345	savesegment(fs, fs_sel);
1346	savesegment(gs, gs_sel);
1347	fs_base = segment_base(fs_sel);
1348	gs_base = segment_base(gs_sel);
1349#endif
1350
1351	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1352	vmx->guest_state_loaded = true;
1353}
1354
1355static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1356{
1357	struct vmcs_host_state *host_state;
1358
1359	if (!vmx->guest_state_loaded)
1360		return;
1361
1362	host_state = &vmx->loaded_vmcs->host_state;
1363
1364	++vmx->vcpu.stat.host_state_reload;
1365
1366#ifdef CONFIG_X86_64
1367	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1368#endif
1369	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1370		kvm_load_ldt(host_state->ldt_sel);
1371#ifdef CONFIG_X86_64
1372		load_gs_index(host_state->gs_sel);
1373#else
1374		loadsegment(gs, host_state->gs_sel);
1375#endif
1376	}
1377	if (host_state->fs_sel & 7)
1378		loadsegment(fs, host_state->fs_sel);
1379#ifdef CONFIG_X86_64
1380	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1381		loadsegment(ds, host_state->ds_sel);
1382		loadsegment(es, host_state->es_sel);
1383	}
1384#endif
1385	invalidate_tss_limit();
1386#ifdef CONFIG_X86_64
1387	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1388#endif
1389	load_fixmap_gdt(raw_smp_processor_id());
1390	vmx->guest_state_loaded = false;
1391	vmx->guest_uret_msrs_loaded = false;
1392}
1393
1394#ifdef CONFIG_X86_64
1395static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1396{
1397	preempt_disable();
1398	if (vmx->guest_state_loaded)
1399		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1400	preempt_enable();
1401	return vmx->msr_guest_kernel_gs_base;
1402}
1403
1404static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1405{
1406	preempt_disable();
1407	if (vmx->guest_state_loaded)
1408		wrmsrl(MSR_KERNEL_GS_BASE, data);
1409	preempt_enable();
1410	vmx->msr_guest_kernel_gs_base = data;
1411}
1412#endif
1413
1414void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1415			struct loaded_vmcs *buddy)
1416{
1417	struct vcpu_vmx *vmx = to_vmx(vcpu);
1418	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1419	struct vmcs *prev;
1420
1421	if (!already_loaded) {
1422		loaded_vmcs_clear(vmx->loaded_vmcs);
1423		local_irq_disable();
1424
1425		/*
1426		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1427		 * this cpu's percpu list, otherwise it may not yet be deleted
1428		 * from its previous cpu's percpu list.  Pairs with the
1429		 * smb_wmb() in __loaded_vmcs_clear().
1430		 */
1431		smp_rmb();
1432
1433		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1434			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1435		local_irq_enable();
1436	}
1437
1438	prev = per_cpu(current_vmcs, cpu);
1439	if (prev != vmx->loaded_vmcs->vmcs) {
1440		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1441		vmcs_load(vmx->loaded_vmcs->vmcs);
1442
1443		/*
1444		 * No indirect branch prediction barrier needed when switching
1445		 * the active VMCS within a vCPU, unless IBRS is advertised to
1446		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1447		 * performs IBPB on nested VM-Exit (a single nested transition
1448		 * may switch the active VMCS multiple times).
1449		 */
1450		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1451			indirect_branch_prediction_barrier();
1452	}
1453
1454	if (!already_loaded) {
1455		void *gdt = get_current_gdt_ro();
1456
1457		/*
1458		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1459		 * TLB entries from its previous association with the vCPU.
1460		 */
1461		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1462
1463		/*
1464		 * Linux uses per-cpu TSS and GDT, so set these when switching
1465		 * processors.  See 22.2.4.
1466		 */
1467		vmcs_writel(HOST_TR_BASE,
1468			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1469		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1470
1471		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1472			/* 22.2.3 */
1473			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1474				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1475		}
1476
1477		vmx->loaded_vmcs->cpu = cpu;
1478	}
1479}
1480
1481/*
1482 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1483 * vcpu mutex is already taken.
1484 */
1485void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1486{
1487	struct vcpu_vmx *vmx = to_vmx(vcpu);
1488
1489	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1490
1491	vmx_vcpu_pi_load(vcpu, cpu);
1492
1493	vmx->host_debugctlmsr = get_debugctlmsr();
1494}
1495
1496void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1497{
1498	vmx_vcpu_pi_put(vcpu);
1499
1500	vmx_prepare_switch_to_host(to_vmx(vcpu));
1501}
1502
1503bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1504{
1505	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1506}
1507
1508unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1509{
1510	struct vcpu_vmx *vmx = to_vmx(vcpu);
1511	unsigned long rflags, save_rflags;
1512
1513	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1514		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1515		rflags = vmcs_readl(GUEST_RFLAGS);
1516		if (vmx->rmode.vm86_active) {
1517			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1518			save_rflags = vmx->rmode.save_rflags;
1519			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1520		}
1521		vmx->rflags = rflags;
1522	}
1523	return vmx->rflags;
1524}
1525
1526void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1527{
1528	struct vcpu_vmx *vmx = to_vmx(vcpu);
1529	unsigned long old_rflags;
1530
1531	/*
1532	 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1533	 * is an unrestricted guest in order to mark L2 as needing emulation
1534	 * if L1 runs L2 as a restricted guest.
1535	 */
1536	if (is_unrestricted_guest(vcpu)) {
1537		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1538		vmx->rflags = rflags;
1539		vmcs_writel(GUEST_RFLAGS, rflags);
1540		return;
1541	}
1542
1543	old_rflags = vmx_get_rflags(vcpu);
1544	vmx->rflags = rflags;
1545	if (vmx->rmode.vm86_active) {
1546		vmx->rmode.save_rflags = rflags;
1547		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1548	}
1549	vmcs_writel(GUEST_RFLAGS, rflags);
1550
1551	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1552		vmx->emulation_required = vmx_emulation_required(vcpu);
1553}
1554
1555bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1556{
1557	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1558}
1559
1560u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1561{
1562	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1563	int ret = 0;
1564
1565	if (interruptibility & GUEST_INTR_STATE_STI)
1566		ret |= KVM_X86_SHADOW_INT_STI;
1567	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1568		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1569
1570	return ret;
1571}
1572
1573void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1574{
1575	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1576	u32 interruptibility = interruptibility_old;
1577
1578	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1579
1580	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1581		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1582	else if (mask & KVM_X86_SHADOW_INT_STI)
1583		interruptibility |= GUEST_INTR_STATE_STI;
1584
1585	if ((interruptibility != interruptibility_old))
1586		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1587}
1588
1589static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1590{
1591	struct vcpu_vmx *vmx = to_vmx(vcpu);
1592	unsigned long value;
1593
1594	/*
1595	 * Any MSR write that attempts to change bits marked reserved will
1596	 * case a #GP fault.
1597	 */
1598	if (data & vmx->pt_desc.ctl_bitmask)
1599		return 1;
1600
1601	/*
1602	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1603	 * result in a #GP unless the same write also clears TraceEn.
1604	 */
1605	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1606		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1607		return 1;
1608
1609	/*
1610	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1611	 * and FabricEn would cause #GP, if
1612	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1613	 */
1614	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1615		!(data & RTIT_CTL_FABRIC_EN) &&
1616		!intel_pt_validate_cap(vmx->pt_desc.caps,
1617					PT_CAP_single_range_output))
1618		return 1;
1619
1620	/*
1621	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1622	 * utilize encodings marked reserved will cause a #GP fault.
1623	 */
1624	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1625	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1626			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1627			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1628		return 1;
1629	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1630						PT_CAP_cycle_thresholds);
1631	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1632			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1633			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1634		return 1;
1635	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1636	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1637			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1638			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1639		return 1;
1640
1641	/*
1642	 * If ADDRx_CFG is reserved or the encodings is >2 will
1643	 * cause a #GP fault.
1644	 */
1645	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1646	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1647		return 1;
1648	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1649	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1650		return 1;
1651	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1652	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1653		return 1;
1654	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1655	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1656		return 1;
1657
1658	return 0;
1659}
1660
1661int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1662				  void *insn, int insn_len)
1663{
1664	/*
1665	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1666	 * not point at the failing instruction, and even if it did, the code
1667	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1668	 * so that guest userspace can't DoS the guest simply by triggering
1669	 * emulation (enclaves are CPL3 only).
1670	 */
1671	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1672		kvm_queue_exception(vcpu, UD_VECTOR);
1673		return X86EMUL_PROPAGATE_FAULT;
1674	}
1675	return X86EMUL_CONTINUE;
1676}
1677
1678static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1679{
1680	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1681	unsigned long rip, orig_rip;
1682	u32 instr_len;
1683
1684	/*
1685	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1686	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1687	 * set when EPT misconfig occurs.  In practice, real hardware updates
1688	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1689	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1690	 * i.e. we end up advancing IP with some random value.
1691	 */
1692	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1693	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1694		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1695
1696		/*
1697		 * Emulating an enclave's instructions isn't supported as KVM
1698		 * cannot access the enclave's memory or its true RIP, e.g. the
1699		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1700		 * the RIP that actually triggered the VM-Exit.  But, because
1701		 * most instructions that cause VM-Exit will #UD in an enclave,
1702		 * most instruction-based VM-Exits simply do not occur.
1703		 *
1704		 * There are a few exceptions, notably the debug instructions
1705		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1706		 * and generate #DB/#BP as expected, which KVM might intercept.
1707		 * But again, the CPU does the dirty work and saves an instr
1708		 * length of zero so VMMs don't shoot themselves in the foot.
1709		 * WARN if KVM tries to skip a non-zero length instruction on
1710		 * a VM-Exit from an enclave.
1711		 */
1712		if (!instr_len)
1713			goto rip_updated;
1714
1715		WARN_ONCE(exit_reason.enclave_mode,
1716			  "skipping instruction after SGX enclave VM-Exit");
1717
1718		orig_rip = kvm_rip_read(vcpu);
1719		rip = orig_rip + instr_len;
1720#ifdef CONFIG_X86_64
1721		/*
1722		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1723		 * mode, but just finding out that we are in 64-bit mode is
1724		 * quite expensive.  Only do it if there was a carry.
1725		 */
1726		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1727			rip = (u32)rip;
1728#endif
1729		kvm_rip_write(vcpu, rip);
1730	} else {
1731		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1732			return 0;
1733	}
1734
1735rip_updated:
1736	/* skipping an emulated instruction also counts */
1737	vmx_set_interrupt_shadow(vcpu, 0);
1738
1739	return 1;
1740}
1741
1742/*
1743 * Recognizes a pending MTF VM-exit and records the nested state for later
1744 * delivery.
1745 */
1746void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1747{
1748	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1749	struct vcpu_vmx *vmx = to_vmx(vcpu);
1750
1751	if (!is_guest_mode(vcpu))
1752		return;
1753
1754	/*
1755	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1756	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1757	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1758	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1759	 * as ICEBP is higher priority than both.  As instruction emulation is
1760	 * completed at this point (i.e. KVM is at the instruction boundary),
1761	 * any #DB exception pending delivery must be a debug-trap of lower
1762	 * priority than MTF.  Record the pending MTF state to be delivered in
1763	 * vmx_check_nested_events().
1764	 */
1765	if (nested_cpu_has_mtf(vmcs12) &&
1766	    (!vcpu->arch.exception.pending ||
1767	     vcpu->arch.exception.vector == DB_VECTOR) &&
1768	    (!vcpu->arch.exception_vmexit.pending ||
1769	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1770		vmx->nested.mtf_pending = true;
1771		kvm_make_request(KVM_REQ_EVENT, vcpu);
1772	} else {
1773		vmx->nested.mtf_pending = false;
1774	}
1775}
1776
1777int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1778{
1779	vmx_update_emulated_instruction(vcpu);
1780	return skip_emulated_instruction(vcpu);
1781}
1782
1783static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1784{
1785	/*
1786	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1787	 * explicitly skip the instruction because if the HLT state is set,
1788	 * then the instruction is already executing and RIP has already been
1789	 * advanced.
1790	 */
1791	if (kvm_hlt_in_guest(vcpu->kvm) &&
1792			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1793		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1794}
1795
1796void vmx_inject_exception(struct kvm_vcpu *vcpu)
1797{
1798	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1799	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1800	struct vcpu_vmx *vmx = to_vmx(vcpu);
1801
1802	kvm_deliver_exception_payload(vcpu, ex);
1803
1804	if (ex->has_error_code) {
1805		/*
1806		 * Despite the error code being architecturally defined as 32
1807		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1808		 * VMX don't actually supporting setting bits 31:16.  Hardware
1809		 * will (should) never provide a bogus error code, but AMD CPUs
1810		 * do generate error codes with bits 31:16 set, and so KVM's
1811		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1812		 * the upper bits to avoid VM-Fail, losing information that
1813		 * doesn't really exist is preferable to killing the VM.
1814		 */
1815		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1816		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1817	}
1818
1819	if (vmx->rmode.vm86_active) {
1820		int inc_eip = 0;
1821		if (kvm_exception_is_soft(ex->vector))
1822			inc_eip = vcpu->arch.event_exit_inst_len;
1823		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1824		return;
1825	}
1826
1827	WARN_ON_ONCE(vmx->emulation_required);
1828
1829	if (kvm_exception_is_soft(ex->vector)) {
1830		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1831			     vmx->vcpu.arch.event_exit_inst_len);
1832		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1833	} else
1834		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1835
1836	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1837
1838	vmx_clear_hlt(vcpu);
1839}
1840
1841static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1842			       bool load_into_hardware)
1843{
1844	struct vmx_uret_msr *uret_msr;
1845
1846	uret_msr = vmx_find_uret_msr(vmx, msr);
1847	if (!uret_msr)
1848		return;
1849
1850	uret_msr->load_into_hardware = load_into_hardware;
1851}
1852
1853/*
1854 * Configuring user return MSRs to automatically save, load, and restore MSRs
1855 * that need to be shoved into hardware when running the guest.  Note, omitting
1856 * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1857 * loaded into hardware when running the guest.
1858 */
1859static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1860{
1861#ifdef CONFIG_X86_64
1862	bool load_syscall_msrs;
1863
1864	/*
1865	 * The SYSCALL MSRs are only needed on long mode guests, and only
1866	 * when EFER.SCE is set.
1867	 */
1868	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1869			    (vmx->vcpu.arch.efer & EFER_SCE);
1870
1871	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1872	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1873	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1874#endif
1875	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1876
1877	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1878			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1879			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1880
1881	/*
1882	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1883	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1884	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1885	 * so that TSX remains always disabled.
1886	 */
1887	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1888
1889	/*
1890	 * The set of MSRs to load may have changed, reload MSRs before the
1891	 * next VM-Enter.
1892	 */
1893	vmx->guest_uret_msrs_loaded = false;
1894}
1895
1896u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1897{
1898	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1899
1900	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1901		return vmcs12->tsc_offset;
1902
1903	return 0;
1904}
1905
1906u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1907{
1908	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1909
1910	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1911	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1912		return vmcs12->tsc_multiplier;
1913
1914	return kvm_caps.default_tsc_scaling_ratio;
1915}
1916
1917void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1918{
1919	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1920}
1921
1922void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1923{
1924	vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1925}
1926
1927/*
1928 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1929 * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1930 * backwards compatibility even though KVM doesn't support emulating SMX.  And
1931 * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1932 * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1933 */
1934#define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1935					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1936					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1937					FEAT_CTL_SGX_LC_ENABLED		 | \
1938					FEAT_CTL_SGX_ENABLED		 | \
1939					FEAT_CTL_LMCE_ENABLED)
1940
1941static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1942						    struct msr_data *msr)
1943{
1944	uint64_t valid_bits;
1945
1946	/*
1947	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1948	 * exposed to the guest.
1949	 */
1950	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1951		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1952
1953	if (!msr->host_initiated &&
1954	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1955		return false;
1956
1957	if (msr->host_initiated)
1958		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1959	else
1960		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1961
1962	return !(msr->data & ~valid_bits);
1963}
1964
1965int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1966{
1967	switch (msr->index) {
1968	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1969		if (!nested)
1970			return 1;
1971		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1972	default:
1973		return KVM_MSR_RET_INVALID;
1974	}
1975}
1976
1977/*
1978 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1979 * Returns 0 on success, non-0 otherwise.
1980 * Assumes vcpu_load() was already called.
1981 */
1982int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1983{
1984	struct vcpu_vmx *vmx = to_vmx(vcpu);
1985	struct vmx_uret_msr *msr;
1986	u32 index;
1987
1988	switch (msr_info->index) {
1989#ifdef CONFIG_X86_64
1990	case MSR_FS_BASE:
1991		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1992		break;
1993	case MSR_GS_BASE:
1994		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1995		break;
1996	case MSR_KERNEL_GS_BASE:
1997		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1998		break;
1999#endif
2000	case MSR_EFER:
2001		return kvm_get_msr_common(vcpu, msr_info);
2002	case MSR_IA32_TSX_CTRL:
2003		if (!msr_info->host_initiated &&
2004		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2005			return 1;
2006		goto find_uret_msr;
2007	case MSR_IA32_UMWAIT_CONTROL:
2008		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2009			return 1;
2010
2011		msr_info->data = vmx->msr_ia32_umwait_control;
2012		break;
2013	case MSR_IA32_SPEC_CTRL:
2014		if (!msr_info->host_initiated &&
2015		    !guest_has_spec_ctrl_msr(vcpu))
2016			return 1;
2017
2018		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2019		break;
2020	case MSR_IA32_SYSENTER_CS:
2021		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2022		break;
2023	case MSR_IA32_SYSENTER_EIP:
2024		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2025		break;
2026	case MSR_IA32_SYSENTER_ESP:
2027		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2028		break;
2029	case MSR_IA32_BNDCFGS:
2030		if (!kvm_mpx_supported() ||
2031		    (!msr_info->host_initiated &&
2032		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2033			return 1;
2034		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2035		break;
2036	case MSR_IA32_MCG_EXT_CTL:
2037		if (!msr_info->host_initiated &&
2038		    !(vmx->msr_ia32_feature_control &
2039		      FEAT_CTL_LMCE_ENABLED))
2040			return 1;
2041		msr_info->data = vcpu->arch.mcg_ext_ctl;
2042		break;
2043	case MSR_IA32_FEAT_CTL:
2044		msr_info->data = vmx->msr_ia32_feature_control;
2045		break;
2046	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2047		if (!msr_info->host_initiated &&
2048		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2049			return 1;
2050		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2051			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2052		break;
2053	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2054		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2055			return 1;
2056		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2057				    &msr_info->data))
2058			return 1;
2059#ifdef CONFIG_KVM_HYPERV
2060		/*
2061		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2062		 * instead of just ignoring the features, different Hyper-V
2063		 * versions are either trying to use them and fail or do some
2064		 * sanity checking and refuse to boot. Filter all unsupported
2065		 * features out.
2066		 */
2067		if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2068			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2069							&msr_info->data);
2070#endif
2071		break;
2072	case MSR_IA32_RTIT_CTL:
2073		if (!vmx_pt_mode_is_host_guest())
2074			return 1;
2075		msr_info->data = vmx->pt_desc.guest.ctl;
2076		break;
2077	case MSR_IA32_RTIT_STATUS:
2078		if (!vmx_pt_mode_is_host_guest())
2079			return 1;
2080		msr_info->data = vmx->pt_desc.guest.status;
2081		break;
2082	case MSR_IA32_RTIT_CR3_MATCH:
2083		if (!vmx_pt_mode_is_host_guest() ||
2084			!intel_pt_validate_cap(vmx->pt_desc.caps,
2085						PT_CAP_cr3_filtering))
2086			return 1;
2087		msr_info->data = vmx->pt_desc.guest.cr3_match;
2088		break;
2089	case MSR_IA32_RTIT_OUTPUT_BASE:
2090		if (!vmx_pt_mode_is_host_guest() ||
2091			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2092					PT_CAP_topa_output) &&
2093			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2094					PT_CAP_single_range_output)))
2095			return 1;
2096		msr_info->data = vmx->pt_desc.guest.output_base;
2097		break;
2098	case MSR_IA32_RTIT_OUTPUT_MASK:
2099		if (!vmx_pt_mode_is_host_guest() ||
2100			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2101					PT_CAP_topa_output) &&
2102			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2103					PT_CAP_single_range_output)))
2104			return 1;
2105		msr_info->data = vmx->pt_desc.guest.output_mask;
2106		break;
2107	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2108		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2109		if (!vmx_pt_mode_is_host_guest() ||
2110		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2111			return 1;
2112		if (index % 2)
2113			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2114		else
2115			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2116		break;
2117	case MSR_IA32_DEBUGCTLMSR:
2118		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2119		break;
2120	default:
2121	find_uret_msr:
2122		msr = vmx_find_uret_msr(vmx, msr_info->index);
2123		if (msr) {
2124			msr_info->data = msr->data;
2125			break;
2126		}
2127		return kvm_get_msr_common(vcpu, msr_info);
2128	}
2129
2130	return 0;
2131}
2132
2133static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2134						    u64 data)
2135{
2136#ifdef CONFIG_X86_64
2137	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2138		return (u32)data;
2139#endif
2140	return (unsigned long)data;
2141}
2142
2143static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2144{
2145	u64 debugctl = 0;
2146
2147	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2148	    (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2149		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2150
2151	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2152	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2153		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2154
2155	return debugctl;
2156}
2157
2158/*
2159 * Writes msr value into the appropriate "register".
2160 * Returns 0 on success, non-0 otherwise.
2161 * Assumes vcpu_load() was already called.
2162 */
2163int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2164{
2165	struct vcpu_vmx *vmx = to_vmx(vcpu);
2166	struct vmx_uret_msr *msr;
2167	int ret = 0;
2168	u32 msr_index = msr_info->index;
2169	u64 data = msr_info->data;
2170	u32 index;
2171
2172	switch (msr_index) {
2173	case MSR_EFER:
2174		ret = kvm_set_msr_common(vcpu, msr_info);
2175		break;
2176#ifdef CONFIG_X86_64
2177	case MSR_FS_BASE:
2178		vmx_segment_cache_clear(vmx);
2179		vmcs_writel(GUEST_FS_BASE, data);
2180		break;
2181	case MSR_GS_BASE:
2182		vmx_segment_cache_clear(vmx);
2183		vmcs_writel(GUEST_GS_BASE, data);
2184		break;
2185	case MSR_KERNEL_GS_BASE:
2186		vmx_write_guest_kernel_gs_base(vmx, data);
2187		break;
2188	case MSR_IA32_XFD:
2189		ret = kvm_set_msr_common(vcpu, msr_info);
2190		/*
2191		 * Always intercepting WRMSR could incur non-negligible
2192		 * overhead given xfd might be changed frequently in
2193		 * guest context switch. Disable write interception
2194		 * upon the first write with a non-zero value (indicating
2195		 * potential usage on dynamic xfeatures). Also update
2196		 * exception bitmap to trap #NM for proper virtualization
2197		 * of guest xfd_err.
2198		 */
2199		if (!ret && data) {
2200			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2201						      MSR_TYPE_RW);
2202			vcpu->arch.xfd_no_write_intercept = true;
2203			vmx_update_exception_bitmap(vcpu);
2204		}
2205		break;
2206#endif
2207	case MSR_IA32_SYSENTER_CS:
2208		if (is_guest_mode(vcpu))
2209			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2210		vmcs_write32(GUEST_SYSENTER_CS, data);
2211		break;
2212	case MSR_IA32_SYSENTER_EIP:
2213		if (is_guest_mode(vcpu)) {
2214			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2215			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2216		}
2217		vmcs_writel(GUEST_SYSENTER_EIP, data);
2218		break;
2219	case MSR_IA32_SYSENTER_ESP:
2220		if (is_guest_mode(vcpu)) {
2221			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2222			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2223		}
2224		vmcs_writel(GUEST_SYSENTER_ESP, data);
2225		break;
2226	case MSR_IA32_DEBUGCTLMSR: {
2227		u64 invalid;
2228
2229		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2230		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2231			kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2232			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2233			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2234		}
2235
2236		if (invalid)
2237			return 1;
2238
2239		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2240						VM_EXIT_SAVE_DEBUG_CONTROLS)
2241			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2242
2243		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2244		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2245		    (data & DEBUGCTLMSR_LBR))
2246			intel_pmu_create_guest_lbr_event(vcpu);
2247		return 0;
2248	}
2249	case MSR_IA32_BNDCFGS:
2250		if (!kvm_mpx_supported() ||
2251		    (!msr_info->host_initiated &&
2252		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2253			return 1;
2254		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2255		    (data & MSR_IA32_BNDCFGS_RSVD))
2256			return 1;
2257
2258		if (is_guest_mode(vcpu) &&
2259		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2260		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2261			get_vmcs12(vcpu)->guest_bndcfgs = data;
2262
2263		vmcs_write64(GUEST_BNDCFGS, data);
2264		break;
2265	case MSR_IA32_UMWAIT_CONTROL:
2266		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2267			return 1;
2268
2269		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2270		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2271			return 1;
2272
2273		vmx->msr_ia32_umwait_control = data;
2274		break;
2275	case MSR_IA32_SPEC_CTRL:
2276		if (!msr_info->host_initiated &&
2277		    !guest_has_spec_ctrl_msr(vcpu))
2278			return 1;
2279
2280		if (kvm_spec_ctrl_test_value(data))
2281			return 1;
2282
2283		vmx->spec_ctrl = data;
2284		if (!data)
2285			break;
2286
2287		/*
2288		 * For non-nested:
2289		 * When it's written (to non-zero) for the first time, pass
2290		 * it through.
2291		 *
2292		 * For nested:
2293		 * The handling of the MSR bitmap for L2 guests is done in
2294		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2295		 * vmcs02.msr_bitmap here since it gets completely overwritten
2296		 * in the merging. We update the vmcs01 here for L1 as well
2297		 * since it will end up touching the MSR anyway now.
2298		 */
2299		vmx_disable_intercept_for_msr(vcpu,
2300					      MSR_IA32_SPEC_CTRL,
2301					      MSR_TYPE_RW);
2302		break;
2303	case MSR_IA32_TSX_CTRL:
2304		if (!msr_info->host_initiated &&
2305		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2306			return 1;
2307		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2308			return 1;
2309		goto find_uret_msr;
2310	case MSR_IA32_CR_PAT:
2311		ret = kvm_set_msr_common(vcpu, msr_info);
2312		if (ret)
2313			break;
2314
2315		if (is_guest_mode(vcpu) &&
2316		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2317			get_vmcs12(vcpu)->guest_ia32_pat = data;
2318
2319		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2320			vmcs_write64(GUEST_IA32_PAT, data);
2321		break;
2322	case MSR_IA32_MCG_EXT_CTL:
2323		if ((!msr_info->host_initiated &&
2324		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2325		       FEAT_CTL_LMCE_ENABLED)) ||
2326		    (data & ~MCG_EXT_CTL_LMCE_EN))
2327			return 1;
2328		vcpu->arch.mcg_ext_ctl = data;
2329		break;
2330	case MSR_IA32_FEAT_CTL:
2331		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2332			return 1;
2333
2334		vmx->msr_ia32_feature_control = data;
2335		if (msr_info->host_initiated && data == 0)
2336			vmx_leave_nested(vcpu);
2337
2338		/* SGX may be enabled/disabled by guest's firmware */
2339		vmx_write_encls_bitmap(vcpu, NULL);
2340		break;
2341	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2342		/*
2343		 * On real hardware, the LE hash MSRs are writable before
2344		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2345		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2346		 * become writable.
2347		 *
2348		 * KVM does not emulate SGX activation for simplicity, so
2349		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2350		 * is unlocked.  This is technically not architectural
2351		 * behavior, but it's close enough.
2352		 */
2353		if (!msr_info->host_initiated &&
2354		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2355		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2356		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2357			return 1;
2358		vmx->msr_ia32_sgxlepubkeyhash
2359			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2360		break;
2361	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2362		if (!msr_info->host_initiated)
2363			return 1; /* they are read-only */
2364		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2365			return 1;
2366		return vmx_set_vmx_msr(vcpu, msr_index, data);
2367	case MSR_IA32_RTIT_CTL:
2368		if (!vmx_pt_mode_is_host_guest() ||
2369			vmx_rtit_ctl_check(vcpu, data) ||
2370			vmx->nested.vmxon)
2371			return 1;
2372		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2373		vmx->pt_desc.guest.ctl = data;
2374		pt_update_intercept_for_msr(vcpu);
2375		break;
2376	case MSR_IA32_RTIT_STATUS:
2377		if (!pt_can_write_msr(vmx))
2378			return 1;
2379		if (data & MSR_IA32_RTIT_STATUS_MASK)
2380			return 1;
2381		vmx->pt_desc.guest.status = data;
2382		break;
2383	case MSR_IA32_RTIT_CR3_MATCH:
2384		if (!pt_can_write_msr(vmx))
2385			return 1;
2386		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2387					   PT_CAP_cr3_filtering))
2388			return 1;
2389		vmx->pt_desc.guest.cr3_match = data;
2390		break;
2391	case MSR_IA32_RTIT_OUTPUT_BASE:
2392		if (!pt_can_write_msr(vmx))
2393			return 1;
2394		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2395					   PT_CAP_topa_output) &&
2396		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2397					   PT_CAP_single_range_output))
2398			return 1;
2399		if (!pt_output_base_valid(vcpu, data))
2400			return 1;
2401		vmx->pt_desc.guest.output_base = data;
2402		break;
2403	case MSR_IA32_RTIT_OUTPUT_MASK:
2404		if (!pt_can_write_msr(vmx))
2405			return 1;
2406		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2407					   PT_CAP_topa_output) &&
2408		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2409					   PT_CAP_single_range_output))
2410			return 1;
2411		vmx->pt_desc.guest.output_mask = data;
2412		break;
2413	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2414		if (!pt_can_write_msr(vmx))
2415			return 1;
2416		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2417		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2418			return 1;
2419		if (is_noncanonical_address(data, vcpu))
2420			return 1;
2421		if (index % 2)
2422			vmx->pt_desc.guest.addr_b[index / 2] = data;
2423		else
2424			vmx->pt_desc.guest.addr_a[index / 2] = data;
2425		break;
2426	case MSR_IA32_PERF_CAPABILITIES:
2427		if (data && !vcpu_to_pmu(vcpu)->version)
2428			return 1;
2429		if (data & PMU_CAP_LBR_FMT) {
2430			if ((data & PMU_CAP_LBR_FMT) !=
2431			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2432				return 1;
2433			if (!cpuid_model_is_consistent(vcpu))
2434				return 1;
2435		}
2436		if (data & PERF_CAP_PEBS_FORMAT) {
2437			if ((data & PERF_CAP_PEBS_MASK) !=
2438			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2439				return 1;
2440			if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2441				return 1;
2442			if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2443				return 1;
2444			if (!cpuid_model_is_consistent(vcpu))
2445				return 1;
2446		}
2447		ret = kvm_set_msr_common(vcpu, msr_info);
2448		break;
2449
2450	default:
2451	find_uret_msr:
2452		msr = vmx_find_uret_msr(vmx, msr_index);
2453		if (msr)
2454			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2455		else
2456			ret = kvm_set_msr_common(vcpu, msr_info);
2457	}
2458
2459	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2460	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2461		vmx_update_fb_clear_dis(vcpu, vmx);
2462
2463	return ret;
2464}
2465
2466void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2467{
2468	unsigned long guest_owned_bits;
2469
2470	kvm_register_mark_available(vcpu, reg);
2471
2472	switch (reg) {
2473	case VCPU_REGS_RSP:
2474		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2475		break;
2476	case VCPU_REGS_RIP:
2477		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2478		break;
2479	case VCPU_EXREG_PDPTR:
2480		if (enable_ept)
2481			ept_save_pdptrs(vcpu);
2482		break;
2483	case VCPU_EXREG_CR0:
2484		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2485
2486		vcpu->arch.cr0 &= ~guest_owned_bits;
2487		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2488		break;
2489	case VCPU_EXREG_CR3:
2490		/*
2491		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2492		 * CR3 is loaded into hardware, not the guest's CR3.
2493		 */
2494		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2495			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2496		break;
2497	case VCPU_EXREG_CR4:
2498		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2499
2500		vcpu->arch.cr4 &= ~guest_owned_bits;
2501		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2502		break;
2503	default:
2504		KVM_BUG_ON(1, vcpu->kvm);
2505		break;
2506	}
2507}
2508
2509/*
2510 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2511 * directly instead of going through cpu_has(), to ensure KVM is trapping
2512 * ENCLS whenever it's supported in hardware.  It does not matter whether
2513 * the host OS supports or has enabled SGX.
2514 */
2515static bool cpu_has_sgx(void)
2516{
2517	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2518}
2519
2520/*
2521 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2522 * can't be used due to errata where VM Exit may incorrectly clear
2523 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2524 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2525 */
2526static bool cpu_has_perf_global_ctrl_bug(void)
2527{
2528	if (boot_cpu_data.x86 == 0x6) {
2529		switch (boot_cpu_data.x86_model) {
2530		case INTEL_FAM6_NEHALEM_EP:	/* AAK155 */
2531		case INTEL_FAM6_NEHALEM:	/* AAP115 */
2532		case INTEL_FAM6_WESTMERE:	/* AAT100 */
2533		case INTEL_FAM6_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2534		case INTEL_FAM6_NEHALEM_EX:	/* BA97 */
2535			return true;
2536		default:
2537			break;
2538		}
2539	}
2540
2541	return false;
2542}
2543
2544static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2545{
2546	u32 vmx_msr_low, vmx_msr_high;
2547	u32 ctl = ctl_min | ctl_opt;
2548
2549	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2550
2551	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2552	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2553
2554	/* Ensure minimum (required) set of control bits are supported. */
2555	if (ctl_min & ~ctl)
2556		return -EIO;
2557
2558	*result = ctl;
2559	return 0;
2560}
2561
2562static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2563{
2564	u64 allowed;
2565
2566	rdmsrl(msr, allowed);
2567
2568	return  ctl_opt & allowed;
2569}
2570
2571static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2572			     struct vmx_capability *vmx_cap)
2573{
2574	u32 vmx_msr_low, vmx_msr_high;
2575	u32 _pin_based_exec_control = 0;
2576	u32 _cpu_based_exec_control = 0;
2577	u32 _cpu_based_2nd_exec_control = 0;
2578	u64 _cpu_based_3rd_exec_control = 0;
2579	u32 _vmexit_control = 0;
2580	u32 _vmentry_control = 0;
2581	u64 misc_msr;
2582	int i;
2583
2584	/*
2585	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2586	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2587	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2588	 */
2589	struct {
2590		u32 entry_control;
2591		u32 exit_control;
2592	} const vmcs_entry_exit_pairs[] = {
2593		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2594		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2595		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2596		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2597		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2598	};
2599
2600	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2601
2602	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2603				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2604				MSR_IA32_VMX_PROCBASED_CTLS,
2605				&_cpu_based_exec_control))
2606		return -EIO;
2607	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2608		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2609					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2610					MSR_IA32_VMX_PROCBASED_CTLS2,
2611					&_cpu_based_2nd_exec_control))
2612			return -EIO;
2613	}
2614	if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2615		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2616
2617#ifndef CONFIG_X86_64
2618	if (!(_cpu_based_2nd_exec_control &
2619				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2620		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2621#endif
2622
2623	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2624		_cpu_based_2nd_exec_control &= ~(
2625				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2626				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2627				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2628
2629	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2630		&vmx_cap->ept, &vmx_cap->vpid);
2631
2632	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2633	    vmx_cap->ept) {
2634		pr_warn_once("EPT CAP should not exist if not support "
2635				"1-setting enable EPT VM-execution control\n");
2636
2637		if (error_on_inconsistent_vmcs_config)
2638			return -EIO;
2639
2640		vmx_cap->ept = 0;
2641		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2642	}
2643	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2644	    vmx_cap->vpid) {
2645		pr_warn_once("VPID CAP should not exist if not support "
2646				"1-setting enable VPID VM-execution control\n");
2647
2648		if (error_on_inconsistent_vmcs_config)
2649			return -EIO;
2650
2651		vmx_cap->vpid = 0;
2652	}
2653
2654	if (!cpu_has_sgx())
2655		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2656
2657	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2658		_cpu_based_3rd_exec_control =
2659			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2660					      MSR_IA32_VMX_PROCBASED_CTLS3);
2661
2662	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2663				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2664				MSR_IA32_VMX_EXIT_CTLS,
2665				&_vmexit_control))
2666		return -EIO;
2667
2668	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2669				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2670				MSR_IA32_VMX_PINBASED_CTLS,
2671				&_pin_based_exec_control))
2672		return -EIO;
2673
2674	if (cpu_has_broken_vmx_preemption_timer())
2675		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2676	if (!(_cpu_based_2nd_exec_control &
2677		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2678		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2679
2680	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2681				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2682				MSR_IA32_VMX_ENTRY_CTLS,
2683				&_vmentry_control))
2684		return -EIO;
2685
2686	for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2687		u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2688		u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2689
2690		if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2691			continue;
2692
2693		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2694			     _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2695
2696		if (error_on_inconsistent_vmcs_config)
2697			return -EIO;
2698
2699		_vmentry_control &= ~n_ctrl;
2700		_vmexit_control &= ~x_ctrl;
2701	}
2702
2703	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2704
2705	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2706	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2707		return -EIO;
2708
2709#ifdef CONFIG_X86_64
2710	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2711	if (vmx_msr_high & (1u<<16))
2712		return -EIO;
2713#endif
2714
2715	/* Require Write-Back (WB) memory type for VMCS accesses. */
2716	if (((vmx_msr_high >> 18) & 15) != 6)
2717		return -EIO;
2718
2719	rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2720
2721	vmcs_conf->size = vmx_msr_high & 0x1fff;
2722	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2723
2724	vmcs_conf->revision_id = vmx_msr_low;
2725
2726	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2727	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2728	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2729	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2730	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2731	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2732	vmcs_conf->misc	= misc_msr;
2733
2734#if IS_ENABLED(CONFIG_HYPERV)
2735	if (enlightened_vmcs)
2736		evmcs_sanitize_exec_ctrls(vmcs_conf);
2737#endif
2738
2739	return 0;
2740}
2741
2742static bool __kvm_is_vmx_supported(void)
2743{
2744	int cpu = smp_processor_id();
2745
2746	if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2747		pr_err("VMX not supported by CPU %d\n", cpu);
2748		return false;
2749	}
2750
2751	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2752	    !this_cpu_has(X86_FEATURE_VMX)) {
2753		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2754		return false;
2755	}
2756
2757	return true;
2758}
2759
2760static bool kvm_is_vmx_supported(void)
2761{
2762	bool supported;
2763
2764	migrate_disable();
2765	supported = __kvm_is_vmx_supported();
2766	migrate_enable();
2767
2768	return supported;
2769}
2770
2771int vmx_check_processor_compat(void)
2772{
2773	int cpu = raw_smp_processor_id();
2774	struct vmcs_config vmcs_conf;
2775	struct vmx_capability vmx_cap;
2776
2777	if (!__kvm_is_vmx_supported())
2778		return -EIO;
2779
2780	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2781		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2782		return -EIO;
2783	}
2784	if (nested)
2785		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2786	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2787		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2788		return -EIO;
2789	}
2790	return 0;
2791}
2792
2793static int kvm_cpu_vmxon(u64 vmxon_pointer)
2794{
2795	u64 msr;
2796
2797	cr4_set_bits(X86_CR4_VMXE);
2798
2799	asm goto("1: vmxon %[vmxon_pointer]\n\t"
2800			  _ASM_EXTABLE(1b, %l[fault])
2801			  : : [vmxon_pointer] "m"(vmxon_pointer)
2802			  : : fault);
2803	return 0;
2804
2805fault:
2806	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2807		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2808	cr4_clear_bits(X86_CR4_VMXE);
2809
2810	return -EFAULT;
2811}
2812
2813int vmx_hardware_enable(void)
2814{
2815	int cpu = raw_smp_processor_id();
2816	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2817	int r;
2818
2819	if (cr4_read_shadow() & X86_CR4_VMXE)
2820		return -EBUSY;
2821
2822	/*
2823	 * This can happen if we hot-added a CPU but failed to allocate
2824	 * VP assist page for it.
2825	 */
2826	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2827		return -EFAULT;
2828
2829	intel_pt_handle_vmx(1);
2830
2831	r = kvm_cpu_vmxon(phys_addr);
2832	if (r) {
2833		intel_pt_handle_vmx(0);
2834		return r;
2835	}
2836
2837	if (enable_ept)
2838		ept_sync_global();
2839
2840	return 0;
2841}
2842
2843static void vmclear_local_loaded_vmcss(void)
2844{
2845	int cpu = raw_smp_processor_id();
2846	struct loaded_vmcs *v, *n;
2847
2848	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2849				 loaded_vmcss_on_cpu_link)
2850		__loaded_vmcs_clear(v);
2851}
2852
2853void vmx_hardware_disable(void)
2854{
2855	vmclear_local_loaded_vmcss();
2856
2857	if (kvm_cpu_vmxoff())
2858		kvm_spurious_fault();
2859
2860	hv_reset_evmcs();
2861
2862	intel_pt_handle_vmx(0);
2863}
2864
2865struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2866{
2867	int node = cpu_to_node(cpu);
2868	struct page *pages;
2869	struct vmcs *vmcs;
2870
2871	pages = __alloc_pages_node(node, flags, 0);
2872	if (!pages)
2873		return NULL;
2874	vmcs = page_address(pages);
2875	memset(vmcs, 0, vmcs_config.size);
2876
2877	/* KVM supports Enlightened VMCS v1 only */
2878	if (kvm_is_using_evmcs())
2879		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2880	else
2881		vmcs->hdr.revision_id = vmcs_config.revision_id;
2882
2883	if (shadow)
2884		vmcs->hdr.shadow_vmcs = 1;
2885	return vmcs;
2886}
2887
2888void free_vmcs(struct vmcs *vmcs)
2889{
2890	free_page((unsigned long)vmcs);
2891}
2892
2893/*
2894 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2895 */
2896void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2897{
2898	if (!loaded_vmcs->vmcs)
2899		return;
2900	loaded_vmcs_clear(loaded_vmcs);
2901	free_vmcs(loaded_vmcs->vmcs);
2902	loaded_vmcs->vmcs = NULL;
2903	if (loaded_vmcs->msr_bitmap)
2904		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2905	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2906}
2907
2908int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2909{
2910	loaded_vmcs->vmcs = alloc_vmcs(false);
2911	if (!loaded_vmcs->vmcs)
2912		return -ENOMEM;
2913
2914	vmcs_clear(loaded_vmcs->vmcs);
2915
2916	loaded_vmcs->shadow_vmcs = NULL;
2917	loaded_vmcs->hv_timer_soft_disabled = false;
2918	loaded_vmcs->cpu = -1;
2919	loaded_vmcs->launched = 0;
2920
2921	if (cpu_has_vmx_msr_bitmap()) {
2922		loaded_vmcs->msr_bitmap = (unsigned long *)
2923				__get_free_page(GFP_KERNEL_ACCOUNT);
2924		if (!loaded_vmcs->msr_bitmap)
2925			goto out_vmcs;
2926		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2927	}
2928
2929	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2930	memset(&loaded_vmcs->controls_shadow, 0,
2931		sizeof(struct vmcs_controls_shadow));
2932
2933	return 0;
2934
2935out_vmcs:
2936	free_loaded_vmcs(loaded_vmcs);
2937	return -ENOMEM;
2938}
2939
2940static void free_kvm_area(void)
2941{
2942	int cpu;
2943
2944	for_each_possible_cpu(cpu) {
2945		free_vmcs(per_cpu(vmxarea, cpu));
2946		per_cpu(vmxarea, cpu) = NULL;
2947	}
2948}
2949
2950static __init int alloc_kvm_area(void)
2951{
2952	int cpu;
2953
2954	for_each_possible_cpu(cpu) {
2955		struct vmcs *vmcs;
2956
2957		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2958		if (!vmcs) {
2959			free_kvm_area();
2960			return -ENOMEM;
2961		}
2962
2963		/*
2964		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2965		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2966		 * revision_id reported by MSR_IA32_VMX_BASIC.
2967		 *
2968		 * However, even though not explicitly documented by
2969		 * TLFS, VMXArea passed as VMXON argument should
2970		 * still be marked with revision_id reported by
2971		 * physical CPU.
2972		 */
2973		if (kvm_is_using_evmcs())
2974			vmcs->hdr.revision_id = vmcs_config.revision_id;
2975
2976		per_cpu(vmxarea, cpu) = vmcs;
2977	}
2978	return 0;
2979}
2980
2981static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2982		struct kvm_segment *save)
2983{
2984	if (!emulate_invalid_guest_state) {
2985		/*
2986		 * CS and SS RPL should be equal during guest entry according
2987		 * to VMX spec, but in reality it is not always so. Since vcpu
2988		 * is in the middle of the transition from real mode to
2989		 * protected mode it is safe to assume that RPL 0 is a good
2990		 * default value.
2991		 */
2992		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2993			save->selector &= ~SEGMENT_RPL_MASK;
2994		save->dpl = save->selector & SEGMENT_RPL_MASK;
2995		save->s = 1;
2996	}
2997	__vmx_set_segment(vcpu, save, seg);
2998}
2999
3000static void enter_pmode(struct kvm_vcpu *vcpu)
3001{
3002	unsigned long flags;
3003	struct vcpu_vmx *vmx = to_vmx(vcpu);
3004
3005	/*
3006	 * Update real mode segment cache. It may be not up-to-date if segment
3007	 * register was written while vcpu was in a guest mode.
3008	 */
3009	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3010	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3011	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3012	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3013	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3014	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3015
3016	vmx->rmode.vm86_active = 0;
3017
3018	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3019
3020	flags = vmcs_readl(GUEST_RFLAGS);
3021	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3022	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3023	vmcs_writel(GUEST_RFLAGS, flags);
3024
3025	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3026			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3027
3028	vmx_update_exception_bitmap(vcpu);
3029
3030	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3031	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3032	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3033	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3034	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3035	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3036}
3037
3038static void fix_rmode_seg(int seg, struct kvm_segment *save)
3039{
3040	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3041	struct kvm_segment var = *save;
3042
3043	var.dpl = 0x3;
3044	if (seg == VCPU_SREG_CS)
3045		var.type = 0x3;
3046
3047	if (!emulate_invalid_guest_state) {
3048		var.selector = var.base >> 4;
3049		var.base = var.base & 0xffff0;
3050		var.limit = 0xffff;
3051		var.g = 0;
3052		var.db = 0;
3053		var.present = 1;
3054		var.s = 1;
3055		var.l = 0;
3056		var.unusable = 0;
3057		var.type = 0x3;
3058		var.avl = 0;
3059		if (save->base & 0xf)
3060			pr_warn_once("segment base is not paragraph aligned "
3061				     "when entering protected mode (seg=%d)", seg);
3062	}
3063
3064	vmcs_write16(sf->selector, var.selector);
3065	vmcs_writel(sf->base, var.base);
3066	vmcs_write32(sf->limit, var.limit);
3067	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3068}
3069
3070static void enter_rmode(struct kvm_vcpu *vcpu)
3071{
3072	unsigned long flags;
3073	struct vcpu_vmx *vmx = to_vmx(vcpu);
3074	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3075
3076	/*
3077	 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3078	 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3079	 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3080	 * should VM-Fail and KVM should reject userspace attempts to stuff
3081	 * CR0.PG=0 when L2 is active.
3082	 */
3083	WARN_ON_ONCE(is_guest_mode(vcpu));
3084
3085	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3086	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3087	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3088	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3089	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3090	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3091	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3092
3093	vmx->rmode.vm86_active = 1;
3094
3095	vmx_segment_cache_clear(vmx);
3096
3097	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3098	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3099	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3100
3101	flags = vmcs_readl(GUEST_RFLAGS);
3102	vmx->rmode.save_rflags = flags;
3103
3104	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3105
3106	vmcs_writel(GUEST_RFLAGS, flags);
3107	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3108	vmx_update_exception_bitmap(vcpu);
3109
3110	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3111	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3112	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3113	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3114	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3115	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3116}
3117
3118int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3119{
3120	struct vcpu_vmx *vmx = to_vmx(vcpu);
3121
3122	/* Nothing to do if hardware doesn't support EFER. */
3123	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3124		return 0;
3125
3126	vcpu->arch.efer = efer;
3127#ifdef CONFIG_X86_64
3128	if (efer & EFER_LMA)
3129		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3130	else
3131		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3132#else
3133	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3134		return 1;
3135#endif
3136
3137	vmx_setup_uret_msrs(vmx);
3138	return 0;
3139}
3140
3141#ifdef CONFIG_X86_64
3142
3143static void enter_lmode(struct kvm_vcpu *vcpu)
3144{
3145	u32 guest_tr_ar;
3146
3147	vmx_segment_cache_clear(to_vmx(vcpu));
3148
3149	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3150	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3151		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3152				     __func__);
3153		vmcs_write32(GUEST_TR_AR_BYTES,
3154			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3155			     | VMX_AR_TYPE_BUSY_64_TSS);
3156	}
3157	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3158}
3159
3160static void exit_lmode(struct kvm_vcpu *vcpu)
3161{
3162	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3163}
3164
3165#endif
3166
3167void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3168{
3169	struct vcpu_vmx *vmx = to_vmx(vcpu);
3170
3171	/*
3172	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3173	 * the CPU is not required to invalidate guest-physical mappings on
3174	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3175	 * associated with the root EPT structure and not any particular VPID
3176	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3177	 */
3178	if (enable_ept) {
3179		ept_sync_global();
3180	} else if (enable_vpid) {
3181		if (cpu_has_vmx_invvpid_global()) {
3182			vpid_sync_vcpu_global();
3183		} else {
3184			vpid_sync_vcpu_single(vmx->vpid);
3185			vpid_sync_vcpu_single(vmx->nested.vpid02);
3186		}
3187	}
3188}
3189
3190static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3191{
3192	if (is_guest_mode(vcpu))
3193		return nested_get_vpid02(vcpu);
3194	return to_vmx(vcpu)->vpid;
3195}
3196
3197void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3198{
3199	struct kvm_mmu *mmu = vcpu->arch.mmu;
3200	u64 root_hpa = mmu->root.hpa;
3201
3202	/* No flush required if the current context is invalid. */
3203	if (!VALID_PAGE(root_hpa))
3204		return;
3205
3206	if (enable_ept)
3207		ept_sync_context(construct_eptp(vcpu, root_hpa,
3208						mmu->root_role.level));
3209	else
3210		vpid_sync_context(vmx_get_current_vpid(vcpu));
3211}
3212
3213void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3214{
3215	/*
3216	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3217	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3218	 */
3219	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3220}
3221
3222void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3223{
3224	/*
3225	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3226	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3227	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3228	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3229	 * i.e. no explicit INVVPID is necessary.
3230	 */
3231	vpid_sync_context(vmx_get_current_vpid(vcpu));
3232}
3233
3234void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3235{
3236	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3237
3238	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3239		return;
3240
3241	if (is_pae_paging(vcpu)) {
3242		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3243		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3244		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3245		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3246	}
3247}
3248
3249void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3250{
3251	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3252
3253	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3254		return;
3255
3256	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3257	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3258	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3259	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3260
3261	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3262}
3263
3264#define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3265			  CPU_BASED_CR3_STORE_EXITING)
3266
3267bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3268{
3269	if (is_guest_mode(vcpu))
3270		return nested_guest_cr0_valid(vcpu, cr0);
3271
3272	if (to_vmx(vcpu)->nested.vmxon)
3273		return nested_host_cr0_valid(vcpu, cr0);
3274
3275	return true;
3276}
3277
3278void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3279{
3280	struct vcpu_vmx *vmx = to_vmx(vcpu);
3281	unsigned long hw_cr0, old_cr0_pg;
3282	u32 tmp;
3283
3284	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3285
3286	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3287	if (enable_unrestricted_guest)
3288		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3289	else {
3290		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3291		if (!enable_ept)
3292			hw_cr0 |= X86_CR0_WP;
3293
3294		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3295			enter_pmode(vcpu);
3296
3297		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3298			enter_rmode(vcpu);
3299	}
3300
3301	vmcs_writel(CR0_READ_SHADOW, cr0);
3302	vmcs_writel(GUEST_CR0, hw_cr0);
3303	vcpu->arch.cr0 = cr0;
3304	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3305
3306#ifdef CONFIG_X86_64
3307	if (vcpu->arch.efer & EFER_LME) {
3308		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3309			enter_lmode(vcpu);
3310		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3311			exit_lmode(vcpu);
3312	}
3313#endif
3314
3315	if (enable_ept && !enable_unrestricted_guest) {
3316		/*
3317		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3318		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3319		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3320		 * KVM's CR3 is installed.
3321		 */
3322		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3323			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3324
3325		/*
3326		 * When running with EPT but not unrestricted guest, KVM must
3327		 * intercept CR3 accesses when paging is _disabled_.  This is
3328		 * necessary because restricted guests can't actually run with
3329		 * paging disabled, and so KVM stuffs its own CR3 in order to
3330		 * run the guest when identity mapped page tables.
3331		 *
3332		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3333		 * update, it may be stale with respect to CR3 interception,
3334		 * e.g. after nested VM-Enter.
3335		 *
3336		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3337		 * stores to forward them to L1, even if KVM does not need to
3338		 * intercept them to preserve its identity mapped page tables.
3339		 */
3340		if (!(cr0 & X86_CR0_PG)) {
3341			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3342		} else if (!is_guest_mode(vcpu)) {
3343			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3344		} else {
3345			tmp = exec_controls_get(vmx);
3346			tmp &= ~CR3_EXITING_BITS;
3347			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3348			exec_controls_set(vmx, tmp);
3349		}
3350
3351		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3352		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3353			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3354
3355		/*
3356		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3357		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3358		 */
3359		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3360			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3361	}
3362
3363	/* depends on vcpu->arch.cr0 to be set to a new value */
3364	vmx->emulation_required = vmx_emulation_required(vcpu);
3365}
3366
3367static int vmx_get_max_ept_level(void)
3368{
3369	if (cpu_has_vmx_ept_5levels())
3370		return 5;
3371	return 4;
3372}
3373
3374u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3375{
3376	u64 eptp = VMX_EPTP_MT_WB;
3377
3378	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3379
3380	if (enable_ept_ad_bits &&
3381	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3382		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3383	eptp |= root_hpa;
3384
3385	return eptp;
3386}
3387
3388void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3389{
3390	struct kvm *kvm = vcpu->kvm;
3391	bool update_guest_cr3 = true;
3392	unsigned long guest_cr3;
3393	u64 eptp;
3394
3395	if (enable_ept) {
3396		eptp = construct_eptp(vcpu, root_hpa, root_level);
3397		vmcs_write64(EPT_POINTER, eptp);
3398
3399		hv_track_root_tdp(vcpu, root_hpa);
3400
3401		if (!enable_unrestricted_guest && !is_paging(vcpu))
3402			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3403		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3404			guest_cr3 = vcpu->arch.cr3;
3405		else /* vmcs.GUEST_CR3 is already up-to-date. */
3406			update_guest_cr3 = false;
3407		vmx_ept_load_pdptrs(vcpu);
3408	} else {
3409		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3410			    kvm_get_active_cr3_lam_bits(vcpu);
3411	}
3412
3413	if (update_guest_cr3)
3414		vmcs_writel(GUEST_CR3, guest_cr3);
3415}
3416
3417bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3418{
3419	/*
3420	 * We operate under the default treatment of SMM, so VMX cannot be
3421	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3422	 * i.e. is a reserved bit, is handled by common x86 code.
3423	 */
3424	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3425		return false;
3426
3427	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3428		return false;
3429
3430	return true;
3431}
3432
3433void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3434{
3435	unsigned long old_cr4 = kvm_read_cr4(vcpu);
3436	struct vcpu_vmx *vmx = to_vmx(vcpu);
3437	unsigned long hw_cr4;
3438
3439	/*
3440	 * Pass through host's Machine Check Enable value to hw_cr4, which
3441	 * is in force while we are in guest mode.  Do not let guests control
3442	 * this bit, even if host CR4.MCE == 0.
3443	 */
3444	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3445	if (enable_unrestricted_guest)
3446		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3447	else if (vmx->rmode.vm86_active)
3448		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3449	else
3450		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3451
3452	if (vmx_umip_emulated()) {
3453		if (cr4 & X86_CR4_UMIP) {
3454			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3455			hw_cr4 &= ~X86_CR4_UMIP;
3456		} else if (!is_guest_mode(vcpu) ||
3457			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3458			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3459		}
3460	}
3461
3462	vcpu->arch.cr4 = cr4;
3463	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3464
3465	if (!enable_unrestricted_guest) {
3466		if (enable_ept) {
3467			if (!is_paging(vcpu)) {
3468				hw_cr4 &= ~X86_CR4_PAE;
3469				hw_cr4 |= X86_CR4_PSE;
3470			} else if (!(cr4 & X86_CR4_PAE)) {
3471				hw_cr4 &= ~X86_CR4_PAE;
3472			}
3473		}
3474
3475		/*
3476		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3477		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3478		 * to be manually disabled when guest switches to non-paging
3479		 * mode.
3480		 *
3481		 * If !enable_unrestricted_guest, the CPU is always running
3482		 * with CR0.PG=1 and CR4 needs to be modified.
3483		 * If enable_unrestricted_guest, the CPU automatically
3484		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3485		 */
3486		if (!is_paging(vcpu))
3487			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3488	}
3489
3490	vmcs_writel(CR4_READ_SHADOW, cr4);
3491	vmcs_writel(GUEST_CR4, hw_cr4);
3492
3493	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3494		kvm_update_cpuid_runtime(vcpu);
3495}
3496
3497void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3498{
3499	struct vcpu_vmx *vmx = to_vmx(vcpu);
3500	u32 ar;
3501
3502	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3503		*var = vmx->rmode.segs[seg];
3504		if (seg == VCPU_SREG_TR
3505		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3506			return;
3507		var->base = vmx_read_guest_seg_base(vmx, seg);
3508		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3509		return;
3510	}
3511	var->base = vmx_read_guest_seg_base(vmx, seg);
3512	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3513	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3514	ar = vmx_read_guest_seg_ar(vmx, seg);
3515	var->unusable = (ar >> 16) & 1;
3516	var->type = ar & 15;
3517	var->s = (ar >> 4) & 1;
3518	var->dpl = (ar >> 5) & 3;
3519	/*
3520	 * Some userspaces do not preserve unusable property. Since usable
3521	 * segment has to be present according to VMX spec we can use present
3522	 * property to amend userspace bug by making unusable segment always
3523	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3524	 * segment as unusable.
3525	 */
3526	var->present = !var->unusable;
3527	var->avl = (ar >> 12) & 1;
3528	var->l = (ar >> 13) & 1;
3529	var->db = (ar >> 14) & 1;
3530	var->g = (ar >> 15) & 1;
3531}
3532
3533u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3534{
3535	struct kvm_segment s;
3536
3537	if (to_vmx(vcpu)->rmode.vm86_active) {
3538		vmx_get_segment(vcpu, &s, seg);
3539		return s.base;
3540	}
3541	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3542}
3543
3544int vmx_get_cpl(struct kvm_vcpu *vcpu)
3545{
3546	struct vcpu_vmx *vmx = to_vmx(vcpu);
3547
3548	if (unlikely(vmx->rmode.vm86_active))
3549		return 0;
3550	else {
3551		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3552		return VMX_AR_DPL(ar);
3553	}
3554}
3555
3556static u32 vmx_segment_access_rights(struct kvm_segment *var)
3557{
3558	u32 ar;
3559
3560	ar = var->type & 15;
3561	ar |= (var->s & 1) << 4;
3562	ar |= (var->dpl & 3) << 5;
3563	ar |= (var->present & 1) << 7;
3564	ar |= (var->avl & 1) << 12;
3565	ar |= (var->l & 1) << 13;
3566	ar |= (var->db & 1) << 14;
3567	ar |= (var->g & 1) << 15;
3568	ar |= (var->unusable || !var->present) << 16;
3569
3570	return ar;
3571}
3572
3573void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3574{
3575	struct vcpu_vmx *vmx = to_vmx(vcpu);
3576	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3577
3578	vmx_segment_cache_clear(vmx);
3579
3580	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3581		vmx->rmode.segs[seg] = *var;
3582		if (seg == VCPU_SREG_TR)
3583			vmcs_write16(sf->selector, var->selector);
3584		else if (var->s)
3585			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3586		return;
3587	}
3588
3589	vmcs_writel(sf->base, var->base);
3590	vmcs_write32(sf->limit, var->limit);
3591	vmcs_write16(sf->selector, var->selector);
3592
3593	/*
3594	 *   Fix the "Accessed" bit in AR field of segment registers for older
3595	 * qemu binaries.
3596	 *   IA32 arch specifies that at the time of processor reset the
3597	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3598	 * is setting it to 0 in the userland code. This causes invalid guest
3599	 * state vmexit when "unrestricted guest" mode is turned on.
3600	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3601	 * tree. Newer qemu binaries with that qemu fix would not need this
3602	 * kvm hack.
3603	 */
3604	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3605		var->type |= 0x1; /* Accessed */
3606
3607	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3608}
3609
3610void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3611{
3612	__vmx_set_segment(vcpu, var, seg);
3613
3614	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3615}
3616
3617void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3618{
3619	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3620
3621	*db = (ar >> 14) & 1;
3622	*l = (ar >> 13) & 1;
3623}
3624
3625void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3626{
3627	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3628	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3629}
3630
3631void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3632{
3633	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3634	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3635}
3636
3637void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3638{
3639	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3640	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3641}
3642
3643void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3644{
3645	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3646	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3647}
3648
3649static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3650{
3651	struct kvm_segment var;
3652	u32 ar;
3653
3654	vmx_get_segment(vcpu, &var, seg);
3655	var.dpl = 0x3;
3656	if (seg == VCPU_SREG_CS)
3657		var.type = 0x3;
3658	ar = vmx_segment_access_rights(&var);
3659
3660	if (var.base != (var.selector << 4))
3661		return false;
3662	if (var.limit != 0xffff)
3663		return false;
3664	if (ar != 0xf3)
3665		return false;
3666
3667	return true;
3668}
3669
3670static bool code_segment_valid(struct kvm_vcpu *vcpu)
3671{
3672	struct kvm_segment cs;
3673	unsigned int cs_rpl;
3674
3675	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3676	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3677
3678	if (cs.unusable)
3679		return false;
3680	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3681		return false;
3682	if (!cs.s)
3683		return false;
3684	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3685		if (cs.dpl > cs_rpl)
3686			return false;
3687	} else {
3688		if (cs.dpl != cs_rpl)
3689			return false;
3690	}
3691	if (!cs.present)
3692		return false;
3693
3694	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3695	return true;
3696}
3697
3698static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3699{
3700	struct kvm_segment ss;
3701	unsigned int ss_rpl;
3702
3703	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3704	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3705
3706	if (ss.unusable)
3707		return true;
3708	if (ss.type != 3 && ss.type != 7)
3709		return false;
3710	if (!ss.s)
3711		return false;
3712	if (ss.dpl != ss_rpl) /* DPL != RPL */
3713		return false;
3714	if (!ss.present)
3715		return false;
3716
3717	return true;
3718}
3719
3720static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3721{
3722	struct kvm_segment var;
3723	unsigned int rpl;
3724
3725	vmx_get_segment(vcpu, &var, seg);
3726	rpl = var.selector & SEGMENT_RPL_MASK;
3727
3728	if (var.unusable)
3729		return true;
3730	if (!var.s)
3731		return false;
3732	if (!var.present)
3733		return false;
3734	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3735		if (var.dpl < rpl) /* DPL < RPL */
3736			return false;
3737	}
3738
3739	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3740	 * rights flags
3741	 */
3742	return true;
3743}
3744
3745static bool tr_valid(struct kvm_vcpu *vcpu)
3746{
3747	struct kvm_segment tr;
3748
3749	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3750
3751	if (tr.unusable)
3752		return false;
3753	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3754		return false;
3755	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3756		return false;
3757	if (!tr.present)
3758		return false;
3759
3760	return true;
3761}
3762
3763static bool ldtr_valid(struct kvm_vcpu *vcpu)
3764{
3765	struct kvm_segment ldtr;
3766
3767	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3768
3769	if (ldtr.unusable)
3770		return true;
3771	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3772		return false;
3773	if (ldtr.type != 2)
3774		return false;
3775	if (!ldtr.present)
3776		return false;
3777
3778	return true;
3779}
3780
3781static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3782{
3783	struct kvm_segment cs, ss;
3784
3785	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3786	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3787
3788	return ((cs.selector & SEGMENT_RPL_MASK) ==
3789		 (ss.selector & SEGMENT_RPL_MASK));
3790}
3791
3792/*
3793 * Check if guest state is valid. Returns true if valid, false if
3794 * not.
3795 * We assume that registers are always usable
3796 */
3797bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3798{
3799	/* real mode guest state checks */
3800	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3801		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3802			return false;
3803		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3804			return false;
3805		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3806			return false;
3807		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3808			return false;
3809		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3810			return false;
3811		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3812			return false;
3813	} else {
3814	/* protected mode guest state checks */
3815		if (!cs_ss_rpl_check(vcpu))
3816			return false;
3817		if (!code_segment_valid(vcpu))
3818			return false;
3819		if (!stack_segment_valid(vcpu))
3820			return false;
3821		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3822			return false;
3823		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3824			return false;
3825		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3826			return false;
3827		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3828			return false;
3829		if (!tr_valid(vcpu))
3830			return false;
3831		if (!ldtr_valid(vcpu))
3832			return false;
3833	}
3834	/* TODO:
3835	 * - Add checks on RIP
3836	 * - Add checks on RFLAGS
3837	 */
3838
3839	return true;
3840}
3841
3842static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3843{
3844	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3845	u16 data;
3846	int i;
3847
3848	for (i = 0; i < 3; i++) {
3849		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3850			return -EFAULT;
3851	}
3852
3853	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3854	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3855		return -EFAULT;
3856
3857	data = ~0;
3858	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3859		return -EFAULT;
3860
3861	return 0;
3862}
3863
3864static int init_rmode_identity_map(struct kvm *kvm)
3865{
3866	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3867	int i, r = 0;
3868	void __user *uaddr;
3869	u32 tmp;
3870
3871	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3872	mutex_lock(&kvm->slots_lock);
3873
3874	if (likely(kvm_vmx->ept_identity_pagetable_done))
3875		goto out;
3876
3877	if (!kvm_vmx->ept_identity_map_addr)
3878		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3879
3880	uaddr = __x86_set_memory_region(kvm,
3881					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3882					kvm_vmx->ept_identity_map_addr,
3883					PAGE_SIZE);
3884	if (IS_ERR(uaddr)) {
3885		r = PTR_ERR(uaddr);
3886		goto out;
3887	}
3888
3889	/* Set up identity-mapping pagetable for EPT in real mode */
3890	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3891		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3892			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3893		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3894			r = -EFAULT;
3895			goto out;
3896		}
3897	}
3898	kvm_vmx->ept_identity_pagetable_done = true;
3899
3900out:
3901	mutex_unlock(&kvm->slots_lock);
3902	return r;
3903}
3904
3905static void seg_setup(int seg)
3906{
3907	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3908	unsigned int ar;
3909
3910	vmcs_write16(sf->selector, 0);
3911	vmcs_writel(sf->base, 0);
3912	vmcs_write32(sf->limit, 0xffff);
3913	ar = 0x93;
3914	if (seg == VCPU_SREG_CS)
3915		ar |= 0x08; /* code segment */
3916
3917	vmcs_write32(sf->ar_bytes, ar);
3918}
3919
3920int allocate_vpid(void)
3921{
3922	int vpid;
3923
3924	if (!enable_vpid)
3925		return 0;
3926	spin_lock(&vmx_vpid_lock);
3927	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3928	if (vpid < VMX_NR_VPIDS)
3929		__set_bit(vpid, vmx_vpid_bitmap);
3930	else
3931		vpid = 0;
3932	spin_unlock(&vmx_vpid_lock);
3933	return vpid;
3934}
3935
3936void free_vpid(int vpid)
3937{
3938	if (!enable_vpid || vpid == 0)
3939		return;
3940	spin_lock(&vmx_vpid_lock);
3941	__clear_bit(vpid, vmx_vpid_bitmap);
3942	spin_unlock(&vmx_vpid_lock);
3943}
3944
3945static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3946{
3947	/*
3948	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3949	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3950	 * bitmap has changed.
3951	 */
3952	if (kvm_is_using_evmcs()) {
3953		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3954
3955		if (evmcs->hv_enlightenments_control.msr_bitmap)
3956			evmcs->hv_clean_fields &=
3957				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3958	}
3959
3960	vmx->nested.force_msr_bitmap_recalc = true;
3961}
3962
3963void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3964{
3965	struct vcpu_vmx *vmx = to_vmx(vcpu);
3966	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3967	int idx;
3968
3969	if (!cpu_has_vmx_msr_bitmap())
3970		return;
3971
3972	vmx_msr_bitmap_l01_changed(vmx);
3973
3974	/*
3975	 * Mark the desired intercept state in shadow bitmap, this is needed
3976	 * for resync when the MSR filters change.
3977	 */
3978	idx = vmx_get_passthrough_msr_slot(msr);
3979	if (idx >= 0) {
3980		if (type & MSR_TYPE_R)
3981			clear_bit(idx, vmx->shadow_msr_intercept.read);
3982		if (type & MSR_TYPE_W)
3983			clear_bit(idx, vmx->shadow_msr_intercept.write);
3984	}
3985
3986	if ((type & MSR_TYPE_R) &&
3987	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3988		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3989		type &= ~MSR_TYPE_R;
3990	}
3991
3992	if ((type & MSR_TYPE_W) &&
3993	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3994		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3995		type &= ~MSR_TYPE_W;
3996	}
3997
3998	if (type & MSR_TYPE_R)
3999		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4000
4001	if (type & MSR_TYPE_W)
4002		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4003}
4004
4005void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4006{
4007	struct vcpu_vmx *vmx = to_vmx(vcpu);
4008	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4009	int idx;
4010
4011	if (!cpu_has_vmx_msr_bitmap())
4012		return;
4013
4014	vmx_msr_bitmap_l01_changed(vmx);
4015
4016	/*
4017	 * Mark the desired intercept state in shadow bitmap, this is needed
4018	 * for resync when the MSR filter changes.
4019	 */
4020	idx = vmx_get_passthrough_msr_slot(msr);
4021	if (idx >= 0) {
4022		if (type & MSR_TYPE_R)
4023			set_bit(idx, vmx->shadow_msr_intercept.read);
4024		if (type & MSR_TYPE_W)
4025			set_bit(idx, vmx->shadow_msr_intercept.write);
4026	}
4027
4028	if (type & MSR_TYPE_R)
4029		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4030
4031	if (type & MSR_TYPE_W)
4032		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4033}
4034
4035static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4036{
4037	/*
4038	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4039	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4040	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4041	 */
4042	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4043	const int write_idx = read_idx + (0x800 / sizeof(u64));
4044	struct vcpu_vmx *vmx = to_vmx(vcpu);
4045	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4046	u8 mode;
4047
4048	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4049		return;
4050
4051	if (cpu_has_secondary_exec_ctrls() &&
4052	    (secondary_exec_controls_get(vmx) &
4053	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4054		mode = MSR_BITMAP_MODE_X2APIC;
4055		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4056			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4057	} else {
4058		mode = 0;
4059	}
4060
4061	if (mode == vmx->x2apic_msr_bitmap_mode)
4062		return;
4063
4064	vmx->x2apic_msr_bitmap_mode = mode;
4065
4066	/*
4067	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4068	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4069	 * Intercept all writes by default and poke holes as needed.  Pass
4070	 * through reads for all valid registers by default in x2APIC+APICv
4071	 * mode, only the current timer count needs on-demand emulation by KVM.
4072	 */
4073	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4074		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4075	else
4076		msr_bitmap[read_idx] = ~0ull;
4077	msr_bitmap[write_idx] = ~0ull;
4078
4079	/*
4080	 * TPR reads and writes can be virtualized even if virtual interrupt
4081	 * delivery is not in use.
4082	 */
4083	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4084				  !(mode & MSR_BITMAP_MODE_X2APIC));
4085
4086	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4087		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4088		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4089		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4090		if (enable_ipiv)
4091			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4092	}
4093}
4094
4095void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4096{
4097	struct vcpu_vmx *vmx = to_vmx(vcpu);
4098	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4099	u32 i;
4100
4101	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4102	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4103	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4104	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4105	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4106		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4107		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4108	}
4109}
4110
4111bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4112{
4113	struct vcpu_vmx *vmx = to_vmx(vcpu);
4114	void *vapic_page;
4115	u32 vppr;
4116	int rvi;
4117
4118	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4119		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4120		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4121		return false;
4122
4123	rvi = vmx_get_rvi();
4124
4125	vapic_page = vmx->nested.virtual_apic_map.hva;
4126	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4127
4128	return ((rvi & 0xf0) > (vppr & 0xf0));
4129}
4130
4131void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4132{
4133	struct vcpu_vmx *vmx = to_vmx(vcpu);
4134	u32 i;
4135
4136	if (!cpu_has_vmx_msr_bitmap())
4137		return;
4138
4139	/*
4140	 * Redo intercept permissions for MSRs that KVM is passing through to
4141	 * the guest.  Disabling interception will check the new MSR filter and
4142	 * ensure that KVM enables interception if usersepace wants to filter
4143	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4144	 * refreshed since KVM is going to intercept them regardless of what
4145	 * userspace wants.
4146	 */
4147	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4148		u32 msr = vmx_possible_passthrough_msrs[i];
4149
4150		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4151			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4152
4153		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4154			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4155	}
4156
4157	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4158	if (vmx_pt_mode_is_host_guest())
4159		pt_update_intercept_for_msr(vcpu);
4160}
4161
4162static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4163						     int pi_vec)
4164{
4165#ifdef CONFIG_SMP
4166	if (vcpu->mode == IN_GUEST_MODE) {
4167		/*
4168		 * The vector of the virtual has already been set in the PIR.
4169		 * Send a notification event to deliver the virtual interrupt
4170		 * unless the vCPU is the currently running vCPU, i.e. the
4171		 * event is being sent from a fastpath VM-Exit handler, in
4172		 * which case the PIR will be synced to the vIRR before
4173		 * re-entering the guest.
4174		 *
4175		 * When the target is not the running vCPU, the following
4176		 * possibilities emerge:
4177		 *
4178		 * Case 1: vCPU stays in non-root mode. Sending a notification
4179		 * event posts the interrupt to the vCPU.
4180		 *
4181		 * Case 2: vCPU exits to root mode and is still runnable. The
4182		 * PIR will be synced to the vIRR before re-entering the guest.
4183		 * Sending a notification event is ok as the host IRQ handler
4184		 * will ignore the spurious event.
4185		 *
4186		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4187		 * has already synced PIR to vIRR and never blocks the vCPU if
4188		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4189		 * not wait for any requested interrupts in PIR, and sending a
4190		 * notification event also results in a benign, spurious event.
4191		 */
4192
4193		if (vcpu != kvm_get_running_vcpu())
4194			__apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4195		return;
4196	}
4197#endif
4198	/*
4199	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4200	 * otherwise do nothing as KVM will grab the highest priority pending
4201	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4202	 */
4203	kvm_vcpu_wake_up(vcpu);
4204}
4205
4206static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4207						int vector)
4208{
4209	struct vcpu_vmx *vmx = to_vmx(vcpu);
4210
4211	if (is_guest_mode(vcpu) &&
4212	    vector == vmx->nested.posted_intr_nv) {
4213		/*
4214		 * If a posted intr is not recognized by hardware,
4215		 * we will accomplish it in the next vmentry.
4216		 */
4217		vmx->nested.pi_pending = true;
4218		kvm_make_request(KVM_REQ_EVENT, vcpu);
4219
4220		/*
4221		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4222		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4223		 * request if triggering a posted interrupt "fails" because
4224		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4225		 * the smb_wmb() in kvm_make_request() only ensures everything
4226		 * done before making the request is visible when the request
4227		 * is visible, it doesn't ensure ordering between the store to
4228		 * vcpu->requests and the load from vcpu->mode.
4229		 */
4230		smp_mb__after_atomic();
4231
4232		/* the PIR and ON have been set by L1. */
4233		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4234		return 0;
4235	}
4236	return -1;
4237}
4238/*
4239 * Send interrupt to vcpu via posted interrupt way.
4240 * 1. If target vcpu is running(non-root mode), send posted interrupt
4241 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4242 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4243 * interrupt from PIR in next vmentry.
4244 */
4245static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4246{
4247	struct vcpu_vmx *vmx = to_vmx(vcpu);
4248	int r;
4249
4250	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4251	if (!r)
4252		return 0;
4253
4254	/* Note, this is called iff the local APIC is in-kernel. */
4255	if (!vcpu->arch.apic->apicv_active)
4256		return -1;
4257
4258	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4259		return 0;
4260
4261	/* If a previous notification has sent the IPI, nothing to do.  */
4262	if (pi_test_and_set_on(&vmx->pi_desc))
4263		return 0;
4264
4265	/*
4266	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4267	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4268	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4269	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4270	 */
4271	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4272	return 0;
4273}
4274
4275void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4276			   int trig_mode, int vector)
4277{
4278	struct kvm_vcpu *vcpu = apic->vcpu;
4279
4280	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4281		kvm_lapic_set_irr(vector, apic);
4282		kvm_make_request(KVM_REQ_EVENT, vcpu);
4283		kvm_vcpu_kick(vcpu);
4284	} else {
4285		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4286					   trig_mode, vector);
4287	}
4288}
4289
4290/*
4291 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4292 * will not change in the lifetime of the guest.
4293 * Note that host-state that does change is set elsewhere. E.g., host-state
4294 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4295 */
4296void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4297{
4298	u32 low32, high32;
4299	unsigned long tmpl;
4300	unsigned long cr0, cr3, cr4;
4301
4302	cr0 = read_cr0();
4303	WARN_ON(cr0 & X86_CR0_TS);
4304	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4305
4306	/*
4307	 * Save the most likely value for this task's CR3 in the VMCS.
4308	 * We can't use __get_current_cr3_fast() because we're not atomic.
4309	 */
4310	cr3 = __read_cr3();
4311	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4312	vmx->loaded_vmcs->host_state.cr3 = cr3;
4313
4314	/* Save the most likely value for this task's CR4 in the VMCS. */
4315	cr4 = cr4_read_shadow();
4316	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4317	vmx->loaded_vmcs->host_state.cr4 = cr4;
4318
4319	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4320#ifdef CONFIG_X86_64
4321	/*
4322	 * Load null selectors, so we can avoid reloading them in
4323	 * vmx_prepare_switch_to_host(), in case userspace uses
4324	 * the null selectors too (the expected case).
4325	 */
4326	vmcs_write16(HOST_DS_SELECTOR, 0);
4327	vmcs_write16(HOST_ES_SELECTOR, 0);
4328#else
4329	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4330	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4331#endif
4332	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4333	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4334
4335	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4336
4337	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4338
4339	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4340	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4341
4342	/*
4343	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4344	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4345	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4346	 * have already done so!).
4347	 */
4348	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4349		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4350
4351	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4352	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4353
4354	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4355		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4356		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4357	}
4358
4359	if (cpu_has_load_ia32_efer())
4360		vmcs_write64(HOST_IA32_EFER, host_efer);
4361}
4362
4363void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4364{
4365	struct kvm_vcpu *vcpu = &vmx->vcpu;
4366
4367	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4368					  ~vcpu->arch.cr4_guest_rsvd_bits;
4369	if (!enable_ept) {
4370		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4371		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4372	}
4373	if (is_guest_mode(&vmx->vcpu))
4374		vcpu->arch.cr4_guest_owned_bits &=
4375			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4376	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4377}
4378
4379static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4380{
4381	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4382
4383	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4384		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4385
4386	if (!enable_vnmi)
4387		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4388
4389	if (!enable_preemption_timer)
4390		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4391
4392	return pin_based_exec_ctrl;
4393}
4394
4395static u32 vmx_vmentry_ctrl(void)
4396{
4397	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4398
4399	if (vmx_pt_mode_is_system())
4400		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4401				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4402	/*
4403	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4404	 */
4405	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4406			  VM_ENTRY_LOAD_IA32_EFER |
4407			  VM_ENTRY_IA32E_MODE);
4408
4409	if (cpu_has_perf_global_ctrl_bug())
4410		vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4411
4412	return vmentry_ctrl;
4413}
4414
4415static u32 vmx_vmexit_ctrl(void)
4416{
4417	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4418
4419	/*
4420	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4421	 * nested virtualization and thus allowed to be set in vmcs12.
4422	 */
4423	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4424			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4425
4426	if (vmx_pt_mode_is_system())
4427		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4428				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4429
4430	if (cpu_has_perf_global_ctrl_bug())
4431		vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4432
4433	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4434	return vmexit_ctrl &
4435		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4436}
4437
4438void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4439{
4440	struct vcpu_vmx *vmx = to_vmx(vcpu);
4441
4442	if (is_guest_mode(vcpu)) {
4443		vmx->nested.update_vmcs01_apicv_status = true;
4444		return;
4445	}
4446
4447	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4448
4449	if (kvm_vcpu_apicv_active(vcpu)) {
4450		secondary_exec_controls_setbit(vmx,
4451					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4452					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4453		if (enable_ipiv)
4454			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4455	} else {
4456		secondary_exec_controls_clearbit(vmx,
4457						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4458						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4459		if (enable_ipiv)
4460			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4461	}
4462
4463	vmx_update_msr_bitmap_x2apic(vcpu);
4464}
4465
4466static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4467{
4468	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4469
4470	/*
4471	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4472	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4473	 */
4474	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4475			  CPU_BASED_USE_IO_BITMAPS |
4476			  CPU_BASED_MONITOR_TRAP_FLAG |
4477			  CPU_BASED_PAUSE_EXITING);
4478
4479	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4480	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4481			  CPU_BASED_NMI_WINDOW_EXITING);
4482
4483	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4484		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4485
4486	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4487		exec_control &= ~CPU_BASED_TPR_SHADOW;
4488
4489#ifdef CONFIG_X86_64
4490	if (exec_control & CPU_BASED_TPR_SHADOW)
4491		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4492				  CPU_BASED_CR8_STORE_EXITING);
4493	else
4494		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4495				CPU_BASED_CR8_LOAD_EXITING;
4496#endif
4497	/* No need to intercept CR3 access or INVPLG when using EPT. */
4498	if (enable_ept)
4499		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4500				  CPU_BASED_CR3_STORE_EXITING |
4501				  CPU_BASED_INVLPG_EXITING);
4502	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4503		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4504				CPU_BASED_MONITOR_EXITING);
4505	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4506		exec_control &= ~CPU_BASED_HLT_EXITING;
4507	return exec_control;
4508}
4509
4510static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4511{
4512	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4513
4514	/*
4515	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4516	 * APICv is inhibited.
4517	 */
4518	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4519		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4520
4521	return exec_control;
4522}
4523
4524/*
4525 * Adjust a single secondary execution control bit to intercept/allow an
4526 * instruction in the guest.  This is usually done based on whether or not a
4527 * feature has been exposed to the guest in order to correctly emulate faults.
4528 */
4529static inline void
4530vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4531				  u32 control, bool enabled, bool exiting)
4532{
4533	/*
4534	 * If the control is for an opt-in feature, clear the control if the
4535	 * feature is not exposed to the guest, i.e. not enabled.  If the
4536	 * control is opt-out, i.e. an exiting control, clear the control if
4537	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4538	 * disabled for the associated instruction.  Note, the caller is
4539	 * responsible presetting exec_control to set all supported bits.
4540	 */
4541	if (enabled == exiting)
4542		*exec_control &= ~control;
4543
4544	/*
4545	 * Update the nested MSR settings so that a nested VMM can/can't set
4546	 * controls for features that are/aren't exposed to the guest.
4547	 */
4548	if (nested) {
4549		/*
4550		 * All features that can be added or removed to VMX MSRs must
4551		 * be supported in the first place for nested virtualization.
4552		 */
4553		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4554			enabled = false;
4555
4556		if (enabled)
4557			vmx->nested.msrs.secondary_ctls_high |= control;
4558		else
4559			vmx->nested.msrs.secondary_ctls_high &= ~control;
4560	}
4561}
4562
4563/*
4564 * Wrapper macro for the common case of adjusting a secondary execution control
4565 * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4566 * verifies that the control is actually supported by KVM and hardware.
4567 */
4568#define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)	\
4569({												\
4570	struct kvm_vcpu *__vcpu = &(vmx)->vcpu;							\
4571	bool __enabled;										\
4572												\
4573	if (cpu_has_vmx_##name()) {								\
4574		if (kvm_is_governed_feature(X86_FEATURE_##feat_name))				\
4575			__enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name);		\
4576		else										\
4577			__enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name);		\
4578		vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4579						  __enabled, exiting);				\
4580	}											\
4581})
4582
4583/* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4584#define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4585	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4586
4587#define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4588	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4589
4590static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4591{
4592	struct kvm_vcpu *vcpu = &vmx->vcpu;
4593
4594	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4595
4596	if (vmx_pt_mode_is_system())
4597		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4598	if (!cpu_need_virtualize_apic_accesses(vcpu))
4599		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4600	if (vmx->vpid == 0)
4601		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4602	if (!enable_ept) {
4603		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4604		exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4605		enable_unrestricted_guest = 0;
4606	}
4607	if (!enable_unrestricted_guest)
4608		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4609	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4610		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4611	if (!kvm_vcpu_apicv_active(vcpu))
4612		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4613				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4614	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4615
4616	/*
4617	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4618	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4619	 */
4620	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4621
4622	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4623	 * in vmx_set_cr4.  */
4624	exec_control &= ~SECONDARY_EXEC_DESC;
4625
4626	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4627	   (handle_vmptrld).
4628	   We can NOT enable shadow_vmcs here because we don't have yet
4629	   a current VMCS12
4630	*/
4631	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4632
4633	/*
4634	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4635	 * it needs to be set here when dirty logging is already active, e.g.
4636	 * if this vCPU was created after dirty logging was enabled.
4637	 */
4638	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4639		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4640
4641	vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4642
4643	/*
4644	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4645	 * feature is exposed to the guest.  This creates a virtualization hole
4646	 * if both are supported in hardware but only one is exposed to the
4647	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4648	 * is advertised is preferable to emulating the advertised instruction
4649	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4650	 */
4651	if (cpu_has_vmx_rdtscp()) {
4652		bool rdpid_or_rdtscp_enabled =
4653			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4654			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4655
4656		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4657						  SECONDARY_EXEC_ENABLE_RDTSCP,
4658						  rdpid_or_rdtscp_enabled, false);
4659	}
4660
4661	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4662
4663	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4664	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4665
4666	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4667				    ENABLE_USR_WAIT_PAUSE, false);
4668
4669	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4670		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4671
4672	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4673		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4674
4675	return exec_control;
4676}
4677
4678static inline int vmx_get_pid_table_order(struct kvm *kvm)
4679{
4680	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4681}
4682
4683static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4684{
4685	struct page *pages;
4686	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4687
4688	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4689		return 0;
4690
4691	if (kvm_vmx->pid_table)
4692		return 0;
4693
4694	pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4695			    vmx_get_pid_table_order(kvm));
4696	if (!pages)
4697		return -ENOMEM;
4698
4699	kvm_vmx->pid_table = (void *)page_address(pages);
4700	return 0;
4701}
4702
4703int vmx_vcpu_precreate(struct kvm *kvm)
4704{
4705	return vmx_alloc_ipiv_pid_table(kvm);
4706}
4707
4708#define VMX_XSS_EXIT_BITMAP 0
4709
4710static void init_vmcs(struct vcpu_vmx *vmx)
4711{
4712	struct kvm *kvm = vmx->vcpu.kvm;
4713	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4714
4715	if (nested)
4716		nested_vmx_set_vmcs_shadowing_bitmap();
4717
4718	if (cpu_has_vmx_msr_bitmap())
4719		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4720
4721	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4722
4723	/* Control */
4724	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4725
4726	exec_controls_set(vmx, vmx_exec_control(vmx));
4727
4728	if (cpu_has_secondary_exec_ctrls()) {
4729		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4730		if (vmx->ve_info)
4731			vmcs_write64(VE_INFORMATION_ADDRESS,
4732				     __pa(vmx->ve_info));
4733	}
4734
4735	if (cpu_has_tertiary_exec_ctrls())
4736		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4737
4738	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4739		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4740		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4741		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4742		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4743
4744		vmcs_write16(GUEST_INTR_STATUS, 0);
4745
4746		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4747		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4748	}
4749
4750	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4751		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4752		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4753	}
4754
4755	if (!kvm_pause_in_guest(kvm)) {
4756		vmcs_write32(PLE_GAP, ple_gap);
4757		vmx->ple_window = ple_window;
4758		vmx->ple_window_dirty = true;
4759	}
4760
4761	if (kvm_notify_vmexit_enabled(kvm))
4762		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4763
4764	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4765	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4766	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4767
4768	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4769	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4770	vmx_set_constant_host_state(vmx);
4771	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4772	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4773
4774	if (cpu_has_vmx_vmfunc())
4775		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4776
4777	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4778	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4779	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4780	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4781	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4782
4783	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4784		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4785
4786	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4787
4788	/* 22.2.1, 20.8.1 */
4789	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4790
4791	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4792	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4793
4794	set_cr4_guest_host_mask(vmx);
4795
4796	if (vmx->vpid != 0)
4797		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4798
4799	if (cpu_has_vmx_xsaves())
4800		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4801
4802	if (enable_pml) {
4803		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4804		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4805	}
4806
4807	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4808
4809	if (vmx_pt_mode_is_host_guest()) {
4810		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4811		/* Bit[6~0] are forced to 1, writes are ignored. */
4812		vmx->pt_desc.guest.output_mask = 0x7F;
4813		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4814	}
4815
4816	vmcs_write32(GUEST_SYSENTER_CS, 0);
4817	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4818	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4819	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4820
4821	if (cpu_has_vmx_tpr_shadow()) {
4822		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4823		if (cpu_need_tpr_shadow(&vmx->vcpu))
4824			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4825				     __pa(vmx->vcpu.arch.apic->regs));
4826		vmcs_write32(TPR_THRESHOLD, 0);
4827	}
4828
4829	vmx_setup_uret_msrs(vmx);
4830}
4831
4832static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4833{
4834	struct vcpu_vmx *vmx = to_vmx(vcpu);
4835
4836	init_vmcs(vmx);
4837
4838	if (nested)
4839		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4840
4841	vcpu_setup_sgx_lepubkeyhash(vcpu);
4842
4843	vmx->nested.posted_intr_nv = -1;
4844	vmx->nested.vmxon_ptr = INVALID_GPA;
4845	vmx->nested.current_vmptr = INVALID_GPA;
4846
4847#ifdef CONFIG_KVM_HYPERV
4848	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4849#endif
4850
4851	vcpu->arch.microcode_version = 0x100000000ULL;
4852	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4853
4854	/*
4855	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4856	 * or POSTED_INTR_WAKEUP_VECTOR.
4857	 */
4858	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4859	__pi_set_sn(&vmx->pi_desc);
4860}
4861
4862void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4863{
4864	struct vcpu_vmx *vmx = to_vmx(vcpu);
4865
4866	if (!init_event)
4867		__vmx_vcpu_reset(vcpu);
4868
4869	vmx->rmode.vm86_active = 0;
4870	vmx->spec_ctrl = 0;
4871
4872	vmx->msr_ia32_umwait_control = 0;
4873
4874	vmx->hv_deadline_tsc = -1;
4875	kvm_set_cr8(vcpu, 0);
4876
4877	vmx_segment_cache_clear(vmx);
4878	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4879
4880	seg_setup(VCPU_SREG_CS);
4881	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4882	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4883
4884	seg_setup(VCPU_SREG_DS);
4885	seg_setup(VCPU_SREG_ES);
4886	seg_setup(VCPU_SREG_FS);
4887	seg_setup(VCPU_SREG_GS);
4888	seg_setup(VCPU_SREG_SS);
4889
4890	vmcs_write16(GUEST_TR_SELECTOR, 0);
4891	vmcs_writel(GUEST_TR_BASE, 0);
4892	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4893	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4894
4895	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4896	vmcs_writel(GUEST_LDTR_BASE, 0);
4897	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4898	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4899
4900	vmcs_writel(GUEST_GDTR_BASE, 0);
4901	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4902
4903	vmcs_writel(GUEST_IDTR_BASE, 0);
4904	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4905
4906	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4907	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4908	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4909	if (kvm_mpx_supported())
4910		vmcs_write64(GUEST_BNDCFGS, 0);
4911
4912	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4913
4914	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4915
4916	vpid_sync_context(vmx->vpid);
4917
4918	vmx_update_fb_clear_dis(vcpu, vmx);
4919}
4920
4921void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4922{
4923	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4924}
4925
4926void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4927{
4928	if (!enable_vnmi ||
4929	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4930		vmx_enable_irq_window(vcpu);
4931		return;
4932	}
4933
4934	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4935}
4936
4937void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4938{
4939	struct vcpu_vmx *vmx = to_vmx(vcpu);
4940	uint32_t intr;
4941	int irq = vcpu->arch.interrupt.nr;
4942
4943	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4944
4945	++vcpu->stat.irq_injections;
4946	if (vmx->rmode.vm86_active) {
4947		int inc_eip = 0;
4948		if (vcpu->arch.interrupt.soft)
4949			inc_eip = vcpu->arch.event_exit_inst_len;
4950		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4951		return;
4952	}
4953	intr = irq | INTR_INFO_VALID_MASK;
4954	if (vcpu->arch.interrupt.soft) {
4955		intr |= INTR_TYPE_SOFT_INTR;
4956		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4957			     vmx->vcpu.arch.event_exit_inst_len);
4958	} else
4959		intr |= INTR_TYPE_EXT_INTR;
4960	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4961
4962	vmx_clear_hlt(vcpu);
4963}
4964
4965void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4966{
4967	struct vcpu_vmx *vmx = to_vmx(vcpu);
4968
4969	if (!enable_vnmi) {
4970		/*
4971		 * Tracking the NMI-blocked state in software is built upon
4972		 * finding the next open IRQ window. This, in turn, depends on
4973		 * well-behaving guests: They have to keep IRQs disabled at
4974		 * least as long as the NMI handler runs. Otherwise we may
4975		 * cause NMI nesting, maybe breaking the guest. But as this is
4976		 * highly unlikely, we can live with the residual risk.
4977		 */
4978		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4979		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4980	}
4981
4982	++vcpu->stat.nmi_injections;
4983	vmx->loaded_vmcs->nmi_known_unmasked = false;
4984
4985	if (vmx->rmode.vm86_active) {
4986		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4987		return;
4988	}
4989
4990	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4991			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4992
4993	vmx_clear_hlt(vcpu);
4994}
4995
4996bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4997{
4998	struct vcpu_vmx *vmx = to_vmx(vcpu);
4999	bool masked;
5000
5001	if (!enable_vnmi)
5002		return vmx->loaded_vmcs->soft_vnmi_blocked;
5003	if (vmx->loaded_vmcs->nmi_known_unmasked)
5004		return false;
5005	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5006	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5007	return masked;
5008}
5009
5010void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5011{
5012	struct vcpu_vmx *vmx = to_vmx(vcpu);
5013
5014	if (!enable_vnmi) {
5015		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5016			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5017			vmx->loaded_vmcs->vnmi_blocked_time = 0;
5018		}
5019	} else {
5020		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5021		if (masked)
5022			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5023				      GUEST_INTR_STATE_NMI);
5024		else
5025			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5026					GUEST_INTR_STATE_NMI);
5027	}
5028}
5029
5030bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5031{
5032	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5033		return false;
5034
5035	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5036		return true;
5037
5038	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5039		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5040		 GUEST_INTR_STATE_NMI));
5041}
5042
5043int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5044{
5045	if (to_vmx(vcpu)->nested.nested_run_pending)
5046		return -EBUSY;
5047
5048	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5049	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5050		return -EBUSY;
5051
5052	return !vmx_nmi_blocked(vcpu);
5053}
5054
5055bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5056{
5057	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5058		return false;
5059
5060	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5061	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5062		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5063}
5064
5065int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5066{
5067	if (to_vmx(vcpu)->nested.nested_run_pending)
5068		return -EBUSY;
5069
5070	/*
5071	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5072	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5073	 */
5074	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5075		return -EBUSY;
5076
5077	return !vmx_interrupt_blocked(vcpu);
5078}
5079
5080int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5081{
5082	void __user *ret;
5083
5084	if (enable_unrestricted_guest)
5085		return 0;
5086
5087	mutex_lock(&kvm->slots_lock);
5088	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5089				      PAGE_SIZE * 3);
5090	mutex_unlock(&kvm->slots_lock);
5091
5092	if (IS_ERR(ret))
5093		return PTR_ERR(ret);
5094
5095	to_kvm_vmx(kvm)->tss_addr = addr;
5096
5097	return init_rmode_tss(kvm, ret);
5098}
5099
5100int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5101{
5102	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5103	return 0;
5104}
5105
5106static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5107{
5108	switch (vec) {
5109	case BP_VECTOR:
5110		/*
5111		 * Update instruction length as we may reinject the exception
5112		 * from user space while in guest debugging mode.
5113		 */
5114		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5115			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5116		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5117			return false;
5118		fallthrough;
5119	case DB_VECTOR:
5120		return !(vcpu->guest_debug &
5121			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5122	case DE_VECTOR:
5123	case OF_VECTOR:
5124	case BR_VECTOR:
5125	case UD_VECTOR:
5126	case DF_VECTOR:
5127	case SS_VECTOR:
5128	case GP_VECTOR:
5129	case MF_VECTOR:
5130		return true;
5131	}
5132	return false;
5133}
5134
5135static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5136				  int vec, u32 err_code)
5137{
5138	/*
5139	 * Instruction with address size override prefix opcode 0x67
5140	 * Cause the #SS fault with 0 error code in VM86 mode.
5141	 */
5142	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5143		if (kvm_emulate_instruction(vcpu, 0)) {
5144			if (vcpu->arch.halt_request) {
5145				vcpu->arch.halt_request = 0;
5146				return kvm_emulate_halt_noskip(vcpu);
5147			}
5148			return 1;
5149		}
5150		return 0;
5151	}
5152
5153	/*
5154	 * Forward all other exceptions that are valid in real mode.
5155	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5156	 *        the required debugging infrastructure rework.
5157	 */
5158	kvm_queue_exception(vcpu, vec);
5159	return 1;
5160}
5161
5162static int handle_machine_check(struct kvm_vcpu *vcpu)
5163{
5164	/* handled by vmx_vcpu_run() */
5165	return 1;
5166}
5167
5168/*
5169 * If the host has split lock detection disabled, then #AC is
5170 * unconditionally injected into the guest, which is the pre split lock
5171 * detection behaviour.
5172 *
5173 * If the host has split lock detection enabled then #AC is
5174 * only injected into the guest when:
5175 *  - Guest CPL == 3 (user mode)
5176 *  - Guest has #AC detection enabled in CR0
5177 *  - Guest EFLAGS has AC bit set
5178 */
5179bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5180{
5181	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5182		return true;
5183
5184	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5185	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5186}
5187
5188static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5189{
5190	struct vcpu_vmx *vmx = to_vmx(vcpu);
5191	struct kvm_run *kvm_run = vcpu->run;
5192	u32 intr_info, ex_no, error_code;
5193	unsigned long cr2, dr6;
5194	u32 vect_info;
5195
5196	vect_info = vmx->idt_vectoring_info;
5197	intr_info = vmx_get_intr_info(vcpu);
5198
5199	/*
5200	 * Machine checks are handled by handle_exception_irqoff(), or by
5201	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5202	 * vmx_vcpu_enter_exit().
5203	 */
5204	if (is_machine_check(intr_info) || is_nmi(intr_info))
5205		return 1;
5206
5207	/*
5208	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5209	 * This ensures the nested_vmx check is not skipped so vmexit can
5210	 * be reflected to L1 (when it intercepts #NM) before reaching this
5211	 * point.
5212	 */
5213	if (is_nm_fault(intr_info)) {
5214		kvm_queue_exception(vcpu, NM_VECTOR);
5215		return 1;
5216	}
5217
5218	if (is_invalid_opcode(intr_info))
5219		return handle_ud(vcpu);
5220
5221	if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5222		struct vmx_ve_information *ve_info = vmx->ve_info;
5223
5224		WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5225			  "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5226		dump_vmcs(vcpu);
5227		kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5228		return 1;
5229	}
5230
5231	error_code = 0;
5232	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5233		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5234
5235	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5236		WARN_ON_ONCE(!enable_vmware_backdoor);
5237
5238		/*
5239		 * VMware backdoor emulation on #GP interception only handles
5240		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5241		 * error code on #GP.
5242		 */
5243		if (error_code) {
5244			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5245			return 1;
5246		}
5247		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5248	}
5249
5250	/*
5251	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5252	 * MMIO, it is better to report an internal error.
5253	 * See the comments in vmx_handle_exit.
5254	 */
5255	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5256	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5257		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5258		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5259		vcpu->run->internal.ndata = 4;
5260		vcpu->run->internal.data[0] = vect_info;
5261		vcpu->run->internal.data[1] = intr_info;
5262		vcpu->run->internal.data[2] = error_code;
5263		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5264		return 0;
5265	}
5266
5267	if (is_page_fault(intr_info)) {
5268		cr2 = vmx_get_exit_qual(vcpu);
5269		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5270			/*
5271			 * EPT will cause page fault only if we need to
5272			 * detect illegal GPAs.
5273			 */
5274			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5275			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5276			return 1;
5277		} else
5278			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5279	}
5280
5281	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5282
5283	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5284		return handle_rmode_exception(vcpu, ex_no, error_code);
5285
5286	switch (ex_no) {
5287	case DB_VECTOR:
5288		dr6 = vmx_get_exit_qual(vcpu);
5289		if (!(vcpu->guest_debug &
5290		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5291			/*
5292			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5293			 * instruction.  ICEBP generates a trap-like #DB, but
5294			 * despite its interception control being tied to #DB,
5295			 * is an instruction intercept, i.e. the VM-Exit occurs
5296			 * on the ICEBP itself.  Use the inner "skip" helper to
5297			 * avoid single-step #DB and MTF updates, as ICEBP is
5298			 * higher priority.  Note, skipping ICEBP still clears
5299			 * STI and MOVSS blocking.
5300			 *
5301			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5302			 * if single-step is enabled in RFLAGS and STI or MOVSS
5303			 * blocking is active, as the CPU doesn't set the bit
5304			 * on VM-Exit due to #DB interception.  VM-Entry has a
5305			 * consistency check that a single-step #DB is pending
5306			 * in this scenario as the previous instruction cannot
5307			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5308			 * don't modify RFLAGS), therefore the one instruction
5309			 * delay when activating single-step breakpoints must
5310			 * have already expired.  Note, the CPU sets/clears BS
5311			 * as appropriate for all other VM-Exits types.
5312			 */
5313			if (is_icebp(intr_info))
5314				WARN_ON(!skip_emulated_instruction(vcpu));
5315			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5316				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5317				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5318				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5319					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5320
5321			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5322			return 1;
5323		}
5324		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5325		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5326		fallthrough;
5327	case BP_VECTOR:
5328		/*
5329		 * Update instruction length as we may reinject #BP from
5330		 * user space while in guest debugging mode. Reading it for
5331		 * #DB as well causes no harm, it is not used in that case.
5332		 */
5333		vmx->vcpu.arch.event_exit_inst_len =
5334			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5335		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5336		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5337		kvm_run->debug.arch.exception = ex_no;
5338		break;
5339	case AC_VECTOR:
5340		if (vmx_guest_inject_ac(vcpu)) {
5341			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5342			return 1;
5343		}
5344
5345		/*
5346		 * Handle split lock. Depending on detection mode this will
5347		 * either warn and disable split lock detection for this
5348		 * task or force SIGBUS on it.
5349		 */
5350		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5351			return 1;
5352		fallthrough;
5353	default:
5354		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5355		kvm_run->ex.exception = ex_no;
5356		kvm_run->ex.error_code = error_code;
5357		break;
5358	}
5359	return 0;
5360}
5361
5362static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5363{
5364	++vcpu->stat.irq_exits;
5365	return 1;
5366}
5367
5368static int handle_triple_fault(struct kvm_vcpu *vcpu)
5369{
5370	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5371	vcpu->mmio_needed = 0;
5372	return 0;
5373}
5374
5375static int handle_io(struct kvm_vcpu *vcpu)
5376{
5377	unsigned long exit_qualification;
5378	int size, in, string;
5379	unsigned port;
5380
5381	exit_qualification = vmx_get_exit_qual(vcpu);
5382	string = (exit_qualification & 16) != 0;
5383
5384	++vcpu->stat.io_exits;
5385
5386	if (string)
5387		return kvm_emulate_instruction(vcpu, 0);
5388
5389	port = exit_qualification >> 16;
5390	size = (exit_qualification & 7) + 1;
5391	in = (exit_qualification & 8) != 0;
5392
5393	return kvm_fast_pio(vcpu, size, port, in);
5394}
5395
5396void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5397{
5398	/*
5399	 * Patch in the VMCALL instruction:
5400	 */
5401	hypercall[0] = 0x0f;
5402	hypercall[1] = 0x01;
5403	hypercall[2] = 0xc1;
5404}
5405
5406/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5407static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5408{
5409	if (is_guest_mode(vcpu)) {
5410		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5411		unsigned long orig_val = val;
5412
5413		/*
5414		 * We get here when L2 changed cr0 in a way that did not change
5415		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5416		 * but did change L0 shadowed bits. So we first calculate the
5417		 * effective cr0 value that L1 would like to write into the
5418		 * hardware. It consists of the L2-owned bits from the new
5419		 * value combined with the L1-owned bits from L1's guest_cr0.
5420		 */
5421		val = (val & ~vmcs12->cr0_guest_host_mask) |
5422			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5423
5424		if (kvm_set_cr0(vcpu, val))
5425			return 1;
5426		vmcs_writel(CR0_READ_SHADOW, orig_val);
5427		return 0;
5428	} else {
5429		return kvm_set_cr0(vcpu, val);
5430	}
5431}
5432
5433static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5434{
5435	if (is_guest_mode(vcpu)) {
5436		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5437		unsigned long orig_val = val;
5438
5439		/* analogously to handle_set_cr0 */
5440		val = (val & ~vmcs12->cr4_guest_host_mask) |
5441			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5442		if (kvm_set_cr4(vcpu, val))
5443			return 1;
5444		vmcs_writel(CR4_READ_SHADOW, orig_val);
5445		return 0;
5446	} else
5447		return kvm_set_cr4(vcpu, val);
5448}
5449
5450static int handle_desc(struct kvm_vcpu *vcpu)
5451{
5452	/*
5453	 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5454	 * and other code needs to be updated if UMIP can be guest owned.
5455	 */
5456	BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5457
5458	WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5459	return kvm_emulate_instruction(vcpu, 0);
5460}
5461
5462static int handle_cr(struct kvm_vcpu *vcpu)
5463{
5464	unsigned long exit_qualification, val;
5465	int cr;
5466	int reg;
5467	int err;
5468	int ret;
5469
5470	exit_qualification = vmx_get_exit_qual(vcpu);
5471	cr = exit_qualification & 15;
5472	reg = (exit_qualification >> 8) & 15;
5473	switch ((exit_qualification >> 4) & 3) {
5474	case 0: /* mov to cr */
5475		val = kvm_register_read(vcpu, reg);
5476		trace_kvm_cr_write(cr, val);
5477		switch (cr) {
5478		case 0:
5479			err = handle_set_cr0(vcpu, val);
5480			return kvm_complete_insn_gp(vcpu, err);
5481		case 3:
5482			WARN_ON_ONCE(enable_unrestricted_guest);
5483
5484			err = kvm_set_cr3(vcpu, val);
5485			return kvm_complete_insn_gp(vcpu, err);
5486		case 4:
5487			err = handle_set_cr4(vcpu, val);
5488			return kvm_complete_insn_gp(vcpu, err);
5489		case 8: {
5490				u8 cr8_prev = kvm_get_cr8(vcpu);
5491				u8 cr8 = (u8)val;
5492				err = kvm_set_cr8(vcpu, cr8);
5493				ret = kvm_complete_insn_gp(vcpu, err);
5494				if (lapic_in_kernel(vcpu))
5495					return ret;
5496				if (cr8_prev <= cr8)
5497					return ret;
5498				/*
5499				 * TODO: we might be squashing a
5500				 * KVM_GUESTDBG_SINGLESTEP-triggered
5501				 * KVM_EXIT_DEBUG here.
5502				 */
5503				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5504				return 0;
5505			}
5506		}
5507		break;
5508	case 2: /* clts */
5509		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5510		return -EIO;
5511	case 1: /*mov from cr*/
5512		switch (cr) {
5513		case 3:
5514			WARN_ON_ONCE(enable_unrestricted_guest);
5515
5516			val = kvm_read_cr3(vcpu);
5517			kvm_register_write(vcpu, reg, val);
5518			trace_kvm_cr_read(cr, val);
5519			return kvm_skip_emulated_instruction(vcpu);
5520		case 8:
5521			val = kvm_get_cr8(vcpu);
5522			kvm_register_write(vcpu, reg, val);
5523			trace_kvm_cr_read(cr, val);
5524			return kvm_skip_emulated_instruction(vcpu);
5525		}
5526		break;
5527	case 3: /* lmsw */
5528		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5529		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5530		kvm_lmsw(vcpu, val);
5531
5532		return kvm_skip_emulated_instruction(vcpu);
5533	default:
5534		break;
5535	}
5536	vcpu->run->exit_reason = 0;
5537	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5538	       (int)(exit_qualification >> 4) & 3, cr);
5539	return 0;
5540}
5541
5542static int handle_dr(struct kvm_vcpu *vcpu)
5543{
5544	unsigned long exit_qualification;
5545	int dr, dr7, reg;
5546	int err = 1;
5547
5548	exit_qualification = vmx_get_exit_qual(vcpu);
5549	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5550
5551	/* First, if DR does not exist, trigger UD */
5552	if (!kvm_require_dr(vcpu, dr))
5553		return 1;
5554
5555	if (vmx_get_cpl(vcpu) > 0)
5556		goto out;
5557
5558	dr7 = vmcs_readl(GUEST_DR7);
5559	if (dr7 & DR7_GD) {
5560		/*
5561		 * As the vm-exit takes precedence over the debug trap, we
5562		 * need to emulate the latter, either for the host or the
5563		 * guest debugging itself.
5564		 */
5565		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5566			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5567			vcpu->run->debug.arch.dr7 = dr7;
5568			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5569			vcpu->run->debug.arch.exception = DB_VECTOR;
5570			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5571			return 0;
5572		} else {
5573			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5574			return 1;
5575		}
5576	}
5577
5578	if (vcpu->guest_debug == 0) {
5579		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5580
5581		/*
5582		 * No more DR vmexits; force a reload of the debug registers
5583		 * and reenter on this instruction.  The next vmexit will
5584		 * retrieve the full state of the debug registers.
5585		 */
5586		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5587		return 1;
5588	}
5589
5590	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5591	if (exit_qualification & TYPE_MOV_FROM_DR) {
5592		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5593		err = 0;
5594	} else {
5595		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5596	}
5597
5598out:
5599	return kvm_complete_insn_gp(vcpu, err);
5600}
5601
5602void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5603{
5604	get_debugreg(vcpu->arch.db[0], 0);
5605	get_debugreg(vcpu->arch.db[1], 1);
5606	get_debugreg(vcpu->arch.db[2], 2);
5607	get_debugreg(vcpu->arch.db[3], 3);
5608	get_debugreg(vcpu->arch.dr6, 6);
5609	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5610
5611	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5612	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5613
5614	/*
5615	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5616	 * a stale dr6 from the guest.
5617	 */
5618	set_debugreg(DR6_RESERVED, 6);
5619}
5620
5621void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5622{
5623	vmcs_writel(GUEST_DR7, val);
5624}
5625
5626static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5627{
5628	kvm_apic_update_ppr(vcpu);
5629	return 1;
5630}
5631
5632static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5633{
5634	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5635
5636	kvm_make_request(KVM_REQ_EVENT, vcpu);
5637
5638	++vcpu->stat.irq_window_exits;
5639	return 1;
5640}
5641
5642static int handle_invlpg(struct kvm_vcpu *vcpu)
5643{
5644	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5645
5646	kvm_mmu_invlpg(vcpu, exit_qualification);
5647	return kvm_skip_emulated_instruction(vcpu);
5648}
5649
5650static int handle_apic_access(struct kvm_vcpu *vcpu)
5651{
5652	if (likely(fasteoi)) {
5653		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5654		int access_type, offset;
5655
5656		access_type = exit_qualification & APIC_ACCESS_TYPE;
5657		offset = exit_qualification & APIC_ACCESS_OFFSET;
5658		/*
5659		 * Sane guest uses MOV to write EOI, with written value
5660		 * not cared. So make a short-circuit here by avoiding
5661		 * heavy instruction emulation.
5662		 */
5663		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5664		    (offset == APIC_EOI)) {
5665			kvm_lapic_set_eoi(vcpu);
5666			return kvm_skip_emulated_instruction(vcpu);
5667		}
5668	}
5669	return kvm_emulate_instruction(vcpu, 0);
5670}
5671
5672static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5673{
5674	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5675	int vector = exit_qualification & 0xff;
5676
5677	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5678	kvm_apic_set_eoi_accelerated(vcpu, vector);
5679	return 1;
5680}
5681
5682static int handle_apic_write(struct kvm_vcpu *vcpu)
5683{
5684	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5685
5686	/*
5687	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5688	 * hardware has done any necessary aliasing, offset adjustments, etc...
5689	 * for the access.  I.e. the correct value has already been  written to
5690	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5691	 * retrieve the register value and emulate the access.
5692	 */
5693	u32 offset = exit_qualification & 0xff0;
5694
5695	kvm_apic_write_nodecode(vcpu, offset);
5696	return 1;
5697}
5698
5699static int handle_task_switch(struct kvm_vcpu *vcpu)
5700{
5701	struct vcpu_vmx *vmx = to_vmx(vcpu);
5702	unsigned long exit_qualification;
5703	bool has_error_code = false;
5704	u32 error_code = 0;
5705	u16 tss_selector;
5706	int reason, type, idt_v, idt_index;
5707
5708	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5709	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5710	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5711
5712	exit_qualification = vmx_get_exit_qual(vcpu);
5713
5714	reason = (u32)exit_qualification >> 30;
5715	if (reason == TASK_SWITCH_GATE && idt_v) {
5716		switch (type) {
5717		case INTR_TYPE_NMI_INTR:
5718			vcpu->arch.nmi_injected = false;
5719			vmx_set_nmi_mask(vcpu, true);
5720			break;
5721		case INTR_TYPE_EXT_INTR:
5722		case INTR_TYPE_SOFT_INTR:
5723			kvm_clear_interrupt_queue(vcpu);
5724			break;
5725		case INTR_TYPE_HARD_EXCEPTION:
5726			if (vmx->idt_vectoring_info &
5727			    VECTORING_INFO_DELIVER_CODE_MASK) {
5728				has_error_code = true;
5729				error_code =
5730					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5731			}
5732			fallthrough;
5733		case INTR_TYPE_SOFT_EXCEPTION:
5734			kvm_clear_exception_queue(vcpu);
5735			break;
5736		default:
5737			break;
5738		}
5739	}
5740	tss_selector = exit_qualification;
5741
5742	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5743		       type != INTR_TYPE_EXT_INTR &&
5744		       type != INTR_TYPE_NMI_INTR))
5745		WARN_ON(!skip_emulated_instruction(vcpu));
5746
5747	/*
5748	 * TODO: What about debug traps on tss switch?
5749	 *       Are we supposed to inject them and update dr6?
5750	 */
5751	return kvm_task_switch(vcpu, tss_selector,
5752			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5753			       reason, has_error_code, error_code);
5754}
5755
5756static int handle_ept_violation(struct kvm_vcpu *vcpu)
5757{
5758	unsigned long exit_qualification;
5759	gpa_t gpa;
5760	u64 error_code;
5761
5762	exit_qualification = vmx_get_exit_qual(vcpu);
5763
5764	/*
5765	 * EPT violation happened while executing iret from NMI,
5766	 * "blocked by NMI" bit has to be set before next VM entry.
5767	 * There are errata that may cause this bit to not be set:
5768	 * AAK134, BY25.
5769	 */
5770	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5771			enable_vnmi &&
5772			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5773		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5774
5775	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5776	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5777
5778	/* Is it a read fault? */
5779	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5780		     ? PFERR_USER_MASK : 0;
5781	/* Is it a write fault? */
5782	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5783		      ? PFERR_WRITE_MASK : 0;
5784	/* Is it a fetch fault? */
5785	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5786		      ? PFERR_FETCH_MASK : 0;
5787	/* ept page table entry is present? */
5788	error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5789		      ? PFERR_PRESENT_MASK : 0;
5790
5791	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5792	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5793
5794	/*
5795	 * Check that the GPA doesn't exceed physical memory limits, as that is
5796	 * a guest page fault.  We have to emulate the instruction here, because
5797	 * if the illegal address is that of a paging structure, then
5798	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5799	 * would also use advanced VM-exit information for EPT violations to
5800	 * reconstruct the page fault error code.
5801	 */
5802	if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5803		return kvm_emulate_instruction(vcpu, 0);
5804
5805	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5806}
5807
5808static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5809{
5810	gpa_t gpa;
5811
5812	if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5813		return 1;
5814
5815	/*
5816	 * A nested guest cannot optimize MMIO vmexits, because we have an
5817	 * nGPA here instead of the required GPA.
5818	 */
5819	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5820	if (!is_guest_mode(vcpu) &&
5821	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5822		trace_kvm_fast_mmio(gpa);
5823		return kvm_skip_emulated_instruction(vcpu);
5824	}
5825
5826	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5827}
5828
5829static int handle_nmi_window(struct kvm_vcpu *vcpu)
5830{
5831	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5832		return -EIO;
5833
5834	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5835	++vcpu->stat.nmi_window_exits;
5836	kvm_make_request(KVM_REQ_EVENT, vcpu);
5837
5838	return 1;
5839}
5840
5841static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5842{
5843	struct vcpu_vmx *vmx = to_vmx(vcpu);
5844
5845	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5846	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5847}
5848
5849static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5850{
5851	struct vcpu_vmx *vmx = to_vmx(vcpu);
5852	bool intr_window_requested;
5853	unsigned count = 130;
5854
5855	intr_window_requested = exec_controls_get(vmx) &
5856				CPU_BASED_INTR_WINDOW_EXITING;
5857
5858	while (vmx->emulation_required && count-- != 0) {
5859		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5860			return handle_interrupt_window(&vmx->vcpu);
5861
5862		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5863			return 1;
5864
5865		if (!kvm_emulate_instruction(vcpu, 0))
5866			return 0;
5867
5868		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5869			kvm_prepare_emulation_failure_exit(vcpu);
5870			return 0;
5871		}
5872
5873		if (vcpu->arch.halt_request) {
5874			vcpu->arch.halt_request = 0;
5875			return kvm_emulate_halt_noskip(vcpu);
5876		}
5877
5878		/*
5879		 * Note, return 1 and not 0, vcpu_run() will invoke
5880		 * xfer_to_guest_mode() which will create a proper return
5881		 * code.
5882		 */
5883		if (__xfer_to_guest_mode_work_pending())
5884			return 1;
5885	}
5886
5887	return 1;
5888}
5889
5890int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5891{
5892	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5893		kvm_prepare_emulation_failure_exit(vcpu);
5894		return 0;
5895	}
5896
5897	return 1;
5898}
5899
5900static void grow_ple_window(struct kvm_vcpu *vcpu)
5901{
5902	struct vcpu_vmx *vmx = to_vmx(vcpu);
5903	unsigned int old = vmx->ple_window;
5904
5905	vmx->ple_window = __grow_ple_window(old, ple_window,
5906					    ple_window_grow,
5907					    ple_window_max);
5908
5909	if (vmx->ple_window != old) {
5910		vmx->ple_window_dirty = true;
5911		trace_kvm_ple_window_update(vcpu->vcpu_id,
5912					    vmx->ple_window, old);
5913	}
5914}
5915
5916static void shrink_ple_window(struct kvm_vcpu *vcpu)
5917{
5918	struct vcpu_vmx *vmx = to_vmx(vcpu);
5919	unsigned int old = vmx->ple_window;
5920
5921	vmx->ple_window = __shrink_ple_window(old, ple_window,
5922					      ple_window_shrink,
5923					      ple_window);
5924
5925	if (vmx->ple_window != old) {
5926		vmx->ple_window_dirty = true;
5927		trace_kvm_ple_window_update(vcpu->vcpu_id,
5928					    vmx->ple_window, old);
5929	}
5930}
5931
5932/*
5933 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5934 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5935 */
5936static int handle_pause(struct kvm_vcpu *vcpu)
5937{
5938	if (!kvm_pause_in_guest(vcpu->kvm))
5939		grow_ple_window(vcpu);
5940
5941	/*
5942	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5943	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5944	 * never set PAUSE_EXITING and just set PLE if supported,
5945	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5946	 */
5947	kvm_vcpu_on_spin(vcpu, true);
5948	return kvm_skip_emulated_instruction(vcpu);
5949}
5950
5951static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5952{
5953	return 1;
5954}
5955
5956static int handle_invpcid(struct kvm_vcpu *vcpu)
5957{
5958	u32 vmx_instruction_info;
5959	unsigned long type;
5960	gva_t gva;
5961	struct {
5962		u64 pcid;
5963		u64 gla;
5964	} operand;
5965	int gpr_index;
5966
5967	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5968		kvm_queue_exception(vcpu, UD_VECTOR);
5969		return 1;
5970	}
5971
5972	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5973	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5974	type = kvm_register_read(vcpu, gpr_index);
5975
5976	/* According to the Intel instruction reference, the memory operand
5977	 * is read even if it isn't needed (e.g., for type==all)
5978	 */
5979	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5980				vmx_instruction_info, false,
5981				sizeof(operand), &gva))
5982		return 1;
5983
5984	return kvm_handle_invpcid(vcpu, type, gva);
5985}
5986
5987static int handle_pml_full(struct kvm_vcpu *vcpu)
5988{
5989	unsigned long exit_qualification;
5990
5991	trace_kvm_pml_full(vcpu->vcpu_id);
5992
5993	exit_qualification = vmx_get_exit_qual(vcpu);
5994
5995	/*
5996	 * PML buffer FULL happened while executing iret from NMI,
5997	 * "blocked by NMI" bit has to be set before next VM entry.
5998	 */
5999	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6000			enable_vnmi &&
6001			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
6002		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6003				GUEST_INTR_STATE_NMI);
6004
6005	/*
6006	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
6007	 * here.., and there's no userspace involvement needed for PML.
6008	 */
6009	return 1;
6010}
6011
6012static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
6013						   bool force_immediate_exit)
6014{
6015	struct vcpu_vmx *vmx = to_vmx(vcpu);
6016
6017	/*
6018	 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
6019	 * due to the timer expiring while it was "soft" disabled, just eat the
6020	 * exit and re-enter the guest.
6021	 */
6022	if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
6023		return EXIT_FASTPATH_REENTER_GUEST;
6024
6025	/*
6026	 * If the timer expired because KVM used it to force an immediate exit,
6027	 * then mission accomplished.
6028	 */
6029	if (force_immediate_exit)
6030		return EXIT_FASTPATH_EXIT_HANDLED;
6031
6032	/*
6033	 * If L2 is active, go down the slow path as emulating the guest timer
6034	 * expiration likely requires synthesizing a nested VM-Exit.
6035	 */
6036	if (is_guest_mode(vcpu))
6037		return EXIT_FASTPATH_NONE;
6038
6039	kvm_lapic_expired_hv_timer(vcpu);
6040	return EXIT_FASTPATH_REENTER_GUEST;
6041}
6042
6043static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6044{
6045	/*
6046	 * This non-fastpath handler is reached if and only if the preemption
6047	 * timer was being used to emulate a guest timer while L2 is active.
6048	 * All other scenarios are supposed to be handled in the fastpath.
6049	 */
6050	WARN_ON_ONCE(!is_guest_mode(vcpu));
6051	kvm_lapic_expired_hv_timer(vcpu);
6052	return 1;
6053}
6054
6055/*
6056 * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6057 * are overwritten by nested_vmx_setup() when nested=1.
6058 */
6059static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6060{
6061	kvm_queue_exception(vcpu, UD_VECTOR);
6062	return 1;
6063}
6064
6065#ifndef CONFIG_X86_SGX_KVM
6066static int handle_encls(struct kvm_vcpu *vcpu)
6067{
6068	/*
6069	 * SGX virtualization is disabled.  There is no software enable bit for
6070	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6071	 * the guest from executing ENCLS (when SGX is supported by hardware).
6072	 */
6073	kvm_queue_exception(vcpu, UD_VECTOR);
6074	return 1;
6075}
6076#endif /* CONFIG_X86_SGX_KVM */
6077
6078static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6079{
6080	/*
6081	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6082	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6083	 * vmx_handle_exit().
6084	 */
6085	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6086	return 1;
6087}
6088
6089static int handle_notify(struct kvm_vcpu *vcpu)
6090{
6091	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6092	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6093
6094	++vcpu->stat.notify_window_exits;
6095
6096	/*
6097	 * Notify VM exit happened while executing iret from NMI,
6098	 * "blocked by NMI" bit has to be set before next VM entry.
6099	 */
6100	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6101		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6102			      GUEST_INTR_STATE_NMI);
6103
6104	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6105	    context_invalid) {
6106		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6107		vcpu->run->notify.flags = context_invalid ?
6108					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6109		return 0;
6110	}
6111
6112	return 1;
6113}
6114
6115/*
6116 * The exit handlers return 1 if the exit was handled fully and guest execution
6117 * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6118 * to be done to userspace and return 0.
6119 */
6120static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6121	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6122	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6123	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6124	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6125	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6126	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6127	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6128	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6129	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6130	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6131	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6132	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6133	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6134	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6135	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6136	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6137	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6138	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6139	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6140	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6141	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6142	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6143	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6144	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6145	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6146	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6147	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6148	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6149	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6150	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6151	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6152	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6153	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6154	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6155	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6156	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6157	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6158	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6159	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6160	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6161	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6162	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6163	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6164	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6165	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6166	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6167	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6168	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6169	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6170	[EXIT_REASON_ENCLS]		      = handle_encls,
6171	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6172	[EXIT_REASON_NOTIFY]		      = handle_notify,
6173};
6174
6175static const int kvm_vmx_max_exit_handlers =
6176	ARRAY_SIZE(kvm_vmx_exit_handlers);
6177
6178void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6179		       u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6180{
6181	struct vcpu_vmx *vmx = to_vmx(vcpu);
6182
6183	*reason = vmx->exit_reason.full;
6184	*info1 = vmx_get_exit_qual(vcpu);
6185	if (!(vmx->exit_reason.failed_vmentry)) {
6186		*info2 = vmx->idt_vectoring_info;
6187		*intr_info = vmx_get_intr_info(vcpu);
6188		if (is_exception_with_error_code(*intr_info))
6189			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6190		else
6191			*error_code = 0;
6192	} else {
6193		*info2 = 0;
6194		*intr_info = 0;
6195		*error_code = 0;
6196	}
6197}
6198
6199static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6200{
6201	if (vmx->pml_pg) {
6202		__free_page(vmx->pml_pg);
6203		vmx->pml_pg = NULL;
6204	}
6205}
6206
6207static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6208{
6209	struct vcpu_vmx *vmx = to_vmx(vcpu);
6210	u64 *pml_buf;
6211	u16 pml_idx;
6212
6213	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6214
6215	/* Do nothing if PML buffer is empty */
6216	if (pml_idx == (PML_ENTITY_NUM - 1))
6217		return;
6218
6219	/* PML index always points to next available PML buffer entity */
6220	if (pml_idx >= PML_ENTITY_NUM)
6221		pml_idx = 0;
6222	else
6223		pml_idx++;
6224
6225	pml_buf = page_address(vmx->pml_pg);
6226	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6227		u64 gpa;
6228
6229		gpa = pml_buf[pml_idx];
6230		WARN_ON(gpa & (PAGE_SIZE - 1));
6231		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6232	}
6233
6234	/* reset PML index */
6235	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6236}
6237
6238static void vmx_dump_sel(char *name, uint32_t sel)
6239{
6240	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6241	       name, vmcs_read16(sel),
6242	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6243	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6244	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6245}
6246
6247static void vmx_dump_dtsel(char *name, uint32_t limit)
6248{
6249	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6250	       name, vmcs_read32(limit),
6251	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6252}
6253
6254static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6255{
6256	unsigned int i;
6257	struct vmx_msr_entry *e;
6258
6259	pr_err("MSR %s:\n", name);
6260	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6261		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6262}
6263
6264void dump_vmcs(struct kvm_vcpu *vcpu)
6265{
6266	struct vcpu_vmx *vmx = to_vmx(vcpu);
6267	u32 vmentry_ctl, vmexit_ctl;
6268	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6269	u64 tertiary_exec_control;
6270	unsigned long cr4;
6271	int efer_slot;
6272
6273	if (!dump_invalid_vmcs) {
6274		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6275		return;
6276	}
6277
6278	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6279	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6280	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6281	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6282	cr4 = vmcs_readl(GUEST_CR4);
6283
6284	if (cpu_has_secondary_exec_ctrls())
6285		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6286	else
6287		secondary_exec_control = 0;
6288
6289	if (cpu_has_tertiary_exec_ctrls())
6290		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6291	else
6292		tertiary_exec_control = 0;
6293
6294	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6295	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6296	pr_err("*** Guest State ***\n");
6297	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6298	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6299	       vmcs_readl(CR0_GUEST_HOST_MASK));
6300	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6301	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6302	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6303	if (cpu_has_vmx_ept()) {
6304		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6305		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6306		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6307		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6308	}
6309	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6310	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6311	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6312	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6313	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6314	       vmcs_readl(GUEST_SYSENTER_ESP),
6315	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6316	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6317	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6318	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6319	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6320	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6321	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6322	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6323	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6324	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6325	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6326	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6327	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6328		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6329	else if (efer_slot >= 0)
6330		pr_err("EFER= 0x%016llx (autoload)\n",
6331		       vmx->msr_autoload.guest.val[efer_slot].value);
6332	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6333		pr_err("EFER= 0x%016llx (effective)\n",
6334		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6335	else
6336		pr_err("EFER= 0x%016llx (effective)\n",
6337		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6338	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6339		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6340	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6341	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6342	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6343	if (cpu_has_load_perf_global_ctrl() &&
6344	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6345		pr_err("PerfGlobCtl = 0x%016llx\n",
6346		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6347	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6348		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6349	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6350	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6351	       vmcs_read32(GUEST_ACTIVITY_STATE));
6352	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6353		pr_err("InterruptStatus = %04x\n",
6354		       vmcs_read16(GUEST_INTR_STATUS));
6355	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6356		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6357	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6358		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6359
6360	pr_err("*** Host State ***\n");
6361	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6362	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6363	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6364	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6365	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6366	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6367	       vmcs_read16(HOST_TR_SELECTOR));
6368	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6369	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6370	       vmcs_readl(HOST_TR_BASE));
6371	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6372	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6373	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6374	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6375	       vmcs_readl(HOST_CR4));
6376	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6377	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6378	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6379	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6380	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6381		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6382	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6383		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6384	if (cpu_has_load_perf_global_ctrl() &&
6385	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6386		pr_err("PerfGlobCtl = 0x%016llx\n",
6387		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6388	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6389		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6390
6391	pr_err("*** Control State ***\n");
6392	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6393	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6394	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6395	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6396	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6397	       vmcs_read32(EXCEPTION_BITMAP),
6398	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6399	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6400	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6401	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6402	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6403	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6404	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6405	       vmcs_read32(VM_EXIT_INTR_INFO),
6406	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6407	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6408	pr_err("        reason=%08x qualification=%016lx\n",
6409	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6410	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6411	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6412	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6413	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6414	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6415		pr_err("TSC Multiplier = 0x%016llx\n",
6416		       vmcs_read64(TSC_MULTIPLIER));
6417	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6418		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6419			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6420			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6421		}
6422		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6423		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6424			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6425		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6426	}
6427	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6428		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6429	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6430		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6431	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6432		pr_err("PLE Gap=%08x Window=%08x\n",
6433		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6434	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6435		pr_err("Virtual processor ID = 0x%04x\n",
6436		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6437	if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6438		struct vmx_ve_information *ve_info = vmx->ve_info;
6439		u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6440
6441		/*
6442		 * If KVM is dumping the VMCS, then something has gone wrong
6443		 * already.  Derefencing an address from the VMCS, which could
6444		 * very well be corrupted, is a terrible idea.  The virtual
6445		 * address is known so use it.
6446		 */
6447		pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6448		       ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6449		pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6450		       ve_info->exit_reason, ve_info->delivery,
6451		       ve_info->exit_qualification,
6452		       ve_info->guest_linear_address,
6453		       ve_info->guest_physical_address, ve_info->eptp_index);
6454	}
6455}
6456
6457/*
6458 * The guest has exited.  See if we can fix it or if we need userspace
6459 * assistance.
6460 */
6461static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6462{
6463	struct vcpu_vmx *vmx = to_vmx(vcpu);
6464	union vmx_exit_reason exit_reason = vmx->exit_reason;
6465	u32 vectoring_info = vmx->idt_vectoring_info;
6466	u16 exit_handler_index;
6467
6468	/*
6469	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6470	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6471	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6472	 * mode as if vcpus is in root mode, the PML buffer must has been
6473	 * flushed already.  Note, PML is never enabled in hardware while
6474	 * running L2.
6475	 */
6476	if (enable_pml && !is_guest_mode(vcpu))
6477		vmx_flush_pml_buffer(vcpu);
6478
6479	/*
6480	 * KVM should never reach this point with a pending nested VM-Enter.
6481	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6482	 * invalid guest state should never happen as that means KVM knowingly
6483	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6484	 */
6485	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6486		return -EIO;
6487
6488	if (is_guest_mode(vcpu)) {
6489		/*
6490		 * PML is never enabled when running L2, bail immediately if a
6491		 * PML full exit occurs as something is horribly wrong.
6492		 */
6493		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6494			goto unexpected_vmexit;
6495
6496		/*
6497		 * The host physical addresses of some pages of guest memory
6498		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6499		 * Page). The CPU may write to these pages via their host
6500		 * physical address while L2 is running, bypassing any
6501		 * address-translation-based dirty tracking (e.g. EPT write
6502		 * protection).
6503		 *
6504		 * Mark them dirty on every exit from L2 to prevent them from
6505		 * getting out of sync with dirty tracking.
6506		 */
6507		nested_mark_vmcs12_pages_dirty(vcpu);
6508
6509		/*
6510		 * Synthesize a triple fault if L2 state is invalid.  In normal
6511		 * operation, nested VM-Enter rejects any attempt to enter L2
6512		 * with invalid state.  However, those checks are skipped if
6513		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6514		 * L2 state is invalid, it means either L1 modified SMRAM state
6515		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6516		 * doing so is architecturally allowed in the RSM case, and is
6517		 * the least awful solution for the userspace case without
6518		 * risking false positives.
6519		 */
6520		if (vmx->emulation_required) {
6521			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6522			return 1;
6523		}
6524
6525		if (nested_vmx_reflect_vmexit(vcpu))
6526			return 1;
6527	}
6528
6529	/* If guest state is invalid, start emulating.  L2 is handled above. */
6530	if (vmx->emulation_required)
6531		return handle_invalid_guest_state(vcpu);
6532
6533	if (exit_reason.failed_vmentry) {
6534		dump_vmcs(vcpu);
6535		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6536		vcpu->run->fail_entry.hardware_entry_failure_reason
6537			= exit_reason.full;
6538		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6539		return 0;
6540	}
6541
6542	if (unlikely(vmx->fail)) {
6543		dump_vmcs(vcpu);
6544		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6545		vcpu->run->fail_entry.hardware_entry_failure_reason
6546			= vmcs_read32(VM_INSTRUCTION_ERROR);
6547		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6548		return 0;
6549	}
6550
6551	/*
6552	 * Note:
6553	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6554	 * delivery event since it indicates guest is accessing MMIO.
6555	 * The vm-exit can be triggered again after return to guest that
6556	 * will cause infinite loop.
6557	 */
6558	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6559	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6560	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6561	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6562	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6563	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6564	     exit_reason.basic != EXIT_REASON_NOTIFY)) {
6565		int ndata = 3;
6566
6567		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6568		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6569		vcpu->run->internal.data[0] = vectoring_info;
6570		vcpu->run->internal.data[1] = exit_reason.full;
6571		vcpu->run->internal.data[2] = vmx_get_exit_qual(vcpu);
6572		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6573			vcpu->run->internal.data[ndata++] =
6574				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6575		}
6576		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6577		vcpu->run->internal.ndata = ndata;
6578		return 0;
6579	}
6580
6581	if (unlikely(!enable_vnmi &&
6582		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6583		if (!vmx_interrupt_blocked(vcpu)) {
6584			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6585		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6586			   vcpu->arch.nmi_pending) {
6587			/*
6588			 * This CPU don't support us in finding the end of an
6589			 * NMI-blocked window if the guest runs with IRQs
6590			 * disabled. So we pull the trigger after 1 s of
6591			 * futile waiting, but inform the user about this.
6592			 */
6593			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6594			       "state on VCPU %d after 1 s timeout\n",
6595			       __func__, vcpu->vcpu_id);
6596			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6597		}
6598	}
6599
6600	if (exit_fastpath != EXIT_FASTPATH_NONE)
6601		return 1;
6602
6603	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6604		goto unexpected_vmexit;
6605#ifdef CONFIG_MITIGATION_RETPOLINE
6606	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6607		return kvm_emulate_wrmsr(vcpu);
6608	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6609		return handle_preemption_timer(vcpu);
6610	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6611		return handle_interrupt_window(vcpu);
6612	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6613		return handle_external_interrupt(vcpu);
6614	else if (exit_reason.basic == EXIT_REASON_HLT)
6615		return kvm_emulate_halt(vcpu);
6616	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6617		return handle_ept_misconfig(vcpu);
6618#endif
6619
6620	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6621						kvm_vmx_max_exit_handlers);
6622	if (!kvm_vmx_exit_handlers[exit_handler_index])
6623		goto unexpected_vmexit;
6624
6625	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6626
6627unexpected_vmexit:
6628	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6629		    exit_reason.full);
6630	dump_vmcs(vcpu);
6631	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6632	vcpu->run->internal.suberror =
6633			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6634	vcpu->run->internal.ndata = 2;
6635	vcpu->run->internal.data[0] = exit_reason.full;
6636	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6637	return 0;
6638}
6639
6640int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6641{
6642	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6643
6644	/*
6645	 * Exit to user space when bus lock detected to inform that there is
6646	 * a bus lock in guest.
6647	 */
6648	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6649		if (ret > 0)
6650			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6651
6652		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6653		return 0;
6654	}
6655	return ret;
6656}
6657
6658/*
6659 * Software based L1D cache flush which is used when microcode providing
6660 * the cache control MSR is not loaded.
6661 *
6662 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6663 * flush it is required to read in 64 KiB because the replacement algorithm
6664 * is not exactly LRU. This could be sized at runtime via topology
6665 * information but as all relevant affected CPUs have 32KiB L1D cache size
6666 * there is no point in doing so.
6667 */
6668static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6669{
6670	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6671
6672	/*
6673	 * This code is only executed when the flush mode is 'cond' or
6674	 * 'always'
6675	 */
6676	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6677		bool flush_l1d;
6678
6679		/*
6680		 * Clear the per-vcpu flush bit, it gets set again
6681		 * either from vcpu_run() or from one of the unsafe
6682		 * VMEXIT handlers.
6683		 */
6684		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6685		vcpu->arch.l1tf_flush_l1d = false;
6686
6687		/*
6688		 * Clear the per-cpu flush bit, it gets set again from
6689		 * the interrupt handlers.
6690		 */
6691		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6692		kvm_clear_cpu_l1tf_flush_l1d();
6693
6694		if (!flush_l1d)
6695			return;
6696	}
6697
6698	vcpu->stat.l1d_flush++;
6699
6700	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6701		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6702		return;
6703	}
6704
6705	asm volatile(
6706		/* First ensure the pages are in the TLB */
6707		"xorl	%%eax, %%eax\n"
6708		".Lpopulate_tlb:\n\t"
6709		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6710		"addl	$4096, %%eax\n\t"
6711		"cmpl	%%eax, %[size]\n\t"
6712		"jne	.Lpopulate_tlb\n\t"
6713		"xorl	%%eax, %%eax\n\t"
6714		"cpuid\n\t"
6715		/* Now fill the cache */
6716		"xorl	%%eax, %%eax\n"
6717		".Lfill_cache:\n"
6718		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6719		"addl	$64, %%eax\n\t"
6720		"cmpl	%%eax, %[size]\n\t"
6721		"jne	.Lfill_cache\n\t"
6722		"lfence\n"
6723		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6724		    [size] "r" (size)
6725		: "eax", "ebx", "ecx", "edx");
6726}
6727
6728void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6729{
6730	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6731	int tpr_threshold;
6732
6733	if (is_guest_mode(vcpu) &&
6734		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6735		return;
6736
6737	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6738	if (is_guest_mode(vcpu))
6739		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6740	else
6741		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6742}
6743
6744void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6745{
6746	struct vcpu_vmx *vmx = to_vmx(vcpu);
6747	u32 sec_exec_control;
6748
6749	if (!lapic_in_kernel(vcpu))
6750		return;
6751
6752	if (!flexpriority_enabled &&
6753	    !cpu_has_vmx_virtualize_x2apic_mode())
6754		return;
6755
6756	/* Postpone execution until vmcs01 is the current VMCS. */
6757	if (is_guest_mode(vcpu)) {
6758		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6759		return;
6760	}
6761
6762	sec_exec_control = secondary_exec_controls_get(vmx);
6763	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6764			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6765
6766	switch (kvm_get_apic_mode(vcpu)) {
6767	case LAPIC_MODE_INVALID:
6768		WARN_ONCE(true, "Invalid local APIC state");
6769		break;
6770	case LAPIC_MODE_DISABLED:
6771		break;
6772	case LAPIC_MODE_XAPIC:
6773		if (flexpriority_enabled) {
6774			sec_exec_control |=
6775				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6776			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6777
6778			/*
6779			 * Flush the TLB, reloading the APIC access page will
6780			 * only do so if its physical address has changed, but
6781			 * the guest may have inserted a non-APIC mapping into
6782			 * the TLB while the APIC access page was disabled.
6783			 */
6784			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6785		}
6786		break;
6787	case LAPIC_MODE_X2APIC:
6788		if (cpu_has_vmx_virtualize_x2apic_mode())
6789			sec_exec_control |=
6790				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6791		break;
6792	}
6793	secondary_exec_controls_set(vmx, sec_exec_control);
6794
6795	vmx_update_msr_bitmap_x2apic(vcpu);
6796}
6797
6798void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6799{
6800	const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6801	struct kvm *kvm = vcpu->kvm;
6802	struct kvm_memslots *slots = kvm_memslots(kvm);
6803	struct kvm_memory_slot *slot;
6804	unsigned long mmu_seq;
6805	kvm_pfn_t pfn;
6806
6807	/* Defer reload until vmcs01 is the current VMCS. */
6808	if (is_guest_mode(vcpu)) {
6809		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6810		return;
6811	}
6812
6813	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6814	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6815		return;
6816
6817	/*
6818	 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6819	 * KVM doesn't unintentionally grab a userspace memslot.  It _should_
6820	 * be impossible for userspace to create a memslot for the APIC when
6821	 * APICv is enabled, but paranoia won't hurt in this case.
6822	 */
6823	slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6824	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6825		return;
6826
6827	/*
6828	 * Ensure that the mmu_notifier sequence count is read before KVM
6829	 * retrieves the pfn from the primary MMU.  Note, the memslot is
6830	 * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6831	 * in kvm_mmu_invalidate_end().
6832	 */
6833	mmu_seq = kvm->mmu_invalidate_seq;
6834	smp_rmb();
6835
6836	/*
6837	 * No need to retry if the memslot does not exist or is invalid.  KVM
6838	 * controls the APIC-access page memslot, and only deletes the memslot
6839	 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6840	 */
6841	pfn = gfn_to_pfn_memslot(slot, gfn);
6842	if (is_error_noslot_pfn(pfn))
6843		return;
6844
6845	read_lock(&vcpu->kvm->mmu_lock);
6846	if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) {
6847		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6848		read_unlock(&vcpu->kvm->mmu_lock);
6849		goto out;
6850	}
6851
6852	vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6853	read_unlock(&vcpu->kvm->mmu_lock);
6854
6855	/*
6856	 * No need for a manual TLB flush at this point, KVM has already done a
6857	 * flush if there were SPTEs pointing at the previous page.
6858	 */
6859out:
6860	/*
6861	 * Do not pin apic access page in memory, the MMU notifier
6862	 * will call us again if it is migrated or swapped out.
6863	 */
6864	kvm_release_pfn_clean(pfn);
6865}
6866
6867void vmx_hwapic_isr_update(int max_isr)
6868{
6869	u16 status;
6870	u8 old;
6871
6872	if (max_isr == -1)
6873		max_isr = 0;
6874
6875	status = vmcs_read16(GUEST_INTR_STATUS);
6876	old = status >> 8;
6877	if (max_isr != old) {
6878		status &= 0xff;
6879		status |= max_isr << 8;
6880		vmcs_write16(GUEST_INTR_STATUS, status);
6881	}
6882}
6883
6884static void vmx_set_rvi(int vector)
6885{
6886	u16 status;
6887	u8 old;
6888
6889	if (vector == -1)
6890		vector = 0;
6891
6892	status = vmcs_read16(GUEST_INTR_STATUS);
6893	old = (u8)status & 0xff;
6894	if ((u8)vector != old) {
6895		status &= ~0xff;
6896		status |= (u8)vector;
6897		vmcs_write16(GUEST_INTR_STATUS, status);
6898	}
6899}
6900
6901void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6902{
6903	/*
6904	 * When running L2, updating RVI is only relevant when
6905	 * vmcs12 virtual-interrupt-delivery enabled.
6906	 * However, it can be enabled only when L1 also
6907	 * intercepts external-interrupts and in that case
6908	 * we should not update vmcs02 RVI but instead intercept
6909	 * interrupt. Therefore, do nothing when running L2.
6910	 */
6911	if (!is_guest_mode(vcpu))
6912		vmx_set_rvi(max_irr);
6913}
6914
6915int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6916{
6917	struct vcpu_vmx *vmx = to_vmx(vcpu);
6918	int max_irr;
6919	bool got_posted_interrupt;
6920
6921	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6922		return -EIO;
6923
6924	if (pi_test_on(&vmx->pi_desc)) {
6925		pi_clear_on(&vmx->pi_desc);
6926		/*
6927		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6928		 * But on x86 this is just a compiler barrier anyway.
6929		 */
6930		smp_mb__after_atomic();
6931		got_posted_interrupt =
6932			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6933	} else {
6934		max_irr = kvm_lapic_find_highest_irr(vcpu);
6935		got_posted_interrupt = false;
6936	}
6937
6938	/*
6939	 * Newly recognized interrupts are injected via either virtual interrupt
6940	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6941	 * disabled in two cases:
6942	 *
6943	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6944	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6945	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6946	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6947	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6948	 *
6949	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6950	 * attempt to post interrupts.  The posted interrupt vector will cause
6951	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6952	 */
6953	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6954		vmx_set_rvi(max_irr);
6955	else if (got_posted_interrupt)
6956		kvm_make_request(KVM_REQ_EVENT, vcpu);
6957
6958	return max_irr;
6959}
6960
6961void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6962{
6963	if (!kvm_vcpu_apicv_active(vcpu))
6964		return;
6965
6966	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6967	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6968	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6969	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6970}
6971
6972void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6973{
6974	struct vcpu_vmx *vmx = to_vmx(vcpu);
6975
6976	pi_clear_on(&vmx->pi_desc);
6977	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6978}
6979
6980void vmx_do_interrupt_irqoff(unsigned long entry);
6981void vmx_do_nmi_irqoff(void);
6982
6983static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6984{
6985	/*
6986	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6987	 * MSR value is not clobbered by the host activity before the guest
6988	 * has chance to consume it.
6989	 *
6990	 * Do not blindly read xfd_err here, since this exception might
6991	 * be caused by L1 interception on a platform which doesn't
6992	 * support xfd at all.
6993	 *
6994	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6995	 * only when xfd contains a non-zero value.
6996	 *
6997	 * Queuing exception is done in vmx_handle_exit. See comment there.
6998	 */
6999	if (vcpu->arch.guest_fpu.fpstate->xfd)
7000		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
7001}
7002
7003static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
7004{
7005	/* if exit due to PF check for async PF */
7006	if (is_page_fault(intr_info))
7007		vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
7008	/* if exit due to NM, handle before interrupts are enabled */
7009	else if (is_nm_fault(intr_info))
7010		handle_nm_fault_irqoff(vcpu);
7011	/* Handle machine checks before interrupts are enabled */
7012	else if (is_machine_check(intr_info))
7013		kvm_machine_check();
7014}
7015
7016static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
7017					     u32 intr_info)
7018{
7019	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
7020
7021	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
7022	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
7023		return;
7024
7025	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
7026	if (cpu_feature_enabled(X86_FEATURE_FRED))
7027		fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
7028	else
7029		vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
7030	kvm_after_interrupt(vcpu);
7031
7032	vcpu->arch.at_instruction_boundary = true;
7033}
7034
7035void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7036{
7037	struct vcpu_vmx *vmx = to_vmx(vcpu);
7038
7039	if (vmx->emulation_required)
7040		return;
7041
7042	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7043		handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
7044	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
7045		handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
7046}
7047
7048/*
7049 * The kvm parameter can be NULL (module initialization, or invocation before
7050 * VM creation). Be sure to check the kvm parameter before using it.
7051 */
7052bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7053{
7054	switch (index) {
7055	case MSR_IA32_SMBASE:
7056		if (!IS_ENABLED(CONFIG_KVM_SMM))
7057			return false;
7058		/*
7059		 * We cannot do SMM unless we can run the guest in big
7060		 * real mode.
7061		 */
7062		return enable_unrestricted_guest || emulate_invalid_guest_state;
7063	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7064		return nested;
7065	case MSR_AMD64_VIRT_SPEC_CTRL:
7066	case MSR_AMD64_TSC_RATIO:
7067		/* This is AMD only.  */
7068		return false;
7069	default:
7070		return true;
7071	}
7072}
7073
7074static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7075{
7076	u32 exit_intr_info;
7077	bool unblock_nmi;
7078	u8 vector;
7079	bool idtv_info_valid;
7080
7081	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7082
7083	if (enable_vnmi) {
7084		if (vmx->loaded_vmcs->nmi_known_unmasked)
7085			return;
7086
7087		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7088		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7089		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7090		/*
7091		 * SDM 3: 27.7.1.2 (September 2008)
7092		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7093		 * a guest IRET fault.
7094		 * SDM 3: 23.2.2 (September 2008)
7095		 * Bit 12 is undefined in any of the following cases:
7096		 *  If the VM exit sets the valid bit in the IDT-vectoring
7097		 *   information field.
7098		 *  If the VM exit is due to a double fault.
7099		 */
7100		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7101		    vector != DF_VECTOR && !idtv_info_valid)
7102			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7103				      GUEST_INTR_STATE_NMI);
7104		else
7105			vmx->loaded_vmcs->nmi_known_unmasked =
7106				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7107				  & GUEST_INTR_STATE_NMI);
7108	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7109		vmx->loaded_vmcs->vnmi_blocked_time +=
7110			ktime_to_ns(ktime_sub(ktime_get(),
7111					      vmx->loaded_vmcs->entry_time));
7112}
7113
7114static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7115				      u32 idt_vectoring_info,
7116				      int instr_len_field,
7117				      int error_code_field)
7118{
7119	u8 vector;
7120	int type;
7121	bool idtv_info_valid;
7122
7123	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7124
7125	vcpu->arch.nmi_injected = false;
7126	kvm_clear_exception_queue(vcpu);
7127	kvm_clear_interrupt_queue(vcpu);
7128
7129	if (!idtv_info_valid)
7130		return;
7131
7132	kvm_make_request(KVM_REQ_EVENT, vcpu);
7133
7134	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7135	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7136
7137	switch (type) {
7138	case INTR_TYPE_NMI_INTR:
7139		vcpu->arch.nmi_injected = true;
7140		/*
7141		 * SDM 3: 27.7.1.2 (September 2008)
7142		 * Clear bit "block by NMI" before VM entry if a NMI
7143		 * delivery faulted.
7144		 */
7145		vmx_set_nmi_mask(vcpu, false);
7146		break;
7147	case INTR_TYPE_SOFT_EXCEPTION:
7148		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7149		fallthrough;
7150	case INTR_TYPE_HARD_EXCEPTION:
7151		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7152			u32 err = vmcs_read32(error_code_field);
7153			kvm_requeue_exception_e(vcpu, vector, err);
7154		} else
7155			kvm_requeue_exception(vcpu, vector);
7156		break;
7157	case INTR_TYPE_SOFT_INTR:
7158		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7159		fallthrough;
7160	case INTR_TYPE_EXT_INTR:
7161		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7162		break;
7163	default:
7164		break;
7165	}
7166}
7167
7168static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7169{
7170	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7171				  VM_EXIT_INSTRUCTION_LEN,
7172				  IDT_VECTORING_ERROR_CODE);
7173}
7174
7175void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7176{
7177	__vmx_complete_interrupts(vcpu,
7178				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7179				  VM_ENTRY_INSTRUCTION_LEN,
7180				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7181
7182	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7183}
7184
7185static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7186{
7187	int i, nr_msrs;
7188	struct perf_guest_switch_msr *msrs;
7189	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7190
7191	pmu->host_cross_mapped_mask = 0;
7192	if (pmu->pebs_enable & pmu->global_ctrl)
7193		intel_pmu_cross_mapped_check(pmu);
7194
7195	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7196	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7197	if (!msrs)
7198		return;
7199
7200	for (i = 0; i < nr_msrs; i++)
7201		if (msrs[i].host == msrs[i].guest)
7202			clear_atomic_switch_msr(vmx, msrs[i].msr);
7203		else
7204			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7205					msrs[i].host, false);
7206}
7207
7208static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7209{
7210	struct vcpu_vmx *vmx = to_vmx(vcpu);
7211	u64 tscl;
7212	u32 delta_tsc;
7213
7214	if (force_immediate_exit) {
7215		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7216		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7217	} else if (vmx->hv_deadline_tsc != -1) {
7218		tscl = rdtsc();
7219		if (vmx->hv_deadline_tsc > tscl)
7220			/* set_hv_timer ensures the delta fits in 32-bits */
7221			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7222				cpu_preemption_timer_multi);
7223		else
7224			delta_tsc = 0;
7225
7226		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7227		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7228	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7229		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7230		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7231	}
7232}
7233
7234void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7235{
7236	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7237		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7238		vmcs_writel(HOST_RSP, host_rsp);
7239	}
7240}
7241
7242void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7243					unsigned int flags)
7244{
7245	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7246
7247	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7248		return;
7249
7250	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7251		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7252
7253	/*
7254	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7255	 *
7256	 * For legacy IBRS, the IBRS bit always needs to be written after
7257	 * transitioning from a less privileged predictor mode, regardless of
7258	 * whether the guest/host values differ.
7259	 */
7260	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7261	    vmx->spec_ctrl != hostval)
7262		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7263
7264	barrier_nospec();
7265}
7266
7267static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7268					     bool force_immediate_exit)
7269{
7270	/*
7271	 * If L2 is active, some VMX preemption timer exits can be handled in
7272	 * the fastpath even, all other exits must use the slow path.
7273	 */
7274	if (is_guest_mode(vcpu) &&
7275	    to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER)
7276		return EXIT_FASTPATH_NONE;
7277
7278	switch (to_vmx(vcpu)->exit_reason.basic) {
7279	case EXIT_REASON_MSR_WRITE:
7280		return handle_fastpath_set_msr_irqoff(vcpu);
7281	case EXIT_REASON_PREEMPTION_TIMER:
7282		return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7283	default:
7284		return EXIT_FASTPATH_NONE;
7285	}
7286}
7287
7288static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7289					unsigned int flags)
7290{
7291	struct vcpu_vmx *vmx = to_vmx(vcpu);
7292
7293	guest_state_enter_irqoff();
7294
7295	/*
7296	 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7297	 * mitigation for MDS is done late in VMentry and is still
7298	 * executed in spite of L1D Flush. This is because an extra VERW
7299	 * should not matter much after the big hammer L1D Flush.
7300	 */
7301	if (static_branch_unlikely(&vmx_l1d_should_flush))
7302		vmx_l1d_flush(vcpu);
7303	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7304		 kvm_arch_has_assigned_device(vcpu->kvm))
7305		mds_clear_cpu_buffers();
7306
7307	vmx_disable_fb_clear(vmx);
7308
7309	if (vcpu->arch.cr2 != native_read_cr2())
7310		native_write_cr2(vcpu->arch.cr2);
7311
7312	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7313				   flags);
7314
7315	vcpu->arch.cr2 = native_read_cr2();
7316	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7317
7318	vmx->idt_vectoring_info = 0;
7319
7320	vmx_enable_fb_clear(vmx);
7321
7322	if (unlikely(vmx->fail)) {
7323		vmx->exit_reason.full = 0xdead;
7324		goto out;
7325	}
7326
7327	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7328	if (likely(!vmx->exit_reason.failed_vmentry))
7329		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7330
7331	if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7332	    is_nmi(vmx_get_intr_info(vcpu))) {
7333		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7334		if (cpu_feature_enabled(X86_FEATURE_FRED))
7335			fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7336		else
7337			vmx_do_nmi_irqoff();
7338		kvm_after_interrupt(vcpu);
7339	}
7340
7341out:
7342	guest_state_exit_irqoff();
7343}
7344
7345fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7346{
7347	struct vcpu_vmx *vmx = to_vmx(vcpu);
7348	unsigned long cr3, cr4;
7349
7350	/* Record the guest's net vcpu time for enforced NMI injections. */
7351	if (unlikely(!enable_vnmi &&
7352		     vmx->loaded_vmcs->soft_vnmi_blocked))
7353		vmx->loaded_vmcs->entry_time = ktime_get();
7354
7355	/*
7356	 * Don't enter VMX if guest state is invalid, let the exit handler
7357	 * start emulation until we arrive back to a valid state.  Synthesize a
7358	 * consistency check VM-Exit due to invalid guest state and bail.
7359	 */
7360	if (unlikely(vmx->emulation_required)) {
7361		vmx->fail = 0;
7362
7363		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7364		vmx->exit_reason.failed_vmentry = 1;
7365		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7366		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7367		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7368		vmx->exit_intr_info = 0;
7369		return EXIT_FASTPATH_NONE;
7370	}
7371
7372	trace_kvm_entry(vcpu, force_immediate_exit);
7373
7374	if (vmx->ple_window_dirty) {
7375		vmx->ple_window_dirty = false;
7376		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7377	}
7378
7379	/*
7380	 * We did this in prepare_switch_to_guest, because it needs to
7381	 * be within srcu_read_lock.
7382	 */
7383	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7384
7385	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7386		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7387	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7388		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7389	vcpu->arch.regs_dirty = 0;
7390
7391	/*
7392	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7393	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7394	 * it switches back to the current->mm, which can occur in KVM context
7395	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7396	 * toggles a static key while handling a VM-Exit.
7397	 */
7398	cr3 = __get_current_cr3_fast();
7399	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7400		vmcs_writel(HOST_CR3, cr3);
7401		vmx->loaded_vmcs->host_state.cr3 = cr3;
7402	}
7403
7404	cr4 = cr4_read_shadow();
7405	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7406		vmcs_writel(HOST_CR4, cr4);
7407		vmx->loaded_vmcs->host_state.cr4 = cr4;
7408	}
7409
7410	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7411	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7412		set_debugreg(vcpu->arch.dr6, 6);
7413
7414	/* When single-stepping over STI and MOV SS, we must clear the
7415	 * corresponding interruptibility bits in the guest state. Otherwise
7416	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7417	 * exceptions being set, but that's not correct for the guest debugging
7418	 * case. */
7419	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7420		vmx_set_interrupt_shadow(vcpu, 0);
7421
7422	kvm_load_guest_xsave_state(vcpu);
7423
7424	pt_guest_enter(vmx);
7425
7426	atomic_switch_perf_msrs(vmx);
7427	if (intel_pmu_lbr_is_enabled(vcpu))
7428		vmx_passthrough_lbr_msrs(vcpu);
7429
7430	if (enable_preemption_timer)
7431		vmx_update_hv_timer(vcpu, force_immediate_exit);
7432	else if (force_immediate_exit)
7433		smp_send_reschedule(vcpu->cpu);
7434
7435	kvm_wait_lapic_expire(vcpu);
7436
7437	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7438	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7439
7440	/* All fields are clean at this point */
7441	if (kvm_is_using_evmcs()) {
7442		current_evmcs->hv_clean_fields |=
7443			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7444
7445		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7446	}
7447
7448	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7449	if (vmx->host_debugctlmsr)
7450		update_debugctlmsr(vmx->host_debugctlmsr);
7451
7452#ifndef CONFIG_X86_64
7453	/*
7454	 * The sysexit path does not restore ds/es, so we must set them to
7455	 * a reasonable value ourselves.
7456	 *
7457	 * We can't defer this to vmx_prepare_switch_to_host() since that
7458	 * function may be executed in interrupt context, which saves and
7459	 * restore segments around it, nullifying its effect.
7460	 */
7461	loadsegment(ds, __USER_DS);
7462	loadsegment(es, __USER_DS);
7463#endif
7464
7465	pt_guest_exit(vmx);
7466
7467	kvm_load_host_xsave_state(vcpu);
7468
7469	if (is_guest_mode(vcpu)) {
7470		/*
7471		 * Track VMLAUNCH/VMRESUME that have made past guest state
7472		 * checking.
7473		 */
7474		if (vmx->nested.nested_run_pending &&
7475		    !vmx->exit_reason.failed_vmentry)
7476			++vcpu->stat.nested_run;
7477
7478		vmx->nested.nested_run_pending = 0;
7479	}
7480
7481	if (unlikely(vmx->fail))
7482		return EXIT_FASTPATH_NONE;
7483
7484	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7485		kvm_machine_check();
7486
7487	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7488
7489	if (unlikely(vmx->exit_reason.failed_vmentry))
7490		return EXIT_FASTPATH_NONE;
7491
7492	vmx->loaded_vmcs->launched = 1;
7493
7494	vmx_recover_nmi_blocking(vmx);
7495	vmx_complete_interrupts(vmx);
7496
7497	return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7498}
7499
7500void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7501{
7502	struct vcpu_vmx *vmx = to_vmx(vcpu);
7503
7504	if (enable_pml)
7505		vmx_destroy_pml_buffer(vmx);
7506	free_vpid(vmx->vpid);
7507	nested_vmx_free_vcpu(vcpu);
7508	free_loaded_vmcs(vmx->loaded_vmcs);
7509	free_page((unsigned long)vmx->ve_info);
7510}
7511
7512int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7513{
7514	struct vmx_uret_msr *tsx_ctrl;
7515	struct vcpu_vmx *vmx;
7516	int i, err;
7517
7518	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7519	vmx = to_vmx(vcpu);
7520
7521	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7522
7523	err = -ENOMEM;
7524
7525	vmx->vpid = allocate_vpid();
7526
7527	/*
7528	 * If PML is turned on, failure on enabling PML just results in failure
7529	 * of creating the vcpu, therefore we can simplify PML logic (by
7530	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7531	 * for the guest), etc.
7532	 */
7533	if (enable_pml) {
7534		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7535		if (!vmx->pml_pg)
7536			goto free_vpid;
7537	}
7538
7539	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7540		vmx->guest_uret_msrs[i].mask = -1ull;
7541	if (boot_cpu_has(X86_FEATURE_RTM)) {
7542		/*
7543		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7544		 * Keep the host value unchanged to avoid changing CPUID bits
7545		 * under the host kernel's feet.
7546		 */
7547		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7548		if (tsx_ctrl)
7549			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7550	}
7551
7552	err = alloc_loaded_vmcs(&vmx->vmcs01);
7553	if (err < 0)
7554		goto free_pml;
7555
7556	/*
7557	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7558	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7559	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7560	 * performance benefits from enabling it for vmcs02.
7561	 */
7562	if (kvm_is_using_evmcs() &&
7563	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7564		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7565
7566		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7567	}
7568
7569	/* The MSR bitmap starts with all ones */
7570	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7571	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7572
7573	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7574#ifdef CONFIG_X86_64
7575	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7576	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7577	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7578#endif
7579	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7580	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7581	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7582	if (kvm_cstate_in_guest(vcpu->kvm)) {
7583		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7584		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7585		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7586		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7587	}
7588
7589	vmx->loaded_vmcs = &vmx->vmcs01;
7590
7591	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7592		err = kvm_alloc_apic_access_page(vcpu->kvm);
7593		if (err)
7594			goto free_vmcs;
7595	}
7596
7597	if (enable_ept && !enable_unrestricted_guest) {
7598		err = init_rmode_identity_map(vcpu->kvm);
7599		if (err)
7600			goto free_vmcs;
7601	}
7602
7603	err = -ENOMEM;
7604	if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7605		struct page *page;
7606
7607		BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7608
7609		/* ve_info must be page aligned. */
7610		page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7611		if (!page)
7612			goto free_vmcs;
7613
7614		vmx->ve_info = page_to_virt(page);
7615	}
7616
7617	if (vmx_can_use_ipiv(vcpu))
7618		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7619			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7620
7621	return 0;
7622
7623free_vmcs:
7624	free_loaded_vmcs(vmx->loaded_vmcs);
7625free_pml:
7626	vmx_destroy_pml_buffer(vmx);
7627free_vpid:
7628	free_vpid(vmx->vpid);
7629	return err;
7630}
7631
7632#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7633#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7634
7635int vmx_vm_init(struct kvm *kvm)
7636{
7637	if (!ple_gap)
7638		kvm->arch.pause_in_guest = true;
7639
7640	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7641		switch (l1tf_mitigation) {
7642		case L1TF_MITIGATION_OFF:
7643		case L1TF_MITIGATION_FLUSH_NOWARN:
7644			/* 'I explicitly don't care' is set */
7645			break;
7646		case L1TF_MITIGATION_FLUSH:
7647		case L1TF_MITIGATION_FLUSH_NOSMT:
7648		case L1TF_MITIGATION_FULL:
7649			/*
7650			 * Warn upon starting the first VM in a potentially
7651			 * insecure environment.
7652			 */
7653			if (sched_smt_active())
7654				pr_warn_once(L1TF_MSG_SMT);
7655			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7656				pr_warn_once(L1TF_MSG_L1D);
7657			break;
7658		case L1TF_MITIGATION_FULL_FORCE:
7659			/* Flush is enforced */
7660			break;
7661		}
7662	}
7663	return 0;
7664}
7665
7666u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7667{
7668	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7669	 * memory aliases with conflicting memory types and sometimes MCEs.
7670	 * We have to be careful as to what are honored and when.
7671	 *
7672	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7673	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7674	 * This was historically the source of MCEs and we want to be
7675	 * conservative.
7676	 *
7677	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7678	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7679	 * EPT memory type is set to WB.  The effective memory type is forced
7680	 * WB.
7681	 *
7682	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7683	 * EPT memory type is used to emulate guest CD/MTRR.
7684	 */
7685
7686	if (is_mmio)
7687		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7688
7689	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7690		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7691
7692	if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
7693		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7694			return MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT;
7695		else
7696			return (MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT) |
7697				VMX_EPT_IPAT_BIT;
7698	}
7699
7700	return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7701}
7702
7703static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7704{
7705	/*
7706	 * These bits in the secondary execution controls field
7707	 * are dynamic, the others are mostly based on the hypervisor
7708	 * architecture and the guest's CPUID.  Do not touch the
7709	 * dynamic bits.
7710	 */
7711	u32 mask =
7712		SECONDARY_EXEC_SHADOW_VMCS |
7713		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7714		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7715		SECONDARY_EXEC_DESC;
7716
7717	u32 cur_ctl = secondary_exec_controls_get(vmx);
7718
7719	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7720}
7721
7722/*
7723 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7724 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7725 */
7726static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7727{
7728	struct vcpu_vmx *vmx = to_vmx(vcpu);
7729	struct kvm_cpuid_entry2 *entry;
7730
7731	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7732	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7733
7734#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7735	if (entry && (entry->_reg & (_cpuid_mask)))			\
7736		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7737} while (0)
7738
7739	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7740	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7741	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7742	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7743	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7744	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7745	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7746	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7747	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7748	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7749	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7750	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7751	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7752	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7753	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7754
7755	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7756	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7757	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7758	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7759	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7760	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7761	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7762
7763	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7764	cr4_fixed1_update(X86_CR4_LAM_SUP,    eax, feature_bit(LAM));
7765
7766#undef cr4_fixed1_update
7767}
7768
7769static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7770{
7771	struct vcpu_vmx *vmx = to_vmx(vcpu);
7772	struct kvm_cpuid_entry2 *best = NULL;
7773	int i;
7774
7775	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7776		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7777		if (!best)
7778			return;
7779		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7780		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7781		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7782		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7783	}
7784
7785	/* Get the number of configurable Address Ranges for filtering */
7786	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7787						PT_CAP_num_address_ranges);
7788
7789	/* Initialize and clear the no dependency bits */
7790	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7791			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7792			RTIT_CTL_BRANCH_EN);
7793
7794	/*
7795	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7796	 * will inject an #GP
7797	 */
7798	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7799		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7800
7801	/*
7802	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7803	 * PSBFreq can be set
7804	 */
7805	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7806		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7807				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7808
7809	/*
7810	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7811	 */
7812	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7813		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7814					      RTIT_CTL_MTC_RANGE);
7815
7816	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7817	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7818		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7819							RTIT_CTL_PTW_EN);
7820
7821	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7822	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7823		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7824
7825	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7826	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7827		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7828
7829	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7830	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7831		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7832
7833	/* unmask address range configure area */
7834	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7835		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7836}
7837
7838void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7839{
7840	struct vcpu_vmx *vmx = to_vmx(vcpu);
7841
7842	/*
7843	 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7844	 * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7845	 * set if and only if XSAVE is supported.
7846	 */
7847	if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7848	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7849		kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7850
7851	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7852	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM);
7853
7854	vmx_setup_uret_msrs(vmx);
7855
7856	if (cpu_has_secondary_exec_ctrls())
7857		vmcs_set_secondary_exec_control(vmx,
7858						vmx_secondary_exec_control(vmx));
7859
7860	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7861		vmx->msr_ia32_feature_control_valid_bits |=
7862			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7863			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7864	else
7865		vmx->msr_ia32_feature_control_valid_bits &=
7866			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7867			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7868
7869	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7870		nested_vmx_cr_fixed1_bits_update(vcpu);
7871
7872	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7873			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7874		update_intel_pt_cfg(vcpu);
7875
7876	if (boot_cpu_has(X86_FEATURE_RTM)) {
7877		struct vmx_uret_msr *msr;
7878		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7879		if (msr) {
7880			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7881			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7882		}
7883	}
7884
7885	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7886		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7887					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7888
7889	if (boot_cpu_has(X86_FEATURE_IBPB))
7890		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7891					  !guest_has_pred_cmd_msr(vcpu));
7892
7893	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7894		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7895					  !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7896
7897	set_cr4_guest_host_mask(vmx);
7898
7899	vmx_write_encls_bitmap(vcpu, NULL);
7900	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7901		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7902	else
7903		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7904
7905	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7906		vmx->msr_ia32_feature_control_valid_bits |=
7907			FEAT_CTL_SGX_LC_ENABLED;
7908	else
7909		vmx->msr_ia32_feature_control_valid_bits &=
7910			~FEAT_CTL_SGX_LC_ENABLED;
7911
7912	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7913	vmx_update_exception_bitmap(vcpu);
7914}
7915
7916static __init u64 vmx_get_perf_capabilities(void)
7917{
7918	u64 perf_cap = PMU_CAP_FW_WRITES;
7919	u64 host_perf_cap = 0;
7920
7921	if (!enable_pmu)
7922		return 0;
7923
7924	if (boot_cpu_has(X86_FEATURE_PDCM))
7925		rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7926
7927	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7928		x86_perf_get_lbr(&vmx_lbr_caps);
7929
7930		/*
7931		 * KVM requires LBR callstack support, as the overhead due to
7932		 * context switching LBRs without said support is too high.
7933		 * See intel_pmu_create_guest_lbr_event() for more info.
7934		 */
7935		if (!vmx_lbr_caps.has_callstack)
7936			memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7937		else if (vmx_lbr_caps.nr)
7938			perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7939	}
7940
7941	if (vmx_pebs_supported()) {
7942		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7943
7944		/*
7945		 * Disallow adaptive PEBS as it is functionally broken, can be
7946		 * used by the guest to read *host* LBRs, and can be used to
7947		 * bypass userspace event filters.  To correctly and safely
7948		 * support adaptive PEBS, KVM needs to:
7949		 *
7950		 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7951		 *    counters.
7952		 *
7953		 * 2. Gain support from perf (or take direct control of counter
7954		 *    programming) to support events without adaptive PEBS
7955		 *    enabled for the hardware counter.
7956		 *
7957		 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7958		 *    adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7959		 *
7960		 * 4. Document which PMU events are effectively exposed to the
7961		 *    guest via adaptive PEBS, and make adaptive PEBS mutually
7962		 *    exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7963		 */
7964		perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7965	}
7966
7967	return perf_cap;
7968}
7969
7970static __init void vmx_set_cpu_caps(void)
7971{
7972	kvm_set_cpu_caps();
7973
7974	/* CPUID 0x1 */
7975	if (nested)
7976		kvm_cpu_cap_set(X86_FEATURE_VMX);
7977
7978	/* CPUID 0x7 */
7979	if (kvm_mpx_supported())
7980		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7981	if (!cpu_has_vmx_invpcid())
7982		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7983	if (vmx_pt_mode_is_host_guest())
7984		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7985	if (vmx_pebs_supported()) {
7986		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7987		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7988	}
7989
7990	if (!enable_pmu)
7991		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7992	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7993
7994	if (!enable_sgx) {
7995		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7996		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7997		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7998		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7999	}
8000
8001	if (vmx_umip_emulated())
8002		kvm_cpu_cap_set(X86_FEATURE_UMIP);
8003
8004	/* CPUID 0xD.1 */
8005	kvm_caps.supported_xss = 0;
8006	if (!cpu_has_vmx_xsaves())
8007		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
8008
8009	/* CPUID 0x80000001 and 0x7 (RDPID) */
8010	if (!cpu_has_vmx_rdtscp()) {
8011		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
8012		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
8013	}
8014
8015	if (cpu_has_vmx_waitpkg())
8016		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
8017}
8018
8019static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
8020				  struct x86_instruction_info *info)
8021{
8022	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8023	unsigned short port;
8024	bool intercept;
8025	int size;
8026
8027	if (info->intercept == x86_intercept_in ||
8028	    info->intercept == x86_intercept_ins) {
8029		port = info->src_val;
8030		size = info->dst_bytes;
8031	} else {
8032		port = info->dst_val;
8033		size = info->src_bytes;
8034	}
8035
8036	/*
8037	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
8038	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
8039	 * control.
8040	 *
8041	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
8042	 */
8043	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8044		intercept = nested_cpu_has(vmcs12,
8045					   CPU_BASED_UNCOND_IO_EXITING);
8046	else
8047		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
8048
8049	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
8050	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
8051}
8052
8053int vmx_check_intercept(struct kvm_vcpu *vcpu,
8054			struct x86_instruction_info *info,
8055			enum x86_intercept_stage stage,
8056			struct x86_exception *exception)
8057{
8058	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8059
8060	switch (info->intercept) {
8061	/*
8062	 * RDPID causes #UD if disabled through secondary execution controls.
8063	 * Because it is marked as EmulateOnUD, we need to intercept it here.
8064	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
8065	 */
8066	case x86_intercept_rdpid:
8067		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8068			exception->vector = UD_VECTOR;
8069			exception->error_code_valid = false;
8070			return X86EMUL_PROPAGATE_FAULT;
8071		}
8072		break;
8073
8074	case x86_intercept_in:
8075	case x86_intercept_ins:
8076	case x86_intercept_out:
8077	case x86_intercept_outs:
8078		return vmx_check_intercept_io(vcpu, info);
8079
8080	case x86_intercept_lgdt:
8081	case x86_intercept_lidt:
8082	case x86_intercept_lldt:
8083	case x86_intercept_ltr:
8084	case x86_intercept_sgdt:
8085	case x86_intercept_sidt:
8086	case x86_intercept_sldt:
8087	case x86_intercept_str:
8088		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8089			return X86EMUL_CONTINUE;
8090
8091		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
8092		break;
8093
8094	case x86_intercept_pause:
8095		/*
8096		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8097		 * with vanilla NOPs in the emulator.  Apply the interception
8098		 * check only to actual PAUSE instructions.  Don't check
8099		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8100		 * exit, i.e. KVM is within its rights to allow L2 to execute
8101		 * the PAUSE.
8102		 */
8103		if ((info->rep_prefix != REPE_PREFIX) ||
8104		    !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
8105			return X86EMUL_CONTINUE;
8106
8107		break;
8108
8109	/* TODO: check more intercepts... */
8110	default:
8111		break;
8112	}
8113
8114	return X86EMUL_UNHANDLEABLE;
8115}
8116
8117#ifdef CONFIG_X86_64
8118/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
8119static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8120				  u64 divisor, u64 *result)
8121{
8122	u64 low = a << shift, high = a >> (64 - shift);
8123
8124	/* To avoid the overflow on divq */
8125	if (high >= divisor)
8126		return 1;
8127
8128	/* Low hold the result, high hold rem which is discarded */
8129	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8130	    "rm" (divisor), "0" (low), "1" (high));
8131	*result = low;
8132
8133	return 0;
8134}
8135
8136int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8137		     bool *expired)
8138{
8139	struct vcpu_vmx *vmx;
8140	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8141	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8142
8143	vmx = to_vmx(vcpu);
8144	tscl = rdtsc();
8145	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8146	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8147	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8148						    ktimer->timer_advance_ns);
8149
8150	if (delta_tsc > lapic_timer_advance_cycles)
8151		delta_tsc -= lapic_timer_advance_cycles;
8152	else
8153		delta_tsc = 0;
8154
8155	/* Convert to host delta tsc if tsc scaling is enabled */
8156	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8157	    delta_tsc && u64_shl_div_u64(delta_tsc,
8158				kvm_caps.tsc_scaling_ratio_frac_bits,
8159				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8160		return -ERANGE;
8161
8162	/*
8163	 * If the delta tsc can't fit in the 32 bit after the multi shift,
8164	 * we can't use the preemption timer.
8165	 * It's possible that it fits on later vmentries, but checking
8166	 * on every vmentry is costly so we just use an hrtimer.
8167	 */
8168	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8169		return -ERANGE;
8170
8171	vmx->hv_deadline_tsc = tscl + delta_tsc;
8172	*expired = !delta_tsc;
8173	return 0;
8174}
8175
8176void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8177{
8178	to_vmx(vcpu)->hv_deadline_tsc = -1;
8179}
8180#endif
8181
8182void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
8183{
8184	if (!kvm_pause_in_guest(vcpu->kvm))
8185		shrink_ple_window(vcpu);
8186}
8187
8188void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8189{
8190	struct vcpu_vmx *vmx = to_vmx(vcpu);
8191
8192	if (WARN_ON_ONCE(!enable_pml))
8193		return;
8194
8195	if (is_guest_mode(vcpu)) {
8196		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8197		return;
8198	}
8199
8200	/*
8201	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8202	 * code, but in that case another update request will be made and so
8203	 * the guest will never run with a stale PML value.
8204	 */
8205	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8206		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8207	else
8208		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8209}
8210
8211void vmx_setup_mce(struct kvm_vcpu *vcpu)
8212{
8213	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8214		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8215			FEAT_CTL_LMCE_ENABLED;
8216	else
8217		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8218			~FEAT_CTL_LMCE_ENABLED;
8219}
8220
8221#ifdef CONFIG_KVM_SMM
8222int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8223{
8224	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8225	if (to_vmx(vcpu)->nested.nested_run_pending)
8226		return -EBUSY;
8227	return !is_smm(vcpu);
8228}
8229
8230int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8231{
8232	struct vcpu_vmx *vmx = to_vmx(vcpu);
8233
8234	/*
8235	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8236	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8237	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8238	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8239	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8240	 */
8241	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8242	if (vmx->nested.smm.guest_mode)
8243		nested_vmx_vmexit(vcpu, -1, 0, 0);
8244
8245	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8246	vmx->nested.vmxon = false;
8247	vmx_clear_hlt(vcpu);
8248	return 0;
8249}
8250
8251int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8252{
8253	struct vcpu_vmx *vmx = to_vmx(vcpu);
8254	int ret;
8255
8256	if (vmx->nested.smm.vmxon) {
8257		vmx->nested.vmxon = true;
8258		vmx->nested.smm.vmxon = false;
8259	}
8260
8261	if (vmx->nested.smm.guest_mode) {
8262		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8263		if (ret)
8264			return ret;
8265
8266		vmx->nested.nested_run_pending = 1;
8267		vmx->nested.smm.guest_mode = false;
8268	}
8269	return 0;
8270}
8271
8272void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8273{
8274	/* RSM will cause a vmexit anyway.  */
8275}
8276#endif
8277
8278bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8279{
8280	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8281}
8282
8283void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8284{
8285	if (is_guest_mode(vcpu)) {
8286		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8287
8288		if (hrtimer_try_to_cancel(timer) == 1)
8289			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8290	}
8291}
8292
8293void vmx_hardware_unsetup(void)
8294{
8295	kvm_set_posted_intr_wakeup_handler(NULL);
8296
8297	if (nested)
8298		nested_vmx_hardware_unsetup();
8299
8300	free_kvm_area();
8301}
8302
8303void vmx_vm_destroy(struct kvm *kvm)
8304{
8305	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8306
8307	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8308}
8309
8310/*
8311 * Note, the SDM states that the linear address is masked *after* the modified
8312 * canonicality check, whereas KVM masks (untags) the address and then performs
8313 * a "normal" canonicality check.  Functionally, the two methods are identical,
8314 * and when the masking occurs relative to the canonicality check isn't visible
8315 * to software, i.e. KVM's behavior doesn't violate the SDM.
8316 */
8317gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8318{
8319	int lam_bit;
8320	unsigned long cr3_bits;
8321
8322	if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8323		return gva;
8324
8325	if (!is_64_bit_mode(vcpu))
8326		return gva;
8327
8328	/*
8329	 * Bit 63 determines if the address should be treated as user address
8330	 * or a supervisor address.
8331	 */
8332	if (!(gva & BIT_ULL(63))) {
8333		cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8334		if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8335			return gva;
8336
8337		/* LAM_U48 is ignored if LAM_U57 is set. */
8338		lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8339	} else {
8340		if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8341			return gva;
8342
8343		lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8344	}
8345
8346	/*
8347	 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8348	 * Bit 63 is retained from the raw virtual address so that untagging
8349	 * doesn't change a user access to a supervisor access, and vice versa.
8350	 */
8351	return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8352}
8353
8354static unsigned int vmx_handle_intel_pt_intr(void)
8355{
8356	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8357
8358	/* '0' on failure so that the !PT case can use a RET0 static call. */
8359	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8360		return 0;
8361
8362	kvm_make_request(KVM_REQ_PMI, vcpu);
8363	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8364		  (unsigned long *)&vcpu->arch.pmu.global_status);
8365	return 1;
8366}
8367
8368static __init void vmx_setup_user_return_msrs(void)
8369{
8370
8371	/*
8372	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8373	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8374	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8375	 * support this emulation, MSR_STAR is included in the list for i386,
8376	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8377	 * into hardware and is here purely for emulation purposes.
8378	 */
8379	const u32 vmx_uret_msrs_list[] = {
8380	#ifdef CONFIG_X86_64
8381		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8382	#endif
8383		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8384		MSR_IA32_TSX_CTRL,
8385	};
8386	int i;
8387
8388	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8389
8390	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8391		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8392}
8393
8394static void __init vmx_setup_me_spte_mask(void)
8395{
8396	u64 me_mask = 0;
8397
8398	/*
8399	 * kvm_get_shadow_phys_bits() returns shadow_phys_bits.  Use
8400	 * the former to avoid exposing shadow_phys_bits.
8401	 *
8402	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8403	 * shadow_phys_bits.  On MKTME and/or TDX capable systems,
8404	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8405	 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8406	 * reported by CPUID.  Those bits between are KeyID bits.
8407	 */
8408	if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8409		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8410			kvm_get_shadow_phys_bits() - 1);
8411	/*
8412	 * Unlike SME, host kernel doesn't support setting up any
8413	 * MKTME KeyID on Intel platforms.  No memory encryption
8414	 * bits should be included into the SPTE.
8415	 */
8416	kvm_mmu_set_me_spte_mask(0, me_mask);
8417}
8418
8419__init int vmx_hardware_setup(void)
8420{
8421	unsigned long host_bndcfgs;
8422	struct desc_ptr dt;
8423	int r;
8424
8425	store_idt(&dt);
8426	host_idt_base = dt.address;
8427
8428	vmx_setup_user_return_msrs();
8429
8430	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8431		return -EIO;
8432
8433	if (cpu_has_perf_global_ctrl_bug())
8434		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8435			     "does not work properly. Using workaround\n");
8436
8437	if (boot_cpu_has(X86_FEATURE_NX))
8438		kvm_enable_efer_bits(EFER_NX);
8439
8440	if (boot_cpu_has(X86_FEATURE_MPX)) {
8441		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8442		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8443	}
8444
8445	if (!cpu_has_vmx_mpx())
8446		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8447					     XFEATURE_MASK_BNDCSR);
8448
8449	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8450	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8451		enable_vpid = 0;
8452
8453	if (!cpu_has_vmx_ept() ||
8454	    !cpu_has_vmx_ept_4levels() ||
8455	    !cpu_has_vmx_ept_mt_wb() ||
8456	    !cpu_has_vmx_invept_global())
8457		enable_ept = 0;
8458
8459	/* NX support is required for shadow paging. */
8460	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8461		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8462		return -EOPNOTSUPP;
8463	}
8464
8465	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8466		enable_ept_ad_bits = 0;
8467
8468	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8469		enable_unrestricted_guest = 0;
8470
8471	if (!cpu_has_vmx_flexpriority())
8472		flexpriority_enabled = 0;
8473
8474	if (!cpu_has_virtual_nmis())
8475		enable_vnmi = 0;
8476
8477#ifdef CONFIG_X86_SGX_KVM
8478	if (!cpu_has_vmx_encls_vmexit())
8479		enable_sgx = false;
8480#endif
8481
8482	/*
8483	 * set_apic_access_page_addr() is used to reload apic access
8484	 * page upon invalidation.  No need to do anything if not
8485	 * using the APIC_ACCESS_ADDR VMCS field.
8486	 */
8487	if (!flexpriority_enabled)
8488		vt_x86_ops.set_apic_access_page_addr = NULL;
8489
8490	if (!cpu_has_vmx_tpr_shadow())
8491		vt_x86_ops.update_cr8_intercept = NULL;
8492
8493#if IS_ENABLED(CONFIG_HYPERV)
8494	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8495	    && enable_ept) {
8496		vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8497		vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8498	}
8499#endif
8500
8501	if (!cpu_has_vmx_ple()) {
8502		ple_gap = 0;
8503		ple_window = 0;
8504		ple_window_grow = 0;
8505		ple_window_max = 0;
8506		ple_window_shrink = 0;
8507	}
8508
8509	if (!cpu_has_vmx_apicv())
8510		enable_apicv = 0;
8511	if (!enable_apicv)
8512		vt_x86_ops.sync_pir_to_irr = NULL;
8513
8514	if (!enable_apicv || !cpu_has_vmx_ipiv())
8515		enable_ipiv = false;
8516
8517	if (cpu_has_vmx_tsc_scaling())
8518		kvm_caps.has_tsc_control = true;
8519
8520	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8521	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8522	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8523	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8524
8525	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8526
8527	if (enable_ept)
8528		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8529				      cpu_has_vmx_ept_execute_only());
8530
8531	/*
8532	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8533	 * bits to shadow_zero_check.
8534	 */
8535	vmx_setup_me_spte_mask();
8536
8537	kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8538			  ept_caps_to_lpage_level(vmx_capability.ept));
8539
8540	/*
8541	 * Only enable PML when hardware supports PML feature, and both EPT
8542	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8543	 */
8544	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8545		enable_pml = 0;
8546
8547	if (!enable_pml)
8548		vt_x86_ops.cpu_dirty_log_size = 0;
8549
8550	if (!cpu_has_vmx_preemption_timer())
8551		enable_preemption_timer = false;
8552
8553	if (enable_preemption_timer) {
8554		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8555
8556		cpu_preemption_timer_multi =
8557			vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8558
8559		if (tsc_khz)
8560			use_timer_freq = (u64)tsc_khz * 1000;
8561		use_timer_freq >>= cpu_preemption_timer_multi;
8562
8563		/*
8564		 * KVM "disables" the preemption timer by setting it to its max
8565		 * value.  Don't use the timer if it might cause spurious exits
8566		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8567		 */
8568		if (use_timer_freq > 0xffffffffu / 10)
8569			enable_preemption_timer = false;
8570	}
8571
8572	if (!enable_preemption_timer) {
8573		vt_x86_ops.set_hv_timer = NULL;
8574		vt_x86_ops.cancel_hv_timer = NULL;
8575	}
8576
8577	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8578	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8579
8580	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8581		return -EINVAL;
8582	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8583		pt_mode = PT_MODE_SYSTEM;
8584	if (pt_mode == PT_MODE_HOST_GUEST)
8585		vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8586	else
8587		vt_init_ops.handle_intel_pt_intr = NULL;
8588
8589	setup_default_sgx_lepubkeyhash();
8590
8591	if (nested) {
8592		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8593
8594		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8595		if (r)
8596			return r;
8597	}
8598
8599	vmx_set_cpu_caps();
8600
8601	r = alloc_kvm_area();
8602	if (r && nested)
8603		nested_vmx_hardware_unsetup();
8604
8605	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8606
8607	return r;
8608}
8609
8610static void vmx_cleanup_l1d_flush(void)
8611{
8612	if (vmx_l1d_flush_pages) {
8613		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8614		vmx_l1d_flush_pages = NULL;
8615	}
8616	/* Restore state so sysfs ignores VMX */
8617	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8618}
8619
8620static void __vmx_exit(void)
8621{
8622	allow_smaller_maxphyaddr = false;
8623
8624	cpu_emergency_unregister_virt_callback(vmx_emergency_disable);
8625
8626	vmx_cleanup_l1d_flush();
8627}
8628
8629static void vmx_exit(void)
8630{
8631	kvm_exit();
8632	kvm_x86_vendor_exit();
8633
8634	__vmx_exit();
8635}
8636module_exit(vmx_exit);
8637
8638static int __init vmx_init(void)
8639{
8640	int r, cpu;
8641
8642	if (!kvm_is_vmx_supported())
8643		return -EOPNOTSUPP;
8644
8645	/*
8646	 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8647	 * to unwind if a later step fails.
8648	 */
8649	hv_init_evmcs();
8650
8651	r = kvm_x86_vendor_init(&vt_init_ops);
8652	if (r)
8653		return r;
8654
8655	/*
8656	 * Must be called after common x86 init so enable_ept is properly set
8657	 * up. Hand the parameter mitigation value in which was stored in
8658	 * the pre module init parser. If no parameter was given, it will
8659	 * contain 'auto' which will be turned into the default 'cond'
8660	 * mitigation mode.
8661	 */
8662	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8663	if (r)
8664		goto err_l1d_flush;
8665
8666	for_each_possible_cpu(cpu) {
8667		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8668
8669		pi_init_cpu(cpu);
8670	}
8671
8672	cpu_emergency_register_virt_callback(vmx_emergency_disable);
8673
8674	vmx_check_vmcs12_offsets();
8675
8676	/*
8677	 * Shadow paging doesn't have a (further) performance penalty
8678	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8679	 * by default
8680	 */
8681	if (!enable_ept)
8682		allow_smaller_maxphyaddr = true;
8683
8684	/*
8685	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8686	 * exposed to userspace!
8687	 */
8688	r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8689		     THIS_MODULE);
8690	if (r)
8691		goto err_kvm_init;
8692
8693	return 0;
8694
8695err_kvm_init:
8696	__vmx_exit();
8697err_l1d_flush:
8698	kvm_x86_vendor_exit();
8699	return r;
8700}
8701module_init(vmx_init);
8702