1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_PROCESSOR_H
3#define _ASM_X86_PROCESSOR_H
4
5#include <asm/processor-flags.h>
6
7/* Forward declaration, a strange C thing */
8struct task_struct;
9struct mm_struct;
10struct io_bitmap;
11struct vm86;
12
13#include <asm/math_emu.h>
14#include <asm/segment.h>
15#include <asm/types.h>
16#include <uapi/asm/sigcontext.h>
17#include <asm/current.h>
18#include <asm/cpufeatures.h>
19#include <asm/cpuid.h>
20#include <asm/page.h>
21#include <asm/pgtable_types.h>
22#include <asm/percpu.h>
23#include <asm/desc_defs.h>
24#include <asm/nops.h>
25#include <asm/special_insns.h>
26#include <asm/fpu/types.h>
27#include <asm/unwind_hints.h>
28#include <asm/vmxfeatures.h>
29#include <asm/vdso/processor.h>
30#include <asm/shstk.h>
31
32#include <linux/personality.h>
33#include <linux/cache.h>
34#include <linux/threads.h>
35#include <linux/math64.h>
36#include <linux/err.h>
37#include <linux/irqflags.h>
38#include <linux/mem_encrypt.h>
39
40/*
41 * We handle most unaligned accesses in hardware.  On the other hand
42 * unaligned DMA can be quite expensive on some Nehalem processors.
43 *
44 * Based on this we disable the IP header alignment in network drivers.
45 */
46#define NET_IP_ALIGN	0
47
48#define HBP_NUM 4
49
50/*
51 * These alignment constraints are for performance in the vSMP case,
52 * but in the task_struct case we must also meet hardware imposed
53 * alignment requirements of the FPU state:
54 */
55#ifdef CONFIG_X86_VSMP
56# define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
57# define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
58#else
59# define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
60# define ARCH_MIN_MMSTRUCT_ALIGN	0
61#endif
62
63enum tlb_infos {
64	ENTRIES,
65	NR_INFO
66};
67
68extern u16 __read_mostly tlb_lli_4k[NR_INFO];
69extern u16 __read_mostly tlb_lli_2m[NR_INFO];
70extern u16 __read_mostly tlb_lli_4m[NR_INFO];
71extern u16 __read_mostly tlb_lld_4k[NR_INFO];
72extern u16 __read_mostly tlb_lld_2m[NR_INFO];
73extern u16 __read_mostly tlb_lld_4m[NR_INFO];
74extern u16 __read_mostly tlb_lld_1g[NR_INFO];
75
76/*
77 * CPU type and hardware bug flags. Kept separately for each CPU.
78 */
79
80struct cpuinfo_topology {
81	// Real APIC ID read from the local APIC
82	u32			apicid;
83	// The initial APIC ID provided by CPUID
84	u32			initial_apicid;
85
86	// Physical package ID
87	u32			pkg_id;
88
89	// Physical die ID on AMD, Relative on Intel
90	u32			die_id;
91
92	// Compute unit ID - AMD specific
93	u32			cu_id;
94
95	// Core ID relative to the package
96	u32			core_id;
97
98	// Logical ID mappings
99	u32			logical_pkg_id;
100	u32			logical_die_id;
101
102	// AMD Node ID and Nodes per Package info
103	u32			amd_node_id;
104
105	// Cache level topology IDs
106	u32			llc_id;
107	u32			l2c_id;
108};
109
110struct cpuinfo_x86 {
111	union {
112		/*
113		 * The particular ordering (low-to-high) of (vendor,
114		 * family, model) is done in case range of models, like
115		 * it is usually done on AMD, need to be compared.
116		 */
117		struct {
118			__u8	x86_model;
119			/* CPU family */
120			__u8	x86;
121			/* CPU vendor */
122			__u8	x86_vendor;
123			__u8	x86_reserved;
124		};
125		/* combined vendor, family, model */
126		__u32		x86_vfm;
127	};
128	__u8			x86_stepping;
129#ifdef CONFIG_X86_64
130	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
131	int			x86_tlbsize;
132#endif
133#ifdef CONFIG_X86_VMX_FEATURE_NAMES
134	__u32			vmx_capability[NVMXINTS];
135#endif
136	__u8			x86_virt_bits;
137	__u8			x86_phys_bits;
138	/* Max extended CPUID function supported: */
139	__u32			extended_cpuid_level;
140	/* Maximum supported CPUID level, -1=no CPUID: */
141	int			cpuid_level;
142	/*
143	 * Align to size of unsigned long because the x86_capability array
144	 * is passed to bitops which require the alignment. Use unnamed
145	 * union to enforce the array is aligned to size of unsigned long.
146	 */
147	union {
148		__u32		x86_capability[NCAPINTS + NBUGINTS];
149		unsigned long	x86_capability_alignment;
150	};
151	char			x86_vendor_id[16];
152	char			x86_model_id[64];
153	struct cpuinfo_topology	topo;
154	/* in KB - valid for CPUS which support this call: */
155	unsigned int		x86_cache_size;
156	int			x86_cache_alignment;	/* In bytes */
157	/* Cache QoS architectural values, valid only on the BSP: */
158	int			x86_cache_max_rmid;	/* max index */
159	int			x86_cache_occ_scale;	/* scale to bytes */
160	int			x86_cache_mbm_width_offset;
161	int			x86_power;
162	unsigned long		loops_per_jiffy;
163	/* protected processor identification number */
164	u64			ppin;
165	u16			x86_clflush_size;
166	/* number of cores as seen by the OS: */
167	u16			booted_cores;
168	/* Index into per_cpu list: */
169	u16			cpu_index;
170	/*  Is SMT active on this core? */
171	bool			smt_active;
172	u32			microcode;
173	/* Address space bits used by the cache internally */
174	u8			x86_cache_bits;
175	unsigned		initialized : 1;
176} __randomize_layout;
177
178#define X86_VENDOR_INTEL	0
179#define X86_VENDOR_CYRIX	1
180#define X86_VENDOR_AMD		2
181#define X86_VENDOR_UMC		3
182#define X86_VENDOR_CENTAUR	5
183#define X86_VENDOR_TRANSMETA	7
184#define X86_VENDOR_NSC		8
185#define X86_VENDOR_HYGON	9
186#define X86_VENDOR_ZHAOXIN	10
187#define X86_VENDOR_VORTEX	11
188#define X86_VENDOR_NUM		12
189
190#define X86_VENDOR_UNKNOWN	0xff
191
192/*
193 * capabilities of CPUs
194 */
195extern struct cpuinfo_x86	boot_cpu_data;
196extern struct cpuinfo_x86	new_cpu_data;
197
198extern __u32			cpu_caps_cleared[NCAPINTS + NBUGINTS];
199extern __u32			cpu_caps_set[NCAPINTS + NBUGINTS];
200
201DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
202#define cpu_data(cpu)		per_cpu(cpu_info, cpu)
203
204extern const struct seq_operations cpuinfo_op;
205
206#define cache_line_size()	(boot_cpu_data.x86_cache_alignment)
207
208extern void cpu_detect(struct cpuinfo_x86 *c);
209
210static inline unsigned long long l1tf_pfn_limit(void)
211{
212	return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
213}
214
215extern void early_cpu_init(void);
216extern void identify_secondary_cpu(struct cpuinfo_x86 *);
217extern void print_cpu_info(struct cpuinfo_x86 *);
218void print_cpu_msr(struct cpuinfo_x86 *);
219
220/*
221 * Friendlier CR3 helpers.
222 */
223static inline unsigned long read_cr3_pa(void)
224{
225	return __read_cr3() & CR3_ADDR_MASK;
226}
227
228static inline unsigned long native_read_cr3_pa(void)
229{
230	return __native_read_cr3() & CR3_ADDR_MASK;
231}
232
233static inline void load_cr3(pgd_t *pgdir)
234{
235	write_cr3(__sme_pa(pgdir));
236}
237
238/*
239 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
240 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
241 * unrelated to the task-switch mechanism:
242 */
243#ifdef CONFIG_X86_32
244/* This is the TSS defined by the hardware. */
245struct x86_hw_tss {
246	unsigned short		back_link, __blh;
247	unsigned long		sp0;
248	unsigned short		ss0, __ss0h;
249	unsigned long		sp1;
250
251	/*
252	 * We don't use ring 1, so ss1 is a convenient scratch space in
253	 * the same cacheline as sp0.  We use ss1 to cache the value in
254	 * MSR_IA32_SYSENTER_CS.  When we context switch
255	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
256	 * written matches ss1, and, if it's not, then we wrmsr the new
257	 * value and update ss1.
258	 *
259	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
260	 * that we set it to zero in vm86 tasks to avoid corrupting the
261	 * stack if we were to go through the sysenter path from vm86
262	 * mode.
263	 */
264	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */
265
266	unsigned short		__ss1h;
267	unsigned long		sp2;
268	unsigned short		ss2, __ss2h;
269	unsigned long		__cr3;
270	unsigned long		ip;
271	unsigned long		flags;
272	unsigned long		ax;
273	unsigned long		cx;
274	unsigned long		dx;
275	unsigned long		bx;
276	unsigned long		sp;
277	unsigned long		bp;
278	unsigned long		si;
279	unsigned long		di;
280	unsigned short		es, __esh;
281	unsigned short		cs, __csh;
282	unsigned short		ss, __ssh;
283	unsigned short		ds, __dsh;
284	unsigned short		fs, __fsh;
285	unsigned short		gs, __gsh;
286	unsigned short		ldt, __ldth;
287	unsigned short		trace;
288	unsigned short		io_bitmap_base;
289
290} __attribute__((packed));
291#else
292struct x86_hw_tss {
293	u32			reserved1;
294	u64			sp0;
295	u64			sp1;
296
297	/*
298	 * Since Linux does not use ring 2, the 'sp2' slot is unused by
299	 * hardware.  entry_SYSCALL_64 uses it as scratch space to stash
300	 * the user RSP value.
301	 */
302	u64			sp2;
303
304	u64			reserved2;
305	u64			ist[7];
306	u32			reserved3;
307	u32			reserved4;
308	u16			reserved5;
309	u16			io_bitmap_base;
310
311} __attribute__((packed));
312#endif
313
314/*
315 * IO-bitmap sizes:
316 */
317#define IO_BITMAP_BITS			65536
318#define IO_BITMAP_BYTES			(IO_BITMAP_BITS / BITS_PER_BYTE)
319#define IO_BITMAP_LONGS			(IO_BITMAP_BYTES / sizeof(long))
320
321#define IO_BITMAP_OFFSET_VALID_MAP				\
322	(offsetof(struct tss_struct, io_bitmap.bitmap) -	\
323	 offsetof(struct tss_struct, x86_tss))
324
325#define IO_BITMAP_OFFSET_VALID_ALL				\
326	(offsetof(struct tss_struct, io_bitmap.mapall) -	\
327	 offsetof(struct tss_struct, x86_tss))
328
329#ifdef CONFIG_X86_IOPL_IOPERM
330/*
331 * sizeof(unsigned long) coming from an extra "long" at the end of the
332 * iobitmap. The limit is inclusive, i.e. the last valid byte.
333 */
334# define __KERNEL_TSS_LIMIT	\
335	(IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
336	 sizeof(unsigned long) - 1)
337#else
338# define __KERNEL_TSS_LIMIT	\
339	(offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
340#endif
341
342/* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
343#define IO_BITMAP_OFFSET_INVALID	(__KERNEL_TSS_LIMIT + 1)
344
345struct entry_stack {
346	char	stack[PAGE_SIZE];
347};
348
349struct entry_stack_page {
350	struct entry_stack stack;
351} __aligned(PAGE_SIZE);
352
353/*
354 * All IO bitmap related data stored in the TSS:
355 */
356struct x86_io_bitmap {
357	/* The sequence number of the last active bitmap. */
358	u64			prev_sequence;
359
360	/*
361	 * Store the dirty size of the last io bitmap offender. The next
362	 * one will have to do the cleanup as the switch out to a non io
363	 * bitmap user will just set x86_tss.io_bitmap_base to a value
364	 * outside of the TSS limit. So for sane tasks there is no need to
365	 * actually touch the io_bitmap at all.
366	 */
367	unsigned int		prev_max;
368
369	/*
370	 * The extra 1 is there because the CPU will access an
371	 * additional byte beyond the end of the IO permission
372	 * bitmap. The extra byte must be all 1 bits, and must
373	 * be within the limit.
374	 */
375	unsigned long		bitmap[IO_BITMAP_LONGS + 1];
376
377	/*
378	 * Special I/O bitmap to emulate IOPL(3). All bytes zero,
379	 * except the additional byte at the end.
380	 */
381	unsigned long		mapall[IO_BITMAP_LONGS + 1];
382};
383
384struct tss_struct {
385	/*
386	 * The fixed hardware portion.  This must not cross a page boundary
387	 * at risk of violating the SDM's advice and potentially triggering
388	 * errata.
389	 */
390	struct x86_hw_tss	x86_tss;
391
392	struct x86_io_bitmap	io_bitmap;
393} __aligned(PAGE_SIZE);
394
395DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
396
397/* Per CPU interrupt stacks */
398struct irq_stack {
399	char		stack[IRQ_STACK_SIZE];
400} __aligned(IRQ_STACK_SIZE);
401
402#ifdef CONFIG_X86_64
403struct fixed_percpu_data {
404	/*
405	 * GCC hardcodes the stack canary as %gs:40.  Since the
406	 * irq_stack is the object at %gs:0, we reserve the bottom
407	 * 48 bytes of the irq stack for the canary.
408	 *
409	 * Once we are willing to require -mstack-protector-guard-symbol=
410	 * support for x86_64 stackprotector, we can get rid of this.
411	 */
412	char		gs_base[40];
413	unsigned long	stack_canary;
414};
415
416DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
417DECLARE_INIT_PER_CPU(fixed_percpu_data);
418
419static inline unsigned long cpu_kernelmode_gs_base(int cpu)
420{
421	return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
422}
423
424extern asmlinkage void entry_SYSCALL32_ignore(void);
425
426/* Save actual FS/GS selectors and bases to current->thread */
427void current_save_fsgs(void);
428#else	/* X86_64 */
429#ifdef CONFIG_STACKPROTECTOR
430DECLARE_PER_CPU(unsigned long, __stack_chk_guard);
431#endif
432#endif	/* !X86_64 */
433
434struct perf_event;
435
436struct thread_struct {
437	/* Cached TLS descriptors: */
438	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
439#ifdef CONFIG_X86_32
440	unsigned long		sp0;
441#endif
442	unsigned long		sp;
443#ifdef CONFIG_X86_32
444	unsigned long		sysenter_cs;
445#else
446	unsigned short		es;
447	unsigned short		ds;
448	unsigned short		fsindex;
449	unsigned short		gsindex;
450#endif
451
452#ifdef CONFIG_X86_64
453	unsigned long		fsbase;
454	unsigned long		gsbase;
455#else
456	/*
457	 * XXX: this could presumably be unsigned short.  Alternatively,
458	 * 32-bit kernels could be taught to use fsindex instead.
459	 */
460	unsigned long fs;
461	unsigned long gs;
462#endif
463
464	/* Save middle states of ptrace breakpoints */
465	struct perf_event	*ptrace_bps[HBP_NUM];
466	/* Debug status used for traps, single steps, etc... */
467	unsigned long           virtual_dr6;
468	/* Keep track of the exact dr7 value set by the user */
469	unsigned long           ptrace_dr7;
470	/* Fault info: */
471	unsigned long		cr2;
472	unsigned long		trap_nr;
473	unsigned long		error_code;
474#ifdef CONFIG_VM86
475	/* Virtual 86 mode info */
476	struct vm86		*vm86;
477#endif
478	/* IO permissions: */
479	struct io_bitmap	*io_bitmap;
480
481	/*
482	 * IOPL. Privilege level dependent I/O permission which is
483	 * emulated via the I/O bitmap to prevent user space from disabling
484	 * interrupts.
485	 */
486	unsigned long		iopl_emul;
487
488	unsigned int		iopl_warn:1;
489
490	/*
491	 * Protection Keys Register for Userspace.  Loaded immediately on
492	 * context switch. Store it in thread_struct to avoid a lookup in
493	 * the tasks's FPU xstate buffer. This value is only valid when a
494	 * task is scheduled out. For 'current' the authoritative source of
495	 * PKRU is the hardware itself.
496	 */
497	u32			pkru;
498
499#ifdef CONFIG_X86_USER_SHADOW_STACK
500	unsigned long		features;
501	unsigned long		features_locked;
502
503	struct thread_shstk	shstk;
504#endif
505
506	/* Floating point and extended processor state */
507	struct fpu		fpu;
508	/*
509	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
510	 * the end.
511	 */
512};
513
514extern void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size);
515
516static inline void arch_thread_struct_whitelist(unsigned long *offset,
517						unsigned long *size)
518{
519	fpu_thread_struct_whitelist(offset, size);
520}
521
522static inline void
523native_load_sp0(unsigned long sp0)
524{
525	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
526}
527
528static __always_inline void native_swapgs(void)
529{
530#ifdef CONFIG_X86_64
531	asm volatile("swapgs" ::: "memory");
532#endif
533}
534
535static __always_inline unsigned long current_top_of_stack(void)
536{
537	/*
538	 *  We can't read directly from tss.sp0: sp0 on x86_32 is special in
539	 *  and around vm86 mode and sp0 on x86_64 is special because of the
540	 *  entry trampoline.
541	 */
542	if (IS_ENABLED(CONFIG_USE_X86_SEG_SUPPORT))
543		return this_cpu_read_const(const_pcpu_hot.top_of_stack);
544
545	return this_cpu_read_stable(pcpu_hot.top_of_stack);
546}
547
548static __always_inline bool on_thread_stack(void)
549{
550	return (unsigned long)(current_top_of_stack() -
551			       current_stack_pointer) < THREAD_SIZE;
552}
553
554#ifdef CONFIG_PARAVIRT_XXL
555#include <asm/paravirt.h>
556#else
557
558static inline void load_sp0(unsigned long sp0)
559{
560	native_load_sp0(sp0);
561}
562
563#endif /* CONFIG_PARAVIRT_XXL */
564
565unsigned long __get_wchan(struct task_struct *p);
566
567extern void select_idle_routine(void);
568extern void amd_e400_c1e_apic_setup(void);
569
570extern unsigned long		boot_option_idle_override;
571
572enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
573			 IDLE_POLL};
574
575extern void enable_sep_cpu(void);
576
577
578/* Defined in head.S */
579extern struct desc_ptr		early_gdt_descr;
580
581extern void switch_gdt_and_percpu_base(int);
582extern void load_direct_gdt(int);
583extern void load_fixmap_gdt(int);
584extern void cpu_init(void);
585extern void cpu_init_exception_handling(void);
586extern void cr4_init(void);
587
588extern void set_task_blockstep(struct task_struct *task, bool on);
589
590/* Boot loader type from the setup header: */
591extern int			bootloader_type;
592extern int			bootloader_version;
593
594extern char			ignore_fpu_irq;
595
596#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
597#define ARCH_HAS_PREFETCHW
598
599#ifdef CONFIG_X86_32
600# define BASE_PREFETCH		""
601# define ARCH_HAS_PREFETCH
602#else
603# define BASE_PREFETCH		"prefetcht0 %1"
604#endif
605
606/*
607 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
608 *
609 * It's not worth to care about 3dnow prefetches for the K6
610 * because they are microcoded there and very slow.
611 */
612static inline void prefetch(const void *x)
613{
614	alternative_input(BASE_PREFETCH, "prefetchnta %1",
615			  X86_FEATURE_XMM,
616			  "m" (*(const char *)x));
617}
618
619/*
620 * 3dnow prefetch to get an exclusive cache line.
621 * Useful for spinlocks to avoid one state transition in the
622 * cache coherency protocol:
623 */
624static __always_inline void prefetchw(const void *x)
625{
626	alternative_input(BASE_PREFETCH, "prefetchw %1",
627			  X86_FEATURE_3DNOWPREFETCH,
628			  "m" (*(const char *)x));
629}
630
631#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
632			   TOP_OF_KERNEL_STACK_PADDING)
633
634#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
635
636#define task_pt_regs(task) \
637({									\
638	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
639	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
640	((struct pt_regs *)__ptr) - 1;					\
641})
642
643#ifdef CONFIG_X86_32
644#define INIT_THREAD  {							  \
645	.sp0			= TOP_OF_INIT_STACK,			  \
646	.sysenter_cs		= __KERNEL_CS,				  \
647}
648
649#define KSTK_ESP(task)		(task_pt_regs(task)->sp)
650
651#else
652extern unsigned long __top_init_kernel_stack[];
653
654#define INIT_THREAD {							\
655	.sp	= (unsigned long)&__top_init_kernel_stack,		\
656}
657
658extern unsigned long KSTK_ESP(struct task_struct *task);
659
660#endif /* CONFIG_X86_64 */
661
662extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
663					       unsigned long new_sp);
664
665/*
666 * This decides where the kernel will search for a free chunk of vm
667 * space during mmap's.
668 */
669#define __TASK_UNMAPPED_BASE(task_size)	(PAGE_ALIGN(task_size / 3))
670#define TASK_UNMAPPED_BASE		__TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
671
672#define KSTK_EIP(task)		(task_pt_regs(task)->ip)
673
674/* Get/set a process' ability to use the timestamp counter instruction */
675#define GET_TSC_CTL(adr)	get_tsc_mode((adr))
676#define SET_TSC_CTL(val)	set_tsc_mode((val))
677
678extern int get_tsc_mode(unsigned long adr);
679extern int set_tsc_mode(unsigned int val);
680
681DECLARE_PER_CPU(u64, msr_misc_features_shadow);
682
683static inline u32 per_cpu_llc_id(unsigned int cpu)
684{
685	return per_cpu(cpu_info.topo.llc_id, cpu);
686}
687
688static inline u32 per_cpu_l2c_id(unsigned int cpu)
689{
690	return per_cpu(cpu_info.topo.l2c_id, cpu);
691}
692
693#ifdef CONFIG_CPU_SUP_AMD
694extern u32 amd_get_highest_perf(void);
695extern void amd_clear_divider(void);
696extern void amd_check_microcode(void);
697#else
698static inline u32 amd_get_highest_perf(void)		{ return 0; }
699static inline void amd_clear_divider(void)		{ }
700static inline void amd_check_microcode(void)		{ }
701#endif
702
703extern unsigned long arch_align_stack(unsigned long sp);
704void free_init_pages(const char *what, unsigned long begin, unsigned long end);
705extern void free_kernel_image_pages(const char *what, void *begin, void *end);
706
707void default_idle(void);
708#ifdef	CONFIG_XEN
709bool xen_set_default_idle(void);
710#else
711#define xen_set_default_idle 0
712#endif
713
714void __noreturn stop_this_cpu(void *dummy);
715void microcode_check(struct cpuinfo_x86 *prev_info);
716void store_cpu_caps(struct cpuinfo_x86 *info);
717
718enum l1tf_mitigations {
719	L1TF_MITIGATION_OFF,
720	L1TF_MITIGATION_FLUSH_NOWARN,
721	L1TF_MITIGATION_FLUSH,
722	L1TF_MITIGATION_FLUSH_NOSMT,
723	L1TF_MITIGATION_FULL,
724	L1TF_MITIGATION_FULL_FORCE
725};
726
727extern enum l1tf_mitigations l1tf_mitigation;
728
729enum mds_mitigations {
730	MDS_MITIGATION_OFF,
731	MDS_MITIGATION_FULL,
732	MDS_MITIGATION_VMWERV,
733};
734
735extern bool gds_ucode_mitigated(void);
736
737/*
738 * Make previous memory operations globally visible before
739 * a WRMSR.
740 *
741 * MFENCE makes writes visible, but only affects load/store
742 * instructions.  WRMSR is unfortunately not a load/store
743 * instruction and is unaffected by MFENCE.  The LFENCE ensures
744 * that the WRMSR is not reordered.
745 *
746 * Most WRMSRs are full serializing instructions themselves and
747 * do not require this barrier.  This is only required for the
748 * IA32_TSC_DEADLINE and X2APIC MSRs.
749 */
750static inline void weak_wrmsr_fence(void)
751{
752	alternative("mfence; lfence", "", ALT_NOT(X86_FEATURE_APIC_MSRS_FENCE));
753}
754
755#endif /* _ASM_X86_PROCESSOR_H */
756